An arithmetic for non-size-increasing
polynomial-time computation

Klaus Aehlig®! Ulrich Berger*?? Martin Hofmanrf
Helmut Schwichtenberg™-?

aUniversitat Minchen, Mathematisches Institut, Theresienstralle. 39, 80B38Mén,
Germany

bUniversity of Wales Swansea, Department of Computer Science, Singleton Park,
Swansea SA2 8PP, UK

“Universitat Munchen, Institutidr Informatik, Oettingenstral3e 67, 805381kthen,
Germany

Abstract

An arithmetical system is presented with the property that from every proof a realizing term
can be extracted that is definable in a certain affine linear typed varianadlS1" and
therefore defines a non-size-increasing polynomial time computable function.

Key words: logic, arithmetic, implicit computational complexity, non-size-increasing
polynomial time computation, realizability, higher types, lambda calculus

1 Introduction

There is an increasing interest in recent research in “implicit computational com-
plexity”, e.g. by means of global restrictions on simply typed term systems to en-

* Corresponding author.

Email addressesaehlig@mathematik.uni-muenchen.de (Klaus Aehlig),
u.berger@swansea.ac.uk (Ulrich Berger),
mhofmann@mathematik.uni-muenchen.de (Martin Hofmann),
schwicht@mathematik.uni-muenchen.de (Helmut Schwichtenberg).

1 Supported by the Graduiertenkolleg Logik in der Informatik of the Deutsche Forschungs-
gemeinschatft.

2 The hospitality of the Mittag-Leffler Institute in the spring of 2001 is gratefully acknow-
ledged.

3 Supported by the British Engineering and Physical Research Council.

Preprint submitted to Elsevier Science 7 February 2006

sure computability in polynomial time [2,7,10,1]. One such approach has its roots
in a careful study by Caseiro [4] of many examples of natural algorithms, and her
formulation of (partially semantic) criteria ensuring computability in polynomial
time. The third author identified in [7] an important aspect of this analysis: the role
played by non-size-increasing functions. He designed a new (affine linear) term
system which can only define non-size-increasing functions, but still allows nested
recursion. One important restriction is that the step terms in recursion operators
must be closed, since when unfolding the recursion they will be duplicated and
hence would violate linearity otherwise. The first and fourth author gave in [1]
a proof of the main result of [7] by a different (syntactical) method, which also
provides an explicit construction of the bounding polynomials. One motivation for
this work was the expectation that the simple approach chosen should make it easy
to design a reasonably rich and flexible (higher type) arithmetical system, whose
provably recursive functions can be computed in polynomial time. It is the purpose
of the present paper to carry this out.

The leading intuition is of course that one should use the Curry-Howard correspon-
dence between terms in lambda-calculus and derivations in arithmetic. However,
care is taken to arrive at a flexible and easy to use arithmetical system, which can
be understood in its own right.

The paper is structured as follows. In section 2 we present a variant of the linear
term system of [7,1] defining non-size-increasing polynomial time functions only.
Tailored for these terms is the arithmetic proof calculus introduced in section 3.
In order to obtain a flexible and expressive system we included some unusual fea-
tures: there are two forms of conjunctioh B andAA B, to account for the linear
aspects of our logic. We also distinguish (as in [3]) between quantifiers with and
without computational content. The former are obtained by relativizing to special
“existence predicatest,. SovVz.E,(z) — ... and3z.E,(z) ® ... indicate that

x has computational meaning for the extracted program. The possibility to make
this distinction is crucial for obtaining reasonable programs. We also split proof
contexts into a “passive” and an “active” part (as done by Reynolds in [13] and by
Reddy in [12]), where the latter controls the variables free in the realizing terms. A
number of examples shows how the system might be used. In particular we sketch
a proof that every list can be sorted. The extracted program is the usual formulation
of insertion sort in our term system. In section 4 the link between proofs and pro-
grams is made precise via a suitable variant of Kreisel's modified realizability. As
corollaries to the soundness theorem we obtain a proof that the provably recursive
functions of our system are non-size-increasing and polynomial time computable,
and some metamathematical results on our arithmetic system.

2 Aterm system for non-size-increasing polynomial time computation

We introduce a term system similar to the system in [7]. It will play the same role
for our arithmetical system asd@el’s7 [5] does for Heyting Arithmetic.

2.1 Types and terms

Definition 2.1 (Finite linear types) Linear types are defined inductively as
p,ou=Ulo|L(p)[p—ooc|pa|pxo|p+o.

Definition 2.2 (Set model) In the (naive) set model every typé the left column,
below, is interpreted by the s8t given in the right column:

U a special singleton set

o an unspecified nonempty set

L(p) the set of lists of elements ®f
p—o0 the set of total functions fror to S°
pRoandp X o the cartesian product 8” andS”
p+o the disjoint sum of” andS?

Remark 2.3 Common basic data types like the booleans, as well as unary and
binary natural numbers can be definedBy= U+U, N := L(U), Bin := L(B).

The intuition for the special typeis a pointer to free memory, as in [6]. Since there
will be no closed terms of this type, it can be used to ensure that terms contain free
variables. For example the type— N — N of the successor function together
with the linear typing discipline will make sure that the length of (unary) natural
numbers and the more technical measure “number of free variables” will coincide.

Although in the naive set model abowe— ¢ is interpreted as the full function
space, computationally it should be viewed as the type of functions /fromr

that are linear in the sense that an argument is used at most once. This aspect will
become visible in the typing discipline (definition 2.6).

Similarly, the denotationally equal types® ¢ and p x ¢ have different computa-

tional interpretations: from a tensor produpt® o both components can be used
once, whereas in the case of an ordinary pair of type o, the pair itself can be

used only once, i.e. one has to choose one component of the pair. Conversely, when
forming an element of type® o from elements” and s” we insist that and s do

not share common free variables, whereas for the construction of elements of type
p X o no such restriction applies.

Terms are built from variables, y, z, ... and constants (definition 2.5). Each
variable has a type and it is assumed that there are infinitely many variables of each
type. The notatiorn:” should express that the variahldas typep.

Definition 2.4 (Terms) The set of terms is inductively defined by
rosu=af [c| Aafr|rs|r{s}

These terms should be seen as our “raw syntax”; only correctly typed terms (defi-
nition 2.6) will be meaningful. The notation{s} (for iteration; cf. the conversion
rules in definition 2.9, and remark 3.10) is taken from Joachimski and Matthes
[9]. The setFV(r) of free variables of a term is defined as usual. In particular
FV(r{s}) = FV(r) UFV(s). Byr[s/x] we denote the usual substitution of every
free occurrence af in r by s (renaming bound variables inif necessary). Terms
that only differ in the naming of bound variables are identified.

