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Abstract

An arithmetical system is presented with the property that from every proof a realizing term
can be extracted that is definable in a certain affine linear typed variant of Gödel’sT and
therefore defines a non-size-increasing polynomial time computable function.
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1 Introduction

There is an increasing interest in recent research in “implicit computational com-
plexity”, e.g. by means of global restrictions on simply typed term systems to en-
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sure computability in polynomial time [2,7,10,1]. One such approach has its roots
in a careful study by Caseiro [4] of many examples of natural algorithms, and her
formulation of (partially semantic) criteria ensuring computability in polynomial
time. The third author identified in [7] an important aspect of this analysis: the role
played by non-size-increasing functions. He designed a new (affine linear) term
system which can only define non-size-increasing functions, but still allows nested
recursion. One important restriction is that the step terms in recursion operators
must be closed, since when unfolding the recursion they will be duplicated and
hence would violate linearity otherwise. The first and fourth author gave in [1]
a proof of the main result of [7] by a different (syntactical) method, which also
provides an explicit construction of the bounding polynomials. One motivation for
this work was the expectation that the simple approach chosen should make it easy
to design a reasonably rich and flexible (higher type) arithmetical system, whose
provably recursive functions can be computed in polynomial time. It is the purpose
of the present paper to carry this out.

The leading intuition is of course that one should use the Curry-Howard correspon-
dence between terms in lambda-calculus and derivations in arithmetic. However,
care is taken to arrive at a flexible and easy to use arithmetical system, which can
be understood in its own right.

The paper is structured as follows. In section 2 we present a variant of the linear
term system of [7,1] defining non-size-increasing polynomial time functions only.
Tailored for these terms is the arithmetic proof calculus introduced in section 3.
In order to obtain a flexible and expressive system we included some unusual fea-
tures: there are two forms of conjunction,A⊗B andA∧B, to account for the linear
aspects of our logic. We also distinguish (as in [3]) between quantifiers with and
without computational content. The former are obtained by relativizing to special
“existence predicates”Eρ. So∀x.Eρ(x) → . . . and∃x.Eρ(x) ⊗ . . . indicate that
x has computational meaning for the extracted program. The possibility to make
this distinction is crucial for obtaining reasonable programs. We also split proof
contexts into a “passive” and an “active” part (as done by Reynolds in [13] and by
Reddy in [12]), where the latter controls the variables free in the realizing terms. A
number of examples shows how the system might be used. In particular we sketch
a proof that every list can be sorted. The extracted program is the usual formulation
of insertion sort in our term system. In section 4 the link between proofs and pro-
grams is made precise via a suitable variant of Kreisel’s modified realizability. As
corollaries to the soundness theorem we obtain a proof that the provably recursive
functions of our system are non-size-increasing and polynomial time computable,
and some metamathematical results on our arithmetic system.
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2 A term system for non-size-increasing polynomial time computation

We introduce a term system similar to the system in [7]. It will play the same role
for our arithmetical system as Gödel’sT [5] does for Heyting Arithmetic.

2.1 Types and terms

Definition 2.1 (Finite linear types) Linear types are defined inductively as

ρ, σ ::= U | � | L(ρ) | ρ ( σ | ρ⊗ σ | ρ× σ | ρ + σ.

Definition 2.2 (Set model) In the (naive) set model every typeρ in the left column,
below, is interpreted by the setSρ given in the right column:

U a special singleton set
� an unspecified nonempty set

L(ρ) the set of lists of elements ofSρ

ρ ( σ the set of total functions fromSρ to Sσ

ρ⊗ σ andρ× σ the cartesian product ofSρ andSσ

ρ + σ the disjoint sum ofSρ andSσ

Remark 2.3 Common basic data types like the booleans, as well as unary and
binary natural numbers can be defined byB := U+U, N := L(U), Bin := L(B).

The intuition for the special type� is a pointer to free memory, as in [6]. Since there
will be no closed terms of this type, it can be used to ensure that terms contain free
variables. For example the type� ( N ( N of the successor function together
with the linear typing discipline will make sure that the length of (unary) natural
numbers and the more technical measure “number of free variables” will coincide.

Although in the naive set model aboveρ ( σ is interpreted as the full function
space, computationally it should be viewed as the type of functions fromρ to σ
that are linear in the sense that an argument is used at most once. This aspect will
become visible in the typing discipline (definition 2.6).

Similarly, the denotationally equal typesρ ⊗ σ andρ × σ have different computa-
tional interpretations: from a tensor productρ ⊗ σ both components can be used
once, whereas in the case of an ordinary pair of typeρ × σ, the pair itself can be
used only once, i.e. one has to choose one component of the pair. Conversely, when
forming an element of typeρ⊗ σ from elementsrρ andsσ we insist thatr ands do
not share common free variables, whereas for the construction of elements of type
ρ× σ no such restriction applies.
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Terms are built from variablesx, y, z, . . . and constantsc (definition 2.5). Each
variable has a type and it is assumed that there are infinitely many variables of each
type. The notationxρ should express that the variablex has typeρ.

Definition 2.4 (Terms) The set of terms is inductively defined by

r, s ::= xρ | c | λxρ r | rs | r {s}

These terms should be seen as our “raw syntax”; only correctly typed terms (defi-
nition 2.6) will be meaningful. The notationr {s} (for iteration; cf. the conversion
rules in definition 2.9, and remark 3.10) is taken from Joachimski and Matthes
[9]. The setFV(r) of free variables of a termr is defined as usual. In particular
FV(r {s}) = FV(r) ∪ FV(s). Byr[s/x] we denote the usual substitution of every
free occurrence ofx in r by s (renaming bound variables inr if necessary). Terms
that only differ in the naming of bound variables are identified.

Definition 2.5 (Constants) The constants and their types are

ε : U

nilρ : L(ρ)

consρ : � ( ρ ( L(ρ) ( L(ρ)

⊗+
ρσ : ρ ( σ ( ρ⊗ σ

⊗−
ρστ : ρ⊗ σ ( (ρ ( σ ( τ) ( τ

×+
ρστ : (τ ( ρ) ( (τ ( σ) ( τ ( ρ× σ

fstρσ : ρ× σ ( ρ

sndρσ : ρ× σ ( σ

inlρσ : ρ ( ρ + σ

inrρσ : σ ( ρ + σ

+−
ρστ : ρ + σ ( (ρ ( τ)× (σ ( τ) ( τ

Definition 2.6 (Typing) The relationrρ, which should be read ‘r has typeρ’ is
inductively defined as follows:

(xρ)ρ
(Variable)

c : ρ

cρ
(Constant)

rσ

(λxρ r)ρ(σ
((+)
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rρ(σ sρ FV(r) ∩ FV(s) = ∅

(rs)σ
((−)

rL(ρ) s�(ρ(τ(τ FV(s) = ∅

(r {s})τ(τ
(L(ρ)−)

Lemma 2.7 If rρ andsσ with (FV(r) \ {xσ}) ∩ FV(s) = ∅, thenr[s/xσ]ρ.

