
Recursion Theory

Helmut Schwichtenberg

Notes for a lecture course, Wintersemester 2006/07.
Mathematisches Institut der Ludwig-Maximilians-Universität,

Theresienstraße 39, D-80333 München, Germany.
February 8, 2007.

Contents

Chapter 1. Computability 1
1.1. Register Machines 1
1.2. Elementary Functions 4
1.3. The Normal Form Theorem 10
1.4. Recursive Definitions 15
1.5. Primitive Recursion and For-Loops 19
1.6. The Arithmetical Hierarchy 24

Chapter 2. Constructive Ordinals 29
2.1. Relative Recursiveness 29
2.2. The Analytical Hierarchy 34
2.3. Recursive Type-2 Functionals and Wellfoundedness 38
2.4. Inductive Definitions 41
2.5. Notations for Constructive Ordinals 48
2.6. Complexity of the Two Notation Systems 52
2.7. Notes 55

Chapter 3. Hyperarithmetical Sets and Functions 57
3.1. The Hyperarithmetical Hierarchy 57
3.2. The Characterization Theorem of Souslin/Kleene 62
3.3. Hyperarithmetical Functions and the Axiom of Choice 64
3.4. The Hyperarithmetical Quantifier Theorem 68
3.5. Paths in Kleene’s O 70

Chapter 4. Computation with Partial Continuous Functionals 73
4.1. Partial Continuous Functionals 76
4.2. Structural Recursion 81
4.3. Total Functionals 82

Bibliography 89

Index 93

iii

CHAPTER 1

Computability

In this chapter we develop the basics of recursive function theory, or as
it is more generally known, computability theory. Its history goes back to
the seminal works of Turing, Kleene and others in the 1930’s.

A computable function is one defined by a program whose operational
semantics tell an idealized computer what to do to its storage locations as
it proceeds deterministically from input to output, without any prior re-
strictions on storage space or computation time. We shall be concerned
with various program-styles and the relationships between them, but the
emphasis throughout will be on one underlying data-type, namely the nat-
ural numbers, since it is there that the most basic foundational connections
between proof theory and computation are to be seen in their clearest light.

The two best-known models of machine computation are the Turing
Machine and the (Unlimited) Register Machine of Shepherdson and Sturgis
[1963]. We base our development on the latter since it affords the quickest
route to the results we want to establish.

1.1. Register Machines

1.1.1. Programs. A register machine stores natural numbers in regis-
ters denoted u, v, w, x, y, z possibly with subscripts, and it responds step
by step to a program consisting of an ordered list of basic instructions:

I0
I1
...
Ik−1

Each instruction has one of the following three forms whose meanings are
obvious:

Zero: x := 0,
Succ: x := x+ 1,

Jump: [if x = y then Im else In].
The instructions are obeyed in order starting with I0 except when a condi-
tional jump instruction is encountered, in which case the next instruction
will be either Im or In according as the numerical contents of registers x
and y are equal or not at that stage. The computation terminates when it
runs out of instructions, that is when the next instruction called for is Ik.
Thus if a program of length k contains a jump instruction as above then it
must satisfy the condition m,n ≤ k and Ik means “halt”. Notice of course
that some programs do not terminate, for example the following one-liner:

[if x = x then I0 else I1]

1

2 1. COMPUTABILITY

1.1.2. Program constructs. We develop some shorthand for building
up standard sorts of programs.

Transfer. “x := y” is the program

x := 0
[if x = y then I4 else I2]
x := x+ 1
[if x = x then I1 else I1],

which copies the contents of register y into register x.
Predecessor. The program “x := y−· 1” copies the modified predecessor

of y into x, and simultaneously copies y into z:

x := 0
z := 0
[if x = y then I8 else I3]
z := z + 1
[if z = y then I8 else I5]
z := z + 1
x := x+ 1
[if z = y then I8 else I5].

Composition. “P ; Q” is the program obtained by concatenating pro-
gram P with program Q. However in order to ensure that jump instructions
in Q of the form “[if x = y then Im else In]” still operate properly within Q
they need to be re-numbered by changing the addresses m,n to k+m, k+n
respectively where k is the length of program P . Thus the effect of this
program is to do P until it halts (if ever) and then do Q.

Conditional. “if x = y then P else Q fi” is the program

[if x = y then I1 else Ik+2]
...P
[if x = x then Ik+2+l else I2]
...Q

where k, l are the lengths of the programs P,Q respectively, and again their
jump instructions must be appropriately renumbered by adding 1 to the
addresses in P and k + 2 to the addresses in Q. Clearly if x = y then
program P is obeyed and the next jump instruction automatically bypasses
Q and halts. If x 6= y then program Q is performed.

For Loop. “for i = 1 . . . x do P od” is the program

i := 0
[if x = i then Ik+4 else I2]
i := i+ 1
...P
[if x = i then Ik+4 else I2]

where again, k is the length of program P and the jump instructions in
P must be appropriately re-addressed by adding 3. The intention of this
new program is that it should iterate the program P x times (do nothing
if x = 0). This requires the restriction that the register x and the “local”
counting-register i are not re-assigned new values inside P .

1.1. REGISTER MACHINES 3

While Loop. “while x 6= 0 do P od” is the program

y := 0
[if x = y then Ik+3 else I2]
...P
[if x = y then Ik+3 else I2]

where again, k is the length of program P and the jump instructions in P
must be re-addressed by adding 2. This program keeps on doing P until (if
ever) the register x becomes 0; it requires the restriction that the auxiliary
register y is not re-assigned new values inside P .

1.1.3. Register machine computable functions. A register ma-
chine program P may have certain distinguished “input registers” and “out-
put registers”. It may also use other “working registers” for scratchwork and
these will initially be set to zero. We write P (x1, . . . , xk; y) to signify that
program P has input registers x1, . . . , xk and one output register y, which
are distinct.

Definition. The program P (x1, . . . , xk; y) is said to compute the k-ary
partial function ϕ : Nk → N if, starting with any numerical values n1, . . . , nk

in the input registers, the program terminates with the number m in the
output register if and only if ϕ(n1, . . . , nk) is defined with value m. In this
case, the input registers hold their original values.

A function is register machine computable if there is some program which
computes it.

Here are some examples.
Addition. “Add(x, y; z)” is the program

z := x ; for i = 1, . . . , y do z := z + 1 od

which adds the contents of registers x and y into register z.
Subtraction. “Subt(x, y; z)” is the program

z := x ; for i = 1, . . . , y do w := z −· 1 ; z := w od

which computes the modified subtraction function x−· y.
Bounded Sum. If P (x1, . . . , xk, w; y) computes the k + 1-ary function ϕ

then the program Q(x1, . . . , xk, z;x):

x := 0 ;
for i = 1, . . . , z do w := i−· 1 ; P (~x,w; y) ; v := x ; Add(v, y;x) od

computes the function

ψ(x1, . . . , xk, z) =
∑
w<z

ϕ(x1, . . . , xk, w)

which will be undefined if for some w < z, ϕ(x1, . . . , xk, w) is undefined.
Multiplication. Deleting “w := i−· 1 ; P” from the last example gives a

program Mult(z, y;x) which places the product of y and z into x.

4 1. COMPUTABILITY

Bounded Product. If in the bounded sum example, the instruction x :=
x+ 1 is inserted immediately after x := 0, and if Add(v, y;x) is replaced by
Mult(v, y;x), then the resulting program computes the function

ψ(x1, . . . , xk, z) =
∏
w<z

ϕ(x1, . . . , xk, w) .

Composition. If Pj(x1, . . . , xk; yj) computes ϕj for each j = i, . . . ,m and
if P0(y1, . . . , ym; y0) computes ϕ0, then the program Q(x1, . . . , xk; y0):

P1(x1, . . . , xk; y1) ; . . . ; Pm(x1, . . . , xk; ym) ; P0(y1, . . . , ym; y0)

computes the function

ψ(x1, . . . , xk) = ϕ0(ϕ1(x1, . . . , xk) , . . . , ϕm(x1, . . . , xk))

which will be undefined if any of the ϕ-subterms on the right hand side is
undefined.

Unbounded Minimization. If P (x1, . . . , xk, y; z) computes ϕ then the pro-
gram Q(x1, . . . , xk; z):

y := 0 ; z := 0 ; z := z + 1 ;
while z 6= 0 do P (x1, . . . , xk, y; z) ; y := y + 1 od ;
z := y −· 1

computes the function

ψ(x1, . . . , xk) = µy (ϕ(x1, . . . , xk, y) = 0)

that is, the least number y such that ϕ(x1, . . . , xk, y
′) is defined for every

y′ ≤ y and ϕ(x1, . . . , xk, y) = 0.

1.2. Elementary Functions

1.2.1. Definition and simple properties. The elementary functions
of Kalmár (1943) are those number-theoretic functions which can be defined
explicitly by compositional terms built up from variables and the constants
0, 1 by repeated applications of addition +, modified subtraction−· , bounded
sums and bounded products.

By omitting bounded products, one obtains the subelementary functions.
The examples in the previous section show that all elementary functions

are computable and totally defined. Multiplication and exponentiation are
elementary since

m · n =
∑
i<n

m and mn =
∏
i<n

m

and hence by repeated composition, all exponential polynomials are elemen-
tary.

In addition the elementary functions are closed under
Definitions by Cases.

f(~n) =

{
g0(~n) if h(~n) = 0
g1(~n) otherwise

since f can be defined from g0, g1 and h by

f(~n) = g0(~n) · (1−· h(~n)) + g1(~n) · (1−· (1−· h(~n))).

1.2. ELEMENTARY FUNCTIONS 5

Bounded Minimization.

f(~n,m) = µk<m(g(~n, k) = 0)

since f can be defined from g by

f(~n,m) =
∑
i<m

(
1−·

∑
k≤i

(1−· g(~n, k))
)
.

Note: this definition gives value m if there is no k < m such that g(~n, k) =
0. It shows that not only the elementary, but in fact the subelementary
functions are closed under bounded minimization. Furthermore, we define
µk≤m (g(~n, k) = 0) as µk<m+1 (g(~n, k) = 0). Another notational convention
will be that we shall often replace the brackets in µk<m (g(~n, k) = 0) by a
dot, thus: µk<m. g(~n, k) = 0.

Lemma.
(a) For every elementary function f : Nr → N there is a number k such that

for all ~n = n1, . . . , nr,

f(~n) < 2k(max(~n))

where 20(m) = m and 2k+1(m) = 22k(m).
(b) Hence the function n 7→ 2n(1) is not elementary.

Proof. (a). By induction on the build-up of the compositional term
defining f . The result clearly holds if f is any one of the base functions:

f(~n) = 0 or 1 or ni or ni + nj or ni −· nj .

If f is defined from g by application of bounded sum or product:

f(~n,m) =
∑
i<m

g(~n, i) or
∏
i<m

g(~n, i)

where g(~n, i) < 2k(max(~n, i)) then we have

f(~n,m) ≤ 2k(max(~n,m))m < 2k+2(max(~n,m))

(using mm < 22m
). If f is defined from g0, g1, . . . , gl by composition:

f(~n) = g0(g1(~n), . . . , gl(~n))

where for each j ≤ l we have gj(−) < 2kj
(max(−)), then with k = maxj kj ,

f(~n) < 2k(2k(max(~n))) = 22k(max(~n))

and this completes the first part.
(b). If 2n(1) were an elementary function of n then by (a) there would

be a positive k such that for all n,

2n(1) < 2k(n)

but then putting n = 2k(1) yields 22k(1)(1) < 22k(1), a contradiction. �

6 1. COMPUTABILITY

1.2.2. Elementary relations. A relation R on Nk is said to be ele-
mentary if its characteristic function

cR(~n) =

{
1 if R(~n)
0 otherwise

is elementary. In particular, the “equality” and “less than” relations are
elementary since their characteristic functions can be defined as follows:

c<(m,n) = 1−· (1−· (n−· m)) ; c=(m,n) = 1−· (c<(m,n) + c<(n,m))).

Furthermore if R is elementary then so is the function

f(~n,m) = µk<mR(~n, k)

since R(~n, k) is equivalent to 1−· cR(~n, k) = 0.

Lemma. The elementary relations are closed under applications of propo-
sitional connectives and bounded quantifiers.

Proof. For example, the characteristic function of ¬R is

1−· cR(~n) .

The characteristic function of R0 ∧R1 is

cR0(~n) · cR1(~n).

The characteristic function of ∀i<mR(~n, i) is

c=(m,µi<mcR(~n, i) = 0). �

Examples. The above closure properties enable us to show that many
“natural” functions and relations of number theory are elementary; thus

bm
n
c = µk<m(m < (k + 1)n)

m mod n = m −· bm
n
cn

Prime(m) ↔ 1 < m ∧ ¬∃n<m(1 < n ∧m mod n = 0)

pn = µm<22n

(
Prime(m) ∧ n =

∑
i<m

cPrime(i)
)

so p0, p1, p2, . . . gives the enumeration of primes in increasing order. The
estimate pn ≤ 22n

for the nth prime pn can be proved by induction on n:
For n = 0 this is clear, and for n ≥ 1 we obtain

pn ≤ p0p1 · · · pn−1 + 1 ≤ 220
221 · · · 22n−1

+ 1 = 22n−1 + 1 < 22n
.

1.2.3. The class E.

Definition. The class E consists of those number theoretic functions
which can be defined from the initial functions: constant 0, successor S,
projections (onto the ith coordinate), addition +, modified subtraction −· ,
multiplication · and exponentiation 2x, by applications of composition and
bounded minimization.

1.2. ELEMENTARY FUNCTIONS 7

The remarks above show immediately that the characteristic functions
of the equality and less than relations lie in E , and that (by the proof of the
lemma) the relations in E are closed under propositional connectives and
bounded quantifiers.

Furthermore the above examples show that all the functions in the class
E are elementary. We now prove the converse, which will be useful later.

Lemma. There are “pairing functions” π, π1, π2 in E with the following
properties:
(a) π maps N× N bijectively onto N,
(b) π(a, b) < (a+ b+ 1)2,
(c) π1(c), π2(c) ≤ c,
(d) π(π1(c), π2(c)) = c,
(e) π1(π(a, b)) = a,
(f) π2(π(a, b)) = b.

Proof. Enumerate the pairs of natural numbers as follows:
...
10
6 . . .

3 7 . . .

1 4 8 . . .

0 2 5 9 . . .

At position (0, b) we clearly have the sum of the lengths of the preceeding
diagonals, and on the next diagonal a + b remains constant. Let π(a, b) be
the number written at position (a, b). Then we have

π(a, b) =
(∑
i≤a+b

i
)

+ a =
1
2
(a+ b)(a+ b+ 1) + a.

Clearly π : N × N → N is bijective. Moreover, a, b ≤ π(a, b) and in case
π(a, b) 6= 0 also a < π(a, b). Let

π1(c) := µx≤c∃y≤c (π(x, y) = c),

π2(c) := µy≤c∃x≤c (π(x, y) = c).

Then clearly πi(c) ≤ c for i ∈ {1, 2} and

π1(π(a, b)) = a,

π2(π(a, b)) = b,

π(π1(c), π2(c)) = c.

π, π1 and π2 are elementary by definiton. �

Lemma (Gödel’s β-function). There is in E a function β with the fol-
lowing property: For every sequence a0, . . . , an−1 < b of numbers less than b
we can find a number c ≤ 4 · 4n(b+n+1)4 such that β(c, i) = ai for all i < n.

Proof. Let

a := π(b, n) and d :=
∏
i<n

(
1 + π(ai, i)a!

)
.

8 1. COMPUTABILITY

From a! and d we can, for each given i < n, reconstruct the number ai as
the unique x < b such that

1 + π(x, i)a! | d.

For clearly ai is such an x, and if some x < b were to satisfy the same
condition, then because π(x, i) < a and the numbers 1 + ka! are relatively
prime for k ≤ a, we would have π(x, i) = π(aj , j) for some j < n. Hence
x = aj and i = j, thus x = ai.

We can now define the Gödel β-function as

β(c, i) := π1

(
µy<c(1 + π(π1(y), i) · π1(c)) · π2(y) = π2(c)

)
.

Clearly β is in E . Furthermore with c := π(a!, d) we see that π(ai, dd/1 +
π(ai, i)a!e) is the unique such y, and therefore β(c, i) = ai. It is then not
difficult to estimate the given bound on c, using π(b, n) < (b+ n+ 1)2. �

Remark. The above definition of β shows that it is subelementary.

1.2.4. Closure Properties of E.

Theorem. The class E is closed under limited recursion. Thus if g, h, k
are given functions in E and f is defined from them according to the scheme

f(~m, 0) = g(~m),

f(~m, n+ 1) = h(n, f(~m, n), ~m),

f(~m, n) ≤ k(~m, n),

then f is in E also.

Proof. Let f be defined from g, h and k in E , by limited recursion
as above. Using Gödel’s β-function as in the last lemma we can find for
any given ~m, n a number c such that β(c, i) = f(~m, i) for all i ≤ n. Let
R(~m, n, c) be the relation

β(c, 0) = g(~m) ∧ ∀i<n(β(c, i+ 1) = h(i, β(c, i), ~m))

and note by the remarks above that its characteristic function is in E . It
is clear, by induction, that if R(~m, n, c) holds then β(c, i) = f(~m, i), for all
i ≤ n. Therefore we can define f explicitly by the equation

f(~m, n) = β(µc R(~m, n, c), n).

f will lie in E if µc can be bounded by an E function. However, the lemma
on Gödel/sβ-function gives a bound 4 · 4(n+1)(b+n+2)4 , where in this case b
can be taken as the maximum of k(~m, i) for i ≤ n. But this can be defined
in E as k(~m, i0), where i0 = µi≤n∀j≤n k(~m, j) ≤ k(~m, i). Hence µc can be
bounded by an E function. �

Remark. Notice that it is in this proof only that the exponential func-
tion is required, in providing a bound for µ.

Corollary. E is the class of all elementary functions.

Proof. It is sufficient merely to show that E is closed under bounded
sums and bounded products. Suppose for instance, that f is defined from

1.2. ELEMENTARY FUNCTIONS 9

g in E by bounded summation: f(~m, n) =
∑

i<n g(~m, i). Then f can be
defined by limited recursion, as follows

f(~m, 0) = 0

f(~m, n+ 1) = f(~m, n) + g(~m, n)

f(~m, n) ≤ n ·max
i<n

g(~m, i)

and the functions (including the bound) from which it is defined are in E .
Thus f is in E by the last lemma. If instead, f is defined by bounded
product, then proceed similarly. �

1.2.5. Coding finite lists. Computation on lists is a practical neces-
sity, so because we are basing everything here on the single data type N
we must develop some means of “coding” finite lists or sequences of natural
numbers into N itself. There are various ways to do this and we shall adopt
one of the most traditional, based on the pairing functions π, π1, π2.

The empty sequence is coded by the number 0 and a sequence n0, n1,
. . . , nk−1 is coded by the “sequence number”

〈n0, n1, . . . , nk−1〉 = π′(. . . π′(π′(0, n0), n1), . . . , nk−1)

with π′(a, b) := π(a, b) + 1, thus recursively,

〈〉 := 0,

〈n0, n1, . . . , nk〉 := π′(〈n0, n1, . . . , nk−1〉, nk).

Because of the surjectivity of π, every number a can be decoded uniquely as
a sequence number a = 〈n0, n1, . . . , nk−1〉. If a is greater than zero, hd(a) :=
π2(a−· 1) is the “head” (i.e., rightmost element) and tl(a) := π1(a−· 1) is the
“tail” of the list. The kth iterate of tl is denoted tl(k) and since tl(a) is less
than or equal to a, tl(k)(a) is elementarily definable (by limited recursion).
Thus we can define elementarily the “length” and “decoding” functions:

lh(a) := µk≤atl(k)(a) = 0,

(a)i := hd(tl(lh(a)−· (i+1))(a)).

Then if a = 〈n0, n1, . . . , nk−1〉 it is easy to check that

lh(a) = k and (a)i = ni for each i < k.

Furthermore (a)i = 0 when i ≥ lh(a). We shall write (a)i,j for ((a)i)j and
(a)i,j,k for (((a)i)j)k. This elementary coding machinery will be used at
various crucial points in the following.

Note that our previous remarks show that the functions lh(·) and (a)i

are subelementary, and so is 〈n0, n1, . . . , nk−1〉 for each fixed k .
Concatenation of sequence numbers b ∗ a is defined thus:

b ∗ 〈〉 := b,

b ∗ 〈n0, n1, . . . , nk〉 := π(b ∗ 〈n0, n1, . . . , nk−1〉, nk) + 1.