Definition 2.5 (Constants) The constants and their types are

3 U

nil,, - L(p)

cons, :o—op—oL(p) — L(p)

®:;U P00 —opPpRO0

@y PRO—o(p—o00—0T)—oT

X (T —0p) — (T —0) T —opxo

fst,, pxo—op
snd)y pXo0o-—o0
inl, p—op+o
inr,, o0-—op+o
4

poT

cpt+o—o(p—oT)X(0—0T)—oT

Definition 2.6 (Typing) The relationr?, which should be readr‘has typep’ is
inductively defined as follows:

(Variable)
(x7)"
c:p
(Constant)
Cp
7,,0'
(—™)
(AzPr)P—7

PP sP FV(r)NFV(s) =0

(rs)”

PLe) gemerr— RV(s) =

(r{sh™"

L(p)7)

Lemma 2.7 If r* ands” with (FV(r) \ {z°}) NFV(s) = 0, thenr[s/z7]".
PROOF. Easy induction om.
2.2 Reductions

We now define reduction rules on terms. In order to be able to control the effects
of iteration we allow conversion of a term{s} only if the iteration argument is
already calculated, i.e. ifis a list.

Definition 2.8 (Lists) Terms of the formons,d{r(. . . (cons,d;rnil,)) will be called
lists (with n entries).

Definition 2.9 (Conversions) — is defined as:

(Azr)s — r(s/x] (B-conversion)
@y (@7,75)E — trs

fst o (X 1y 1st) = 1t

snd (X1, 7st) — st

+or (inlpgr)s +— fst,,sr

+por (iNFpo7)s > snd 57

nil, {s}¢ — 1

cons,d’rl {s}t — sd°r(l{s}t) provided! is a list

Notice that the conversion rules are all correct, with respect to the obvious interpre-
tation of terms in the set model 2.2.

Definition 2.10 (Reduction) The relationr — ' is inductively defined by

r—r r—r s — s r—r s — s

r—r rs—rs rs—rs r{s}— r{s} r{s}t— r{s}

This means, to reduce a term we may convert anywhere, except unéléerm is
callednormal if it cannot be reduced. We will writes* for the reflexive transitive
closure of—.

Lemma 2.11 (Subject reduction) If * andr — s, thens” andFV(s) C FV(r).

PROOF. Induction onr shows that only conversions need to be considered. The
only non-trivial case is handled in lemma 2.7.

Definition 2.12 (Almost closed terms)A term isalmost closedf all its free vari-
ables are of type.

Proposition 2.13 Every normal, almost closed term of a type as in the left column
is of the form given in the right column:

U €

o variable
L(p) list

pRC ®@F rs
pxXo XZU’T rst
p+o inlr orinrr

p—o0o Azrorcrorr{s}

PROOF. Induction on the typing.

Definition 2.14 (Projections) For termsr of typep ® o we will use the abbrevi-

ationsmo(r) == ®,,,rAr’,y’.xz andm(r) := ®, rAz?,y°.y. Clearly one has

mo(®/,st) —* s andm (@ st) —* t.

Example 2.15 (Predecessor).et us use the abbreviatiofis:= nily and Sdr :=
consyder for the zero and the successor operation on the fype- L(U). By the
letter » we will denote numerals, i.e., terms of the fdm (... (54,0)...). Let

50 := A ANNEN=N oF (@72 nA f. fn) N .Sdy
t() = ®+O Id
Then the conversion rules imply

0 {80} to — ®+0 id (1)
Sdv {so} to —* @1Tvy.Sdy (2)

The latter can be seen easily by induction anNow the predecessdt can be
defined by
P .=)\ZﬂN.Wo(l’ {80} to)

Definition 2.16 (Pairing) It is easy to define closed terms

Ry :f—op®... .3 pn
Ry P Q... @py—o(f—oT)—oT

that behave like the corresponding constant, i.e.
®;T(®j§r1 T

Using these we define a closed term

X (F o p) —o (F—00) =T —pxo

by, settingr .= ® ... ® 7,

+ = o+ - - + =
X oo = AMAGAT. X (A2, ®%, 2f)(Az. ®%, 29)(®FT)
such thaffst,,(x , .rst) —* rt andsnd,,(x ! .rst) —* st. Now we can define a
pairing operation

(rf,s7)P%7 = X (A7) (NE.5)T

whereZ’ is a list of the free variables commonit@nds. Obviously
fst,,(r,s) =" r, snd,,(r,s) =" s.

Note that although the termsand s may have variables in common, in the term
(r, s) every free variable occurs only once.

2.3 Lengths of reduction chains

Now we show that every almost closed term of appropriate type in the present
system denotes a non-size-increasing polynomial time computable function. We
adapt the proof in [7,1] by constructing to every such term a polynomial, whose
degree is the nesting ¢f}, bounding the number of reduction steps necessary for
computing the result.

Definition 2.17 For every natural number. and every termr we define natural
numbers#, (r) andd, (r) by

k if risalistwithk entries andk < n
#n(r) = .

n otherwise
Un(z) :=0p(c) = 1
U (rs) = Up(r) + 9u(s)

U (Azr) = Ou(r)+1
On(r{s}) = Oa(r) + (#alr) +1) - Inls)

Clearly the function mapping to 9,,(r) is bounded by a polynomial of degrge
wherep is the nesting of.} in 7.

Lemma 2.18a) #,(r) > #,(r[s/1]).
(b) Ifr — r" then#,(r) > #,(r").

PROOF. Obvious from the definition oft,(r), using the fact that neither substi-
tution nor reduction change the number of entries of a list.

Lemma 2.19 If »” thend,, (r[s/x]) < 0, (r) + Un(s).

PROOF. Induction onr using lemma 2.18 (a) and the fact that in a typed term a
free variable can have at most one occurrence .

Definition 2.20 We writer —,, ' if r — 1’ by converting a subterm of r with
|FV(s)| < n, where|FV(s)| is the number of occurrences of free variables.in

Lemma 2.21 If ” andr —,, 1/, thend,,(r) > 9, (r').

PROOF. Induction onr.
Caser —,, ' is a conversion (definition 2.9), i.e.— " where|FV(r)| < n.