PROOF. Easy induction onr.

2.2 Reductions

We now define reduction rules on terms. In order to be able to control the effects
of iteration we allow conversion of a termr {s} only if the iteration argument is
already calculated, i.e. ifr is a list.

Definition 2.8 (Lists) Terms of the formconsρd
�
1r

ρ
1(. . . (consρd

�
nr

ρ
nnilρ)) will be called

lists (with n entries).

Definition 2.9 (Conversions) 7→ is defined as:

(λxr)s 7→ r[s/x] (β-conversion)

⊗−
ρστ (⊗+

ρσrs)t 7→ trs

fstρσ(×+
ρστrst) 7→ rt

sndρσ(×+
ρστrst) 7→ st

+−
ρστ (inlρσr)s 7→ fstρσsr

+−
ρστ (inrρσr)s 7→ sndρσsr

nilρ {s} t 7→ t

consρd
�rl {s} t 7→ sd�r(l {s} t) providedl is a list

Notice that the conversion rules are all correct, with respect to the obvious interpre-
tation of terms in the set model 2.2.

Definition 2.10 (Reduction) The relationr → r′ is inductively defined by

r 7→ r′

r → r′
r → r′

rs → r′s

s → s′

rs → rs′
r → r′

r {s} → r′ {s}
s → s′

r {s} → r {s′}
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This means, to reduce a term we may convert anywhere, except underλ. A term is
callednormal, if it cannot be reduced. We will write→∗ for the reflexive transitive
closure of→.

Lemma 2.11 (Subject reduction) If rρ andr → s, thensρ andFV(s) ⊆ FV(r).

PROOF. Induction onr shows that only conversions need to be considered. The
only non-trivial case is handled in lemma 2.7.

Definition 2.12 (Almost closed terms)A term isalmost closedif all its free vari-
ables are of type�.

Proposition 2.13 Every normal, almost closed term of a type as in the left column
is of the form given in the right column:

U ε

� variable

L(ρ) list
ρ⊗ σ ⊗+ rs

ρ× σ ×+
ρ,σ,τ rst

ρ + σ inl r or inr r

ρ ( σ λxr or c~r or r {s}

PROOF. Induction on the typing.

Definition 2.14 (Projections) For termsr of typeρ ⊗ σ we will use the abbrevi-
ationsπ0(r) := ⊗−

ρσρrλxρ, yσ.x and π1(r) := ⊗−
ρσσrλxρ, yσ.y. Clearly one has

π0(⊗+
ρσst) →∗ s andπ1(⊗+

ρσst) →∗ t.

Example 2.15 (Predecessor)Let us use the abbreviations0 := nilU andSdr :=
consUdεr for the zero and the successor operation on the typeN := L(U). By the
letterν we will denote numerals, i.e., terms of the formSd1(. . . (Sdn0) . . .). Let

s0 := λd�λzN⊗(N(N).⊗+ (⊗−zλnλf.fn)λyN.Sdy

t0 := ⊗+0 id

Then the conversion rules imply

0 {s0} t0 7→ ⊗+0 id (1)
Sdν {s0} t0 →∗ ⊗+νλy.Sdy (2)

The latter can be seen easily by induction onν. Now the predecessorP can be
defined by

P := λxN.π0(x {s0} t0).
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Definition 2.16 (Pairing) It is easy to define closed terms

⊗+
~ρ : ~ρ ( ρ1 ⊗ . . .⊗ ρn

⊗−
~ρτ : ρ1 ⊗ . . .⊗ ρn ( (~ρ ( τ) ( τ

that behave like the corresponding constant, i.e.

⊗−
~ρτ (⊗+

~ρ r1 . . . rn)t →∗ tr1 . . . rn

Using these we define a closed term

×+
ρσ~τ : (~τ ( ρ) ( (~τ ( σ) ( ~τ ( ρ× σ

by, settingτ := τ1 ⊗ . . .⊗ τn,

×+
ρσ~τ := λfλgλ~x.×+

ρστ (λz.⊗−
~τρ zf)(λz.⊗−

~τσ zg)(⊗+
~τ ~x)

such thatfstρσ(×+
ρσ~τrs~t) →∗ r~t and sndρσ(×+

ρσ~τrs~t) →∗ s~t. Now we can define a
pairing operation

〈rρ, sσ〉ρ×σ := ×+
ρσ~τ (λ~x.r)(λ~x.s)~x

where~x is a list of the free variables common tor ands. Obviously

fstρσ〈r, s〉 →∗ r, sndρσ〈r, s〉 →∗ s.

Note that although the termsr and s may have variables in common, in the term
〈r, s〉 every free variable occurs only once.

2.3 Lengths of reduction chains

Now we show that every almost closed term of appropriate type in the present
system denotes a non-size-increasing polynomial time computable function. We
adapt the proof in [7,1] by constructing to every such term a polynomial, whose
degree is the nesting of{.}, bounding the number of reduction steps necessary for
computing the result.

Definition 2.17 For every natural numbern and every termr we define natural
numbers#n(r) andϑn(r) by

#n(r) :=

k if r is a list withk entries andk ≤ n

n otherwise

ϑn(x) := ϑn(c) := 1

ϑn(rs) := ϑn(r) + ϑn(s)
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ϑn(λxr) := ϑn(r) + 1

ϑn(r {s}) := ϑn(r) + (#n(r) + 1) · ϑn(s)

Clearly the function mappingn to ϑn(r) is bounded by a polynomial of degreep
wherep is the nesting of{.} in r.

Lemma 2.18(a) #n(r) ≥ #n(r[s/x]).
(b) If r → r′ then#n(r) ≥ #n(r′).

PROOF. Obvious from the definition of#n(r), using the fact that neither substi-
tution nor reduction change the number of entries of a list.

Lemma 2.19 If rρ thenϑn(r[s/x]) ≤ ϑn(r) + ϑn(s).

PROOF. Induction onr using lemma 2.18 (a) and the fact that in a typed term a
free variable can have at most one occurrence .

Definition 2.20 We writer →n r′ if r → r′ by converting a subterms of r with
|FV(s)| ≤ n, where|FV(s)| is the number of occurrences of free variables ins.

Lemma 2.21 If rρ andr →n r′, thenϑn(r) > ϑn(r′).

PROOF. Induction onr.

Caser →n r′ is a conversion (definition 2.9), i.e.r 7→ r′ where|FV(r)| ≤ n.