To check that this operation is also elementary, define h(b, a, i) by recursion
on i as follows.

h(b, a, 0) = b,

h(b, a, i+ 1) = π(h(b, a, i), (a)i) + 1

10 1. COMPUTABILITY

and note that since π(h(b, a, i), (a)i) < (h(b, a, i)+a)2 it follows by induction
on i that h(b, a, i) is less than or equal to (b+a+ i)2

i
. Thus h is definable by

limited recursion from elementary functions and hence is itself elementary.
Finally

b ∗ a = h(b, a, lh(a)).

Lemma. The class E is closed under limited course-of-values recursion.
Thus if h, k are given functions in E and f is defined from them according
to the scheme

f(~m, n) = h(n, 〈f(~m, 0),f(~m, n− 1)〉, ~m)

f(~m, n) ≤ k(~m, n)

then f is in E also.

Proof. f̄(~m, n) := 〈f(~m, 0),f(~m, n− 1)〉 is definable by

f̄(~m, 0) = 0,

f̄(~m, n+ 1) = f̄(~m, n) ∗ 〈h(n, f̄(~m, n), ~m)〉

f̄(~m, n) ≤
(∑

i≤n

k(~m, i) + 1
)2n

,

using 〈n, . . . , n︸ ︷︷ ︸
k

〉 < (n+ 1)2
k
. But f(~m, n) = (f̄(~m.n))n. �

1.3. The Normal Form Theorem

1.3.1. Program numbers. The three types of register machine in-
structions I can be coded by “instruction numbers”]I thus, where v0, v1,
v2, . . . is a list of all variables used to denote registers:

If I is “vj := 0” then]I = 〈0, j〉.
If I is “vj := vj + 1” then]I = 〈1, j〉.
If I is “if vj = vl then Im else In” then]I = 〈2, j, l,m, n〉.

Clearly, using the sequence coding and decoding apparatus above, we can
check elementarily whether or not a given number is an instruction number.

Any register machine program P = I0, I1, . . . , Ik−1 can then be coded
by a “program number” or “index”]P thus:

]P = 〈]I0,]I1, . . . ,]Ik−1 〉
and again (although it is tedious) we can elementarily check whether or not
a given number is indeed of the form]P for some program P . Tradition has
it that e is normally reserved as a variable over putative program numbers.

Standard program constructs such as those in Sec.1.1 have associated
“index-constructors”, i.e., functions which, given indices of the subprograms,
produce an index for the constructed program. The point is that for stan-
dard program constructs the associated index-constructor functions are ele-
mentary. For example there is an elementary index-constructor comp such
that, given programs P0, P1 with indices e0, e1, comp(e0, e1) is an index of
the program P0 ; P1. A moment’s thought should convince the reader that
the appropriate definition of comp is as follows:

comp(e0, e1) = e0 ∗ 〈r(e0, e1, 0), r(e0, e1, 1), . . . , r(e0, e1, lh(e1)−· 1)〉

1.3. THE NORMAL FORM THEOREM 11

where r(e0, e1, i) ={
〈2, (e1)i,1, (e1)i,2, (e1)i,3 + lh(e0), (e1)i,4 + lh(e0)〉 if (e1)i,0 = 2
(e1)i otherwise

re-addresses the jump instructions in P1. Clearly r and hence comp are
elementary functions.

Definition. Henceforth, ϕ(r)
e denotes the partial function computed by

the register machine program with program number e, operating on the
input registers v1, . . . , vr and with output register v0. There is no loss of
generality here, since the variables in any program can always be renamed
so that v1, . . . , vr become the input registers and v0 the output. If e is not a
program number, or it is but does not operate on the right variables, then
we adopt the convention that ϕ(r)

e (n1, . . . , nr) is undefined for all inputs
n1, . . . , nr.

1.3.2. Normal form.

Theorem (Kleene’s Normal Form). For each arity r there is an ele-
mentary function U and an elementary relation T such that, for all e and
all inputs n1, . . . , nr,

• ϕ(r)
e (n1, . . . , nr) is defined if and only if ∃s T (e, n1, . . . , nr, s),

• ϕ(r)
e (n1, . . . , nr) = U(e, n1, . . . , nr, µs T (e, n1, . . . , nr, s)).

Proof. A computation of a register machine program P (v1, . . . , vr; v0)
on numerical inputs ~n = n1, . . . , nr proceeds deterministically, step by step,
each step corresponding to the execution of one instruction. Let e be its
program number, and let v0, . . . , vl be all the registers used by P , including
the “working registers” so r ≤ l.

The “state” of the computation at step s is defined to be the sequence
number

state(e, ~n, s) = 〈e, i,m0,m1, . . . ,ml〉
where m0,m1, . . . ,ml are the values stored in the registers v0, v1, . . . , vl after
step s is completed, and the next instruction to be performed is the ith one,
thus (e)i is its instruction number.

The “state transition function” tr : N → N computes the “next state”.
So suppose that x = 〈e, i,m0,m1, . . . ,ml〉 is any putative state. Then in
what follows, e = (x)0, i = (x)1, and mj = (x)j+2 for each j ≤ l. The
definition of tr(x) is therefore as follows:

tr(x) = 〈e, i′,m′
0,m

′
1, . . . ,m

′
l〉

where
• If (e)i = 〈0, j〉 where j ≤ l then i′ = i + 1, m′

j = 0, and all other
registers remain unchanged, i.e., m′

k = mk for k 6= j.
• If (e)i = 〈1, j〉 where j ≤ l then i′ = i + 1, m′

j = mj + 1, and all
other registers remain unchanged.

• If (e)i = 〈2, j0, j1, i0, i1〉 where j0, j1 ≤ l and i0, i1 ≤ lh(e) then
i′ = i0 or i′ = i1 according as mj0 = mj1 or not, and all registers
remain unchanged, i.e., m′

j = mj for all j ≤ l.

12 1. COMPUTABILITY

• Otherwise, if x is not a sequence number, or if e is not a program
number, or if it refers to a register vk with l < k, or if lh(e) ≤ i,
then tr(x) simply repeats the same state x so i′ = i, and m′

j = mj

for every j ≤ l.
Clearly tr is an elementary function, since it is defined by elementarily decid-
able cases, with (a great deal of) elementary decoding and re-coding involved
in each case.

Consequently, the “state function” state(e, ~n, s) is also elementary be-
cause it can be defined by iterating the transition function by limited recur-
sion on s as follows:

state(e, ~n, 0) = 〈e, 0, n1, . . . , nr, 0, . . . , 0〉
state(e, ~n, s+ 1) = tr(state(e, ~n, s))

state(e, ~n, s) ≤ h(e, ~n, s)

where for the bounding function h we can take

h(e, ~n, s) = 〈e, e〉 ∗ 〈max(~n) + s, . . . ,max(~n) + s〉,

This is because the maximum value of any register at step s cannot be
greater than max(~n) + s. Now this expression clearly is elementary, since
〈m, . . . ,m〉 with i occurrences of m is definable by a limited recursion with
bound (m+ i)2

i
, as is easily seen by induction on i.

Now recall that if program P has program number e then computation
terminates when instruction Ilh(e) is encountered. Thus we can define the
“termination relation” T (e, ~n, s) meaning “computation terminates at step
s”, by

T (e, ~n, s) ↔ (state(e, ~n, s))1 = lh(e).
Clearly T is elementary and

ϕ(r)
e (~n) is defined ↔ ∃s T (e, ~n, s).

The output on termination is the value of register v0, so if we define the
“output function” U(e, ~n, s) by

U(e, ~n, s) = (state(e, ~n, s))2

then U is also elementary and

ϕ(r)
e (~n) = U(e, ~n, µs T (e, ~n, s)). �

1.3.3. Σ0
1-definable relations and µ-recursive functions. A rela-

tion R of arity r is said to be Σ0
1-definable if there is an elementary relation

E, say of arity r + l, such that for all ~n = n1, . . . , nr,

R(~n) ↔ ∃k1 . . .∃kl
E(~n, k1, . . . , kl).

A partial function ϕ is said to be Σ0
1-definable if its graph

{ (~n,m) | ϕ(~n) is defined and = m }

is Σ0
1-definable.
To say that a non-empty relation R is Σ0

1-definable is equivalent to saying
that the set of all sequences 〈~n〉 satisfying R can be enumerated (possibly
with repetitions) by some elementary function f : N → N. Such relations are

1.3. THE NORMAL FORM THEOREM 13

called elementarily enumerable. For choose any fixed sequence 〈a1, . . . , ar〉
satisfying R and define

f(m) =

{
〈(m)1, . . . , (m)r〉 if E((m)1, . . . , (m)r+l)
〈a1, . . . , ar〉 otherwise.

Conversely if R is elementarily enumerated by f then

R(~n) ↔ ∃m (f(m) = 〈~n〉)

is a Σ0
1-definition of R.

The µ-recursive functions are those (partial) functions which can be
defined from the initial functions: constant 0, successor S, projections (onto
the ith coordinate), addition +, modified subtraction −· and multiplication
·, by applications of composition and unbounded minimization. Note that
it is through unbounded minimization that partial functions may arise.

Lemma. Every elementary function is µ-recursive.

Proof. By simply removing the bounds on µ in the lemmas in 1.2.3
one obtains µ-recursive definitions of the pairing functions π, π1, π2 and of
Gödel’s β-function. Then by removing all mention of bounds from Theorem
in 1.2.4 one sees that the µ-recursive functions are closed under (unlimited)
primitive recursive definitions: f(~m, 0) = g(~m), f(~m, n+1) = h(n, f(~m, n)).
Thus one can µ-recursively define bounded sums and bounded products, and
hence all elementary functions. �

1.3.4. Computable functions.

Definition. The while-programs are those programs which can be built
up from assignment statements x := 0, x := y, x := y + 1, x := y −· 1, by
Conditionals, Composition, For-Loops and While-Loops as in Sec.1.1 (on
program constructs).

Theorem. The following are equivalent:
(a) ϕ is register machine computable,
(b) ϕ is Σ0

1-definable,
(c) ϕ is µ-recursive,
(d) ϕ is computable by a while program.

Proof. The Normal Form Theorem shows immediately that every re-
gister machine computable function ϕ(r)

e is Σ0
1-definable since

ϕ(r)
e (~n) = m↔ ∃s

(
T (e, ~n, s) ∧ U(e, ~n, s) = m

)
and the relation T (e, ~n, s) ∧ U(e, ~n, s) = m is clearly elementary. If ϕ is
Σ0

1-definable, say

ϕ(~n) = m↔ ∃k1 . . .∃kl
E(~n,m, k1, . . . , kl)

then ϕ can be defined µ-recursively by

ϕ(~n) = (µmE(~n, (m)0, (m)1, . . . , (m)l))0 ,

using the fact (above) that elementary functions are µ-recursive. The exam-
ples of computable functionals in Sec.1.1 show how the definition of any

14 1. COMPUTABILITY

µ-recursive function translates automatically into a while program. Fi-
nally, Sec.1.1 shows how to implement any while program on a register
machine. �

Henceforth computable means “register machine computable” or any of
its equivalents.

Corollary. The function ϕ(r)
e (n1, . . . , nr) is a computable partial func-

tion of the r + 1 variables e, n1, . . . , nr.

Proof. Immediate from the Normal Form. �

Lemma. A relation R is computable if and only if both R and its com-
plement Nn \R are Σ0

1-definable.

Proof. We can assume that both R and Nn \R are not empty, and (for
simplicity) also n = 1.

⇒. By the theorem above every computable relation is Σ0
1-definable,

and with R clearly its complement is computable.
⇐. Let f, g ∈ E enumerate R and N \R, respectively. Then

h(n) := µi(f(i) = n ∨ g(i) = n)

is a total µ-recursive function, and R(n) ↔ f(h(n)) = n. �

1.3.5. Undecidability of the halting problem. The above corollary
says that there is a single “universal” program which, given numbers e and
~n, computes ϕ(r)

e (~n) if it is defined. However we cannot decide in advance
whether or not it will be defined. There is no program which, given e and
~n, computes the total function

h(e, ~n) =

{
1 if ϕ(r)

e (~n) is defined,
0 if ϕ(r)

e (~n) is undefined.

For suppose there were such a program. Then the function

ψ(~n) = µm (h(n1, ~n) = 0)

would be computable, say with fixed program number e0, and therefore

ϕ(r)
e0

(~n) =

{
0 if h(n1, ~n) = 0
undefined if h(n1, ~n) = 1.

But then fixing n1 = e0 gives:

ϕ
(r)
e0 (~n) defined ↔ h(e0, ~n) = 0 ↔ ϕ

(r)
e0 (~n) undefined,

a contradiction. Hence the relation R(e, ~n) which holds if and only if ϕ(r)
e (~n)

is defined, is not recursive. It is however Σ0
1-definable.

There are numerous attempts to classify total computable functions ac-
cording to the complexity of their termination proofs.

1.4. RECURSIVE DEFINITIONS 15

1.4. Recursive Definitions

1.4.1. Least fixed points of recursive definitions. By a recursive
definition of a partial function ϕ of arity r from given partial functions
ψ1, . . . , ψm of fixed but unspecified arities, we mean a defining equation of
the form

ϕ(n1, . . . , nr) = t(ψ1, . . . , ψm, ϕ;n1, . . . , nr)
where t is any compositional term built up from the numerical variables
~n = n1, . . . , nr and the constant 0 by repeated applications of the successor
and predecessor functions, the given functions ψ1, . . . , ψm, the function ϕ
itself, and the “definition by cases” function :

dc(x, y, u, v) =

u if x, y are both defined and equal
v if x, y are both defined and unequal
undefined otherwise.

Our notion of recursive definition is essentially a reformulation of the Her-
brand-Gödel-Kleene equation calculus; see [Kleene, 1952].

There may be many partial functions ϕ satisfying such a recursive def-
inition, but the one we wish to single out is the least defined one, i.e., the
one whose defined values arise inevitably by lazy evaluation of the term t
“from the outside in”, making only those function calls which are absolutely
necessary. This presupposes that each of the functions from which t is con-
structed already comes equipped with an evaluation strategy. In particular
if a subterm dc(t1, t2, t3, t4) is called then it is to be evaluated according to
the program construct:

x := t1 ; y := t2 ; [if x := y then t3 else t4].

Some of the function calls demanded by the term t may be for further values
of ϕ itself, and these must be evaluated by repeated unravellings of t (in other
words by recursion).

This “least solution” ϕ will be referred to as the function defined by that
recursive definition or its least fixed point . Its existence and its computabil-
ity are guaranteed by Kleene’s Recursion Theorem below.

1.4.2. The principles of finite support and monotonicity, and
the effective index property. Suppose we are given any fixed partial
functions ψ1, . . . , ψm and ψ, of the appropriate arities, and fixed inputs ~n.
If the term t = t(ψ1, . . . , ψm, ψ;~n) evaluates to a defined value k then the
following principles clearly hold:

Finite Support Principle. Only finitely many values of ψ1, . . . , ψm and
ψ are used in that evaluation of t.

Monotonicity Principle. The same value k will be obtained no matter
how the partial functions ψ1, . . . , ψm and ψ are extended.

Note also that any such term t satisfies the
Effective Index Property. There is an elementary function f such that if

ψ1, . . . , ψm and ψ are computable partial functions with program numbers
e1, . . . , em and e respectively, then according to the lazy evaluation strategy
just described,

t(ψ1, . . . , ψm, ψ;~n)

16 1. COMPUTABILITY

defines a computable function of ~n with program number f(e1, . . . , em, e).
The proof of the Effective Index Property is by induction over the build-

up of the term t. The base case is where t is just one of the constants 0, 1
or a variable nj , in which case it defines either a constant function ~n 7→ 0
or ~n 7→ 1, or a projection function ~n 7→ nj . Each of these is trivially
computable with a fixed program number, and it is this program number
we take as the value of f(e1, . . . , em, e). Since in this case f is a constant
function, it is clearly elementary. The induction step is where t is built up
by applying one of the given functions: successor, predecessor, definition by
cases or ψ (with or without a subscript) to previously constructed subterms
ti(ψ1, . . . , ψm, ψ;~n), i = 1 . . . l, thus:

t = χ(t1, . . . , tl).

Inductively we can assume that for each i = 1 . . . l, ti defines a partial
function of ~n = n1, . . . , nr which is register machine computable by some
program Pi with program number given by an already-constructed elemen-
tary function fi = fi(e1, . . . , em, e). Therefore if χ is computed by a program
Q with program number e′, we can put P1, . . . , Pl and Q together to con-
struct a new program obeying the evaluation strategy for t. Furthermore,
by the remark on index-constructions in 1.3.1. we will be able to compute
its program number f(e1, . . . , em, e) from the given numbers f1, . . . , fl and
e′, by some elementary function.

1.4.3. Recursion Theorem.

Theorem (Kleene’s Recursion Theorem). For given partial functions
ψ1, . . . , ψm, every recursive definition

ϕ(~n) = t(ψ1, . . . , ψm, ϕ;~n)

has a least fixed point, i.e., a least defined solution, ϕ. Moreover if ψ1,
. . . ,ψm are computable, so is the least fixed point ϕ.

Proof. Let ψ1, . . . , ψm be fixed partial functions of the appropriate
arities. Let Φ be the functional from partial functions of arity r to partial
functions of arity r defined by lazy evaluation of the term t as described
above:

Φ(ψ)(~n) = t(ψ1, . . . , ψm, ψ;~n).
Let ϕ0, ϕ1, ϕ2, . . . be the sequence of partial functions of arity r generated
by Φ thus: ϕ0 is the completely undefined function, and ϕi+1 = Φ(ϕi) for
each i. Then by induction on i, using the Monotonicity Principle above, we
see that each ϕi is a subfunction of ϕi+1. That is, whenever ϕi(~n) is defined
with a value k then ϕi+1(~n) is defined with that same value. Since their
defined values are consistent with one another we can therefore construct
the “union” ϕ of the ϕi’s as follows:

ϕ(~n) = k ↔ ∃i (ϕi(~n) = k).

(i) This ϕ is then the required least fixed point of the recursive definition.
To see that it is a fixed point, i.e., ϕ = Φ(ϕ), first suppose ϕ(~n) is defined

with value k. Then by the definition of ϕ just given, there is an i > 0 such
that ϕi(~n) is defined with value k. But ϕi = Φ(ϕi−1) so Φ(ϕi−1)(~n) is
defined with value k. Therefore by the Monotonicity Principle for Φ, since

1.4. RECURSIVE DEFINITIONS 17

ϕi−1 is a subfunction of ϕ, Φ(ϕ)(~n) is defined with value k. Hence ϕ is a
subfunction of Φ(ϕ).

It remains to show the converse, that Φ(ϕ) is a subfunction of ϕ. So sup-
pose Φ(ϕ)(~n) is defined with value k. Then by the Finite Support Principle,
only finitely many defined values of ϕ are called for in this evaluation. By
the definition of ϕ there must be some i such that ϕi already supplies all of
these required values, and so already at stage i we have Φ(ϕi)(~n) = ϕi+1(~n)
defined with value k. Since ϕi+1 is a subfunction of ϕ it follows that ϕ(~n)
is defined with value k. Hence Φ(ϕ) is a subfunction of ϕ.

To see that ϕ is the least such fixed point, suppose ϕ′ is any fixed point
of Φ. Then Φ(ϕ′) = ϕ′ so by the Monotonicity Principle, since ϕ0 is a
subfunction of ϕ′ it follows that Φ(ϕ0) = ϕ1 is a subfunction of Φ(ϕ′) = ϕ′.
Then again by Monotonicity, Φ(ϕ1) = ϕ2 is a subfunction of Φ(ϕ′) = ϕ′

etcetera so that for each i, ϕi is a subfunction of ϕ′. Since ϕ is the union of
the ϕi’s it follows that ϕ itself is a subfunction of ϕ′. Hence ϕ is the least
fixed point of Φ.

(ii) Finally we have to show that ϕ is computable if the given functions
ψ1, . . . , ψm are. For this we need the Effective Index Property of the term
t, which supplies an elementary function f such that if ψ is computable
with program number e then Φ(ψ) is computable with program number
f(e) = f(e1, . . . , em, e). Thus if u is any fixed program number for the
completely undefined function of arity r, f(u) is a program number for
ϕ1 = Φ(ϕ0), f2(u) = f(f(u)) is a program number for ϕ2 = Φ(ϕ1), and in
general f i(u) is a program number for ϕi. Therefore in the notation of the
Normal Form Theorem,

ϕi(~n) = ϕ
(r)

f i(u)
(~n)

and by the corollary (in 1.3.4) to the Normal Form Theorem, this is a com-
putable function of i and ~n, since f i(u) is a computable function of i defin-
able (informally) say by a for-loop of the form “for j = 1 . . . i do f od”.
Therefore by the earlier equivalences, ϕi(~n) is a Σ0

1-definable function of i
and ~n, and hence so is ϕ itself because

ϕ(~n) = m↔ ∃i (ϕi(~n) = m) .