Only -conversion and recursion are critical. While the former is taken care of
by lemma 2.19, in a conversiatons,d®rl {s}t — sd°r(l{s}t) the hypothesis
[FV(cons,d°rl {s}t)] < n is used: Suppose the listhask entries. Therk +

1 < n because due to the typing rules for terms (definition 2.6) a typed list with
k + 1 entries must have at least+ 1 occurrences of free variables. Consequently
#,(cons,d°rl) = k + 1 and#,(l) = k. Therefore

Up(cons,drl {s} t)

=14 9,(d) + 9,(r) + 9, (1) + (kK +2) - Un(s) + Un(t)

> Up(s) + 0, (d) + 0y (1) + 90 () + (K + 1) - 9,(s) + ()
= U, (sdr(l{s}t))

Caser —,, 1/, by converting a proper subterm afEasy by induction hypothesis,
referring in the case{s} — 7’ {s}, withr — 7/, to lemma 2.18 (b).

Corollary 2.22 If r* then every reduction sequence starting withas length<
Iy (r) whereN := |[FV(r)|.

PROOF. Clearly if r — r’' thenr —,, ' for everyn > |FV(r)|. Therefore the
corollary follows from lemma 2.21 and the subject reduction lemma 2.11.

Proposition 2.23 Let — be a typed term withy nestings of{.}. Then there is
a polynomial B of degreemax {p, 1} such that for all terms* containing no{.}
the termrs reduces to normal form ist B(length(s)) steps, wheré&ngth(s) is the
ordinary (syntactical) length of.

PROOF. Let K := length(r) and L := length(s). Then|FV(rs)| < K + L.
Therefore, by lemma 2.22s normalizes in< Jx 1 (rs) steps. Becausedoesn't
contain{.} we havey,(s) = L for all n. Consequently

Uryr(rs) =Ogp(r) + L

which is bounded by a polynomial ib of degreemax {p, 1}.

Definition 2.24 (Data types, data objects, non-size-increasing function#) type

is calleddata typeif it is built from U, L(.), ®, and+ only (examplesN, Bin,
L(Bin)). A data objecbf data typer is an almost closed term” in normal form.
Thesizeof a data objectv” is the natural size of its denotation, which, by proposi-
tion 2.13, essentially, i.e. up to a constant depending only,@woincides with the
syntactical lengthlength(w), and also with the number of free variabl¢gBy (w)].

A functionf fromS™ to S™, where7, 7 are data types, is calledon-size-increasing
if there is a numbek such that for all data objects of type7 the resultf (a) has a
size less than or equal to the sum of the sizes od tipdusk.

Theorem 2.25 Let 7, 7 be data types and™ " be an almost closed term with
p nestings of{.}. Thenr defines a polynomial time algorithm for a non-size-
increasing function fron8™ to S™ with computation time bounded by a polynomial
of degreemax {p, 1}.

PROOF. By proposition 2.13 defines indeed a function froT to S™. The as-
sertion about the computation time is proved in proposition 2.23. Fh&non-
size-increasing follows from the already mentioned facts that reduction does not
increase the number of free variables of a term, and that the the size of a data object
is essentially the number of its free variables.

Remark 2.26 In [8] it is shown for a similar term calculus that the converse of
theorem 2.25 also holds: Every non-size-increasing function §6rto S™ with
computation time bounded by a polynomial is definable by an almost closed term.

3 Linear arithmetic

We now set up a linear arithmetic tailored for the term system introduced in the
previous section.

3.1 Formulas

We assume a fixed set of predicate symbols of fixed arity.

When writing R(7), R a predicate symbol, we implicitly assume correct length and
types ofr. However we only assume that the termgiareweakly typedthat is,

all restrictions on free variables (when typing terms of the forror {r} s) are
dropped. This relaxation of the typing rules is necessary because of unrestricted
substitutions into formulas allowed by tkieelimination rule (see definition 3.7).

For every typep we assume special predicate symhiijsand=,, called existence
and equality. We sometimes abbreviatg(r, s) by r =, s or evenr = s. The
intended interpretation of, is ordinary extensional equality between objects of
typep andF, is to be interpreted as the set of all objects of typthat is, all objects

do exist. Nevertheless, we will refrain from simply stating the formilér) as an
axiom, because we want a proof bf,(¢) to provide a construction of the object
denoted by. We will postulate the fact that,(x) always holds only in a context
where the construction af does not matter. This can be expressed by the axiom
schemeE,(z) — A) — A, whereA is an arbitrary computationally irrelevant
formula (see definition 3.5).

In the following the lettersP, () range over predicate symbols different from the
existence predicates, (but including equality=,,).

Definition 3.1 (Formulas) The set of formulas is defined inductively:
A B,Cu:=P() | E)Nr)|]A—=B|A®B|AANB| AV B |Vz’A| 2P A

Remark 3.2 We define falsityl. by tt = ff, wherett := inly ye andff := inry ye.
Negation—A is an abbreviation forA — L andr # s is shorthand for-(r = s).

The conjunctiom is the “weak” one corresponding to the ordinary producti.e.
AANB — AandAA B — B will be provable, butA — B — C) — (AAB — C)
will not.

The quantifiers correspond to tH&'} in [3] (or the “underlined quantification”
in [11]) and mean “quantification without computational content”, i.e. a proof of
Vz A is of such a form that the realizing term does not dependcohen we

10

want computational content, the quantifiers have to be relativized to the existence
predicate, i.eVz.E(x) — Aor Jz.E(z) ® A.

Ex falso quodlibet in the form. — A will not be provable in general: we will not
have . — 3p°E(p), since there is no closed term of typeThis is also the reason
why disjunction4 v B cannot be defined by2B. E(z) @ (z =t — A) A (z =
ff — B): from A we could not conclude e.gl vV 3p°E(p).

Definition 3.3 (Computational content) For a formula A we define the computa-
tional contentr(A), i.e. the type of its potential realizers, by induction4n

T(Ey(r)) =p

T(P(r) =U

T(A — B) :=71(A) — 7(B)
T(A® B) :=7(A)®@ 7(B)
T(AANB) =7(A) x 7(B)
7(AV B) =171(A) + 7(B)
T(VzPA) =71(A)
7(dz*A) =71(A)

Due to the presence of the tyfietypes may contain some redundancies. For ex-
ample,p — U denotes a singleton in the set model and could hence be simplified
to U. Let us call a typeleanif it does not contain redundant parts. Hence the base
typesU ando¢ are clean, the types— o, p ® o, andp x ¢ are clean if their com-
ponents ando are both clean and different frold, and the type&.(p) andp + o

are clean if their componentsando are both clean. To every typewe define a
canonically isomorphic clean typgp) as follows.