Only β-conversion and recursion are critical. While the former is taken care of
by lemma 2.19, in a conversionconsρd

�rl {s} t 7→ sd�r(l {s} t) the hypothesis
|FV(consρd

�rl {s} t)| ≤ n is used: Suppose the listl hask entries. Thenk +
1 ≤ n because due to the typing rules for terms (definition 2.6) a typed list with
k + 1 entries must have at leastk + 1 occurrences of free variables. Consequently
#n(consρd

�rl) = k + 1 and#n(l) = k. Therefore

ϑn(consρdrl {s} t)

= 1 + ϑn(d) + ϑn(r) + ϑn(l) + (k + 2) · ϑn(s) + ϑn(t)

> ϑn(s) + ϑn(d) + ϑn(r) + ϑn(l) + (k + 1) · ϑn(s) + ϑn(t)

= ϑn(sdr(l {s} t))

Caser →n r′, by converting a proper subterm ofr. Easy by induction hypothesis,
referring in the caser {s} → r′ {s}, with r → r′, to lemma 2.18 (b).

Corollary 2.22 If rρ then every reduction sequence starting withr has length≤
ϑN(r) whereN := |FV(r)|.
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PROOF. Clearly if r → r′ thenr →n r′ for everyn ≥ |FV(r)|. Therefore the
corollary follows from lemma 2.21 and the subject reduction lemma 2.11.

Proposition 2.23 Let rρ(σ be a typed term withp nestings of{.}. Then there is
a polynomialB of degreemax {p, 1} such that for all termssρ containing no{.}
the termrs reduces to normal form in≤ B(length(s)) steps, wherelength(s) is the
ordinary (syntactical) length ofs.

PROOF. Let K := length(r) and L := length(s). Then |FV(rs)| ≤ K + L.
Therefore, by lemma 2.22,rs normalizes in≤ ϑK+L(rs) steps. Becauses doesn’t
contain{.} we haveϑn(s) = L for all n. Consequently

ϑK+L(rs) = ϑK+L(r) + L

which is bounded by a polynomial inL of degreemax {p, 1}.

Definition 2.24 (Data types, data objects, non-size-increasing functions)A type
is calleddata typeif it is built from U, L(.), ⊗, and+ only (examples:N, Bin,
L(Bin)). A data objectof data typeτ is an almost closed termwτ in normal form.
Thesizeof a data objectwτ is the natural size of its denotation, which, by proposi-
tion 2.13, essentially, i.e. up to a constant depending only onτ , coincides with the
syntactical length,length(w), and also with the number of free variables,|FV(w)|.

A functionf fromS~τ to Sτ , where~τ , τ are data types, is callednon-size-increasing
if there is a numberk such that for all data objects~a of type~τ the resultf(~a) has a
size less than or equal to the sum of the sizes of theai plusk.

Theorem 2.25 Let ~τ , τ be data types andr~τ(τ be an almost closed term with
p nestings of{.}. Thenr defines a polynomial time algorithm for a non-size-
increasing function fromS~τ to Sτ with computation time bounded by a polynomial
of degreemax {p, 1}.

PROOF. By proposition 2.13r defines indeed a function fromS~τ to Sτ . The as-
sertion about the computation time is proved in proposition 2.23. Thatr is non-
size-increasing follows from the already mentioned facts that reduction does not
increase the number of free variables of a term, and that the the size of a data object
is essentially the number of its free variables.

Remark 2.26 In [8] it is shown for a similar term calculus that the converse of
theorem 2.25 also holds: Every non-size-increasing function fromS~τ to Sτ with
computation time bounded by a polynomial is definable by an almost closed term.
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3 Linear arithmetic

We now set up a linear arithmetic tailored for the term system introduced in the
previous section.

3.1 Formulas

We assume a fixed set of predicate symbols of fixed arity.

When writingR(~r), R a predicate symbol, we implicitly assume correct length and
types of~r. However we only assume that the terms in~r areweakly typed, that is,
all restrictions on free variables (when typing terms of the formrs or {r} s) are
dropped. This relaxation of the typing rules is necessary because of unrestricted
substitutions into formulas allowed by the∀-elimination rule (see definition 3.7).

For every typeρ we assume special predicate symbolsEρ and=ρ, called existence
and equality. We sometimes abbreviate=ρ(r, s) by r =ρ s or evenr = s. The
intended interpretation of=ρ is ordinary extensional equality between objects of
typeρ andEρ is to be interpreted as the set of all objects of typeρ, that is, all objects
do exist. Nevertheless, we will refrain from simply stating the formulaEρ(x) as an
axiom, because we want a proof ofEρ(t) to provide a construction of the object
denoted byt. We will postulate the fact thatEρ(x) always holds only in a context
where the construction ofx does not matter. This can be expressed by the axiom
scheme(Eρ(x) → A) → A, whereA is an arbitrary computationally irrelevant
formula (see definition 3.5).

In the following the lettersP, Q range over predicate symbols different from the
existence predicatesEρ (but including equality=ρ).

Definition 3.1 (Formulas) The set of formulas is defined inductively:

A, B, C ::= P (~r) | Eρ(r) | A → B | A⊗B | A ∧B | A ∨B | ∀xρA | ∃xρA.

Remark 3.2 We define falsity⊥ by tt = ff, wherett := inlU,Uε and ff := inrU,Uε.
Negation¬A is an abbreviation forA → ⊥ andr 6= s is shorthand for¬(r = s).

The conjunction∧ is the “weak” one corresponding to the ordinary product×, i.e.
A∧B → A andA∧B → B will be provable, but(A → B → C) → (A∧B → C)
will not.

The quantifiers correspond to the{∀} in [3] (or the “underlined quantification”
in [11]) and mean “quantification without computational content”, i.e. a proof of
∀xA is of such a form that the realizing term does not depend onx. When we
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want computational content, the quantifiers have to be relativized to the existence
predicate, i.e.∀x.E(x) → A or ∃x.E(x)⊗ A.

Ex falso quodlibet in the form⊥ → A will not be provable in general: we will not
have⊥ → ∃p�E(p), since there is no closed term of type�. This is also the reason
why disjunctionA ∨ B cannot be defined by∃xB.E(x) ⊗ (x = tt → A) ∧ (x =
ff → B): from A we could not conclude e.g.A ∨ ∃p�E(p).

Definition 3.3 (Computational content) For a formulaA we define the computa-
tional contentτ(A), i.e. the type of its potential realizers, by induction onA.

τ(Eρ(r)) := ρ

τ(P (~r)) := U

τ(A → B) := τ(A) ( τ(B)

τ(A⊗B) := τ(A)⊗ τ(B)

τ(A ∧B) := τ(A)× τ(B)

τ(A ∨B) := τ(A) + τ(B)

τ(∀xρA) := τ(A)

τ(∃xρA) := τ(A)

Due to the presence of the typeU types may contain some redundancies. For ex-
ample,ρ ( U denotes a singleton in the set model and could hence be simplified
to U. Let us call a typecleanif it does not contain redundant parts. Hence the base
typesU and� are clean, the typesρ ( σ, ρ⊗ σ, andρ× σ are clean if their com-
ponentsρ andσ are both clean and different fromU, and the typesL(ρ) andρ + σ
are clean if their componentsρ andσ are both clean. To every typeρ we define a
canonically isomorphic clean typec(ρ) as follows.