So ϕ is computable and this completes the proof. �

Note. The above proof works equally well if ϕ is a vector-valued func-
tion. In other words if, instead of defining a single partial function ϕ, the
recursive definition in fact defines a finite list ~ϕ of such functions simultane-
ously. For example, the individual components of the machine state of any
register machine at step s are clearly defined by a simultaneous recursive
definition, from zero and successor.

1.4.4. Recursive programs and partial recursive functions. A
recursive program is a finite sequence of possibly simultaneous recursive
definitions:

~ϕ0(n1, . . . , nr0) = t0(~ϕ0;n1, . . . , nr0)

~ϕ1(n1, . . . , nr1) = t1(~ϕ0, ~ϕ1;n1, . . . , nr1)

~ϕ2(n1, . . . , nr2) = t2(~ϕ0, ~ϕ1, ~ϕ2;n1, . . . , nr2)

18 1. COMPUTABILITY

...

~ϕk(n1, . . . , nrk
) = tk(~ϕ0, . . . , ~ϕk−1, ~ϕk;n1, . . . , nrk

).

A partial function is said to be partial recursive if it is one of the functions
defined by some recursive program as above. A partial recursive function
which happens to be totally defined is called simply a recursive function.

Theorem. A function is partial recursive if and only if it is computable.

Proof. The Recursion Theorem tells us immediately that every partial
recursive function is computable. For the converse we use the equivalence
of computability with µ-recursiveness already established in 1.3.4. Thus we
need only show how to translate any µ-recursive definition into a recursive
program:

The constant 0 function is defined by the recursive program

ϕ(~n) = 0

and similarly for the constant 1 function.
The addition function ϕ(m,n) = m+ n is defined by the recursive pro-

gram

ϕ(m,n) = dc(n, 0,m, ϕ(m,n−· 1) + 1)

and the subtraction function ϕ(m,n) = m−· n is defined similarly but with
the successor function +1 replaced by the predecessor −· 1. Multiplication is
defined recursively from addition in much the same way. Note that in each
case the right hand side of the recursive definition is an allowed term.

The composition scheme is a recursive definition as it stands.
Finally, given a recursive program defining ψ, if we add to it the recursive

definition:

ϕ(~n,m) = dc(ψ(~n,m), 0,m, ϕ(~n,m+ 1))

followed by

ϕ′(~n) = ϕ(~n, 0)

then the computation of ϕ′(~n) proceeds as follows:

ϕ′(~n) = ϕ(~n, 0)

= ϕ(~n, 1) if ψ(~n, 0) 6= 0

= ϕ(~n, 2) if ψ(~n, 1) 6= 0
...

= ϕ(~n,m) if ψ(~n,m− 1) 6= 0

= m if ψ(~n,m) = 0.

Thus the recursive program for ϕ′ defines unbounded minimization:

ϕ′(~n) = µm (ψ(~n,m) = 0). �

1.5. PRIMITIVE RECURSION AND FOR-LOOPS 19

1.5. Primitive Recursion and For-Loops

1.5.1. Primitive recursive functions. A primitive recursive program
over N is a recursive program in which each recursive definition is of one of
the following five special kinds:

(Z) fi(n) = 0,

(S) fi(n) = n+ 1,

(Uk
j) fi(n1, . . . , nk) = nj ,

(Ck
r) fi(n1, . . . , nk) = fi0(fi1(n1, . . . , nk), . . . , fir(n1, . . . , nk)),

(PR) fi(n1, . . . , nk, 0) = fi0(n1, . . . , nk),

fi(n1, . . . , nk,m+ 1) = fi1(n1, . . . , nk,m, fi(n1, . . . , nk,m)),

where, in (C) and (PR), i0, i1, . . . , ir < i. Recall that functions are allowed
to be 0-ary, so k may be 0. Note that the two equations in the (PR) scheme
can easily be combined into one recursive definition using the dc and −·
function. The reason for using f rather than ϕ to denote the functions in
such a program is that they are obviously totally defined (we try to maintain
the convention that f, g, h, ... denote total functions).

Definition. The primitive recursive functions are those which are de-
finable by primitive recursive programs. The class of all primitive recursive
functions is denoted “Prim”

Lemma (Explicit Definitions). If t is a term built up from numerical con-
stants, variables n1, . . . , nk and function symbols f1, . . . , fm denoting previ-
ously defined primitive recursive functions, then the function f defined from
them by

f(n1, . . . , nk) = t(f1, . . . , fm;n1, . . . , nk)
is also primitive recursive.

Proof. By induction over the generation of term t.
If t is a constant l then using the (Z), (S) and (U) schemes :

f(n1, . . . , nk) = (S ◦ S . . . S ◦ Z ◦ Uk
1) (n1, . . . , nk).

If t is one of the variables nj then using the (Uk
j) scheme:

f(n1, . . . , nk) = nj .

If t is an applicative term fi(t1, . . . , tr) then by the (Ck
r) scheme:

f(n1, . . . , nk) = fi(t1(n1, . . . , nk), . . . , tr(n1, . . . , nk)). �

Lemma. Every elementary function is primitive recursive, but not con-
versely.

Proof. Addition f(n,m) = n + m is defined from successor by the
primitive recursion:

f(n, 0) = n, f(n,m+ 1) = f(n,m) + 1

and modified subtraction f(n,m) = n −· m is defined similarly, replacing
+1 by −· 1. Note that predecessor −· 1 is definable by a trivial primitive
recursion:

f(0) = 0, f(m+ 1) = m.

20 1. COMPUTABILITY

Bounded sum f(~n,m) =
∑

i<m g(~n, i) is definable from + by another prim-
itive recursion:

f(~n, 0) = 0, f(~n,m+ 1) = f(~n,m) + g(~n,m).

Multiplication is then defined explicitly by a bounded sum, and bounded
product by a further primitive recursion. The above lemma then gives
closure under all explicit definitions using these principles. Hence every
elementary function is primitive recursive.

We have already seen that the function n 7→ 2n(1) is not elementary.
However it can be defined primitive recursively from the (elementary) expo-
nential function thus:

20(1) = 1, 2n+1(1) = 22n(1). �

1.5.2. Loop-Programs. The loop-programs over N are built up from

• assignments x := 0, x := x+ 1, x := y, x := y −· 1 using
• compositions . . . ; . . . ,
• conditionals if x = y then . . . else . . . fi, and
• for-loops for i = 1 . . . y do . . . od,

where i is not reset between do and od.

Lemma. Every primitive recursive function is computable by a loop-
program.

Proof. Composition corresponds to “;” and primitive recursion

f(~n, 0) = g(~n), f(~n,m+ 1) = h(~n,m, f(~n,m))

can be recast as a for-loop (with input variables ~x, y and output variable z)
thus:

z := g(~x); for i = 1 . . . y do z := h(~x, i− 1, z) od. �

We now describe the operational semantics of loop programs. Each loop-
program P on “free variables” ~x = x1, . . . , xk (i.e., those not “bound” by
for-loops), can be considered as a “state-transformer” function from Nk to
Nk and we write P (~n) to denote the output state (n′1, . . . , n

′
k) which results

after applying program P to input (n1, . . . , nk). Note that loop-programs
always terminate! The definition of P (~n) runs as follows, according to the
form of program P :

Assignments. For example if P is “xi := xj −· 1” then

P (n1, . . . , ni, . . . , nk) = (n1, . . . , nj −· 1, . . . , nk).

Composition. If P is “Q ; R” then

P (~n) = (R ◦Q)(~n).

Conditionals. If P is “if xi = xj then Q else R fi” then

P (~n) =

{
Q(~n) if ni = nj

R(~x) if ni 6= nj .

1.5. PRIMITIVE RECURSION AND FOR-LOOPS 21

For-loops. If P is “for i = 1 . . . xj do Q(i, ~x) od” then P is defined
by P (n1, . . . , nj , . . . , nk) = Q∗(nj , n1, . . . , nj , . . . , nk) with Q∗ defined by
primitive recursion on i thus{

Q∗(0, n1, . . . , nj , . . . , nk) = (n1, . . . , nj , . . . , nk)
Q∗(i+ 1, n1, . . . , nj , . . . , nk) = Q(i+ 1, Q∗(i, n1, . . . , nj , . . . , nk)).

Notice that the above description actually gives P as a primitive recur-
sive function from Nk to Nk and not from Nk to N as the formal definition of
primitive recursion requires. However this is immaterial when working over
N because we can work with “coded” sequences 〈~n〉 ∈ N instead of vectors
(~n) ∈ Nk so as to define

P (n1, . . . , nk) = 〈n′1, . . . , n′k〉.
The coding and decoding can all be done elementarily, so for any loop-
program P the output function P (~n) will always be primitive recursive. We
therefore have:

Theorem. The primitive recursive functions are exactly those computed
by loop-programs.

1.5.3. Reduction to primitive recursion. Various somewhat more
general kinds of recursion can be transformed into ordinary primitive recur-
sion. Two important examples are:

Course of values recursion. A trivial example is the Fibonacci function
f(0) = 1,
f(1) = 2,
f(n+ 2) = f(n) + f(n+ 1),

which calls for several “previous” values (in this case two) in order to com-
pute the “next” value. This is not formally a primitive recursion, but it
could be transformed into one because it can be computed by the for-loop
(with x, y as input and output variables):

y := 1 ; z := 1 ; for i = 1 . . . x do u := y ; y := y + z ; z := u od.

Recursion with parameter substitution. This has the form:{
f(n, 0) = g(n),
f(n,m+ 1) = h(n,m, f(p(n,m),m)).

Again this is not formally a primitive recursion as it stands, but it can be
transformed to the following primitive recursive program:

(PR)

{
q(n,m, 0) = n,

q(n,m, i+ 1) = p(q(n,m, i),m−· (i+ 1)),

(C) g′(n,m) = g(q(n,m,m)),

(C) h′(n,m, i, j) = h(q(n,m,m−· (i+ 1)), i, j),

(PR)

{
f ′(n,m, 0) = g′(n,m),
f ′(n,m, i+ 1) = h′(n,m, i, f ′(n,m, i)),

(C) f(n,m) = f ′(n,m,m).

22 1. COMPUTABILITY

We leave it as an exercise to check that this program defines the correct
function f .

1.5.4. A complexity hierarchy for Prim. Given a register machine
program I0, I1, . . . , Im . . . , Ik−1 where, for example, Im is a jump instruction
“if xp = xq then Ir else Is fi” and given numerical inputs in the registers
~x, the ensuing computation as far as step y can be performed by a single
for-loop as follows, where j counts the “next instruction” to be obeyed:

j := 0 ;
for i = 1 . . . y do

if j = 0 then I0 ; j := 1 else
if j = 1 then I1 ; j := 2 else
. . .
if j = m then if xp = xq then j := r else j := s fi else
. . .
. . . fi . . .fi fi

od.

Definition. Lk consists of all loop-programs which contain nested for-
loops with maximum depth of nesting k. Thus L0-programs are loop-free
and Lk+1-programs only contain for-loops of the form for i = 1 . . . y do P
od where P is a Lj-program for some j ≤ k.

Definition. A bounding function for a loop-program P is an increasing
function BP : N → N (that is, BP (n) ≥ n) such that for all n ∈ N we have

BP (n) ≥ n+ max
~i≤n

#P (~i)

where #P (~i) denotes the number of steps executed by P when called with
input ~i. Note that BP (n) will also bound the size of the output for any
input ~i ≤ n, since at most 1 can be added to any register at any step. x

With each loop-program there is a naturally associated bounding func-
tion as follows :

P = assignment BP (n) = n+ 1,

P = if xi = xj then Q else R fi BP (n) = max(BQ(n), BR(n)) + 1,

P = Q ; R BP (n) = BR(BQ(n)),

P = for i = 1 . . . xk do Q od BP (n) = Bn
Q(n),

where Bn
Q denotes the n-times iterate of BQ.

It is obvious that the defined BP is a bounding function when P is
an assignment or a conditional. When P is a composed program P =
Q ; R then, given any input ~i ≤ n let s := #Q(~i). Then n + s ≤ BQ(n)
and so the output ~j of the computation of Q on ~i is also ≤ BQ(n). Now
let s′ := #R(~j). Then BR(BQ(n)) ≥ BQ(n) + s′ ≥ n + s + s′. Hence
BR(BQ(n)) ≥ n + max~i≤n #P (~i) and therefore BR ◦ BQ is an appropriate
bounding function for P . Finally if P is a for-loop as indicated, then for any
input ~i ≤ n the computation simply composes Q a certain number of times,
say k, where k ≤ n. Therefore, by what we just have done for composition,

1.5. PRIMITIVE RECURSION AND FOR-LOOPS 23

Bn
Q(n) ≥ Bk

Q(n) ≥ n + #P (~i). Again this justifies our choice of bounding
functions for for-loops.

Definition. The sequence F0, F1, . . . Fk, . . . of Prim functions is given
by

F0(n) = n+ 1, Fk+1(n) = Fn
k (n).

Definition. For each increasing function g : N → N let Comp(g) denote
the class of all total functions f : Nr → N which can be computed by register
machines in such a way that on (all but finitely many) inputs ~n, the number
of steps required to compute f(~n) is bounded by g(max(~n)).

Theorem. For each k ≥ 1 we have

Lk-computable =
⋃
i

Comp(F i
k)

and hence
Prim =

⋃
k

Comp(Fk).

Proof. The second part follows immediately from the first since for all
n ≥ i, F i

k(n) ≤ Fn
k (n) = Fk+1(n).

To prove the left-to-right containment of the first part, proceed by induc-
tion on k ≥ 0 to show that for every Lk-program P there is a fixed i such that
BP ≤ F i

k where BP is the bounding function associated with P as above. It
then follows that the function computed by P lies in Comp(BP) which is con-
tained in Comp(F i

k). The basis of the induction is trivial since L0-programs
terminate in a constant number of steps i so that BP (n) = n + i = F i

0(n).
For the induction step the crucial case is where P is a Lk+1-program of the
form for j = 1 . . . xm do Q od with Q ∈ Lk. By the IH there is a i such
that BQ ≤ F i

k and hence, using F1(n) = 2n ≤ Fk+1(n), we have

BP (n) = Bn
Q(n) ≤ F in

k (n) ≤ Fk+1(in) ≤ Fk+1(2i−1n) ≤ F i
k+1(n)

as required.
For the right-to-left containment, suppose f ∈ Comp(F i

k) for some fixed
i and k. Then there is a register machine which computes f(~n) within
F i

k(max(~n)) steps. Now Fk is defined by k successive iterations (nested for-
loops) starting with F0 = succ. So Fk is Lk-computable and (by composing
i times) so is F i

k. Therefore if k ≥ 1 we can compute f(~n) by a Lk-program:

x := max(~n) ; y := F i
k(x) ; compute y steps in the computation of f

since, as we have already noted, an L1 program suffices to perform any pre-
determined number of steps of a register machine program. This completes
the proof. �

Corollary. The “Ackermann-Péter Function” F : N2 → N defined as

F (k, n) = Fk(n)

is not primitive recursive.

24 1. COMPUTABILITY

Proof. Since every loop-program has one of the F i
k as a bounding func-

tion, it follows that every Prim function f is dominated by some F i
k and

therefore for all n ≥ max(k + 1, i) we have

f(n) < F i
k(n) ≤ Fn

k (n) = Fk+1(n) = F (k + 1, n) ≤ F (n, n).

Thus the binary function F cannot be primitive recursive, for otherwise we
could take f(n) = F (n, n) and obtain a contradiction. �

Corollary. The elementary functions are just those definable by L2-
programs, since

Elem =
⋃
i

Comp(F i
2)

where F2(n) = n · 2n.

Proof. It is very easy to see that the elementary functions (like the
primitive recursive ones) form an “honest” class in the sense that every
elementary function is computable within a number of steps bounded by
some (other) elementary function, and hence by some iterated exponential,
and hence by F i

2 for some i. Conversely if f ∈ Comp(F i
2) then by the Normal

Form Theorem there is a program number e such that for all ~n,

f(~n) = U(e, ~n, µsT (e, ~n, s))

and furthermore the number of computation steps µsT (e, ~n, s) is bounded
elementarily by F i

2(max(~n)). Thus the unbounded minimization is in this
case replaced by an elementarily bounded minimization, and since U and T
are both elementary, so therefore is f . �

Grzegorczyk was the first to classify the primitive recursive functions by
means of a hierarchy En, which coincides with levels of Lk-computability for
n = k + 1 ≥ 3. In addition, E2 is the class of subelementary functions.

1.6. The Arithmetical Hierarchy

The goal of this section is to give a classification of the relations definable
by arithmetical formulas. We have already made a step in this direction
when we discussed the Σ0

1-definable relations.
As a preparatory step we prove the Substitution Lemma and as its corol-

lary the Fixed Point Lemma, also known as Kleene’s Second Recursion The-
orem.

1.6.1. Kleene’s Second Recursion Theorem.

Lemma (Substitution Lemma). There is a binary elementary function
S such that

ϕ(q+1)
e (m,~n) = ϕ

(q)
S(e,m)(~n).

Proof. The details are left as an exercise; we only describe the basic
idea here. To construct S(e,m) we view e as code of a register machine
program computing an q + 1-ary function ϕ. Then S(e,m) is to be a code
of a register machine program computing the q-ary function obtained from
ϕ by fixing its first argument to be m. So the program coded by S(e,m)
should work as follows. Shift all inputs one register to the right, and write
m in the first register. Then compute as prescribed by e. �

1.6. THE ARITHMETICAL HIERARCHY 25

Theorem (Fixed Point Lemma or Kleene’s Second Recursion Theorem).
Fix an arity q. Then for every e we can find an e0 such that for all ~n =
n1, . . . , nr

ϕ(q)
e0

(~n) = ϕ(q+1)
e (e0, ~n).

Proof. Let ϕh(m,~n) = ϕe(S(m,m), ~n) and e0 := S(h, h). Then by the
Substitution Lemma

ϕe0(~n) = ϕS(h,h)(~n) = ϕh(h, ~n) = ϕe(S(h, h), ~n) = ϕe(e0, ~n). �

1.6.2. Characterization of Σ0
1-definable and recursive relations.

We now give a useful characterization of the Σ0
1-definable relations, which

will lead us to the arithmetical hierarchy. Let

W (q)
e := {~n | ∃s T (e, ~n, s) }.

The Σ0
1-definable relations are also called recursively enumerable (r.e.) rela-

tions.

Lemma. (a) The W (q)
e enumerate for e = 0, 1, 2, . . . the q-ary Σ0

1-defi-
nable relations.

(b) For fixed arity q, W (q)
e (~n) as a relation of e, ~n is Σ0

1-definable, but not
recursive.

Proof. (a). If R = W
(q)
e , then R is Σ1

0-definable by definition. For
the converse assume that R is Σ0

1-definable, i.e., that there is an elementary
relation E, say of arity q + r, such that for all ~n = n1, . . . , nq,

R(~n) ↔ ∃k1 . . .∃krE(~n, k1, . . . , kr).

Then clearly R is the domain of the partial recursion function ϕ given the
following µ-recursive definition:

ϕ(~n) = µm [lh(m) = r ∧ E(~n, (m)0, (m)1, . . . , (m)r−1)].

For ϕ = ϕe we have by the Normal Form Theorem R(~n) ↔ ∃s T (e, ~n, s).
(b) It suffices to show that We(~n) is not recursive. So assume that it

would be. Then we could pick e0 such that

We0(e, ~n) ↔ ¬We(e, ~n);

for e = e0 we obtain a contradiction. �

From the Substitution Lemma above we can immediately infer

W (q+1)
e (m,~n) ↔ W

(q)
S(e,m)(~n);

this fact is sometimes called Substitution Lemma for Σ0
1-definable relations.

Note. We have already seen in 1.3.4 that a relation R is recursive if
and only if both R and its complement ¬R are Σ0

1-definable.

26 1. COMPUTABILITY

1.6.3. Arithmetical relations. A relation R of arity q is said to be
arithmetical if there is an elementary relation E, say of arity q+r, such that
for all ~n = n1, . . . , nq,

R(~n) ↔ (Q1)k1 . . . (Qr)kr E(~n, k1, . . . , kr) with Qi ∈ {∀,∃}.

Note that we may assume that the quantifiers Qi are alternating, since e.g.

∀n∀mR(n,m) ↔ ∀kR((k)0, (k)1).