Definition 3.4 (Cleaning of types)

c(U):=U
c(o) =0
U ifc(o)=U
c(p—0):=qc(0) if c(p) =U
c(p) — c(o) otherwise
c(p) ifc(o) =U
c(p®o):=1clo) if c(p) =U
c(p) ® c(o) otherwise
c(p) ifc(oc) =U
c(p x o) :=1qco) if c(p) =U
c(p) x c(o) otherwise

We setr<(A) := c(7(A))

Essentially we are interestedifi(A) only. However, in order to keep cumbersome
case distinctions at bay it will be convenient to consider the uncleaned ve(sion
as well.

Definition 3.5 (Harrop formulas) We say that a formula has no computational
content if7¢(A) = U. Formulas without computational content are also called
Harrop formulasor computationallyrrelevant(c.i.), non-Harrop formulas are also
called computationallyelevant(c.r.).

So, a formula is c.i. iff it contains no existence predicafewith c(p) # U and no
disjunction in a strictly positive position.

3.2 Derivations

Proof terms are intended to denote proofs in natural deduction style. They are built
up from ordinary terms:, axiomsc and assumption variables v, w, Each
assumption variables has a formula as type (in the sense of the Curry-Howard cor-
respondence). For each formula there are infinitely many variables of this type. We
write u or u: A to indicate that the variable has typeA.

Definition 3.6 (Raw proof terms)

M,N,L:=u?|c| W M | \e? M | MN | Mr | M {N}

Proof contextsire sets of assumption variables. We denote proof contexisby:. . .,
and writell, I" for the unionll U I, expressing thall andI" are disjoint. For con-

texts consisting of one element we also writeinstead of{u“}. Let - denote the

empty proof context.

The term system was based on linearity constraints, hence linearity has to be re-
flected by the arithmetic in order to achieve a realizability result. However, linearity
itself would be too a strong restriction since we will often need to instantiate uni-
versal formulas to special terms in order to prove that a certain (c.i.) property holds
without actually using the variable (in a relevant way). Therefore we have to allow
ourselves to keep assumptions in the context that must not be used in a c.r. way.
To achieve this we split the context into two parts: one to control correctness and
another one to control linearity. This setup also allows (by the (desification)

below) to easily reflect the fact that Harrop formulas have no computational mean-

12

ing and that therefore the proof of a Harrop formula cannot use any assumption in
ac.r. way.

A similar phenomenon appears in the area of syntactic control of interference (SCI),
cf. Reynolds [13] or Reddy [12]. There, in a function applicatienhe two phrases

r ands should be “independent”, i.e.should not change somethirgs reading

from or writing to, and conversely. One way to guarantee this is to require that

r ands do not share common free variables. However, this requirement seems to
be too stringent: one e.g. could not writecz. To relax it, Reynolds identified a
special class of values called “passive”, which never change the state. Free variables
denoting passive values can then be shareddnyds.

Following Reddy [12] we write our typing judgments in the fofin| I' - M : A,
where the context is split into two paiisandI’, with IT considered passive. This is
to be read asM denotes a proof ofl in the passivecontextIl and the potentially
active or linear contextI™”. The active context controls the variables free in the
realizing terms.

Definition 3.7 The relationIT | T' - M : A is inductively defined as follows.

(Assumption)
et el A
_— (Axiom)
[T FcA: A
I|Iu*-M:B
="
|- MtM: A— B
M0 FM:A—B II|ToFN:A
(=)
I|T,To - MN: B
II|I'-M: A VarCond
(V)
T[T+ Az M: Var A
II|TFM:VarA r weakly typed by)

II|T'F Mr: Alr/x]

13

HereVarCond is the usual condition on free variables, i.e. thainhust not be free
in the type of any element bfu I'.

We add a rule(Passification) describing the meaning of the active context: it is
only needed to prove non-Harrop formulas. Moreover we add a contraction rule,
which can be used to contract the passive part of the context.

I[uP,TFM: A Aci.
(Passification)

ILuB [T+ M: A

WA T vATFM: B
(Contraction)

| vA, T F M[v4/u?]: B

We call these rulestructural The last rule concerns induction.

II|TFN: E(t) |-+ M:Vp®, 2™, l.LE(p,x) — A — Alcons(p, x,1)/l]
T[T F N{M}: Anil/l] — Aft/l]

(L(7)—Ind)
Here E(p,x) — ... isshortforE(p) — E(z) —

The axioms can be divided into four groups: logical axioms, equality axioms,
axioms for existence predicates, and axioms specifying the additional predicates
P, Q,.... We will only give the axioms of the first three groups. They define the
core system. The last group depends on particular applications of the system; ex-
amples will be given in section 3.4.

Definition 3.8 (Axioms for the core system)

Logical axioms.

(C—A)—-(C—-B)—C—AANB (3)
Ao NAL — A; 4)
A—-B—A®B (5)
A B—(A—-B—-(C)—-C (6)
Ay — AoV Ay (7)
(A-C)AN(B—C)— AVB—C (8)
Vor.A — drA (9)
JeA — (Vo.A — B) — B ifx ¢ FV(B) (10)
L — P(7) (11)

Equality axioms.

14

Transitivity, symmetry and reflexivity of,. (12)

Equations corresponding to the conversion rules 2.9, where in the

equationcons,d°rl {s} t = sd°r(l {s} t) the term/ can be arbitrary. (13)
f=peg—ax=py— fr =59y (14)
=Y — = Ty =Y — Px1,...,2,) = P(Y1,-.-,Yn) (15)

=,y — E(x) — E(y) (16)
T =yé¢€ (17)
Vo fr=591— f=po g (18)
fstz =, fstz' Asndz =, snd2’ — 2 =, 2/ (19)

Axioms for existence predicates.

E, o(f) < Vz.E,(z) = E,(fx) (20)
E,xs(2) < E,(fstz) A E,(snd z) (21)
E(c) for each of the constructoes ®™, inl, inr, nil, cons (22)
(Va?,y” E(x,y) — Al@Txy/z2]) — V27 .E(z) — A (23)
(V. E(x) — Alinlz/z]) A (Vy7.E(y) — Alinry/z]) — V2’7 .E(z) — A (24)
(E,(x) — A) — A forevery c.i. formulad (25)

We write M4 for M if there arell andI such thafll | I' - A : A. Obviously,A is
uniquely determined by/. If we are not interested in the proof term we will also
write IT | I" - A to mean that there exists a proof teivhsuch thafl | '+ M: A

is derivable.