Definition 3.4 (Cleaning of types)

c(U) := U

c(�) := �

c(ρ ( σ) :=


U if c(σ) = U

c(σ) if c(ρ) = U

c(ρ) ( c(σ) otherwise

c(ρ⊗ σ) :=


c(ρ) if c(σ) = U

c(σ) if c(ρ) = U

c(ρ)⊗ c(σ) otherwise

c(ρ× σ) :=


c(ρ) if c(σ) = U

c(σ) if c(ρ) = U

c(ρ)× c(σ) otherwise
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c(ρ + σ) := c(ρ) + c(σ)

c(L(ρ)) := L(c(ρ))

We setτ c(A) := c(τ(A))

Essentially we are interested inτ c(A) only. However, in order to keep cumbersome
case distinctions at bay it will be convenient to consider the uncleaned versionτ(A)
as well.

Definition 3.5 (Harrop formulas) We say that a formulaA has no computational
content ifτ c(A) = U. Formulas without computational content are also called
Harrop formulas, or computationallyirrelevant(c.i.), non-Harrop formulas are also
called computationallyrelevant(c.r.).

So, a formula is c.i. iff it contains no existence predicateEρ with c(ρ) 6= U and no
disjunction in a strictly positive position.

3.2 Derivations

Proof terms are intended to denote proofs in natural deduction style. They are built
up from ordinary termsr, axiomsc and assumption variablesu, v, w, . . . . Each
assumption variables has a formula as type (in the sense of the Curry-Howard cor-
respondence). For each formula there are infinitely many variables of this type. We
write uA or u : A to indicate that the variableu has typeA.

Definition 3.6 (Raw proof terms)

M, N, L ::= uA | c | λuAM | λxρM | MN | Mr | M {N}

Proof contextsare sets of assumption variables. We denote proof contexts byΠ, Γ, . . . ,
and writeΠ, Γ for the unionΠ ∪ Γ, expressing thatΠ andΓ are disjoint. For con-
texts consisting of one element we also writeuA instead of{uA}. Let · denote the
empty proof context.

The term system was based on linearity constraints, hence linearity has to be re-
flected by the arithmetic in order to achieve a realizability result. However, linearity
itself would be too a strong restriction since we will often need to instantiate uni-
versal formulas to special terms in order to prove that a certain (c.i.) property holds
without actually using the variable (in a relevant way). Therefore we have to allow
ourselves to keep assumptions in the context that must not be used in a c.r. way.
To achieve this we split the context into two parts: one to control correctness and
another one to control linearity. This setup also allows (by the rule(Passification)
below) to easily reflect the fact that Harrop formulas have no computational mean-
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ing and that therefore the proof of a Harrop formula cannot use any assumption in
a c.r. way.

A similar phenomenon appears in the area of syntactic control of interference (SCI),
cf. Reynolds [13] or Reddy [12]. There, in a function applicationrs the two phrases
r ands should be “independent”, i.e.r should not change somethings is reading
from or writing to, and conversely. One way to guarantee this is to require that
r ands do not share common free variables. However, this requirement seems to
be too stringent: one e.g. could not write+xx. To relax it, Reynolds identified a
special class of values called “passive”, which never change the state. Free variables
denoting passive values can then be shared byr ands.

Following Reddy [12] we write our typing judgments in the formΠ | Γ ` M : A,
where the context is split into two partsΠ andΓ, with Π considered passive. This is
to be read as “M denotes a proof ofA in thepassivecontextΠ and the potentially
activeor linear contextΓ”. The active context controls the variables free in the
realizing terms.

Definition 3.7 The relationΠ | Γ ` M : A is inductively defined as follows.

Π | Γ, uA ` uA : A
(Assumption)

Π | Γ ` cA : A
(Axiom)

Π | Γ, uA ` M : B

Π | Γ ` λuAM : A → B
(→+)

Π | Γ1 ` M : A → B Π | Γ2 ` N : A

Π | Γ1, Γ2 ` MN : B
(→−)

Π | Γ ` M : A VarCond

Π | Γ ` λxρM : ∀xρA
(∀+)

Π | Γ ` M : ∀xρA r weakly typed byρ

Π | Γ ` Mr : A[r/x]
(∀−)
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HereVarCond is the usual condition on free variables, i.e. thatx must not be free
in the type of any element ofΠ ∪ Γ.

We add a rule(Passification) describing the meaning of the active context: it is
only needed to prove non-Harrop formulas. Moreover we add a contraction rule,
which can be used to contract the passive part of the context.

Π | uB, Γ ` M : A A c.i.

Π, uB | Γ ` M : A
(Passification)

uA, Π | vA, Γ ` M : B

Π | vA, Γ ` M [vA/uA] : B
(Contraction)

We call these rulesstructural. The last rule concerns induction.

Π | Γ ` N : E(t) Π | · ` M : ∀p�, xτ , l.E(p, x) → A → A[cons(p, x, l)/l]

Π | Γ ` N {M} : A[nil/l] → A[t/l]
(L(τ)−Ind)

HereE(p, x) → . . . is short forE(p) → E(x) → . . . .

The axioms can be divided into four groups: logical axioms, equality axioms,
axioms for existence predicates, and axioms specifying the additional predicates
P, Q, . . .. We will only give the axioms of the first three groups. They define the
core system. The last group depends on particular applications of the system; ex-
amples will be given in section 3.4.

Definition 3.8 (Axioms for the core system)

Logical axioms.
(C → A) → (C → B) → C → A ∧B (3)
A0 ∧ A1 → Ai (4)
A → B → A⊗B (5)
A⊗B → (A → B → C) → C (6)
Ai → A0 ∨ A1 (7)
(A → C) ∧ (B → C) → A ∨B → C (8)
∀x.A → ∃xA (9)
∃xA → (∀x.A → B) → B if x /∈ FV(B) (10)
⊥ → P (~r) (11)

Equality axioms.
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Transitivity, symmetry and reflexivity of=ρ. (12)

Equations corresponding to the conversion rules 2.9, where in the
equationconsρd

�rl {s} t = sd�r(l {s} t) the terml can be arbitrary. (13)

f =ρ(σ g → x =ρ y → fx =σ gy (14)
x1 = y1 → · · · → xn = yn → P (x1, . . . , xn) → P (y1, . . . , yn) (15)
x =ρ y → E(x) → E(y) (16)
x =U ε (17)
∀x fx =σ gx → f =ρ(σ g (18)
fst z =ρ fst z′ ∧ snd z =σ snd z′ → z =ρ×σ z′ (19)

Axioms for existence predicates.
Eρ(σ(f) ↔ ∀x.Eρ(x) → Eσ(fx) (20)
Eρ×σ(z) ↔ Eρ(fst z) ∧ Eσ(snd z) (21)
E(c) for each of the constructorsε,⊗+, inl, inr, nil, cons (22)
(∀xρ, yσ.E(x, y) → A[⊗+xy/z]) → ∀zρ⊗σ.E(z) → A (23)
(∀xρ.E(x) → A[inl x/z]) ∧ (∀yσ.E(y) → A[inr y/z]) → ∀zρ+σ.E(z) → A (24)
(Eρ(x) → A) → A for every c.i. formulaA (25)

We writeMA for M if there areΠ andΓ such thatΠ | Γ ` M : A. Obviously,A is
uniquely determined byM . If we are not interested in the proof term we will also
write Π | Γ ` A to mean that there exists a proof termM such thatΠ | Γ ` M : A
is derivable.