A relation R of arity q is said to be Σ0
r-definable if there is an elementary

relation E such that for all ~n,

R(~n) ↔ ∃k1∀k2 . . . Qkr E(~n, k1, . . . , kr)

with Q = ∀ if r is even and Q = ∃ if r is odd. Similary, a relation R of arity
q is said to be Π0

r-definable if there is an elementary relation E such that
for all ~n,

R(~n) ↔ ∀k1∃k2 . . . Qkr E(~n, k1, . . . , kr)

with Q = ∃ if r is even and Q = ∀ if r is odd. A relation R is said to be
∆0

r-definable if it is Σ0
r-definable as well as Π0

r-definable.
A partial function ϕ is said to be arithmetical (Σ0

r-definable, Π0
r-defi-

nable, ∆0
r-definable) if its graph { (~n,m) | ϕ(~n) is defined and = m } is.

By the note above a relationR is ∆0
1-definable if and only if it is recursive.

Example. Let Tot := { e | ϕ(1)
e is total }. Then we have

e ∈ Tot ↔ ϕ(1)
e is total

↔ ∀n∃m(ϕe(n) = m)

↔ ∀n∃m∃s(T (e, n, s) ∧ U(e, n, s) = m).

Therefore Tot is Π0
2-definable. We will show below that Tot is not Σ0

2-
definable.

1.6.4. Closure properties.

Lemma. Σ0
r, Π0

r and ∆0
r-definable relations are closed under conjunction,

disjunction and bounded quantifiers ∃m<n, ∀m<n. The ∆0
r-definable relations

are closed against negation. Moreover, for r > 0 the Σ0
r-definable relations

are closed against the existential quantifier ∃ and the Π0
r-definable relations

are closed against the universal quantifier ∀.

Proof. This can be seen easily. For instance, closure under the bounded
universal quantifier ∀m<n follows from

∀m<n∃kR(~n, n,m, k) ↔ ∃l∀m<nR(~n, n,m, (l)m). �

The relative positions of the Σ0
r , Π0

r and ∆0
r-definable relations are shown

in Fig. 1 on page 27.

1.6. THE ARITHMETICAL HIERARCHY 27

∆0
1 Σ0

1

Π0
1 ∆0

2 Σ0
2

Π0
2 ∆0

3 Σ0
3

Π0
3

..
.

Figure 1. The arithmetical hierarchy

1.6.5. Universal Σ0
r+1-definable relations. We now generalize the

enumeration W (q)
e of the unary Σ0

1-definable relations and construct bunary
universal Σ0

r+1-definable relations U0
r+1:

U0
1 (e, n) :↔ ∃s T (e, n, s) (↔ n ∈W (1)

e),

U0
r+1(e, n) :↔ ∃m¬U0

r (e, n ∗ 〈m〉).

For example,

U0
3 (e, n) :↔ ∃m1∀m2∃s T (e, n ∗ 〈m1,m2〉, s),

U0
2 (e, n) :↔ ∃m∀s¬T (e, n ∗ 〈m〉, s).

Clearly the relations U0
r+1(e, 〈~n〉) enumerate for e = 0, 1, 2, . . . the q-ary

Σ0
r+1-definable relations, and their complements the q-ary Π0

r+1-definable
relations,

Now it easily follows that all inclusions in Fig. 1 are proper. To see this,
assume for example that ∃m∀s¬T (e, 〈n,m〉, s) would be Π0

2. Pick e0 such
that

∀m∃s T (e0, 〈n,m〉, s) ↔ ∃m∀s¬T (n, 〈n,m〉, s);
for n := e0 we obtain a contradiction. As another example, assume

A := { 2〈e, n〉 | ∃m∀s¬T (e, 〈n,m〉, s) } ∪ { 2〈e, n〉+ 1 | ∀m∃s T (e, 〈n,m〉, s) },

which is a ∆0
3-set, would be Σ0

2. Then we would have a contradiction

∀m∃s T (e, 〈n,m〉, s) ↔ 2〈e, n〉+ 1 ∈ A,

and hence { (e, n) | ∀m∃s T (e, 〈n,m〉, s) } would be a Σ0
2-definable relation,

a contradiction.

1.6.6. Σ0
r-complete relations. We now develop an easy method to ob-

tain precise classifications in the arithmetical hierarchy. Since by sequence-
coding we can pass in an elementary way between relations R of arity q and
relations R′(n) ↔ R((n)1, . . . , (n)q) of arity 1, it is no real loss of generality
if we henceforth restrict to q = 1 and only deal with sets A,B ⊆ N (i.e.,
unary relations). First we introduce the notion of (many-one) reducibility.

28 1. COMPUTABILITY

Let A,B ⊆ N. B is said to be reducible to A if there is a total recursive
function f such that for all n

n ∈ B ↔ f(n) ∈ A.
A set A is said to be Σ0

r-complete if
(1) A is Σ0

r-definable, and
(2) every Σ0

r-definable set B is reducible to A.

Lemma. If A is Σ0
r-complete, then A is Σ0

r-definable but not Π0
r-defina-

ble.

Proof. Let A be Σ0
r-complete and assume that A is Π0

r-definable. Pick
a set B which is Σ0

r-definable but not Π0
r-definable. By Σ0

r-completeness of
A the set B is reducible to A via a recursive function f :

n ∈ B ↔ f(n) ∈ A.
But then B would be Π0

r-definable too, contradicting the choice of B. �

Remark. In the definition and the lemma above we can replace Σ0
r by

Π0
r . This gives the notion of Π0

1-completeness, and the proposition that
every Π0

r-complete set A is Π0
r-definable but not Σ0

r-definable.

Example. We have seen above that the set Tot := { e | ϕ(1)
e is total }

is Π0
2-definable. We now can show that Tot is not Σ0

2-definable. By the
lemma it suffices to prove that Tot is Π0

2-complete. So let B be an arbitrary
Π0

2-definable set. Then, for some e ∈ N,

n ∈ B ↔ ∀m∃s T (e, n,m, s).

Consider the partial recursive function

ϕe(n,m) := U(e, n,m, µs T (e, n,m, s)).

By the Substitution Lemma we have

n ∈ B ↔ ∀m(ϕe(n,m) is defined)

↔ ∀m(ϕS(e,n)(m) is defined)
↔ ϕS(e,n) is total

↔ S(e, n) ∈ Tot.

Therefore B is reducible to Tot.

CHAPTER 2

Constructive Ordinals

The complexity hierarchy for the primitive recursive functions was in-
dexed by the natural numbers. Later we will consider other hierarchies of
functions, which cannot be indexed by N any more, but need the ordinals
instead, or more precisely the constructive ordinals. An ordinal is said to be
constructive simply if it can be represented by a recursive well-ordering of N.
However, for a closer study of the recursive ordinals some preparations are
necessary. First of all, we need to extend our treatment of computable func-
tions to functionals, i.e., we need to also consider function arguments. This
will be done in the first section below. Then we generalize the arithmetical
hierarchy to the analytical hierarchy, by also allowing function quantifiers.
After the definition and initial discussion of the constructive ordinals we
define a first hierarchy – due to Kleene – of recursive functionals indexed
by the constructive ordinals. Finally we determine the exact location in
the analytical hierarchy of various predicates concerning the constructive
ordinals.

2.1. Relative Recursiveness

2.1.1. Oracles. We now extend our treatment of computable functions
to functionals. Again we start with register machines, since this provides the
most intuitive approach. However, this time we suppose that an additional
“given function” g is available, whose values are to be supplied immediately
(in one step, by a magic “oracle”) whenever they are called for by a register
machine program with a new kind of instruction:

Oracle. x := g(x).

Oracle register machine programs can be numbered in just the same way as
before (taking 〈3, i〉 as the number of the oracle instruction where x is the
i-th register variable).

We let Φ(r)
e (g) denote the partial function of arity r computed relative

to g by the oracle program with index e. Since by sequence-coding we can
pass in an elementary way between functions ψ of arity r and functions
ψ′(n) = ψ((n)1, . . . , (n)r) of arity 1, it is no real loss of generality if we
restrict to r = 1 and write simply Φe(g) instead of Φ(1)

e (g).

2.1.2. Relativized normal form.

Theorem (Relativized Normal Form). There is an elementary relation
T1 and an elementary function U1 such that for all oracle program numbers
e, inputs n, and oracle functions g,

• Φe(g)(n) is defined ↔ ∃s T1(e, n, g(s)), and

29

30 2. CONSTRUCTIVE ORDINALS

• Φe(g)(n) = U1(e, n, g(s0)) where s0 = µs T1(e, n, g(s)).
In the above we take g(s) := 〈g(0), g(1), . . . , g(s− 1)〉.

Proof. If for arbitrary but fixed e, g and n, Φe(g)(n) is defined, then
the computation will only make finitely many oracle calls, all of which will
be contained in the sequence number m = g(s) provided s is large enough.
In that case every oracle call x := g(x) could be replaced by a non-oracle
subroutine:

if x < lh(m) then x := (m)x else undefined fi

and the resulting non-oracle program, say with index e1, would compute the
same value. However it now has two numerical arguments n and m instead
of one numerical argument n and one oracle g. Thus if the sequence number
m = g(s) is long enough then

Φe(g)(n) defined ⇒ Φe(g)(n) = ϕ(2)
e1

(n,m).

The above transformation from oracle program to non-oracle program sim-
ply inserts the fixed subroutine above, in place of each oracle instruction in
the original program, so the corresponding index constructor e,m 7→ e1 is
an elementary function. Now from the T predicate of the original Normal
Form Theorem, define

T1(e, n,m) :↔ T (e1, n,m, lh(m)).

Clearly T1 is elementary since T is. Furthermore T1(e, n, g(s)) holds if and
only if the computation of ϕe1(n, g(s)) terminates by step s. But this com-
putation simulates the oracle computation of Φe(g)(n). Therefore Φe(g)(n)
is defined if and only if T1(e, n, g(s)) holds for some (large enough) s, and
in that case its value is U(e1, n, g(s), s) for any such s. So if we define

U1(e, n,m) := U(e1, n,m, lh(m))

then U1 is elementary too, and it clearly has the required property. �

Clearly we can generalize this to the case where arbitrary many function
and number arguments are admitted. We write

Φe(~g, ~n) = Φ(p,q)
e (g1, . . . , gp, n1, . . . , nq)

for the functional computed by an oracle register machine program with pro-
gram number e, where the function variables are g1, . . . , gp and the number
(input) variables are n1, . . . , nq.

We now give a second form of the relativized normal form theorem,
where we allow function arguments to appear explicitly. Observe first that
it is obvious how to extend the notion of elementary functions and relations
to also allow function arguments.

Corollary (Relativized Normal Form, Second Form). There is an ele-
mentary relation T2 (possibly with function arguments) and an elementary
functional U2 such that for all oracle program numbers e, inputs n, and
oracle functions g,

• Φe(~g, ~n) is defined ↔ ∃s T2(e,~g, ~n, s), and
• Φe(~g, ~n) = U2(e,~g, ~n, µs T2(e,~g, ~n, s)).

2.1. RELATIVE RECURSIVENESS 31

Proof. For simplicity we assume ~g = g and ~n = n. Define

T2(e, g, n, s) :↔ T1(e, n, g(s)) (↔ T (e1, n, g(s), s)),

U2(e, g, n, s) :↔ U1(e, n, g(s)) (↔ U(e1, n, g(s), s)).

Then claim then follows from the Relativized Normal Form Theorem. �

Corollary. The functional Φ(p,q)
e (g1, . . . , gp, n1, . . . , nq) is a computa-

ble partial functional of the p function variables g1, . . . , gp and the q + 1
number variables e, n1, . . . , nq.

Proof. Immediate from the normal form. �

2.1.3. Relativization of Σ0
1-definable relations. The definition of

Σ0
1-definable relations can now be extended in the obvious way to also include

function arguments. The same is true for µ-recursive functions (to be called
µ-recursive functionals) and while-programs. With the same proof as before
we then have as a corollary to the Relativized Normal Form Theorem:

Corollary. The following properties of partial functionals Φ are equiv-
alent:

• Φ is register machine computable,
• Φ is Σ0

1-definable,
• Φ is µ-recursive,
• Φ is computable by a while program.

Recall that recursive programs define the computable functions by suc-
cessive recursive definitions in which the three basic functions: successor,
predecessor and definition-by-cases, are assumed given. Again we can in-
troduce an additional given function g, whose values are to be supplied
immediately (by our magic “oracle”) whenever they are called for by any
program. The functions defined by recursive programs with this new oracle
are said to be partial recursive in (or relative to) g. By the previously estab-
lished equivalences, which again relativize to g without much change, this
is the same as saying that the function is computable by a register machine
with the new kind of oracle instruction x := g(x). Clearly this notion of
a partial recursive functional extends to the case where we have p function
arguments ~g = g1, . . . , gp and q number arguments ~n = n1, . . . , nq.

It will be useful below to add some more characterizations of the Σ0
1-

definable relations:

Lemma. For a total relation R the following are equivalent:
(a) R is the domain of a partial recursive functional.
(b) R can be written in the form R(~g, ~n) ↔ ∃m Γ(~g, ~n,m) with a partial

recursive relation Γ.
(c) R can be written in the form R(~g, ~n) ↔ ∃mQ(~g, ~n,m) with a (total)

recursive relation Q.
(d) R can be written in the form R(~g, ~n) ↔ ∃mE(~g, ~n,m) with an elemen-

tary relation E.
(e) R can be written in the form R(~g, ~n) ↔ ∃s T2(e,~g, ~n, s).

Proof. From (a) we get (e), since

R(~g, ~n) ↔ ∃s T2(e,~g, ~n, s).

32 2. CONSTRUCTIVE ORDINALS

From (e) we obviously obtain (d), (c) and then (b). To get from (b) to (a)
note that

R(~g, ~n) ↔ ∃m (Φe(~g, ~n,m) = 1)

↔ ∃m∃s[T2(e,~g, ~n,m, s) ∧ U2(e,~g, ~n,m, s) = 1]

↔ ∃m∃sE(e,~g, ~n,m, s) for an elementary relation E

↔ µk E(e,~g, ~n, (k)0, (k)1) is defined. �

Remark. Note that a relation R is Σ0
1-definable if and only if it can be

written in the form

R(g, n) ↔ ∃s T1(e, n, g(s));

this follows immediately from the Relativized Normal Form Theorem. Hence
one can develop from the theory of recursive functions first the theory of Σ0

1-
definable relations with function arguments and then the theory of partial
recursive functionals. This is the route followed by Shoenfield [1967]. Here
we have preferred a more intuitive approach, using oracle register machines.

2.1.4. Substitution in function arguments.

Lemma. For all partial recursive functionals Φ, Ψ1, . . . , Ψp we can find
a partial recursive functional Φ′ such that for all ~g, ~n with λxΨi(~g, ~n, x) total
we have

Φ′(~g, ~n) = Φ(λxΨ1(~g, ~n, x), . . . , λxΨp(~g, ~n, x), ~n).

Proof. Induction on the definition of Φ as a µ-recursive functional. �

Remark. The lemma is false without the restriction on the arguments
~g, ~n For otherwise the partial function ϕ defined by

ϕ(e) := 02(λxϕ(1)
e (x)) with 02(g) := 0

=

{
0 if e ∈ Tot
undefined otherwise

would be partial recursive, and cleary Tot is the domain of ϕ. However,
this contradicts the fact observed above that Tot is Π0

2-complete, hence not
Σ0

1-definable.

2.1.5. Post’s theorem. We now prove a well-known theorem of Post,
which gives a characterization of the arithmetical hierarchy for sets in terms
of the notions “Σ0

1-definable in” and “recursive in”.

Theorem (Post). For every set A ⊆ N the following are equivalent.
(a) A is Σ0

r+1-definable.
(b) A is Σ0

1-definable in B for some Σ0
r-definable set B ⊆ N.

(c) A is Σ0
1-definable in B for some Π0

r-definable set B ⊆ N.
(d) A is Σ0

1-definable in B for some ∆0
r+1-definable set B ⊆ N.

Proof. The equivalence of (b) and (c) is clear. (a) implies (b), since
by (a)

n ∈ A ↔ ∃m¬R(n,m)

2.1. RELATIVE RECURSIVENESS 33

for some Σ0
r-definable relation R, hence A is Σ0

1-definable in B with n ∈
B :↔ R((n)0, (n)1). Clearly (b) implies (d). To see that (d) implies (a)
observe that

n ∈ A↔ ∃mR(cB(m), n,m) with B ∆0
r+1-definable and R recursive

↔ ∃m∃k

(
k = cB(m) ∧R(k, n,m)

)
.

Now k = cB(m) can be written in the form

k = cB(m) ↔ lh(k) = m ∧ ∀i<m[(B(i) → (k)i = 1) ∧ (¬B(i) → (k)i = 0)].

Then claim then follows since by assumption both B and ¬B are Σ0
r+1-

definable. �

Corollary (Post). For sets A,B ⊆ N the following propositions are
equivalent.
(a) A is ∆0

r+1-definable.
(b) A is recursive in B for some Σ0

r-definable B.
(c) A is recursive in B for some Π0

r-definable B.

Proof. The equivalence of (b) and (c) is clear. To see the equivalence
of (a) and (b), observe that the following are equivalent.

A is ∆0
r+1-definable

A,¬A are Σ0
r+1-definable

A,¬A are Σ0
1-definable in (we may assume) the same Σ0

r-definable set B

A is recursive in B for some Σ0
r-definable B.

The last equivalence follows from the relativised form of a note in 1.6.2. �

2.1.6. Reducibility. The notion of f being recursive in g gives rise to a
quite natural equivalence relation on unary functions: call f and g equivalent
(written f ∼ g) if f is recursive in g and g is recursive in f . The equivalence
classes with respect to this relation are called recursive degrees. There is a
rich literature on such degrees (for instance [Soare, 1987]); however, we will
not embark into this subject here.

We now want to relate the notion of reducibility introduced above to the
notion of relative recursiveness. Recall that a set B is said to be reducible
to a set A if there is a total recursive function f such that for all n

(2.1) n ∈ B ↔ f(n) ∈ A.
Therefore if B is reducible to A, then B is recursive in A. However, the
converse is false To see this, pick a Σ0

1-definable set A that is not recursive,
and let B := ¬A. Then clearly B is recursive in A. Now if B would be
reducible to A, then by (2.1) B would be Σ0

1-definable, contradicting the
assumption on A.

For a fixed set A let us now consider all sets B which are Σ0
1-definable

in A. We will show that amongst those there is a maximal one with respect
to reducibility. Let A′, the recursive successor or jump of A, be defined by

n ∈ A′ :↔ ∃s T2((n)0, cA, (n)1, s).

Theorem. A set B is Σ0
1-definable in a set A if and only if B is reducible

to A′.

34 2. CONSTRUCTIVE ORDINALS

Proof. If B is Σ0
1-definable in a set A, then

n ∈ B ↔ ∃s T2(e, cA, n, s) ↔ 〈e, n〉 ∈ A′.
Conversely, assume that B is reducible to A′. Then for some recursive
function f we have

n ∈ B ↔ f(n) ∈ A′ ↔ ∃s T2((f(n))0, cA, (f(n))1, s)

and hence B is Σ0
1-definable in A. �

Note that as a consequence A′ cannot be recursive in A. For if it were,
then by the theorem every set B Σ0

1-definable in A would be recursive in A.
This contradicts the relativization of the theorem asserting the existence of
Σ0

1-definable, but not recursive sets.

2.1.7. Jumps. We give a characterization of the arithmetical hierarchy
for sets in terms of the iterated successors or jumps ∅(r) of the empty set,
defined by

∅(0) := ∅, ∅(r+1) :=
(
∅(r)

)′
.

Lemma. ∅(r) is Σ0
r-definable.

Proof. We use induction on r. By the definition of A′ we have

n ∈ ∅(r+1) ↔ ∃s T2((n)0, c∅(r) , (n)1, s).

Hence ∅(r+1) is Σ0
1-definable in ∅(r), which by IH is Σ0

r-definable (or recursive
if r = 0). Therefore by Post’s Theorem ∅(r+1) is Σ0

r+1-definable. �

Theorem. For every set A ⊆ N the following are equivalent:
(a) A is Σ0

r+1-definable.
(b) A is Σ0

1-definable in ∅(r).
(c) A is reducible to ∅(r+1).

Proof. The equivalence of (b) and (c) is a consequence of the theorem
above (on A′). The implication from (b) to (a) follows from Post’s Theorem
with the lemma above. For the implication from (a) to (b) we use induction
on r. For r = 0 this is obvious, and in case r + 1 we have

n ∈ A ↔ ∃m¬R(n,m)

with a Σ0
r-definable relation R. Now by II R(n,m) can be written in the

form
R(n,m) ↔ f(n,m) ∈ ∅(r)

with a recursive function f . Therefore A is Σ0
1-definable in ∅(r). �

Corollary. For every set A ⊆ N the following are equivalent:
(a) A is ∆0

r+1-definable.
(b) A is recursive in ∅(r).