3.3 Remarks

Remark 3.9 It is easy to see that the following rules are admissible:

mir-A
(Weakening)
mnnreA
| TrEA
_ (Activation)
II|rmreA

Remark 3.10 Our induction rule [L(7)—Ind) corresponds to iteration rather than
primitive recursion, since for its premise we must proYieons(p, x,1)/l] from

15

(E(p, z) and) A alone, without having access to the previous induction argurnent
in the form of an¥'(1)-resource. By mimicking the method in [7] one can see that a
strengthened induction rule corresponding to primitive recursion, in the form

|- E@R) II|-FVp,zl.Elp,z)— AANE(l)— Alcons(p,x,1)/l]
II| T+ Alnil/l] — Alt/l]

(L(7)—Ind™)
is admissible, by invokind(7)—Ind) with goal formulaA A E(I). Its premise can
be proved from the given premise usifigp, «,!) — FE(cons(p, z,1)), and from its
conclusion

II|TEN{M}: Anil/l] A E(nil) — A[t/l] N E(t)
we clearly obtainA|nil /1] — A[t/l], usingE(nil).

Notice that due to the use of rather than® we can access either the induction
variable or else the previous result, but are not allowed to do both. Itis not possible
to derive a strengthened induction rule wighinstead ofA.

Remark 3.11 We list some further useful facts about the system.

(1) A B — A A Bis provable in general, butnod A B — A ® B. However,
for c.i. formulasA, B we can provedA A B < A® B.

(2) x =,y — A(z) — A(y) is provable for all formulasA.

(3) Ifc(p) = U thenz =, y is provable.

(4) The constructorsp™, x*, inl, inr, nil and cons are injective, and have mu-
tually disjoint ranges®™ and x* are also surjective. That is, the following
formulas are provable.

c¥ =cy — ¥ =1y foreach constructor

c¥ # 7 for each pair of different constructar, ¢ of appropriate types.
VP23, y. 2 = @ ay

V2P 3z, y. 2 = x Ty

(5) The following formulas are provable.

E e0(2) & 23y . Ey(2) @ E,(y) @ 2 = @y
E,i;(2) & (2" .E,(x) ® z =inlz) V (Y. E,(y) ® z = inry)
Evrp)(2) < z =nil v (3d°, 27, V) E(d, z,y) ® z = consdxy)
(6) E(¥) — E(t) isprovable for every termwhich is correctly typed according
to definition 2.6 and whose free variables are amang
(7) L — A'is provable provided in-(A) (or equivalently int¢(A)) the typeo
does not occur strictly positive.

PROOF. 1. For the underivability statement see corollary 4.8. The rest follows

16

directly from the inference rules in definition 3.7.
2. Easy induction om.
3. Easy induction omp.

4. Note that all formulas to be proven are c.i. Therefore axiom scheme (25) allows

us to prove them under the additional assumption that all objects involved exist.

But this is easy, using the other existence axioms and our conversion rules, that is,
axioms (13).

5. The implications from right to left follow from the axioms (22). The other impli-
cations follow from the elimination schemes (23), (24) and induction (which can
be viewed ag’y,,)-elimination). As an example let us assufig ,(2) and prove
(Fzr.E,(z) ® z =inlz) V (3y’.E,(y) ® z = inry). By (24) it suffices to prove this
for z of the forminl 2z’ where E(z'), and also forz of the forminly’ where E(y/').

But this is obvious.

6. It suffices to prove that all constants exist and that existence is preserved under
the formation oft{s}. For the constructors this follows directly from the axioms
concerning the existence predicates. For the other constants and induction one uses
the elimination axioms, (23,24) and induction, as well as the conversion rules (13).

7. First one proves the assertion for formuldsf the formE,(¢), by induction on
p. The general case follows by induction dnusing axiom scheme (11).

3.4 Examples

The following examples are intended to demonstrate the flexibility of the system.
Some of the system’s (inevitable) limitations are expressed by the underivability
results in section 4 (e.g. corollary 4.8).

Example 3.12 (Addition) AssumeAdd(z, y, z) expresses + y = z for natural
numbers, for example, via the computational irrelevant axioms

axg: Vr.Add(z,0,x)
ax: Va,y,2,p.Add(z,y, 2) — Add(z,S(p,), S(p, 2))

We prove
Vao.Ex(z) — Vy.Ex(y) — 32.En(2) @ Add(z, y, 2)

(which will give us, via program extraction (section 4) a polynomial time algorithm
for addition). We argue informally. Assumg: En(z) andu,: Enx(y). We have to
show3z.En(2) ® Add(z,y, z). Because of the assumptian we can do this by

17

induction ony. We need to prove base and step, that is,

Jz. En(2) ® Add(z, 0, 2)
Vp,y. Es(p) — (F2. Ex(2) ® Add(2,y, 2)) — 32 Ex(?') ® Add(z, S(p,), 2)

For the base we take := = and use assumptian, and axiomax,. For the step we
assume: E,(p) and also that we have with ih; : Ex(z) andihy: Add(z,y, 2).
We setz’ := S(p,z) and proveEn(z’) usingv and ih;, and Add(z, S(p, y), =)
usingax; andihs.

This is a valid proof in our system since every assumption is used only once and the
proof of the step is almost closed, that is, does not use any of the assumtians

u,. The corresponding derivation term is (using variables with the same types and
formulas as in the informal proof)

Az, ug, Y, uy - up {STEP} BASE
whereBASE := J"zug(axox) andSTEP :=
Ap,y,v,ih.37ihAz,ih’. ® Aihy,ihy . 3TS(p, 2) (@1 (Mpzvih;)(axixyzpihy))
withih: 3z. Ex(2) ® Add(z, y, 2), ih’: Ex(2) ® Add(z, v, z), and a trivial deriva-
tion M : Vp,xz . E(p) — E(x) — E(S(p,z)) which is easily obtained from axioms

about the predicaté.

Notice that we cannot deduge. En(z) — Jz.En(2)®Add(z, z, 2) (See corollary
4.10), because we would lack ohAg assumption.

Example 3.13 (Recycling of existenceBy induction we can prove
Ve.En(z) — (x =0V #0)® Ex(x).