3.3 Remarks

Remark 3.9 It is easy to see that the following rules are admissible:

Π | Γ ` A

Π′, Π | Γ, Γ′ ` A
(Weakening)

Π′, Π | Γ ` A

Π | Γ, Π′ ` A
(Activation)

Remark 3.10 Our induction rule (L(τ)−Ind) corresponds to iteration rather than
primitive recursion, since for its premise we must proveA[cons(p, x, l)/l] from
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(E(p, x) and)A alone, without having access to the previous induction argumentl
in the form of anE(l)-resource. By mimicking the method in [7] one can see that a
strengthened induction rule corresponding to primitive recursion, in the form

Π | Γ ` E(t) Π | · ` ∀p, x, l.E(p, x) → A ∧ E(l) → A[cons(p, x, l)/l]

Π | Γ ` A[nil/l] → A[t/l]
(L(τ)−Ind+)

is admissible, by invoking (L(τ)−Ind) with goal formulaA∧E(l). Its premise can
be proved from the given premise usingE(p, x, l) → E(cons(p, x, l)), and from its
conclusion

Π | Γ ` N {M} : A[nil/l] ∧ E(nil) → A[t/l] ∧ E(t)

we clearly obtainA[nil/l] → A[t/l], usingE(nil).

Notice that due to the use of∧ rather than⊗ we can access either the induction
variable or else the previous result, but are not allowed to do both. It is not possible
to derive a strengthened induction rule with⊗ instead of∧.

Remark 3.11 We list some further useful facts about the system.

(1) A⊗ B → A ∧ B is provable in general, but notA ∧ B → A⊗ B. However,
for c.i. formulasA, B we can proveA ∧B ↔ A⊗B.

(2) x =ρ y → A(x) → A(y) is provable for all formulasA.
(3) If c(ρ) = U thenx =ρ y is provable.
(4) The constructors,⊗+, ×+, inl, inr, nil and cons are injective, and have mu-

tually disjoint ranges.⊗+ and×+ are also surjective. That is, the following
formulas are provable.

c~x = c~y → ~x = ~y for each constructorc
c~x 6= c′~x for each pair of different constructorc, c′ of appropriate types.
∀zρ⊗σ∃x, y . z = ⊗+xy

∀zρ×σ∃x, y . z = ×+xy

(5) The following formulas are provable.

Eρ⊗σ(z) ↔ ∃xρ∃yσ.Eρ(x)⊗ Eσ(y)⊗ z = ⊗+xy

Eρ+σ(z) ↔ (∃xρ.Eρ(x)⊗ z = inl x) ∨ (∃yσ.Eσ(y)⊗ z = inr y)

EL(ρ)(z) ↔ z = nil ∨ (∃d�, xρ, xL(ρ).E(d, x, y)⊗ z = cons dxy)

(6) E(~x) → E(t) is provable for every termt which is correctly typed according
to definition 2.6 and whose free variables are among~x.

(7) ⊥ → A is provable provided inτ(A) (or equivalently inτ c(A)) the type�
does not occur strictly positive.

PROOF. 1. For the underivability statement see corollary 4.8. The rest follows
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directly from the inference rules in definition 3.7.

2. Easy induction onA.

3. Easy induction onρ.

4. Note that all formulas to be proven are c.i. Therefore axiom scheme (25) allows
us to prove them under the additional assumption that all objects involved exist.
But this is easy, using the other existence axioms and our conversion rules, that is,
axioms (13).

5. The implications from right to left follow from the axioms (22). The other impli-
cations follow from the elimination schemes (23), (24) and induction (which can
be viewed asEL(τ)-elimination). As an example let us assumeEρ+σ(z) and prove
(∃xρ.Eρ(x)⊗ z = inl x)∨ (∃yσ.Eσ(y)⊗ z = inr y). By (24) it suffices to prove this
for z of the forminl x′ whereE(x′), and also forz of the forminl y′ whereE(y′).
But this is obvious.

6. It suffices to prove that all constants exist and that existence is preserved under
the formation oft{s}. For the constructors this follows directly from the axioms
concerning the existence predicates. For the other constants and induction one uses
the elimination axioms, (23,24) and induction, as well as the conversion rules (13).

7. First one proves the assertion for formulasA of the formEρ(t), by induction on
ρ. The general case follows by induction onA, using axiom scheme (11).

3.4 Examples

The following examples are intended to demonstrate the flexibility of the system.
Some of the system’s (inevitable) limitations are expressed by the underivability
results in section 4 (e.g. corollary 4.8).

Example 3.12 (Addition) AssumeAdd(x, y, z) expressesx + y = z for natural
numbers, for example, via the computational irrelevant axioms

ax0 : ∀x. Add(x, 0, x)

ax1 : ∀x, y, z, p. Add(x, y, z) → Add(x, S(p, y), S(p, z))

We prove
∀x.EN(x) → ∀y.EN(y) → ∃z.EN(z)⊗ Add(x, y, z)

(which will give us, via program extraction (section 4) a polynomial time algorithm
for addition). We argue informally. Assumeu0 : EN(x) andu1 : EN(y). We have to
show∃z.EN(z) ⊗ Add(x, y, z). Because of the assumptionu1 we can do this by
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induction ony. We need to prove base and step, that is,

∃z. EN(z)⊗ Add(x, 0, z)

∀p, y. E�(p) → (∃z. EN(z)⊗ Add(x, y, z)) → ∃z′. EN(z′)⊗ Add(x, S(p, y), z′)

For the base we takez := x and use assumptionu0 and axiomax0. For the step we
assumev : E�(p) and also that we havez with ih1 : EN(z) and ih2 : Add(x, y, z).
We setz′ := S(p, z) and proveEN(z′) using v and ih1, and Add(x, S(p, y), z′)
usingax1 andih2.