2.2. The Analytical Hierarchy

We now generalize the arithmetical hierarchy and give a classification
of the relations definable by analytical formulas, i.e., formulas involving
number as well as function quantifiers.

2.2. THE ANALYTICAL HIERARCHY 35

2.2.1. Analytical relations. First note that the Substitution Lemma
as well as the Fixed Point Lemma in 1.6.1 continue to hold if function
arguments are present, with the same function S in the Substitution Lemma.
We also extend the enumeration W (q)

e of the Σ0
1-definable relations: By part

(e) of the lemma in 2.1.3 the sets

W (p,q)
e := { (~g, ~n) | ∃s T2(e,~g, ~n, s) }

enumerate for e = 0, 1, 2, . . . the (p, q)-ary Σ0
1-definable relations. With the

same argument as in Sec.1.6 we see that for fixed arity (p, q), W (p,q)
e (~g, ~n) as

a relation of ~g, e, ~n is Σ0
1-definable, but not recursive. The treatment of the

arithmetical hierarchy can now be extended without difficulties to (p, q)-ary
relations.

Examples. (a) The set R of all recursive functions is Σ0
3-definable,

since
R(f) ↔ ∃e∀n∃s[T (e, n, s) ∧ U(e, n, s) = f(n)].

(b) Let LinOrd denote the set of all functions f such that

≤f := { (n,m) | f〈n,m〉 = 1 }
is a linear ordering of its field Mf := {n | ∃m(f〈n,m〉 = 1 ∨ f〈m,n〉 =
1) }. LinOrd is Π0

1-definable, since

LinOrd(f) ↔ ∀n(n ∈Mf → f〈n, n〉 = 1) ∧
∀n,m (f〈n,m〉 = 1 ∧ f〈m,n〉 = 1 → n = m)) ∧
∀n,m,k (f〈n,m〉 = 1 ∧ f〈m, k〉 = 1 → f〈n, k〉 = 1) ∧
∀n,m (n,m ∈Mf → f〈n,m〉 = 1 ∨ f〈m,n〉 = 1).

Here we have written n ∈Mf for ∃m(f〈n,m〉 = 1 ∨ f〈m,n〉 = 1).

A relation R of arity (p, q) is said to be analytical if there is an arith-
metical relation P , say of arity (r+p, q), such that for all ~g = g1, . . . , gp and
~n = n1, . . . , nq,

R(~g, ~n) ↔ (Q1)f1 . . . (Qr)fr P (f1, . . . , fr, ~g, ~n) with Qi ∈ {∀,∃}.
Note that we may assume that the quantifiers Qi are alternating, since for
instance

∀f∀gR(f, g) ↔ ∀hR((h)0, (h)1),
where (h)i(n) := (h(n))i. A relation R of arity (p, q) is said to be Σ1

r-
definable if there is an (r+p, q)-ary arithmetical relation P such that for all
~g, ~n,

R(~g, ~n) ↔ ∃f1∀f2 . . . Qfr P (f1, . . . , fr, ~g, ~n)
with Q = ∀ if r is even and Q = ∃ if r is odd. Similarly, a relation R of
arity (p, q) is said to be Π1

r-definable if there is an arithmetical relation P
such that for all ~g, ~n,

R(~g, ~n) ↔ ∀f1∃f2 . . . Qfr P (f1, . . . , fr, ~g, ~n)

with Q = ∃ if r is even and Q = ∀ if r is odd. A relation R is said to be
∆1

r-definable if it is Σ1
r-definable as well as Π1

r-definable.
A partial functional Φ is said to be analytical (Σ1

r-definable, Π1
r-definable,

∆1
r-definable) if its graph { (~g, ~n,m) | Φ(~g, ~n) is defined and = m } is.

36 2. CONSTRUCTIVE ORDINALS

Lemma. A relation R is Σ1
r-definable if and only if it can be written in

the form

R(~g, ~n) ↔ ∃f1∀f2 . . . QfrQm P (f1, . . . , fr, ~g, ~n,m)

with Q ∈ {∀,∃} and Q :=

{
∃ if Q = ∀
∀ if Q = ∃

with an elementary relation P . Similarly, a relation R is Π1
r-definable if and

only if it can be written in the form

R(~g, ~n) ↔ ∀f1∃f2 . . . QfrQm P (f1, . . . , fr, ~g, ~n,m)

with Q,Q as above and an elementary relation P .

Proof. Use

∀n∃fR(f, n) ↔ ∃g∀nR((g)n, n) with (g)n(m) := f〈n,m〉,
∀nR(n) ↔ ∀fR(f(0)).

E.g., the prefix ∀f∃n∀m is transformed first into ∀f∃n∀g, then into ∀f∀h∃n,
and finally into ∀g∃n. �

Example. Define

WOrd(f) :↔ (≤f is a well-ordering of its field Mf).

Then WOrd satisfies

WOrd(f) ↔ LinOrd(f)∧∀g[∀nf〈g(n+1), g(n)〉) = 1 → ∃mg(m+1) = g(m)].

Hence WOrd is Π1
1-definable.

2.2.2. Closure Properties.

Lemma (Closure Properties). The Σ1
r, Π1

r and ∆1
r-definable relations

are closed against conjunction, disjunction and numerical quantifiers ∃n,
∀n. The ∆1

r-definable relations are closed against negation. Moreover, for
r > 0 the Σ1

r-definable relations are closed against the existential function
quantifier ∃f and the Π1

r-definable relations are closed against the universal
function quantifier ∀f .

Proof. This can be seen easily. For instance, closure of the Σ1
1-definable

relations against universal numerical quantifiers follows from the transfor-
mation of ∀n∃f∀m first into ∃g∀n∀m and then into ∃g∀k. �

The relative positions of the Σ1
r , Π1

r and ∆1
r-definable relations are shown

in Fig. 1 on page 37. Here

∆0
∞ :=

⋃
r≥1

Σ0
r

(
=

⋃
r≥1

Π0
r

)
is the set of all arithmetical relations, and

∆1
∞ :=

⋃
r≥1

Σ1
r

(
=

⋃
r≥1

Π1
r

)
is the set of all analytical relations.

2.2. THE ANALYTICAL HIERARCHY 37

∆0
1 Σ0

1

Π0
1 ∆0

2 Σ0
2

Π0
2 ∆0

3 Σ0
3

Π0
3

..
.

∆0
∞

∆1
1 Σ1

1

Π1
1 ∆1

2 Σ1
2

Π1
2

..
.

∆1
∞

Figure 1. The analytical hierarchy

2.2.3. Universal Σ1
r+1-definable relations.

Lemma (Universal relations). Among the Σ1
r+1 (Π1

r+1)-definable rela-
tions there is a (p, q+1)-ary relation enumerating all (p, q)-ary Σ1

r+1 (Π1
r+1)

-definable relations.

Proof. As an example, we prove the lemma for Σ1
2 and Σ1

1. All Σ1
2-

definable relations are enumerated by

∃g∀h∃s T2(e, ~f, ~n, g, h, s),

and all Σ1
1-definable relations are enumerated by

∃g∀s¬T2(e, ~f, ~n, g, s). �

Lemma. All inclusions in Fig.1 on page 37 are proper.

Proof. We postpone (to 2.4.8) the proof of ∆0
∞ (∆1

1. The rest of the
proof is obvious from the following examples. Assume ∃g∀h∃s T2(e, n, g, h, s)
would be Π1

2. Pick e0 such that

∀g∃h∀s¬T2(e0, n, g, h, s) ↔ ∃g∀h∃s T2(n, n, g, h, s);

for n := e0 we obtain a contradiction. As another example, assume

A := { 2〈e, n〉 | ∃g∀h∃s T2(e, n, g, h, s) } ∪
{ 2〈e, n〉+ 1 | ∀g∃h∀s¬T2(e, n, g, h, s) },

38 2. CONSTRUCTIVE ORDINALS

which is a ∆1
3-set, would be Σ1

2. Then from

∀g∃h∀s¬T2(e, n, g, h, s) ↔ 2〈e, n〉+ 1 ∈ A,
it would follow that { (e, n) | ∀g∃h∀s¬T2(e, n, g, h, s) } is a Σ1

2-definable rela-
tion, a contradiction. �

2.2.4. Σ1
r-complete relations. A set A ⊆ N is said to be Σ1

r-complete
if

(1) A is Σ1
r-definable, and

(2) every Σ1
r-definable set B ⊆ N is reducible to A.

Lemma. If A ⊆ N is Σ1
r-complete, then A is Σ1

r-definable but not Π1
r-

definable.

Proof. Let A be Σ1
r-complete and assume that A is Π1

r-definable. Pick
a set B ⊆ N which is Σ1

r-definable but not Π1
r-definable. By Σ1

r-completeness
of A the set B is reducible to A via a recursive function f :

n ∈ B ↔ f(n) ∈ A.
But then B would be Π1

r-definable too, contradicting the choice of B. �

Remark. In the definition and the lemma above we can replace Σ1
r by

Π1
r . This gives the notion of Π1

r-completeness, and the proposition that
every Π1

r-complete set A is Π1
r-definable but not Σ1

r-definable.

2.3. Recursive Type-2 Functionals and Wellfoundedness

2.3.1. Computation trees. To each oracle program with index e, as-
sociate its “tree of non-past-secured sequence numbers”:

Tree(e) := { 〈n0, . . . , nl−1〉 | ∀k<l ¬T1(e, n0, 〈n1, . . . , nk−1〉) }
called the computation tree of the given program.

We imagine the computation tree as growing downwards by extension,
that is if σ and τ are any two sequence numbers (or nodes) in the tree then σ
comes below τ if and only if σ is a proper extension of τ , that is lh(τ) < lh(σ)
and ∀i<lh(τ)((σ)i = (τ)i). We write σ ⊃ τ to denote this. Note that if σ is
in the tree and σ ⊃ τ then τ is automatically in the tree, by definition. An
infinite branch of the tree is thus determined by a number n and a function
g : N → N such that ∀s¬T1(e, n, g(s)). Therefore by the Relativized Normal
Form in 2.1.2, an infinite branch is a witness to the fact that for some n and
some g, Φe(g)(n) is not defined. To say that the tree is “well founded” is to
say that there are no infinite branches, and hence:

Theorem. Φe is total if and only if Tree(e) is well-founded.

2.3.2. Ordinal assignments; recursive ordinals. This equivalence
is the basis for a natural theory of ordinal assignments, measuring (in some
sense) the “complexity” of those oracle programs which terminate “every-
where” (on all oracles and all numerical inputs). We shall later investigate in
some detail these ordinal assignments and the ways in which they measure
complexity, but to begin with we shall merely describe the hierarchy which
immediately arises. It is due to Kleene (1958), but appears there only as a
brief footnote to the first page.

2.3. RECURSIVE TYPE-2 FUNCTIONALS AND WELLFOUNDEDNESS 39

Definition. If Tree(e) is well-founded we can assign to each of its nodes
τ an ordinal ‖τ‖ by recursion “up the tree” as follows: if τ is a terminal
node (no extension of it belongs to the tree) then ‖τ‖ = 0; otherwise ‖τ‖ =
sup{ ‖σ‖+ 1 | σ ⊃ τ ∧ σ ∈ Tree(e) }.

Then we can assign an ordinal to the whole tree by defining ‖e‖ := ‖〈〉‖.

Example. The for-loop (with input variable x and output variable y):

y := 0 ; for i = 1 . . . x do y := g(y) od

computes the iteration functional It(g)(n) = gn(0). For fixed g and n the
branch through its computation tree will terminate in a node

〈n, g(0), . . . , g2(0), . . . , gn−1(0), . . . , gn(0), . . . , g(s− 1)〉

where s is the least number such that (i) g(s) contains all the necessary
oracle information concerning g, so s > gn−1(0), and (ii) computation of the
program terminates by step s.

Working down this g-branch (and remembering that g is any function
at all) we see that for i < n, once the value of gi(0) is chosen, it determines
the length of the ensuing segment as far as gi+1(0). The greater the value
of gi(0), the greater is the length of this segment. Therefore as we take the
supremum over all branches issuing from a node

〈n, g(0), . . . , g2(0), . . . , g(gi−1(0)− 1)〉

the successive segments gi(0), . . . , gi+1(0) have unbounded length, depend-
ing on the value of gi(0). So each such segment adds one more ω to the
ordinal height of the tree. Since there are n − 1 such segments, the height
of the subtree below node 〈n〉 will be ω · (n− 1). Therefore the height of the
computation tree for this loop-program is supn ω · (n− 1) = ω2.

Definition. An ordinal is recursive if it is the order-type of some recur-
sive well-ordering relation ⊆ N× N. Any predecessor of a recursive ordinal
is recursive and so is its successor, so the recursive ordinals form an initial
segment of the countable ordinals. The least non-recursive ordinal is a limit,
denoted ωCK

1 , the “CK” standing for Church-Kleene.
Note that if Φe is total recursive then Tree(e) can be well ordered by

the so-called Kleene-Brouwer ordering : σ <KB τ if and only if either σ ⊃ τ
or else there is an i < min(lh(σ), lh(τ)) such that ∀j<i((σ)j = (τ)j) and
(σ)i < (τ)i. This is a recursive (in fact elementary) well ordering with
order-type ≥ ‖e‖. Hence ‖e‖ is a recursive ordinal.

2.3.3. A hierarchy of total recursive functionals. Kleene’s hier-
archy of total recursive functionals consists of the classes

R2(α) := {Φe | Φe total ∧ ‖e‖ < α }

where α ranges over all recursive ordinals. Thus R2(α) ⊆ R2(β) if α < β .

Theorem (Hierarchy Theorem). Every total recursive functional be-
longs to R2(α) for some recursive ordinal α. Furthermore the hierarchy
continues to expand as α increases through ωCK

1 , that is, for every recursive
ordinal α there is a total recursive functional F such that F /∈ R2(α).

40 2. CONSTRUCTIVE ORDINALS

Proof. The first part is immediate since if Φe is total it belongs to
R2(α + 1) where α is the order-type of the Kleene-Brouwer ordering on
Tree(e).

For the second part suppose α is any fixed recursive ordinal, and let
≺α be a fixed recursive well-ordering with that order type. We define a
total recursive functional Vα(f, g, e, σ) with two unary function arguments
f and g, where e ranges over indices for oracle programs and σ ranges over
sequence numbers. Note first that if σ = 〈n0, n1, . . . , nk−1〉 is a non-terminal
node in Tree(e) then for any function g : N → N the sequence number

σ ∗ g(lh(σ)−1) := 〈n0, n1, . . . , nk−1, g(k − 1)〉

is also a node in Tree(e), below σ. The definition of Vα is as follows, by
recursion down the g-branch of Tree(e) starting with node σ, but controlled
by the well-ordering ≺α via the other function argument f :

Vα(f, g, e, σ) =
Vα(f, g, e, σ ∗ g(lh(σ)−1)) if σ ∈ Tree(e) and

f(σ ∗ g(lh(σ)−1)) ≺α f(σ)
U1(e, (σ)0, 〈(σ)1, . . . , (σ)k−1〉) otherwise.

This is a recursive definition and furthermore it always is defined since re-
peated application of the first clause leads to a descending sequence

· · · ≺α f(σ′′) ≺α f(σ′) ≺α f(σ)

which must terminate after finitely many steps because ≺α is a well-ordering.
Hence the second clause must eventually apply and the computation termi-
nates. Therefore Vα is total recursive.

Now if Φe is any total recursive functional such that ‖e‖ < α then there
will be an order preserving map from Tree(e) into α, and hence a function
fe : N → N such that whenever τ ⊃ σ in Tree(e) then fe(τ) ≺α fe(σ). For
this particular e and fe it is easy to see by induction up the computation
tree, and using the Relativized Normal Form Theorem, that for all g and n,

Φe(g)(n) = Vα(fe, g, e, 〈n〉).

Consequently the total recursive functional F defined from Vα by

F (g)(n) = Vα(λx.g(x+ 1), g, g(0), 〈n〉) + 1

cannot lie in R2(α). For if it did there would be an e and fe as above such
that F = Φe and hence for all g and all n,

Vα(λx.g(x+ 1), g, g(0), 〈n〉) + 1 = Vα(fe, g, e, 〈n〉).

A contradiction follows immediately by choosing g so that g(0) = e and
g(x+ 1) = fe(x). This completes the proof. �

Remark. For relatively simple but fundamental reasons based in effec-
tive descriptive set theory, no such “nice” hierarchy exists for the recursive
functions. For whereas the class of all indices e of total recursive functionals
is definable by the Π1

1 condition

∀g∀n∃s T1(e, n, g(s))

2.4. INDUCTIVE DEFINITIONS 41

the set of all indices of total recursive functions is given merely by an arith-
metical Π0

2 condition:

∀n∃s T (e, n, s).

So by the so-called “boundedness property” of hyperarithmetic theory, any
inductive hierarchy classification of all the recursive functions is sure to
“collapse” before ωCK

1 . In practice this usually occurs at the very first limit
stage ω and the hierarchy gives no interesting information.

Nevertheless if we adopt a more constructive view and take into ac-
count also the ways in which a countable ordinal may be presented as a
well-ordering, rather than just accepting its set-theoretic existence, then in-
teresting hierarchies of proof theoretically important sub-classes of recursive
functions begin to emerge.

2.4. Inductive Definitions

We have already used an inductive definition in our proof of Kleene’s Re-
cursion Theorem in 1.4.3. Now we treat inductive definitions quite generally,
and discuss how far we can get in the analytical hierarchy using inductive
definitions.

2.4.1. Monotone operators. Let U be a fixed non-empty set. A map
Γ: P(U) → P(U) is called an operator on U . Γ is called monotone if for all
X,Y ⊆ U from X ⊆ Y we can conclude Γ(X) ⊆ Γ(Y).

IΓ :=
⋂
{X ⊆ U | Γ(X) ⊆ X }

is the set defined inductively by the monotone operator Γ; so IΓ is the
intersection of all Γ-closed subsets of U . Definitions of this kind are called
(generalized) monotone inductive definitions.

Theorem (Knaster-Tarski). Let Γ be a monotone operator. Then

(a) If Γ(X) ⊆ X, then IΓ ⊆ X.
(b) Γ(IΓ) = IΓ.

In particular IΓ is the least fixed point of Γ.

Proof. (a) follows immediately from the definition of IΓ. (b). From
Γ(X) ⊆ X we can conclude IΓ ⊆ X by (a), hence Γ(IΓ) ⊆ Γ(X) ⊆ X by
the monotonicity of Γ. By definition of IΓ we obtain Γ(IΓ) ⊆ IΓ. Using
monotonicity of Γ we can infer Γ(Γ(IΓ)) ⊆ Γ(IΓ), hence IΓ ⊆ Γ(IΓ) again
by definition of IΓ. �

Example. Let 0 ∈ U and consider an arbitrary function S : U → U .
For every set X ⊆ U we define

Γ(X) := {0} ∪ {S(v) | v ∈ X }.

Clearly Γ is monotone, and IΓ consists of the (not necessarily distinct)
elements 0, S(0), S(S(0)),

42 2. CONSTRUCTIVE ORDINALS

2.4.2. An induction principle for monotone inductive defini-
tions. The premise Γ(X) ⊆ X in part (a) of the Knaster-Tarski Theorem
is in the special case of the example above equivalent to

∀u [u = 0 ∨ ∃v∈X(u = S(v)) → u ∈ X],

i.e., to
0 ∈ X ∧ ∀v∈X(S(v) ∈ X),

and the conclusion is ∀u∈IΓ
(u ∈ X). Hence part (a) of the Knaster-Tarski

Theorem expresses some kind of a general induction principle. However,
in the “induction step” we do not quite have the desired form: instead of
∀v∈X(S(v) ∈ X) we would like to have ∀v∈IΓ

(v ∈ X → S(v) ∈ X). But this
can be achieved easily. The theorem below formulates this in the general
case.

Theorem (Induction principle for monotone inductive definitions). Let
Γ be a monotone operator. If Γ(X ∩ IΓ) ⊆ X, then IΓ ⊆ X.

Proof. Because of Γ(X∩IΓ) ⊆ Γ(IΓ) = IΓ we obtain from the premise
Γ(X ∩ IΓ) ⊆ X ∩ IΓ. Therefore we have IΓ ⊆ X ∩ IΓ by definition of IΓ,
hence IΓ ⊆ X. �

Note that because of Γ(X∩IΓ) ⊆ Γ(IΓ) = IΓ the premise of the theorem
could further be weakened to IΓ ∩ Γ(X ∩ IΓ) ⊆ X.