In the base case we use the axiéit)) and prove the left branch of the disjunction,
which is an axiom. The step requires

Vp, x.Es(p) — En(z) — Ex(S(p,) ® S(p, x) # 0,
which follows from the axiomv,(p) — En(z) — En(S(p, x)).
Notice that since disjunction is computationally relevant, we cannot establish
Ve.x =0V x #0,

i.e. decidability of equality without an existence assumption (see corollary 4.10).
Notice that the more natural statement

Ve.En(z) =2 =0Va#0

18

follows from the one we’ve shown, but is strictly weaker since it doesn’t allow us to
“recycle” the information thatz “exists”.

We can establish
FVz.En(z) = Vy.En(y) — (z =y V #y) ® En(z) ® Ex(y).

Example 3.14 (Sorting) Assume that we are given a binary relatighof arity
(p, p) such that we can prove

Vo.E,(z) = Vy.E,(y) — (x <yVaz £y) @ Eyz) @ E,(y)

Furthermore, we assume a ternary relatilon axiomatized by c.i. axioms such that
Ins(z,[,1") expresses that ifis a sorted list w.r.t<, then so ig’, and the members
of I are those of together withz. From the strengthened induction rub Ind ™)
(cf. remark 3.10) we can derive

Vi,z,p.E(l,z,p) — 3" E(l') @ Ins(z,1,1'), (26)

by induction onl. Base: Takd’ = cons(p, z, nil) (using E(p, x)). Step: We have
E(y, q) and the (strengthened) IH

(Va,p.E(z,p) — A . E(l') @ Ins(x,1,1")) A E(1).
We need to show
Vo, p.E(x,p) — A" E(") @ Ins(z, cons(q, y,1),1").

So assumé’(z, p). Comparer andy without destroying them, i.e. such that after
comparison we still havé&'(x, y). Caser < y. Takel” = cons(p, z, cons(q, y,1));
here we need the right hand patt() of the IH, which together witli'(y, ¢) gives
us E(cons(q,y,1)). Casey < z. Using the left hand part of the IH for our, p gives

I such thatE(I') & Ins(z, 1,1"). Takel” = cons(q,y,).

From this, we prove that every list can be sorted. $@&t(/, ") express that' is an
ordered permutation df. We want to show

VZ.EL(p)(Z) — HZI.EL(p)(l/) & Sort(l, l,)
Induction onl. In the step case we argue as follows. We h&yg, =) and the IH
' Er (') @ Sort(1,1').

We need to show
31" By, (l") @ Sort(cons(p, z,1),1").
We have aif such thatZ(!") @ Sort(l,I"). Apply(26)to!’, z.p. This gives ari” such
that £(I") @ Ins(z,I’,1"). The claim follows from the computationally irrelevant
axiom
Sort(l,1") — Ins(z,1',1") — Sort(cons(p, x,1),1").

19

For the base case we need the computationally irrelevant agiougnil, nil).

4 Realizability

4.1 Definition of modified realizability

We now define what it means for a ternto realize a formulaA. The intuition of
r being a program calculating examples for existential quantifiers is formalized by
the (computationally irrelevant) formutamr A.

Definition 4.1 (mr) By induction onA we define a formula mr A for arbitrary
T(A).

rmrBy(s) = (r=,s)
rmr P(3) = P(9)

rmrVeA =VrormrA
rmrdzA = drz.rmr A

rmr(A— B):=VrxamrA — remr B

rmr(A® B) :=m(r)mrA A m(r)mr B

rmr(AAB) :=fstrmr A A sndrmr B

rmr (AV B) = (Vo.r =inl 43z — rmr A) A
(Vy.r = inr (4 -(p)y — ymr B)

Note that mr A contains neithelz, nor @ nor V.

Proposition 4.2 (1) If A contains neither existence predicates nor disjunctions,
thenr mr A is provably equivalent tol.
(2) rmrVx.E(x) — Ais provably equivalent t&/z.rxz mr A.
(3) rmr Jz.E(z) ® Ais provably equivalent ta, (r) mr A[my(r)/z].

PROOF. Immediate form the definition and the equality axioms.

4.2 Extracted terms

For each variable! we choose a unique variable s of type r(A) that is suffi-
ciently different to all variables used so far.

Definition 4.3 (Extracted terms) For a proof M4 we define its extracted term

20

[u] = ;™

[Mu? ME] = \zT@W [M]
[MAEN] = [M] [N]
[Az? MA] = [M]

[M7" 4] = [M]
[NFr@® {M}Y] = [N] {[M]}

We now define extracted terms for the axioms. We jriefor [c: A]. If Ais the
Efg-axiom (11), or the axiom (25), or one of the equality axioms except (16), then
we defing]A] :=), where for any typ@ we lete” be some closed term of type

p. For the remaining axioms we define

[(C—A) —(C—B)—C—AANB] := X:-r(A),-r(B),-r(C)

[ANB — A] = fst.(a),r(B)

[AAB — BJ i= snd;(4),7(B)

[A— B— A® B] :®;i_(A),T(B)
[A®B—(A—B—C)—C] = Q7 (4),7(B)7(C)

[A— AV B] = inl-(4),7(B)

[5— AvB] = inrr(4).(5)
[(A=C)N(B—C)—=AVB—=C] =Andn. +,, 1) 2%
[Vz.A — 3z A] = id,(a)

[32A — (Vo.A — B) — BJ A frierB) gy
e =y — B(z) — B)] _id,

[[Ep_og() = Vaz.E,(z) = Ey(fx)] =id)—or

[[(V () — b, (fx)) - Ep—Oa(f)]] = idp—Oa

[Epxo(z) = E,(2tt) A Ey(2fF)] = idpxo

[, (212) A By (o) — By (2] = idpeo

[E(c)] =c¢ forc=¢,®",inl, inr, nil, cons

[(Var,y? . E(x,y) — Al@Tay/z]) — V2P9? . E(z) — A]

[(Vzr.E(z) — Alinlz/z]) A

(Vy”. E(y

=AAz. ® zf

) — Alinry/z]) — Vzrt°.E
= /\Zl)\ZQ .+

(2) — A]

poyT(A) 7271

Depending on applications there may be more axioms. For each such axiof

one has to chose a terfiax] "

such that[ax] mr C'is provable.

21

As for the extracted types, also the extracted terms may contain redundant parts
which can be removed by an obvious cleaning procedure for terms. Note that the
extracted term of a derivatidn | I' - M : A is weakly typed (cf. section 3.1) with
typer(A) (see theorem 4.7).