This is a valid proof in our system since every assumption is used only once and the
proof of the step is almost closed, that is, does not use any of the assumtionsu0 or
u1. The corresponding derivation term is (using variables with the same types and
formulas as in the informal proof)

λx, u0, y, u1 . u1 {STEP}BASE

whereBASE := ∃+xu0(ax0x) andSTEP :=

λp, y, v, ih .∃−ihλz, ih′ . ⊗− λih1, ih2 .∃+S(p, z)(⊗+(Mpzv ih1)(ax1xyzp ih2))

with ih : ∃z. EN(z)⊗Add(x, y, z), ih′ : EN(z)⊗Add(x, y, z), and a trivial deriva-
tion M : ∀p, x . E(p) → E(x) → E(S(p, x)) which is easily obtained from axioms
about the predicateE.

Notice that we cannot deduce∀x.EN(x) → ∃z.EN(z)⊗Add(x, x, z) (see corollary
4.10), because we would lack oneEN assumption.

Example 3.13 (Recycling of existence)By induction we can prove

∀x.EN(x) → (x = 0 ∨ x 6= 0)⊗ EN(x).

In the base case we use the axiomE(0) and prove the left branch of the disjunction,
which is an axiom. The step requires

∀p, x.E�(p) → EN(x) → EN(S(p, x))⊗ S(p, x) 6= 0,

which follows from the axiomE�(p) → EN(x) → EN(S(p, x)).

Notice that since disjunction is computationally relevant, we cannot establish

∀x.x = 0 ∨ x 6= 0,

i.e. decidability of equality without an existence assumption (see corollary 4.10).
Notice that the more natural statement

∀x.EN(x) → x = 0 ∨ x 6= 0
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follows from the one we’ve shown, but is strictly weaker since it doesn’t allow us to
“recycle” the information thatx “exists”.

We can establish

` ∀x.EN(x) → ∀y.EN(y) → (x = y ∨ x 6= y)⊗ EN(x)⊗ EN(y).

Example 3.14 (Sorting) Assume that we are given a binary relation≤ of arity
(ρ, ρ) such that we can prove

∀x.Eρ(x) → ∀y.Eρ(y) → (x ≤ y ∨ x 6≤ y)⊗ Eρ(x)⊗ Eρ(y)

Furthermore, we assume a ternary relationIns axiomatized by c.i. axioms such that
Ins(x, l, l′) expresses that ifl is a sorted list w.r.t.≤, then so isl′, and the members
of l′ are those ofl together withx. From the strengthened induction rule (N−Ind+)
(cf. remark 3.10) we can derive

∀l, x, p.E(l, x, p) → ∃l′.E(l′)⊗ Ins(x, l, l′), (26)

by induction onl. Base: Takel′ = cons(p, x, nil) (usingE(p, x)). Step: We have
E(y, q) and the (strengthened) IH

(∀x, p.E(x, p) → ∃l′.E(l′)⊗ Ins(x, l, l′)) ∧ E(l).

We need to show

∀x, p.E(x, p) → ∃l′′.E(l′′)⊗ Ins(x, cons(q, y, l), l′′).

So assumeE(x, p). Comparex andy without destroying them, i.e. such that after
comparison we still haveE(x, y). Casex ≤ y. Takel′′ = cons(p, x, cons(q, y, l));
here we need the right hand partE(l) of the IH, which together withE(y, q) gives
usE(cons(q, y, l)). Casey ≤ x. Using the left hand part of the IH for ourx, p gives
l′ such thatE(l′)⊗ Ins(x, l, l′). Takel′′ = cons(q, y, l′).

From this, we prove that every list can be sorted. LetSort(l, l′) express thatl′ is an
ordered permutation ofl. We want to show

∀l.EL(ρ)(l) → ∃l′.EL(ρ)(l
′)⊗ Sort(l, l′).

Induction onl. In the step case we argue as follows. We haveE(p, x) and the IH

∃l′.EL(ρ)(l
′)⊗ Sort(l, l′).

We need to show
∃l′′.EL(ρ)(l

′′)⊗ Sort(cons(p, x, l), l′′).

We have anl′ such thatE(l′)⊗Sort(l, l′). Apply(26) to l′, x.p. This gives anl′′ such
that E(l′′) ⊗ Ins(x, l′, l′′). The claim follows from the computationally irrelevant
axiom

Sort(l, l′) → Ins(x, l′, l′′) → Sort(cons(p, x, l), l′′).
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For the base case we need the computationally irrelevant axiomSort(nil, nil).

4 Realizability

4.1 Definition of modified realizability

We now define what it means for a termr to realize a formulaA. The intuition of
r being a program calculating examples for existential quantifiers is formalized by
the (computationally irrelevant) formular mrA.

Definition 4.1 (mr ) By induction onA we define a formular mrA for arbitrary
rτ(A).

r mrEρ(s) := (r =ρ s)

r mrP (~s) := P (~s)

r mr∀xA := ∀x.r mrA

r mr∃xA := ∃x.r mrA

r mr (A → B) := ∀x.xmrA → rxmrB

r mr (A⊗B) := π0(r)mrA ∧ π1(r)mrB

r mr (A ∧B) := fst r mrA ∧ snd r mrB

r mr (A ∨B) := (∀x.r = inlτ(A),τ(B)x → xmrA) ∧
(∀y.r = inrτ(A),τ(B)y → y mrB)

Note thatr mrA contains neitherEρ nor⊗ nor∨.

Proposition 4.2 (1) If A contains neither existence predicates nor disjunctions,
thenr mrA is provably equivalent toA.

(2) r mr∀x.E(x) → A is provably equivalent to∀x.rxmrA.
(3) r mr∃x.E(x)⊗ A is provably equivalent toπ1(r)mrA[π0(r)/x].

PROOF. Immediate form the definition and the equality axioms.

4.2 Extracted terms

For each variableuA we choose a unique variablexuA of type τ(A) that is suffi-
ciently different to all variables used so far.

Definition 4.3 (Extracted terms) For a proof MA we define its extracted term
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[[M ]] by

[[uA]] := xτ(A)
u

[[λuAMB]] := λxτ(A)
u [[M ]]

[[MA→BN ]] := [[M ]] [[N ]]

[[λxρMA]] := [[M ]]

[[M∀xρAr]] := [[M ]]

[[NEL(ρ)(t) {M}]] := [[N ]] { [[M ]]}

We now define extracted terms for the axioms. We write[[A]] for [[c : A]] . If A is the
Efq-axiom (11), or the axiom (25), or one of the equality axioms except (16), then
we define[[A]] := ετ(A), where for any typeρ we letερ be some closed term of type
ρ. For the remaining axioms we define

[[(C → A) → (C → B) → C → A ∧B]] := ×+
τ(A),τ(B),τ(C)

[[A ∧B → A]] := fstτ(A),τ(B)

[[A ∧B → B]] := sndτ(A),τ(B)

[[A → B → A⊗B]] := ⊗+
τ(A),τ(B)

[[A⊗B → (A → B → C) → C]] := ⊗−
τ(A),τ(B),τ(C)

[[A → A ∨B]] := inlτ(A),τ(B)

[[B → A ∨B]] := inrτ(A),τ(B)