2.4.3. Approximation of the least fixed point. The least fixed
point IΓ of the monotone operator Γ was defined “from above”, as intersec-
tion of all sets X such that Γ(X) ⊆ X. We now show that it can also be
obtained by stepwise approximation “from below”. In the general situation
considered here we need a transfinite iteration of the approximation steps
along the ordinals. For an arbitrary operator Γ: P(U) → P(U) we define
Γ↑α by transfinite recursion on ordinals α:

Γ↑0 := ∅,
Γ↑(α+ 1) := Γ(Γ↑α),

Γ↑λ :=
⋃
ξ<λ

Γ↑ξ, where λ denotes a limit ordinal.

It turns out that not only monotone, but also certain other not necessarily
monotone operators Γ have fixed points that can be approximated by these
Γ↑α. Call an operator Γ inclusive if X ⊆ Γ(X) for all X ⊆ U .

Lemma. Let Γ be a monotone or inclusive operator.
(a) Γ↑α ⊆ Γ↑(α+ 1) for all ordinals α.
(b) If Γ↑α = Γ↑(α+ 1), then Γ↑(α+ β) = Γ↑α for all ordinals β.
(c) Γ↑α = Γ↑(α+ 1) for some α such that Card(α) ≤ Card(U).

So Γ :=
⋃

β∈On Γ↑β = Γ↑α, where α is the least ordinal such that Γ↑α =
Γ↑(α + 1), and On denotes the class of all ordinals. This α is called the
closure ordinal of Γ and is denoted by |Γ|. The set Γ is called the closure of
the operator Γ. Clearly Γ is a fixed point of Γ.

2.4. INDUCTIVE DEFINITIONS 43

Proof. (a). For monotone Γ we use transfinite induction on α. The
case α = 0 is trivial. In the successor case we have

Γ↑α = Γ(Γ↑(α− 1)) ⊆ Γ(Γ↑α) = Γ↑(α+ 1).

Here we have used the IH and the monotonicity of Γ. In the limit case we
obtain

Γ↑λ =
⋃
ξ<λ

Γ↑ξ ⊆
⋃
ξ<λ

Γ↑(ξ + 1) =
⋃
ξ<λ

Γ(Γ↑ξ) ⊆ Γ
(⋃
ξ<λ

Γ↑ξ
)

= Γ↑(λ+ 1).

Again we have used the IH and the monotonicity of Γ. – In case Γ is inclusive
we simply have

Γ↑α ⊆ Γ(Γ↑α) = Γ↑(α+ 1).
(b). By transfinite induction on β. The case β = 0 is trivial. In the

successor case we have by IH

Γ↑(α+ β + 1) = Γ(Γ↑(α+ β)) = Γ(Γ↑α) = Γ↑(α+ 1) = Γ↑α,
and in the limit case again by IH

Γ↑(α+ β) =
⋃
γ<β

Γ↑(α+ γ) = Γ↑α.

(c). Assume that for all α such that Card(α) ≤ Card(U) we have Γ↑α (
Γ↑(α+1), and let uα ∈ Γ↑(α+1) \Γ↑α. This defines an injective map from
{α | Card(α) ≤ Card(U) } into U . But this set {α | Card(α) ≤ Card(U) }
is exactly the least cardinal larger than Card(U), so this is impossible. �

We now show that for a monotone operator Γ its closure Γ is in fact its
least fixed point IΓ.

Lemma. Let Γ be a monotone operator. Then for all ordinals α we have
(a) Γ↑α ⊆ IΓ.
(b) If Γ↑α = Γ↑(α+ 1), then Γ↑α = IΓ.

Proof. (a). By transfinite induction on α. The case α = 0 is trivial.
In the successor case we have by IH Γ↑(α − 1) ⊆ IΓ. Since Γ is monotone
this implies

Γ↑α = Γ(Γ↑(α− 1)) ⊆ Γ(IΓ) = IΓ.

In the limit case we obtain from the IH Γ↑ξ ⊆ IΓ for all ξ < λ. This implies

Γ↑λ =
⋃
ξ<λ

Γ↑ξ ⊆ IΓ.

(b). Let Γ↑α = Γ↑(α + 1), hence Γ↑α = Γ(Γ↑α). Then Γ↑α is a fixed
point of Γ, hence IΓ ⊆ Γ↑α. The reverse inclusion follows from (a). �

2.4.4. Continuous operators. We now consider the important spe-
cial case of continuous operators. A subset Z ⊆ P(U) is called directed if
for every finite Z0 ⊆ Z there is an X ∈ Z such that Y ⊆ X for all Y ∈ Z0.
An operator Γ: P(U) → P(U) is called continuous if

Γ(
⋃
Z) =

⋃
{Γ(X) | X ∈ Z }

for every directed subset Z ⊆ P(U).

Lemma. Every continuous operator Γ is monotone.

44 2. CONSTRUCTIVE ORDINALS

Proof. For X,Y ⊆ U such that X ⊆ Y we obtain Γ(Y) = Γ(X ∪ Y) =
Γ(X) ∪ Γ(Y) from the continuity of Γ, and hence Γ(X) ⊆ Γ(Y). �

For a continuous operator the transfinite approximation of its least fixed
point stops after ω steps. Hence in this case we have an easy characterization
of the least fixed point “from below”.

Lemma. Let Γ be a continuous operator. Then IΓ = Γ↑ω.

Proof. It suffices to show Γ↑(ω + 1) = Γ↑ω.

Γ↑(ω + 1) = Γ(Γ↑ω) = Γ(
⋃
n<ω

Γ↑n) =
⋃
n<ω

Γ(Γ↑n) =
⋃
n<ω

Γ↑(n+ 1) = Γ↑ω,

where in the third to last equation we have used the continuity of Γ. �

2.4.5. The accessible part of a relation. An important example of a
monotone inductive definition is the following construction of the accessible
part of a binary relation≺ on U . Note that≺ is not required to be transitive,
so (U,�) may be viewed as a reduction system. For X ⊆ U let Γ≺(X) be
the set of all ≺-predecessors of u:

Γ≺(X) := {u | ∀v≺u(v ∈ X) }.

Clearly Γ≺ is monotone; its least fixed point IΓ≺ is called the accessible part
of (U,≺) and denoted by acc(≺) or acc≺. If IΓ≺ = U , then the relation
≺ is called well-founded ; the inverse relation � is called noetherian or ter-
minating . In this special case the Knaster-Tarski Theorem and Induction
Principle in Sec.2.4.2 can be combined as follows.

∀u[∀v≺u(v ∈ X ∩ acc≺) → u ∈ X] → ∀u∈acc≺(u ∈ X).(2.2)

acc≺ is Γ≺-closed, i.e., ∀v≺u(v ∈ acc≺) implies u ∈ acc≺.(2.3)

Every u ∈ acc≺ is from Γ≺(acc≺), i.e., ∀u∈acc≺∀v≺u(v ∈ acc≺).(2.4)

Notice that (2.2) expresses an induction principle: to show that all elements
in u ∈ acc≺ are in a set X it suffices to prove the “induction step”: we can
infer u ∈ X from the assumption that all smaller v ≺ u are accessible and
in X.

By a reduction sequence we mean a finite or infinite sequence u1, u2, . . .
such that ui � ui+1. As an easy application one can show that u ∈ acc≺
if and only if every reduction sequence starting with u terminates after
finitely many steps. For the direction from left to right we use induction
on u ∈ acc≺. So let u ∈ acc≺ and assume that for every u′ such that
u � u′ every reduction sequence starting starting with u′ terminates after
finitely many steps. Then clearly also every reduction sequence starting
with u must terminate, since its second member is such a u′. Conversely,
suppose we would have a u /∈ acc≺. We construct an infinite reduction
sequence u = u1, u2, . . . , un, . . . such that un /∈ acc≺; this yields the desired
contradiction. So let un /∈ acc≺. By (2.3) we then have a v /∈ acc≺ such
that un � v; pick un+1 as such a v.

2.4. INDUCTIVE DEFINITIONS 45

2.4.6. Inductive definitions over N. We now turn to inductive de-
finitions over the set N and their relation to the arithmetical and analytical
hierarchies. An operator Γ: P(N) → P(N) is called Σ0

r-definable if there is
a Σ0

r-definable relation QΓ such that for all A ⊆ N and all n ∈ N
n ∈ Γ(A) ↔ QΓ(cA, n).

Π0
r , ∆0

r , Σ1
r , Π1

r and ∆1
r-definable operators are defined similarly.

It is easy to show that every Σ0
1-definable monotone operator Γ is con-

tinuous, and hence by a lemma in 2.4.4 has closure ordinal |Γ| ≤ ω. We now
show that this consequence still holds for inclusive operators.

Lemma. Let Γ be a monotone or inclusive Σ0
1-definable operator. Then

|Γ| ≤ ω.

Proof. By assumption

n ∈ Γ(A) ↔ ∃s T1(e, n, cA(s))

for some e ∈ N. It suffices to show that Γ(Γ↑ω) ⊆ Γ↑ω. Suppose n ∈ Γ(Γ↑ω),
so T1(e, n, cΓ↑ω(s)) for some s. Since Γ↑ω is the union of the increasing
chain Γ↑0 ⊆ Γ↑1 ⊆ Γ↑2 ⊆ . . . , for some r we must have cΓ↑ω(s) = cΓ↑r(s).
Therefore n ∈ Γ(Γ↑r) = Γ↑(r + 1) ⊆ Γ↑ω. �

2.4.7. Definability of least fixed points for monotone operators.
Next we prove that the closure of a monotone Σ0

1-definable operator is Σ0
1-

definable as well (this will be seen to be false for inclusive operators). As
a tool in the proof we need König’s Lemma. Here and later we use starred
function variables f∗, g∗, h∗, . . . to range over 0-1-valued functions.

Lemma (König). Let T be a binary tree, i.e., T consists of (codes for)
sequences of 0 and 1 only and is closed against the formation of initial
segments. Then

∀n∃x[lh(x) = n ∧ ∀i<n (x)i ≤ 1 ∧ x ∈ T] ↔ ∃f∗∀s(f∗(s) ∈ T).

Proof. The direction from right to left is obvious. For the converse
assume the left hand side and let

M := { y | ∀i<lh(y) (y)i ≤ 1 ∧
∀m∃z[lh(z) = m ∧ ∀i<m (z)i ≤ 1 ∧ ∀j≤lh(y)+m Init(y ∗ z, j) ∈ T] }.

M can be seen as the set of all “fertile” nodes, possessing arbitrary long
extensions within T . To construct the required infinite path f∗ we use the
axiom of dependent choice:

∃yA(0, y) → ∀n,y(A(n, y) → ∃zA(n+ 1, z)) → ∃f∀nA(n, f(n)),

with A(n, y) expressing that y is a fertile node of length n:

A(n, y) :↔ y ∈M ∧ lh(y) = n.

Now ∃yA(0, y) is obvious (take y := 〈〉). For the step case assume that y is
a fertile node of length n. Then at least one of the two possible extensions
y ∗ 〈0〉 and y ∗ 〈1〉 must be fertile, i.e., in M ; pick z accordingly. �

Corollary. If R is Π0
1-definable, then so is

Q(~g, ~n) :↔ ∃f∗∀sR(f∗(s), ~g, ~n).

46 2. CONSTRUCTIVE ORDINALS

Proof. By König’s Lemma we have

Q(~g, ~n) ↔ ∀n∃x≤〈1,...,1〉[lh(x) = n ∧ ∀i<n (x)i ≤ 1 ∧R(x,~g, ~n)]. �

We now show that the Π1
1 and Σ0

1-definable relations are closed against
monotone inductive definitions.

Theorem. Let Γ: P(N) → P(N) be a monotone operator.
(a) If Γ is Π1

1-definable, then so is its least fixed point IΓ.
(b) If Γ is Σ0

1-definable, then so is its least fixed point IΓ.

Proof. Let Γ: P(N) → P(N) be a monotone operator and n ∈ Γ(A) ↔
QΓ(cA, n).

(a). Assume QΓ is Π1
1-definable. Then IΓ is the intersection of all Γ-

closed sets, so

n ∈ IΓ ↔ ∀f [∀m(QΓ(f,m) → f(m) = 1) → f(n) = 1].

This shows that IΓ is Π1
1-definable.

(b). Assume QΓ is Σ0
1-definable. Then IΓ can be represented in the form

n ∈ IΓ ↔ ∀f∗ [∀m(QΓ(f∗,m) → f∗(m) = 1) → f∗(n) = 1]

↔ ∀f∗∃mR(f∗,m, n) with R recursive

↔ ∀f∗∃s T1(e, n, f∗(s)) for some e.

By the corollary to König’s Lemma IΓ is Σ0
1-definable. �

2.4.8. Some counterexamples. If Γ is a non monotone but only in-
clusive Σ0

1-definable operator, then its closure Γ need not even be arithmeti-
cal. Recall from 1.6.5 the definition of the universal Σ0

r+1-definable relations
U0

r+1(e, n):

U0
1 (e, n) :↔ ∃s T (e, n, s) (↔ n ∈W (1)

e),

U0
r+1(e, n) :↔ ∃m¬U0

r (e, n ∗ 〈m〉).
Let

U0
ω := { 〈r, e, ~n〉 | U0

r+1(e, 〈~n〉) }.
Clearly for every arithmetical relation R there are r, e such that R(~n) ↔
〈r, e, ~n〉 ∈ U0

ω. Hence U0
ω can not be arithmetical, for if it would be say

Σ0
r+1-definable, then every arithmetical relation R would be Σ0

r+1-definable,
contradicting the fact that the arithmetical hierarchy is properly expanding.
On the other hand we have

Lemma. There is an inclusive Σ0
1-definable operator Γ such that Γ = U0

ω,
hence Γ is not arithmetical.

Proof. We define Γ such that

(2.5) Γ↑r = { 〈t, e, ~n〉 | 0 < t ≤ r ∧ U0
t (e, 〈~n〉) }.

Let

s ∈ Γ(A) :↔
s ∈ A ∨
∃e,~n [s = 〈1, e, ~n〉 ∧ U0

1 (e, 〈~n〉)] ∨

2.4. INDUCTIVE DEFINITIONS 47

∃t,e,~n [s = 〈t+ 1, e, ~n〉 ∧ ∃e1, ~m 〈t, e1, ~m〉 ∈ A ∧ ∃m〈t, e, ~n,m〉 /∈ A].

We now prove (2.5) by induction on r. The base case r = 0 is obvious. In
the step case we have

s ∈ Γ(Γ↑r) ↔
s ∈ Γ↑r ∨
∃e,~n [s = 〈1, e, ~n〉 ∧ U0

1 (e, 〈~n〉)] ∨
∃t,e,~n[s = 〈t+ 1, e, ~n〉 ∧ ∃e1, ~m 〈t, e1, ~m〉 ∈ Γ↑r ∧ ∃m〈t, e, ~n,m〉 /∈ Γ↑r]

↔ s ∈ Γ↑r ∨
∃e,~n [s = 〈1, e, ~n〉 ∧ U0

1 (e, 〈~n〉)] ∨
∃t,e,~n [s = 〈t+ 1, e, ~n〉 ∧ 0 < t ≤ r ∧ ∃m¬U0

t (e, 〈~n,m〉)]
↔ ∃t,e,~n [s = 〈t, e, ~n〉 ∧ 0 < t ≤ r ∧ U0

t (e, 〈~n〉)] ∨
∃e,~n [s = 〈1, e, ~n〉 ∧ U0

1 (e, 〈~n〉)] ∨
∃t,e,~n [s = 〈t+ 1, e, ~n〉 ∧ 0 < t ≤ r ∧ U0

t+1(e, 〈~n〉)]
↔ s ∈ { 〈t, e, ~n〉 | 0 < t ≤ r + 1 ∧ U0

t (e, 〈~n〉)] }.

Clearly Γ is a Σ0
1-definable inclusive operator. By 2.4.6 its closure ordinal

|Γ| is ≤ ω, so Γ↑ω = Γ. But clearly Γ↑ω =
⋃

r Γ↑r = U0
ω. �

On the positive side we have

Lemma. For every inclusive ∆1
1-definable operator Γ its closure Γ is

∆1
1-definable.

Proof. Let Γ be an inclusive operator such that n ∈ Γ(A) ↔ QΓ(cA, n)
for some ∆1

1-definable relation QΓ. Let

f∗(p) :=

{
1 if p = 〈r + 1, n〉 and n ∈ Γ↑r
0 otherwise

and consider the following ∆1
1-definable relation R.

R(g) :↔ ∀p [g(p) ≤ 1] ∧
∀p [lh(p) 6= 2 ∨ (p)0 = 0 → g(p) = 0]

∀r∀n [g〈r + 1, n〉 = 1 ↔ QΓ(λxg〈r, x〉, n)].

Clearly R(f∗). Moreover, for every g such that R(g) we have g(p) = 0 for
all p not of the form 〈r + 1, n〉, and it is easy to prove that

g〈r + 1, n〉 = 1 ↔ n ∈ Γ↑r.
Therefore f∗ is the unique member of R, and we have

n ∈ Γ ↔ ∃rn ∈ Γ↑r ↔ ∃rg〈r + 1, n〉 = 1

↔ ∃g [R(g) ∧ ∃rg〈r + 1, n〉 = 1]

↔ ∀g [R(g) → ∃rg〈r + 1, n〉 = 1].

Hence Γ is ∆1
1-definable. �

Corollary. U0
ω ∈ ∆1

1 \∆0
∞.

48 2. CONSTRUCTIVE ORDINALS

2.5. Notations for Constructive Ordinals

In this section we prove the equivalence of two systems of notations
for ordinals: Kleene’s system O and the set W of indices of recursive well-
orderings. In both cases we assign natural numbers to ordinals from a certain
section of the countable ordinals.

2.5.1. Kleene’s notation system O. The definition of Kleene’s no-
tation system O distinguishes cases according to whether an ordinal is zero,
a successor or a limit. A (countable) limit ordinal α can be given by a
(countable) increasing sequence of ordinals converging to α. If the notations
of such a sequence can be enumerated by a recursive function ϕe, then e
determines a notation for α in O.

Definition. By transfinite recursion on the countable ordinals α we
simultaneously define
(a) a set Oα ⊆ N of ordinal notations for α, and
(b) a relation <Oα⊆ N× N
such that for α < β the sets Oα and Oβ are disjoint, and b <Oα a implies
a ∈ Oα and b ∈ Oβ for some β < α. From the the disjointness of the Oα’s
it follows that any a ∈ Oα uniquely determines the denoted ordinal α; we
write α = |a|O in this case. If a ∈ Oα, then we also write b <O a for b <Oα a.

O0 := {1},
<O0 := ∅,

Oα+1 := { 2a | a ∈ Oα },
<Oα+1 := { (b, 2a) | a ∈ Oα ∧ (b <O a ∨ b = a) }

and in case α is a limit ordinal

Oα := { 3 · 5e | ϕe is a total unary function ∧
∀n∃γ<α ϕe(n) ∈ Oγ ∧
∀n ϕe(n) <O ϕe(n+ 1) ∧
∀β<α∃n,γ (β ≤ γ < α ∧ ϕe(n) ∈ Oγ) },

<Oα := { (b, 3 · 5e) | 3 · 5e ∈ Oα ∧ ∃n b <O ϕe(n) }.

Let
O :=

⋃
α∈On

Oα, <O:=
⋃

α∈On

<Oα .

This is compatible with the notation b <O a introduced above. We write
a ≤O b for a <O b ∨ a = b.

Note. From 3 · 5e ∈ O we can conclude that ϕe(n) <O 3 · 5e, since by
definition we then have ϕe(n) <O ϕe(n+ 1).

Intuitively O can be viewed as follows. All finite ordinals get a unique
notation in O. But already the first limit ordinal ω has infinitely many no-
tations, for two reasons. First, there are infinitely many recursive sequences
converging to ω, and second, each of these sequences has infinitely many
indices.

The choice of numbers of the form 3 · 5e as notation for limit ordinals
has historical reasons; of course one could take for instance 〈3, e〉 or 3e as
well.

2.5. NOTATIONS FOR CONSTRUCTIVE ORDINALS 49

2.5.2. Properties of <O. We first show that <O is a transitive and
irreflexive relation on O (i.e., a strict partial ordering); clearly <O is not a
linear ordering.

Lemma. (a) If a <O b and b <O c, then a <O c.
(b) a 6<O a.

Proof. (a). We use induction on |c|O. The case |c|O = 0 (i.e., c = 1)
is obvious. Now let c = 2d. We distinguish cases according to b <O 2d: in
case b <O d the claim follows from the IH and in case b = d from the first
assumption. Finally let c = 3 ·5e. Then b <O ϕe(n) ∈ Oγ for some γ < |c|O,
hence a <O ϕe(n) by IH. Now a <O 3 · 5e by definition.