Definition 4.4 (Cleaning of terms) For every variabler” such thatc(p) # U we
choose a sufficiently different variabié(®). Relative to this choice we define for
every weakly typed ternf a cleaned terma(r).

c(rf):=¢e ifc(p)=TU
otherwise

c(xf) = g

c(c) see below

O r7) = c(r) ifc(p)=U
"1 az c(r) otherwise

p—o0 pY .__ c(r) if c(p)=U
= {C(T)C(s) otherwise

c(r{s}) = c(r) {c(s)}

We still have to defing(c) for constants such that(p) # U. Obviously

. : S ifc(p)=U
c(nil,) := nil. and c(cons,) := .

(nil) & (cons,) {consc(p) otherwise
For the remaining constants the definitionaf) is also straightforward, but re-
quires a somewhat tedious case analysis on whether the corresponding type in-
dices are c.i. or not. For example, fab_ , casec(p) = U # c(o), we have
(®,,,) = Az felo) =) fo,
Remark 4.5 Itis easy to see that if is weakly typed and — 1/, thenr’ is weakly
typed andc(r) —* c(r’). Hence for a weakly typed almost closed termf type
T —o 7, WhereT, T are data types, the termsandc(r) essentially define the same
function on data types.

Example 4.6 (Addition, extracted program) Let us extract a program from the
derivation

Az, ug, Y, uq . uy {STEP} BASE
of Vz.En(z) — Vy.En(y) — Fz.En(z) ® Add(z,y, z) given in example 3.12.
We only show cleaned and normalized programs. From the deriv&ivdE we

extract the programz,. The program extracted from the derivatiSTEP is the
same as the program extracted frabh: Vp,xz. E(p) — E(x) — E(S(p,z)),

22

namely\d,i.S(d,). Therefore the program extracted from the complete deriva-
tion is A\xg, x1 . 71 {)\d, 7. S(d, Z)} Zo.

4.3 Soundness

For a derivation termd/ we set[M]° := c([M]), and for a derivation context,
[] := {27 | w4 € T} and [I1]© := {7, W | u? € 11, 75(A) # U}.

Theorem 4.7 (Soundness of typingAssumél | I' = M : A. Then[M] is weakly
typed with type-(A) andFV([M]) C [II,I']. Moreover,

[T]° F ([M]5)™™

PROOF. Inspection of the proof rules and the (cleanings of) extracted terms for
the c.r. axioms.

Since by proposition 2.13 we have some knowledge of almost closed, normal terms
of the different types, we can as a corollary obtain some underivability results.

Corollary 4.8 Let< := Jp°E(p). The following formulas and schemes are under-
ivable:

1 -3
O =00
(A-=B—-C)—-AANB—C

PROOF. Casel — <. Recall that® := 3p°E(p), hencerc(L — &) = ¢. So if

1 — < were derivable, then by soundness of typing we would have a closed term
of type ¢, contradicting proposition 2.13 and the fact that every term reduces to a
normal form.

Case® — <& ® <. If this formula were derivable, then by soundness of typing
we would have a closed termof typec — ¢ ® o. Letp be a variable of type.
Then by proposition 2.13 the normal form:gfwould be of the fornw* d§ds, with
normal termslS, dS. By proposition 2.13, dj have to be variables, hence distinct.
This is the desired contradiction.

Case(A — B — C) — AAB — C. Instantiated, B by ¢ andC by © ® <. Then
since the premis@ — ¢ — & ® < and alsoeC — & A © clearly are derivable,
we could also derive® — <& @ <, which we have just shown to be impossible.

23

Theorem 4.9 (Soundnesspissumdl | I' = M : A. Then there is a derivation of
[M] mr A from assumptions, mr B for u”® € [TUT.

PROOF. By induction on the definition ofl | I' - M : A. Only the axioms and
induction are of interest. For the Efg-axioms (11) and the equality axioms except
(16) the claim is trivial, since they neither contain existence predicates nor disjunc-
tions, and therefore, by proposition 4.2, part 1., their realization is equivalent to
themselves. As for the remaining axioms we restrict ourselves to some of the more
interesting cases. Note that because the fornitfd mr A is c.i. we may, using
axiom (25), assume that all objects involved exist. More precise[W/if mr A is

of the formVz. B we may instead proveéz.E(z) — B.

CaseA®B — (A — B — () — C.Assume: mr (A® B), i.e. thatry(z) mr AA
m(z) mr B. As indicated above we may assume thag¢xists. We must show
(AMf.zf)mr ((A— B — (C)— C).Assumefmr (A — B — C),i.eVr,yxmr A —
ymr B — frymr C. We must show that f mr C. Using axiom (23), we may
also assume that= ®*zy for some existing:”, y°. Thenmy(z) = x andmy(z) =

y, Soxmr A A ymr B. Now fromzf = @*xyf — fxy the claim follows.

CaseA — AV B. Assumer mr A. We must shovinl z mr (AV B), i.e.Vx;.inlz =
inlz; — xymr A andVy.inlx = inry — ymr A. The former follows from the
injectivity of the constructoinl, and the latter from the disjointness of the ranges
of the constructorsl andinr.

Case(A — C)A(B — C) — AVB — C.Assumezymr ((A — C)A(B — C)),
i.e.fstzymr (A — C) Asnd zy mr (B — C). Assume furthee, mr (A V B), i.e.
(Va.zo = inlr(a) -y — amr A) A (Vy.2o = inrra) -z y — ymr B).

We have to show~z,2z; mr C. Because we may assume thaexists we can use
axiom (24) to writezy, w.l.0.g., asz; = inlz. It follows x mr A and subsequently
zttzmr C. Since+~ 2321 = + (inlx)2; — 2zt we may conclude-~z92z; mr C.

Case(E,(z) — A) — A whereAis c.i. Assumef mr E,(z) — A, i.e.Vy.y =
x — fymr A(x). This is equivalent tgfz mr A(z), and in turn, by remark 3.11,
part 3, equivalent teo f mr A(z), which is what we have to show.

CaseL(7)—Ind. By IH [N] mr E(t), i.e. [N] =t, and
[M] mrVp,z,1.E(p,x) — A — Alcons(p, z,1) /1],
i.e. by proposition 4.2

Vp, 2,1, 2" Y E(p, x) — zmr A — [M] pxzmr Alcons(p, z,1)/1]. (27)

24

We must show[N] { [M]} mr (A[nil/l] — A[t/l]). Thanks to axiom (25) we may
assumeF (t). This allows us to use induction @ro prove

[NT{M]} mr (A[nil/1] — Aft/1})

Sincenil {[M] } — id andid mr (A[nil/l] — Alnil/l]) by proposition 4.2, it suf-
fices to prove

Vp, z, l.(I{[M] } mr (A[nil/l]] — A)) —
cons(p, z, 1) {[M] } mr (A[nil/l] — Alcons(p, x,1)/l]).