[[(A → C) ∧ (B → C) → A ∨B → C]] := λz1λz2. +−
ρ,σ,τ(A) z2z1

[[∀x.A → ∃xA]] := idτ(A)

[[∃xA → (∀x.A → B) → B]] := λxτ(A)λf τ(A)(τ(B).fx

[[x =ρ y → E(x) → E(y)]] := idρ

[[Eρ(σ(f) → ∀x.Eρ(x) → Eσ(fx)]] := idρ(σ

[[(∀x.Eρ(x) → Eσ(fx)) → Eρ(σ(f)]] := idρ(σ

[[Eρ×σ(z) → Eρ(ztt) ∧ Eσ(zff)]] := idρ×σ

[[Eρ(ztt) ∧ Eσ(zff) → Eρ×σ(z)]] := idρ×σ

[[E(c)]] := c for c = ε,⊗+, inl, inr, nil, cons

[[(∀xρ, yσ.E(x, y) → A[⊗+xy/z]) → ∀zρ⊗σ.E(z) → A]]

:= λfλz . ⊗− zf

[[(∀xρ.E(x) → A[inl x/z]) ∧ (∀yσ.E(y) → A[inr y/z]) → ∀zρ+σ.E(z) → A]]

:= λz1λz2 . +−
ρ,σ,τ(A) z2z1

Depending on applications there may be more axioms. For each such axiomax: C
one has to chose a term[[ax]] τ(C) such that[[ax]] mrC is provable.
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As for the extracted types, also the extracted terms may contain redundant parts
which can be removed by an obvious cleaning procedure for terms. Note that the
extracted term of a derivationΠ | Γ ` M : A is weakly typed (cf. section 3.1) with
typeτ(A) (see theorem 4.7).

Definition 4.4 (Cleaning of terms) For every variablexρ such thatc(ρ) 6= U we
choose a sufficiently different variablẽxc(ρ). Relative to this choice we define for
every weakly typed termrρ a cleaned termc(r).

c(rρ) := ε if c(ρ) = U

otherwise

c(xρ) := x̃c(ρ)

c(c) see below

c(λxρ rσ) :=

c(r) if c(ρ) = U

λx̃c(ρ) c(r) otherwise

c(rρ(σsρ) :=

c(r) if c(ρ) = U

c(r)c(s) otherwise

c(r {s}) := c(r) {c(s)}

We still have to definec(c) for constantscρ such thatc(ρ) 6= U. Obviously

c(nilρ) := nilc(ρ) and c(consρ) :=

S if c(ρ) = U

consc(ρ) otherwise

For the remaining constants the definition ofc(c) is also straightforward, but re-
quires a somewhat tedious case analysis on whether the corresponding type in-
dices are c.i. or not. For example, for⊗−

ρστ , casec(ρ) = U 6= c(σ), we have
c(⊗−

ρστ ) := λxc(σ)λf c(σ)(c(τ).fx.

Remark 4.5 It is easy to see that ifr is weakly typed andr → r′, thenr′ is weakly
typed andc(r) →∗ c(r′). Hence for a weakly typed almost closed termr of type
~τ ( τ , where~τ , τ are data types, the termsr andc(r) essentially define the same
function on data types.

Example 4.6 (Addition, extracted program) Let us extract a program from the
derivation

λx, u0, y, u1 . u1 {STEP}BASE

of ∀x.EN(x) → ∀y.EN(y) → ∃z.EN(z) ⊗ Add(x, y, z) given in example 3.12.
We only show cleaned and normalized programs. From the derivationBASE we
extract the programx0. The program extracted from the derivationSTEP is the
same as the program extracted fromM : ∀p, x . E(p) → E(x) → E(S(p, x)),
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namelyλd, i . S(d, i). Therefore the program extracted from the complete deriva-
tion isλx0, x1 . x1 {λd, i . S(d, i)}x0.

4.3 Soundness

For a derivation termM we set[[M ]] c := c( [[M ]] ), and for a derivation contextΠ,
[[Π]] := {xτ(A)

u | uA ∈ Π} and [[Π]] c := {x̃u
τ c(A) | uA ∈ Π, τ c(A) 6= U}.

Theorem 4.7 (Soundness of typing)AssumeΠ | Γ ` M : A. Then[[M ]] is weakly
typed with typeτ(A) andFV([[M ]] ) ⊆ [[Π, Γ]] . Moreover,

[[Γ]] c ` ( [[M ]] c)
τ c(A)

PROOF. Inspection of the proof rules and the (cleanings of) extracted terms for
the c.r. axioms.

Since by proposition 2.13 we have some knowledge of almost closed, normal terms
of the different types, we can as a corollary obtain some underivability results.

Corollary 4.8 Let3 := ∃p�E(p). The following formulas and schemes are under-
ivable:

⊥ → 3

3 → 3⊗3

(A → B → C) → A ∧B → C

PROOF. Case⊥ → 3. Recall that3 := ∃p�E(p), henceτ c(⊥ → 3) = �. So if
⊥ → 3 were derivable, then by soundness of typing we would have a closed term
of type�, contradicting proposition 2.13 and the fact that every term reduces to a
normal form.

Case3 → 3 ⊗ 3. If this formula were derivable, then by soundness of typing
we would have a closed termr of type� ( � ⊗ �. Let p be a variable of type�.
Then by proposition 2.13 the normal form ofrp would be of the form⊗+d�0d

�
1, with

normal termsd�0, d
�
1. By proposition 2.13d�0, d

�
1 have to be variables, hence distinct.

This is the desired contradiction.

Case(A → B → C) → A∧B → C. InstantiateA, B by 3 andC by 3⊗3. Then
since the premise3 → 3 → 3 ⊗ 3 and also3 → 3 ∧ 3 clearly are derivable,
we could also derive3 → 3⊗3, which we have just shown to be impossible.
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Theorem 4.9 (Soundness)AssumeΠ | Γ ` M : A. Then there is a derivation of
[[M ]] mrA from assumptionsxu mrB for uB ∈ Π ∪ Γ.

PROOF. By induction on the definition ofΠ | Γ ` M : A. Only the axioms and
induction are of interest. For the Efq-axioms (11) and the equality axioms except
(16) the claim is trivial, since they neither contain existence predicates nor disjunc-
tions, and therefore, by proposition 4.2, part 1., their realization is equivalent to
themselves. As for the remaining axioms we restrict ourselves to some of the more
interesting cases. Note that because the formula[[M ]] mrA is c.i. we may, using
axiom (25), assume that all objects involved exist. More precisely, if[[M ]] mrA is
of the form∀~z.B we may instead prove∀~z.E(~z) → B.