(b). By induction on |a|O, using (a). The case |a|O = 0 is obvious. Case
2a. Assume 2a <O 2a. Then by definition we have 2a <O a∨ 2a = a. In the
first case from a <O 2a and (a) we obtain a <O a and hence a contradiction
by IH; the second case clearly is impossible. Case 3·5e. Assume 3·5e <O 3·5e.
Then by definition 3 · 5e <O ϕe(n) for some n. From ϕe(n) <O 3 · 5e (cf. the
remark above) and (a) we obtain ϕe(n) <O ϕe(n) and hence a contradiction
by IH. �

Clearly 1 is the least element of the partial ordering <O: by induction
on |a|O one easily shows 1 ≤O a.

2.5.3. Addition of ordinal notations. Next we introduce a function
+O, which corresponds on O to the addition of ordinals.

Definition.

a+O b :=

a if b = 1 and a 6= 0,
2a+Oc if b = 2c and c 6= 0,
3 · 5S(+O,a)◦e if b = 3 · 5e,

7 otherwise.

Here +O is an index of +O, S is the function from the Substitution Lemma
and ◦ is the elementary function comp from 1.3.1; hence

ϕe1◦e2(~n) = ϕe1(ϕe2(~n)).

By Kleene’s Second Recursion Theorem for recursive functions there is a
recursive solution +O of the equation above.

Remark. In case b = 1 we need the assumption a 6= 0, since we later
want to infer a, b ∈ O from a +O b ∈ O; without the assumption we would
have

0 +O 21 = 20+O1 = 20 = 1 ∈ O, but 0 /∈ O.

Lemma. For a, b ∈ O we have
(a) a+O b ∈ O.
(b) If c <O b, then a+O c <O a+O b.
(c) |a+O b|O = |a|O + |b|O.

Proof. All three parts are proved simultaneously by transfinite induc-
tion on |b|O. The case |b|O = 0 (i.e., b = 1) is obvious.

50 2. CONSTRUCTIVE ORDINALS

Case b = 2d with d ∈ O. (a). By IH we have a +O d ∈ O. hence
2a+Od = a +O 2d ∈ O. (b). Assume c <O b. Then either c <O d or c = d.
In the first case we have, using the IH

a+O c <O a+O d <O 2a+Od = a+O b

The second case is even simpler. (c).

|a+O b|O = |a+O d|O + 1 = |a|O + |d|O + 1 = |a|O + |b|O.
Case b = 3 · 5e. With ϕe also ϕS(+O,a)◦e is total. By IH(b) we have

ϕS(+O,a)◦e(n) = a+O ϕe(n) <O a+O ϕe(n+ 1) = ϕS(+O,a)◦e(n+ 1)

Moreover,

|a+O b|O = |3 · 5S(+O,a)◦e|O
= sup

n<ω
|a+O ϕe(n)|O

= sup
n<ω

(|a|O + |ϕe(n)|O) by IH(c)

= |a|O + sup
n<ω

|ϕe(n)|O

= |a|O + |b|O.

Now also (a) and (b) can be seen easily. �

2.5.4. Equivalence of the two notation systems. We now show
that the ordinals denoted by notations a ∈ O are precisely the recursive
ordinals. The essential tool in the proof is the Recursion Lemma, an easy
but important consequence of Kleene’s Second Recursion Theorem.

Lemma (Recursion Lemma). Let <M be a well-founded partial ordering
of a set M ⊆ N and R ⊆M ×N some binary relation. Assume that there is
a partial recursive function χ such that for every n ∈M and t

∀m<MnR(m,ϕt(m)) → R(n, χ(t, n)).

Then we can find a partial recursive function ϕ such that ∀n∈MR(n, ϕ(n)).
Moreover, if χ is total, then so is ϕ.

Proof. By Kleene’s Second Recursion Theorem we can find e0 ∈ N
such that for all n we have ϕe0(n) = χ(e0, n). For ϕ := ϕe0 we can easily
prove the claim by induction on <M . �

Let
W := { e | ϕe ∈ WOrd }.

Clearly W is Π1
1-definable (cf. the example of WOrd(f) in 2.2.1). For e ∈ W

we write |e|W for the order type of the well-ordering <e denoted by e, so
n <e m ↔ ϕe〈n,m〉 = 1.

Theorem. An ordinal α is recursive if and only if α = |a|O for some
a ∈ O.

Proof. First assume α = |a|O for some a ∈ O. We apply the Recursion
Lemma to O and <O with

R(a, e) :↔ a ∈ O ∧ e ∈ W ∧ |a|O < |e|W .

2.5. NOTATIONS FOR CONSTRUCTIVE ORDINALS 51

Since the recursive ordinals form an initial segment of the (countable) ordi-
nals it suffices to find a partial recursive function ϕ such that ∀a∈OR(a, ϕ(a)).
By the Recursion Lemma this will follow from the existence of a partial re-
cursion function χ such that for all a ∈ O and t

(2.6) ∀b<OaR(b, ϕt(b)) → R(a, χ(t, a)).

We prove (2.6) by cases on a, simultaneously with the construction of χ.
For a = 1 let χ(t, a) be an index of a one-element well-ordering. Case 2a.

By assumption ϕt(a) is an index of a well-ordering of order type > |a|O. Let
χ(t, 2a) be an index of a new well-ordering obtained from this one by adding
one element at the end. Case 3 · 5e. For every n by assumption ϕt(ϕe(n))
is an index of a well-ordering of order type > |ϕe(n)|O. Let χ(t, 3 · 5e) be
an index of the new recursive well-ordering obtained by appending all these
(with n increasing).

For the converse we again apply the Recursion Lemma. First we have to
construct from the given well-ordering ≺ a new one ≺′, in order to be able
to recursively distinguish the successor and the limit case.

〈n1,m1〉 ≺′ 〈n2,m2〉 :↔ n1 ≺ n2 ∨ (n1 = n2 ∧m1 < m2).

We then clearly have |≺′| = ω · |≺|. Now let

R(p, a) :↔ p ∈ Field(≺′) ∧ a ∈ O ∧ |p|≺′ ≤ |a|O.
Here |p|≺′ is the order type of the well-ordering obtained from ≺′ by “cutting
off” at p, i.e., of ≺′ restricted to { q | q ≺′ p }. We may assume that for
some p we have |≺| = |p|≺′ ; hence it suffices to construct a partial recursive
ϕ such that ∀p∈Field(≺′)R(p, ϕ(p)). Again by the Recursion Lemma this will
follow from the existence of a partial recursion function χ such that for all
p ∈ Field(≺′) and t

(2.7) ∀q≺′pR(q, ϕt(q)) → R(p, χ(t, p)).

We prove (2.7) by cases on p, simultaneously with the construction of χ. So
assume ∀q≺′pR(q, ϕt(q)).

Case p = 〈n0, 0〉 with n0 minimal element in the well-ordering ≺. Let
χ(t, p) := 1.

Case p = 〈n,m+ 1〉. Let χ(t, p) := 2ϕt〈n,m〉.
Case p = 〈n1, 0〉 with n1 6= n0. Then |p|≺′ is a limit ordinal. We define

a fundamental sequence f for p in ≺′ by

f(0) := 〈n0, 0〉
and for f(k) = 〈n,m〉 we let

f(k + 1) :=

{
〈k, 0〉 if n ≺ k ≺ n1

〈n,m+ 1〉 otherwise.

f is a total recursive function, and an e such that f = ϕe can be computed
elementarily from p. Moreover we have

∀〈n,m〉≺′p∃k 〈n,m〉 ≺′ f(k).

Let

g(0) := 1,

52 2. CONSTRUCTIVE ORDINALS

g(k + 1) := g(k) +O ϕt◦e(k) +O 21.

Again an index e1 of g can be computed elementarily from p, t. Now with
χ(t, p) := 3 · 5e1 we have R(p, χ(t, p)). �

2.6. Complexity of the Two Notation Systems

The two systems O and W are equivalent not only with respect to the
ordinals they denote, but also with respect to their complexity: both are
complete Π1

1-definable sets. This can be proven easily for W, essentially
because W is defined explicitely. For O we need some knowledge about
inductive definitions.

2.6.1. Π1
1-completeness of W.

Lemma. W is Π1
1-complete.

Proof. We already noted that W is Π1
1-definable. Now let B ⊆ N be

an arbitrary Π1
1-definable set. Then for some e ∈ N

n ∈ B ↔ ∀g∃s T1(e, n, g(s)).

Let

Tree(e, n) := { 〈n0, . . . , nl−1〉 | ∀k<l ¬T1(e, n, 〈n0, . . . , nk−1〉) }.
So Tree(e, n) is the tree of non-past-secured sequence numbers for the oracle
programs with index e and input n. (Its relation to the similar construction
in Sec.2.3 is that Tree(e) = { 〈n〉 ∗ σ | σ ∈ Tree(e, n) }.) Let <KB be the
Kleene-Brouwer ordering of Tree(e, n); clearly <KB is a well-ordering if and
only if Tree(e, n) is well-founded. Therefore

n ∈ B ↔ Tree(e, n) is well-founded ↔ <KB is a well-ordering.

Let f be a recursive function associating with any n an index of the Kleene-
Brouwer ordering <KB of Tree(e, n). Then

n ∈ B ↔ f(n) ∈ W.

This shows that W is Π1
1-complete. �

2.6.2. A Σ0
1-definable extension <′O of Kleene’s <O. In order to

obtain estimates of the complexity of O and <O in the analytical hierarchy
we inductively define an extension <′O of Kleene’s <O by the clauses
(a) If a 6= 0, then a <′O 2a.
(b) If T (e, n, s) and U(e, n, s) = a, then a <′O 3 · 5e.
(c) <′O is transitive.

Lemma. <′O is Σ0
1-definable.

Proof. We apply the theorem in 2.4.7 to the relation Q defined as
follows.

Q(f, x) :↔ ∃a(a 6= 0 ∧ x = 〈a, 2a〉) ∨
∃e,n,s,a [T (e, n, s) ∧ U(e, n, s) = a ∧ x = 〈a, 3 · 5e〉] ∨
∃a,b,c [f〈a, b〉 = 1 ∧ f〈b, c〉 = 1 ∧ x = 〈a, c〉].

Clearly Q is Σ0
1-definable and monotone. Hence by the theorem the binary

relation <′O defined inductively by Q is Σ0
1-definable as well. �

2.6. COMPLEXITY OF THE TWO NOTATION SYSTEMS 53

Lemma. If b ∈ O, then a <O b ↔ a <′O b.

Proof. Let b ∈ O. For the direction from left to right we use transfinite
induction on β := |b|O. In the successor case β = α + 1 we habe b = 2c

with c ∈ Oα and a <O c ∨ a = c. In the first case we have by IH a <′O c,
so a <′O 2c by c <′O 2c and transitivity of <′O. In the second case we have
a = c, so a <′O 2c follows from c <′O 2c. Now assume that β is a limit, so
b = 3 ·5e ∈ Oβ and a <O ϕe(n) for some n. Then we have by IH a <′O ϕe(n)
and ϕe(n) <′O 3 · 5e be definition of <′O, hence a <′O 3 · 5e by transitivity.

For the converse we use the induction principle associated with the
monotone inductive definition of <′O. If a <′O 2a, then from 2a ∈ O we
can conclude a ∈ O and hence a <O 2a. If a <′O 3 · 5e and a = ϕe(n), then
from a = ϕe(n) <O ϕe(n + 1) we can infer a <O 3 · 5e by the definition
of <O. Finally assume that a <′O b is obtained by the transitivity rule, so
a <′O c and c <′O b for some c. By IH we have c <O b, hence c ∈ O and
again by IH a <O c. The transitivity of <O implies a <O b. �

2.6.3. Π1
1-definability of O and <O. Using the relation <′O we are

now able to define the set O in such a way that the theorem in 2.4.7 can be
applied to obtain an estimate on its complexity in the analytical hierarchy.
To this end we first introduce a set O′ which can be seen easily to be Π1

1-
definable, and then prove O = O′. We define O′ inductively by the clauses
(a) 1 ∈ O′.
(b) If a ∈ O′, then also 2a ∈ O′.
(c) If ϕe is total and for all n we have ϕe(n) ∈ O′ and ϕe(n) <′O ϕe(n+ 1),

then 3 · 5e ∈ O′.
It is now easy to see that O′ is Π1

1-definable. Let

Q(f, a) :↔ a = 1 ∨

∃b [f(b) = 1 ∧ a = 2b] ∨
∃e [ϕe total ∧ ∀n f(ϕe(n)) = 1 ∧ ∀n ϕe(n) <′O ϕe(n+ 1) ∧ a = 3 · 5e].

Q is arithmetical, hence Π1
1-definable and clearly O′ is the set defined in-

ductively by Q. Therefore O′ is Π1
1-definable.

Theorem. O and <O are Π1
1-definable.

Proof. From the lemma above (on the equivalence of <O and <′O below
b ∈ O) one can easily show a ∈ O ↔ a ∈ O′, using transfinite induction
in one direction and induction on the definition of O′ in the other direction.
Hence O is Π1

1-definable. Because of a <O b ↔ b ∈ O ∧ a <′O b also <O is
Π1

1-definable. �

2.6.4. Π1
1-completeness of O and <O. The last goal of this section is

a proof of the Π1
1-completeness of O and <O. This requires some additional

observations concerning +O.

Lemma. (a) If a+O b ∈ O, then also a ∈ O and b ∈ O.
(b) If a+O b = a+O c ∈ O, then b = c.
(c) For every d such that a ≤O d <O a +O b we can find c ∈ O such that

c <O b and d = a+O c.

54 2. CONSTRUCTIVE ORDINALS

Proof. All three parts are proved simultaneously by transfinite induc-
tion on |a+O b|O.

(a). Assume a+Ob ∈ O. We distinguish cases according to the definition
of a +O b. Case a +O b = a with b = 1 and a 6= 0. Then clearly a, b ∈ O.
Case a +O b = 2a+Oc with b = 2c and c 6= 0. Then a +O c ∈ O and
|a +O c|O < |a +O b|O, hence by IH a, c ∈ O, so also b = 2c ∈ O. Case
a +O b = 3 · 5S(+O,a)◦e ∈ O with b = 3 · 5e. Then for every n we have
ϕS(+O,a)◦e(n) = a+O ϕe(n) ∈ O and |a+O ϕe(n)|O < |a+O b|O. Hence by
IH a ∈ O and ϕe(n) ∈ O. It remains to show that 3 · 5e ∈ O. We first prove
that ϕe(n) <O ϕe(n+ 1). Because of

a ≤O a+O ϕe(n) <O a+O ϕe(n+ 1)

by IH(c) there exists c ∈ O such that c <O ϕe(n+1) and a+Oϕe(n) = a+Oc.
Now IH(b) yields ϕe(n) = c <O ϕe(n + 1). Hence with β := supn |ϕe(n)|O
we have 3 · 5e ∈ Oβ. Case a +O b = 7. This contradicts our assumption
a+O b ∈ O.

(b). Assume a +O b = a +O c ∈ O. Then by (a) a, b, c ∈ O. Case
b = 1. Then a = a +O c, hence c = 1 (we need 1 ≤O c and part (b) of
the lemma in 2.5.3 here). Case c = 1. Similarly we obtain b = 1. Case
b = 2b1 and c = 2c1 . Then a +O b = 2a+Ob1 = 2a+Oc1 = a +O c, hence
a +O b1 = a +O c1 ∈ O and therefore b1 = c1 by IH. Case b = 3 · 5e1 and
c = 3 · 5e2 . Then S(+O, a) ◦ e1 = S(+O, a) ◦ e2, hence e1 = e2 by the
definition of ◦ (which can be assumed to be injective).

(c). Assume a ≤O d <O a+O b. By (a) we have a ∈ O and b ∈ O. Case
a +O b = 2a+Oc with b = 2c and c 6= 0. Then d <O a +O c or d = a +O c.
In the first case by IH we can find c1 ∈ O such that c1 <O c <O b and
d = a+O c1. In the second case we immediately have c <O b and d = a+O c.
Case a+O b = 3 ·5S(+O,a)◦e with b = 3 ·5e. Then a ≤O d <O a+Oϕe(n) ∈ O
for some n, hence by IH we can find c ∈ O such that c <O ϕe(n) and
d = a+O c. But clearly c <O 3 · 5e = b. �

Now we can show

Theorem. O and <O are Π1
1-complete.

Proof. By 2.6.3 we know that O is Π1
1-definable. To prove the Π1

1-
completeness of O we begin as in the proof of the Π1

1-completeness of W in
2.6.1. So let B ⊆ N be an arbitrary Π1

1-definable set. Then for some e ∈ N

n ∈ B ↔ ∀g∃s T1(e, n, g(s)).

Let

Tree(e, n) := { 〈n0, . . . , nl−1〉 | ∀k<l ¬T1(e, n, 〈n0, . . . , nk−1〉) }.
We are done if we can define a recursive function g such that

Tree(e, n) is a well-founded tree ↔ g(n) ∈ O.
We prove more generally that there exists a recursive function h such that
(2.8)

Treey(e, n) := { z | y ∗ z ∈ Tree(e, n) } is well-founded ↔ h(y, n) ∈ O.
With g(n) := h(〈〉, n) we then obtain our desired function g.

2.7. NOTES 55

We define h via Kleene’s Second Recursion Theorem as follows.

h(y, n) =

{
1 if y /∈ Tree(e, n)
3 · 5e1 if y ∈ Tree(e, n)

with e1 an index of the sequence f defined by

f(0) := 1,

f(m+ 1) := f(m) +O h(y ∗ 〈m〉, n) +O 21.

Let us now prove (2.8). For the direction from left to right we use induction
on Treey(e, n). So let z ∈ Treey(e, n), i.e., y ∗ z ∈ Tree(e, n). Then for
all m by IH or the definition of h we have h(y ∗ z ∗ 〈m〉, n) ∈ O, hence
h(y ∗ z, n) ∈ O. For the converse we use induction on |h(y, n)|O. So assume
h(y, n) ∈ O. If y /∈ Tree(e, n), then Treey(e, n) = ∅ and we are done. If
however y ∈ Tree(e, n), then with h(y, n) = 3 · 5e all ϕe(m) = f(m) are in
O, hence by part (a) of the lemma in 2.6.4 all h(y∗〈m〉, n) are in O. Because
of |h(y ∗ 〈m〉, n)|O < |h(y, n)|O, by IH Treey∗〈m〉(e, n) is well-founded for all
m, hence also Treey(e, n).

Now the Π1
1-completeness of <O follows from a ∈ O ↔ a <O 2a. �

2.7. Notes

The example in 2.4.8 of a ∆1
1-definable non-arithmetical set is from Hin-

man [1978].
Constructive ordinals have been introduced by Kleene; in our exposition

in Sec.2.5 we have made use of Rogers [1967], Spector [1955] and Enderton
and Luckham [1964]. The theory of inductive definitions has first been made
explicit in work of Spector [1961]; however, many of the relevant notions and
arguments were already present in previous papers of Kleene. In Sec.2.6 we
followed [Kleene, 1944, 1955].

CHAPTER 3

Hyperarithmetical Sets and Functions

We have seen that the arithmetical relations can be exhausted by iter-
ating the recursive successor A′. So if we define

A0 := ∅,
An+1 := A′n,

then every arithmetical set is recursive in some An and conversely. Now if
we define

Aω := {n | (n)0 ∈ A(n)1 },
then we obtain a non-arithmetical set. If we again apply the successor
operation, we obtain

Aω+1 := A′ω,

Aω+2 := A′′ω etc.

Clearly this process can be extended into the transfinite. In the present
chapter we will study the system of sets obtained in this way, where as in-
dex set we use the constructive ordinals. We obtain the hyperarithmetical
hierarchy of Kleene, which – as we will prove – exhausts the ∆1

1-definable
sets. A further characterization has been given by Kreisel: the hyperarith-
metical functions form the least class of functions closed against “recursive
in” and the axiom of choice in the form (with R arithmetical)

∀n∃fR(f, n) → ∃g∀nR((g)n, n).

Moreover we will prove in this chapter the Hyperarithmetical Quantifier
Theorem of Kleene and as applications some results on paths in O.

3.1. The Hyperarithmetical Hierarchy

The hyperarithmetical hierarchy is formed by recursive closure of its
“backbone” {Ha | a ∈ O }. The sets Ha themselves are built by iterating
the recursive successor (or jump) along the constructive ordinals, with dia-
gonalization in the limit case. It turns out – and this is the most important
result in this section – that modulo recursive equivalenceHa does not depend
on the special choice of a but only on the ordinal denoted by a. More
precisely, if |a|O = |b|O, then Ha is recursive in Hb and conversely.

3.1.1. Lifting relative recursiveness. We shall write A ≤ [e]B for
∀n(cA(n) = Φe(cB, n)), read as “A is recursive in B with index e”.

Lemma. There is an elementary function ◦ such that from A ≤ [e1]B
and B ≤ [e2]C we can conclude A ≤ [e1 ◦ e2]C.