Letp, z, [be given and assume

Vz.zmr Anil/l] = [{[M]} zmr A (28)
zmr Alnil/[] (29)

We must show

cons(p, x, 1) {[M] } zmr Alcons(p, x,1)/I]
i.e.

[M] pz(1{[M]} z) mr A[cons(p, z,1)/1].
This follows from (27) withl { [M] } =z for z, using (28) and (29).

4.4 Applications

From the soundness theorem 4.9 together with proposition 2.13 we can obtain more
underivability results, making use of the set-theoretic model (cf. definition 2.2).

Corollary 4.10 The following formulas are underivable:

Ip, v’ En(S(p, S(p',0))),
Ve.En(z) — 3z.En(2) ® Add(z, z, 2),
Ve.x =0V ax #0.

PROOF. Casedp,p’ Ex(S(p,S(¢/,0))) =: A. If A were derivable, then by the
soundness theorem 4.9 we would have a closed t&rsuch that- mr A, i.e.

3p, ' r mr Ex(S(p,S(p',0))),
Ip, 0" Ex(S(p,S(p',0))) @ r = S(p,S(p', 0)).

Because of soundness w.r.t. the set-theoretic interpretation, the value of the closed
termr in the model i2. By proposition 2.13 the normal form efis a numeral,
hence of the fornbdg(Sd50). This implies that we would have a closed term of
type <, contradicting proposition 2.13.

25

CaseVz.En(r) — 3z.En(z) ® Add(z, z, z). Instantiate this formula witBd0. If
the result were derivable, then by the soundness theorem we would have a closed
termr of type N — N such that

rmr Fn(Sd0) — 3z.En(z) ® Add(Sd0, SdO, z)
Vo.x mr En(Sd0) — ramr 3z. En(2) ® Add(Sd0, SdO, z).

Instantiate this formula witlsd0. Then in the set-theoretic model the premise is
true, hence also

J2.r(Sd0) mr En(z) ® Add(Sd0, SdO, z).

Therefore the closed terniSd0) has value, which is impossible by the argument
of the previous case.

CaseVz.x = 0V x # 0. If this formula were derivable, then by the soundness
theorem it would be realized by a closed terof typeU + U, i.e.

rmrVe.x =0Vax #0,
Veormr (x=0Vazx #0),
Ve.(r=inle®@xz=0)V (r=inre ® x # 0).

By proposition 2.13- reduces to eithenl ¢ or inre. Therefore in the set-theoretic
model we would have eithé&ftzx = 0 or Vzz # 0, which is the desired contradic-
tion.

Corollary 4.11 Let M be an almost closed derivation of
VT E(Z) — 3y .E(y) ® A(Z,y)

(7, 7 data types) wherel contains neither existence predicates nor disjunctions.
Then[M]* defines a polynomial time algorithm for a non-size-increasing function
fromS™ to S™ satisfying the specification. That is, for every tupfeof data objects,
the term[M] “ «w normalizes in polynomial many steps (in the term lengtl) af

a data objectw™ of the same term length (plus a constant depending only/on
such thatA(w, w) is provable.

PROOF. Proposition 4.2, theorem 4.7, theorem 2.25 and corollary 4.5.

Corollary 4.12 LetVz*.E(x) — Jy°.E(y) ® A(x,y), A as above, be provable
(by an almost closed proof). Thélf*—<?.E(f) @ Va*.E(x) — A(x, fx) is also
provable.

Remark 4.13 As for theorem 2.25 also for corollary 4.11 a converse holds: Every
polynomial time computable non-size-increasing functidrom S™ to S™ can be

26

extracted from an almost closed derivation of a formula of the féin £ (%) —
Jy".E(y) ® A(Z,y). This follows from remarks 2.26 and 3.11 (6) according to
which we can proves™. E(f) — 3y™.E(y) ® y = tZ for some almost closed term
t defining f.

References

[1] Klaus Aehlig and Helmut Schwichtenberg. A syntactical analysis of non-size-
increasing polynomial time computation.Pnoceedings of the 15'th IEEE Symposium
on Logic in Computer Science (LICS '0@ages 84 — 91, June 2000.

[2] Stephen Bellantoni, Karl-Heinz Niggl, and Helmut Schwichtenberg. Higher type
recursion, ramification and polynomial timeAnnals of Pure and Applied Logic
104:17-30, 2000.

[3] Ulrich Berger. Program extraction from normalization proofs. In M. Bezem and J.F.
Groote, editorsTyped Lambda Calculi and Applicationslume 664 of_ecture Notes
in Computer Scienggages 91-106. Springer Verlag, Berlin, Heidelberg, New York,
1993.

[4] Voukko-Helena Caseiro.Equations for Defining Poly-time Functiond?hD thesis,
University of Oslo, 1997ftp.ifi.uio.no/pub/vuokko/

[5] Kurt Godel.Uber eine bisher noch nicht bétzte Erweiterung des finiten Standpunkts.
Dialectica 12:280-287, 1958.

[6] Martin Hofmann. A type system for bounded space and functional in-place update.
To appear: Nordic Journal of Programming. An extended abstract has appeared in
‘Programming Languages and Systems’ (Proc. ESOP 2000), G. Smolka, ed., Springer
LNCS, 2000.

[7] Martin Hofmann. Linear types and non-size-increasing polynomial time computation.
In Proceedings 14'th Symposium on Logic in Computer Science (LICP&§¢s 464—
473, 1999.

[8] Martin Hofmann. The strength of non-size-increasing computatiorPraceedings
‘Principles of programming languages’ (POPL'Q2002.

[9] Felix Joachimski and Ralph Matthes. Short Proofs of Normalization for the simply-
typed A-calculus, permutative conversions anddsl's’T". Archive for Mathematical
Logic, 42(1):59-87, 2003.

[10] Daniel Leivant. Intrinsic reasoning about functional programs |. First order theories.
To appear in Annals of Pure and Applied Logic.

[11] Jaco van de PolTermination of Higher-order Rewrite Systenf2hD thesis, Utrecht
University, 1996.

[12] Uday Reddy. Global state considered unnecessary. An introduction to object based
semanticsJ. Lisp and Symbolic Computatio®.7—76, 1996.

27

[13] John C. Reynolds. Syntactic control of interference. AM Symp. on Princ. of
Programming Lang.pages 39—-46. ACM, 1978.

28