CaseA⊗B → (A → B → C) → C. Assumez mr (A⊗B), i.e. thatπ0(z)mrA∧
π1(z)mrB. As indicated above we may assume thatz exists. We must show
(λf.zf)mr ((A → B → C) → C). Assumef mr (A → B → C), i.e.∀x, y.xmrA →
y mrB → fxy mrC. We must show thatzf mrC. Using axiom (23), we may
also assume thatz = ⊗+xy for some existingxρ, yσ. Thenπ0(z) = x andπ1(z) =
y, soxmrA ∧ y mrB. Now fromzf = ⊗+xyf 7→ fxy the claim follows.

CaseA → A∨B. AssumexmrA. We must showinl xmr (A∨B), i.e.∀x1.inl x =
inl x1 → x1 mrA and∀y.inl x = inr y → y mrA. The former follows from the
injectivity of the constructorinl, and the latter from the disjointness of the ranges
of the constructorsinl andinr.

Case(A → C)∧(B → C) → A∨B → C. Assumez1 mr ((A → C)∧(B → C)),
i.e. fst z1 mr (A → C) ∧ snd z1 mr (B → C). Assume furtherz2 mr (A ∨B), i.e.

(∀x.z2 = inlτ(A),τ(B) x → xmrA) ∧ (∀y.z2 = inrτ(A),τ(B) y → y mrB).

We have to show+−z2z1 mrC. Because we may assume thatz2 exists we can use
axiom (24) to writez2, w.l.o.g., asz2 = inl x. It follows xmrA and subsequently
z1ttxmrC. Since+−z2z1 = +−(inl x)z1 7→ z1ttx we may conclude+−z2z1 mrC.

Case(Eρ(x) → A) → A whereA is c.i. Assumef mrEρ(x) → A, i.e. ∀y.y =
x → fy mrA(x). This is equivalent tofxmrA(x), and in turn, by remark 3.11,
part 3, equivalent toεσf mrA(x), which is what we have to show.

CaseL(τ)−Ind. By IH [[N ]] mrE(t), i.e. [[N ]] = t, and

[[M ]] mr ∀p, x, l.E(p, x) → A → A[cons(p, x, l)/l],

i.e. by proposition 4.2

∀p, x, l, zτ(A).E(p, x) → z mrA → [[M ]] pxz mrA[cons(p, x, l)/l]. (27)
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We must show[[N ]] { [[M ]]} mr (A[nil/l] → A[t/l]). Thanks to axiom (25) we may
assumeE(t). This allows us to use induction ont to prove

[[N ]] { [[M ]]} mr (A[nil/l] → A[t/l])

Sincenil { [[M ]]} 7→ id and idmr (A[nil/l] → A[nil/l]) by proposition 4.2, it suf-
fices to prove

∀p, x, l.(l { [[M ]]} mr (A[nil/l] → A)) →
cons(p, x, l) { [[M ]]} mr (A[nil/l] → A[cons(p, x, l)/l]).

Let p, x, l be given and assume

∀z.z mrA[nil/l] → l { [[M ]]} z mrA (28)
z mrA[nil/l] (29)

We must show
cons(p, x, l) { [[M ]]} z mrA[cons(p, x, l)/l]

i.e.
[[M ]] px(l { [[M ]]} z)mrA[cons(p, x, l)/l].

This follows from (27) withl { [[M ]]} z for z, using (28) and (29).

4.4 Applications

From the soundness theorem 4.9 together with proposition 2.13 we can obtain more
underivability results, making use of the set-theoretic model (cf. definition 2.2).

Corollary 4.10 The following formulas are underivable:

∃p, p′ EN(S(p, S(p′, 0))),

∀x.EN(x) → ∃z.EN(z)⊗ Add(x, x, z),

∀x.x = 0 ∨ x 6= 0.

PROOF. Case∃p, p′ EN(S(p, S(p′, 0))) =: A. If A were derivable, then by the
soundness theorem 4.9 we would have a closed termrN such thatr mrA, i.e.

∃p, p′ r mrEN(S(p, S(p′, 0))),

∃p, p′ EN(S(p, S(p′, 0)))⊗ r = S(p, S(p′, 0)).

Because of soundness w.r.t. the set-theoretic interpretation, the value of the closed
term r in the model is2. By proposition 2.13 the normal form ofr is a numeral,
hence of the formSd�0(Sd�10). This implies that we would have a closed term of
type�, contradicting proposition 2.13.
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Case∀x.EN(x) → ∃z.EN(z) ⊗ Add(x, x, z). Instantiate this formula withSd0. If
the result were derivable, then by the soundness theorem we would have a closed
termr of typeN ( N such that

r mrEN(Sd0) → ∃z.EN(z)⊗ Add(Sd0, Sd0, z)

∀x.xmrEN(Sd0) → rxmr ∃z.EN(z)⊗ Add(Sd0, Sd0, z).

Instantiate this formula withSd0. Then in the set-theoretic model the premise is
true, hence also

∃z.r(Sd0)mrEN(z)⊗ Add(Sd0, Sd0, z).

Therefore the closed termr(Sd0) has value2, which is impossible by the argument
of the previous case.

Case∀x.x = 0 ∨ x 6= 0. If this formula were derivable, then by the soundness
theorem it would be realized by a closed termr of typeU + U, i.e.

r mr∀x.x = 0 ∨ x 6= 0,

∀x.r mr (x = 0 ∨ x 6= 0),

∀x.(r = inl ε⊗ x = 0) ∨ (r = inr ε⊗ x 6= 0).

By proposition 2.13r reduces to eitherinl ε or inr ε. Therefore in the set-theoretic
model we would have either∀xx = 0 or ∀xx 6= 0, which is the desired contradic-
tion.

Corollary 4.11 LetM be an almost closed derivation of

∀~x~τ .E(~x) → ∃yτ .E(y)⊗ A(~x, y)

(~τ , τ data types) whereA contains neither existence predicates nor disjunctions.
Then[[M ]] c defines a polynomial time algorithm for a non-size-increasing function
fromS~τ to Sτ satisfying the specification. That is, for every tuple~w~τ of data objects,
the term[[M ]] c ~w normalizes in polynomial many steps (in the term length ofl) to
a data objectwτ of the same term length (plus a constant depending only onM )
such thatA(~w,w) is provable.

PROOF. Proposition 4.2, theorem 4.7, theorem 2.25 and corollary 4.5.

Corollary 4.12 Let ∀xρ.E(x) → ∃yσ.E(y) ⊗ A(x, y), A as above, be provable
(by an almost closed proof). Then∃fρ(σ.E(f) ⊗ ∀xρ.E(x) → A(x, fx) is also
provable.

Remark 4.13 As for theorem 2.25 also for corollary 4.11 a converse holds: Every
polynomial time computable non-size-increasing functionf from S~τ to Sτ can be
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extracted from an almost closed derivation of a formula of the form∀~x~τ .E(~x) →
∃yτ .E(y) ⊗ A(~x, y). This follows from remarks 2.26 and 3.11 (6) according to
which we can prove∀~x~τ .E(~x) → ∃yτ .E(y)⊗ y = t~x for some almost closed term
t definingf .
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