57

58 3. HYPERARITHMETICAL SETS AND FUNCTIONS

Proof.

cA(n) = Φe1(cB, n)

= Φe1(λxcB(x), n)

= Φe0(e1, e2, cC , n) for a fixed e0
= ΦS(e0,e1,e2)(cC , n),

where S(e0, e1, e2) of course stands for S(S(e0, e1), e2). So let e1 ◦ e2 :=
S(e0, e1, e2). �

Note that the function ◦ introduced here is is not the same as the func-
tion also denoted by ◦ introduced in Sec.2.5 (with the property ϕe1◦e2(~n) =
ϕe1(ϕe2(~n))); it will always be clear from the context which one is meant.
We write e(i) for e ◦ e · · · ◦ e with i occurrences of e (associated to the left).

Proposition. If A ≤ [e]B, then A′ ≤ [N(e)]B′ with an elementary
function N .

Proof. We have

n ∈ A′ ↔ ∃s T2((n)0, cA, (n)1, s)

↔ ∃s T2((n)0, λxΦe(cB, x), (n)1, s)

↔ ∃sR(cB, e, n, s) for a recursive R, since λxΦe(cB, x) is total

↔We0(cB, e, n) for a fixed e0
↔WS(e0,e)(cB, n)

↔ ∃s T2(S(e0, e), cB, n, s)

↔ 〈S(e0, e), n〉 ∈ B′,

hence

cA′(n) = cB′(〈S(e0, e), n〉) = Φe1(cB′ , e, n) = ΦS(e1,e)(cB′ , n)

for a fixed e1. Let N(e) := S(e1, e). �

3.1.2. Definition and simple properties of the sets Ha. We now
define the hyperarithmetical hierarchy , consisting of sets Ha ⊆ N for every
a ∈ O. They are defined by

H1 := ∅,

H2a :=
(
Ha

)′
,

H3·5e := {n | (n)0 <O 3 · 5e ∧ (n)1 ∈ H(n)0 }.

A set A is called hyperarithmetical if A is recursive in some Ha with a ∈ O.
It will be useful to introduce the following notations. We shall say that

a denotes a successor number if a = 2(a)0 , and that a denotes a limit if
a = 3 · 5(a)2 . Let a∗ := 2a, called ordinal successor of a. Finally let

a− :=

{
(a)0 if a denotes a successor number
a otherwise.

a− is called ordinal predecessor of a.

3.1. THE HYPERARITHMETICAL HIERARCHY 59

Our goal in the present section is to show that Ha is recursive in Hb and
conversely, provided |a|O = |b|O; this will be achieved in 3.1.3. Let us begin
with the special case where a and b are comparable with respect to ≤O.

Lemma. If a ≤O b, then Ha is recursive in Hb, effectively in a and b.
In fact, there is an elementary function f such that Ha ≤ [f(a, b)]Hb.

Proof. Case 1: a = b. Then clearly Ha ≤ [e0]Hb with a fixed e0.
Case 2: b can be reached from a in finitely many successor steps, i.e.,

b = a∗···∗ with i stars. Since for a certain e1 we have A ≤ [e1]A′, we can
conclude from the proposition in 3.1.1 that Ha ≤ [e(i)1]Hb.

Case 3: Otherwise. Then for some c denoting a limit we have a ≤O
c ≤O b and b = c∗···∗ with i ≥ 0 stars. So again we have Hc ≤ [e(i)1]Hb.
Moreover

n ∈ Ha ↔ 〈a, n〉 ∈ Hc

↔ Φe2(cHc , a, n) = 1 for some fixed e2
↔ ΦS(e2,a)(cHc , n) = 1.

Therefore Ha ≤ [S(e2, a)]Hc and hence Ha ≤ [e(i)1 ◦ S(e2, a)]Hb. �

The following auxiliary proposition will be needed in 3.1.3.

Proposition. For every b ∈ O the set

O|b| := { a ∈ O | |a|O < |b|O }

is recursive in Hb∗, effectively in b.

Proof. We apply the Recursion Lemma to O and <O, with respect to
the relation

R(b, e) : ↔ b ∈ O ∧O|b| ≤ [e]Hb∗ .

So we need to construct a recursive function χ such that for arbitrary t and
b ∈ O from the assumption

(3.1) ∀c<ObR(c, ϕt(c))

we can infer R(b, χ(t, b)).
Case 1: b = 1 or b = 1∗. Then we have O|1| = ∅ ≤ [e0]H1∗ and

O|1∗| = {1} ≤ [e1]H1∗∗ for certain e0, e1, since ∅ and {1} are recursive.
Case 2: b and b− both denote successor numbers. Then we have

a ∈ O|b| ↔ a ∈ O ∧ |a|O < |b|O
↔ (a ∈ O ∧ |a|O < |b−|O) ∨ (a ∈ O ∧ a = 2(a)0 ∧ |a−|O < |b−|O)

↔ a ∈ O|b−| ∨ (a = 2(a)0 ∧ a− ∈ O|b−|).

Hence O|b| ≤ [e2]O|b−| for some e2.. Now from our assumption (3.1) we know
thatO|b−| ≤ [ϕt(b−)]Hb, and finallyHb ≤ [e3]Hb∗ for some e3. Putting these
together we obtain

O|b| ≤ [e2 ◦ ϕt(b−) ◦ e3]Hb∗ .

So in this case we define χ(t, b) := e2 ◦ ϕt(b−) ◦ e3.

60 3. HYPERARITHMETICAL SETS AND FUNCTIONS

Case 3: b denotes a successor number and b− denotes a limit. In this
case

a ∈ O|b| ↔ a ∈ O ∧ |a|O < |b|O
↔ a ∈ O|b−| ∨

(
a ∈ O ∧ a = 3 · 5(a)2 ∧ |a|O ≤ |b−|O

)
↔ a ∈ O|b−| ∨ ∃e≤a [a = 3 · 5e ∧ ϕe is total ∧

∀n,u,v (ϕe(n) = u ∧ ϕe(n+ 1) = v → u <′O v) ∧
∀n,v (ϕe(n) = v → v ∈ O|b−|)]

↔ a ∈ O|b−| ∨ ∃e≤a [〈e, a〉 ∈ A ∧ e ∈ B]

where A is Π0
2-definable and B is Π0

1-definable in O|b−|. Because of (3.1)

O|b−| ≤ [ϕt(b−)]Hb ≤ [e3]Hb∗ ,

A ≤ [e4] ∅′′ = H1∗∗ ≤ [f(1∗∗, b∗)]Hb∗ with f from the lemma above,

B ≤ [e5]
(
O|b−|

)′ ≤ [N(ϕt(b−))]Hb∗ with N from the proposition in 3.1.1.

From all this we obtain

a ∈ O|b| ↔ Φϕt(b−)◦e3
(cHb∗ , a) = 1 ∨

∃e≤a

[
Φe4◦f(1∗∗,b∗)(cHb∗ , a) = 1 ∧ Φe5◦N(ϕt(b−))(cHb∗ , a) = 1

]
↔ Φe6(cHb∗ , t, b, a) = 1 for some e6
↔ ΦS(e6,t,b)(cHb∗ , a) = 1.

So we can define χ(t, b) := S(e6, t, b).
Case 4: b denotes a limit. First note that

a ∈ O|b| ↔ a ∈ O ∧ |a|O < |b|O ↔ ∃n (a ∈ O|ϕ(b)2
(n)|).

From our assumption (3.1) and the lemma above we obtain for every n

O|ϕ(b)2
(n)| ≤ [ϕt(ϕ(b)2(n))]H(ϕ(b)2

(n))∗ ≤ [f(ϕ(b)2(n)∗, b)]Hb.

Hence we have

a ∈ O|b| ↔ ∃n (a ∈ O|ϕ(b)2
(n)|)

↔ ∃n Φϕt(ϕ(b)2
(n))◦f((ϕ(b)2

(n))∗,b)(cHb
, a) = 1

↔ ∃s T2(cHb
, e7, 〈t, b, a〉, s) for some e7

↔ 〈e7, 〈t, b, a〉〉 ∈ Hb∗

↔ Φe8(cHb∗ , t, b, a) = 1 for some e8
↔ ΦS(e8,t,b)(cHb∗ , a) = 1.

So let χ(t, b) := S(e8, t, b). This proves the proposition. �

3.1.3. Spector’s theorem.

Theorem (Spector). If a, b ∈ O and |a|O ≤ |b|O, then Ha is recursive
in Hb, effectively in a and b.

Proof. Again we use the Recursion Lemma. Let

M := { 〈a, b〉 | a ∈ O ∧ b ∈ O ∧ |a|O ≤ |b|O }.

3.1. THE HYPERARITHMETICAL HIERARCHY 61

For 〈a, b〉, 〈c, d〉 ∈M let

〈a, b〉 ≺ 〈c, d〉 :↔ (a <O c ∧ b ≤O d) ∨ (a ≤O c ∧ b <O d).

Clearly ≺ is a well-founded ordering on M . Let

R(p, e) :↔ p ∈M ∧H(p)0 ≤ [e]H(p)1 .

Now fix a, b ∈ O such that |a|O ≤ |b|O and assume

(3.2) ∀c,d (〈c, d〉 ≺ 〈a, b〉 → Hc ≤ [ϕt〈c, d〉]Hd).

We want to define a recursive function χ such that

Ha ≤ [χ(t, a, b)]Hb.

Case 1: a = 1. Then H1 = ∅ ≤ [e0]Hb for some e0.
Case 2: a, b both denote a successor numbers. Then 〈a−, b−〉 ≺ 〈a, b〉,

hence because of our assumption (3.2) Ha
− ≤ [ϕt〈a−, b−〉]Hb− . We obtain

Ha ≤ [N(ϕt〈a−, b−〉)]Hb. So let χ(t, a, b) := N(ϕt〈a−, b−〉).
Case 3: a denotes a successor number and b denotes a limit. Then we

have |a|O < |b|O. Using 2.6.2 we obtain

<′O ≤ [e1] ∅′ = H1∗ ≤ [f(1∗, b)]Hb

and for c <O b with |a|O < |c|O using 3.1.2

O|c| ≤ [g(c)]Hc∗ ≤ [f(c∗, b)]Hb.

Hence for all c we have (recall that a, b are fixed)

c <O b ∧ |a|O < |c|O ↔ c <′O b ∧ a ∈ O|c|

↔ Φe1◦f(1∗,b)(cHb
, c, b) = 1 ∧ Φg(c)◦f(c∗,b)(cHb

, a) = 1

↔ Φe2(cHb
, a, b, c) = 1 for some e2.

Hence there is a number e3 such that

ca,b := Φe3(cHb
, a, b) = µc (c <O b ∧ |a|O < |c|O).

From our assumption (3.2), 〈a, ca,b〉 ≺ 〈a, b〉 and 3.1.2 we know that

Ha ≤ [ϕt〈a, ca,b〉]Hca,b
≤ [f(ca,b, b)]Hb.

Hence we obtain

n ∈ Ha ↔ Φϕt〈a,ca,b〉◦f(ca,b,b)(cHb
, n) = 1

↔ Φe4(cHb
, t, a, b, n) = 1 for some e4

↔ ΦS(e4,t,a,b)(cHb
, n) = 1.

So let χ(t, a, b) := S(e4, t, a, b).
Case 4: a denotes a limit:

n ∈ Ha ↔ (n)0 <O a ∧ (n)1 ∈ H(n)0

↔ (n)0 <′O a ∧ Φϕt〈(n)0,b〉(cHb
, (n)1) = 1 because of (3.2)

↔ Φe1◦f(1∗,b)(cHb
, (n)0, a) = 1 ∧ Φϕt〈(n)0,b〉(cHb

, (n)1) = 1

↔ Φe5(cHb
, t, a, b, n) = 1 for some e5

↔ ΦS(e5,t,a,b)(cHb
, n) = 1.

So let χ(t, a, b) := S(e5, t, a, b). �

62 3. HYPERARITHMETICAL SETS AND FUNCTIONS

3.2. The Characterization Theorem of Souslin/Kleene

We now show that the class of ∆1
1-definable sets is exactly the class of all

hyperarithmetical sets. For one direction we shall make use of the facts that
the class of all ∆1

1-definable sets is recursively closed (in fact ∆1
1-closed) and

that Ha is ∆1
1-definable for every a ∈ O. In the other direction we essentially

use the Boundedness Lemma, which says that every ∆1
1-definable subset of

O is bounded (in O).

3.2.1. ∆1
1-definability of hyperarithmetical sets.

Lemma. If a set A is ∆1
1-definable in a ∆1

n-definable set B, then A is
∆1

n-definable.

Proof. Assume that A is ∆1
1-definable in a ∆1

n-definable set B. Then
there is a recursive relation R such that

n ∈ A↔ ∀f∃sR(cB(s), f(s), n)

↔ ∀f∃s∃x [R(x, f(s), n) ∧ lh(x) = s ∧ ∀i<s ((x)i ≤ 1) ∧
∀i<s ((x)i = 1 ↔ i ∈ B)].

This shows that A is Π1
n-definable. Now since there is a similar representa-

tion of the complement N \A we obtain a ∆1
n-definition of A. �

Call a number e a Π1
1-index of a set A if

n ∈ A ↔ ∀f∃s T2(f, e, n, s).

Proposition. For every a ∈ O the set Ha is ∆1
1-definable effectively in

a, i.e., there is a recursive function f such that for every a ∈ O the number
(f(a))0 is a Π1

1-index of Ha and (f(a))1 is a Π1
1-index of N \Ha.

Proof. We apply the Recursion Lemma to O and <O with respect to
the relation

R(a, e) :↔ a ∈ O ∧ (e)0 is Π1
1-index of Ha ∧ (e)1 is Π1

1-index of N \Ha.

So fix a ∈ O and assume

(3.3) ∀b<OaR(b, ϕt(b)).

We want to define a recursive function χ such that R(a, χ(t, a)).
Case 1: a = 1. Let χ(t, a) := 〈e0, e1〉 with e0 Π1

1-index of H1 = ∅ and e1
Π1

1-index of N \H1 = N.
Case 2: a denotes a successor number. From (3.3) we obtain that

e−0 := (ϕt(a−))0 is Π1
1-index of Ha− , and

e−1 := (ϕt(a−))1 is Π1
1-index of N \Ha− .

Since Ha is Σ0
1-definable in Ha− we obtain for a recursive relation P :

n ∈ Ha ↔ ∃s P (cHa−
(s), n)

↔ ∃s∃x (P (x, n) ∧ ∧lh(x) = s ∧
∀i<s [((x)i = 1 ∧ i ∈ Ha−) ∨ ((x)i = 0 ∧ i /∈ Ha−)])

↔ ∃s∃x (P (x, n) ∧ ∧lh(x) = s ∧
∀i<s [((x)i = 1 ∧ ∀f∃z T2(f, e−0 , i, z)) ∨

3.2. THE CHARACTERIZATION THEOREM OF SOUSLIN/KLEENE 63

((x)i = 0 ∧ ∀f∃z T2(f, e−1 , i, z))]

↔ ∀f∃m T2(f, e2, e−0 , e
−
1 , n,m) for some e2

↔ ∀f∃m T2(f, S(e2, e−0 , e
−
1), n,m).

Let e0 := S(e2, e−0 , e
−
1). Similarly we can construct a Π1

1-index e1 of N \Ha.
Let χ(t, a) := 〈e0, e1〉.

Case 3: a denotes a limit. Then

n ∈ Ha ↔ (n)0 <O a ∧ (n)1 ∈ H(n)0

↔ (n)0 <O a ∧ ∀f∃s T2(f, (ϕt((n)0))0, (n)1, s) because of (3.3)

↔ ∀f∃m T2(f, e3, t, a, n,m) for some e3
↔ ∀f∃mT2(f, S(e3, t, a), n,m).

Let e0 := S(e3, t, a). Similarly we can construct a Π1
1-index e1 of N \ Ha.

Let χ(t, a) := 〈e0, e1〉. �

Corollary. Every hyperarithmetical set is ∆1
1-definable.

Proof. Let A be hyperarithmetical, i.e., recursive inHa for some a ∈ O.
Then Ha is ∆1

1-definable by the proposition above, hence also A is ∆1
1-

definable by the lemma. �

3.2.2. Boundedness and separation.

Lemma (Boundedness). Every Σ1
1-definable subset of O is bounded in

O.

Proof. Recall that for e ∈ W we write |e|W for the order type of the
well-ordering <W denoted by e, so n <e m ↔ ϕe〈n,m〉 = 1. Assume that
A ⊆ O is Σ1

1-definable and unbounded, i.e., ∀b∈O∃a∈A (|b|O ≤ |a|O). Then
we could write

e ∈ W ↔ ϕe ∈ LinOrd ∧ ∃f∃a∈A (f injective order isomorphism between

<e and <′O �{ b | b <′O a }).

This would be a Σ1
1-definition of W, contradicting 2.6.1. �

Lemma (Separation). Any two disjoint Σ1
1-definable sets A and B can

be separated by a hyperarithmetical set C.

Proof. Because of the Π1
1-completeness of O (cf. 2.6.4) there is a recur-

sive function f such that n /∈ B ↔ f(n) ∈ O. Let D := { f(n) | n ∈ A }.
Then D is a Σ1

1-definable subset of O, since

a ∈ D ↔ ∃n (n ∈ A ∧ f(n) = a).

Now the Boundedness Lemma yields b ∈ O with D ⊆ O|b|. Let C := {n |
f(n) ∈ O|b| }. C is hyperarithmetical by 3.1.2, and clearly we have A ⊆ C
and C ⊆ N \B. �

64 3. HYPERARITHMETICAL SETS AND FUNCTIONS

3.2.3. The theorem of Souslin and Kleene.

Theorem (Souslin/Kleene). The hyperarithmetical sets are exactly the
∆1

1-definable sets.

Proof. By the Corollary in 3.2.1 every hyperarithmetical set is ∆1
1-

definable. Now assume that A is ∆1
1-definable. Then A and N \ A are

Σ1
1-definable and hence by the Separation Lemma can be separated by a

hyperarithmetical set C. Therefore A is hyperarithmetical. �

3.3. Hyperarithmetical Functions and the Axiom of Choice

The goal of this section is to prove that the class H of all hyperarithmeti-
cal functions is the smallest recursively closed class C of functions satisfying
the following version of the axiom of choice

∀n∃f∈C P (f, n) → ∃g∈C∀n P ((g)n, n)

with an arithmetical relation P .

3.3.1. Π1
1-Uniformization. As a tool we use the fact that every binary

Π1
1-definable relation contains a Π1

1-definable subrelation which is the graph
of a partial function.

Lemma (Π1
1-Uniformization). For every binary Π1

1-definable relation P
we can find effectively in P a binary Π1

1-definable relation Q such that
(a) Q(n,m) → P (n,m),
(b) Q(n,m1) ∧Q(n,m2) → m1 = m2,
(c) ∃mP (n,m) → ∃mQ(n,m).

Proof. From the Π1
1-completeness of W we can conclude that there is

a recursive function h such that

P (n,m) ↔ h(n,m) ∈ W.

Let

Q(n,m) :↔ P (n,m) ∧
∀k (P (n, k) → |h(n,m)|W ≤ |h(n, k)|W) ∧
∀k<m (P (n, k) → |h(n,m)|W < |h(n, k)|W).

If Q(n,m), then m is the numerically least l such that the ordinal |h(n, l)|W
is minimal in the set { |h(n, k)|W | P (n, k) }. Clearly Q has the properties
(a)–(c) stated in the Π1

1-Uniformization Lemma.
We claim that there exist Σ1

1-definable relations W≤ and W< such that
for all e1 ∈ N and e2 ∈ W

W≤(e1, e2) ↔ e1 ∈ W ∧ |e1|W ≤ |e2|W ,
W<(e1, e2) ↔ e1 ∈ W ∧ |e1|W < |e2|W .

To see this let

W≤(e1, e2) :↔ ϕe1 ∈ LinOrd∧∃f (f is an injective order isomorphism

from <e1 into <e2),

W<(e1, e2) :↔ ϕe1 ∈ LinOrd∧∃f∃k (f is an order isomorphism

between <e1 and <e2 �{n | n <e2 k }).

3.3. HYPERARITHMETICAL FUNCTIONS AND THE AXIOM OF CHOICE 65

Now for Q we can give the following Π1
1-definition.

Q(n,m) ↔ P (n,m) ∧
¬∃k W<(h(n, k), h(n,m)) ∧
¬∃k<mW≤(h(n, k), h(n,m)). �

From the definition of Q we can see immediately that there is a recursive
function k assigning to every Π1

1-index e of P a Π1
1-index k(e) of Q. Let W1

e

denote the relation with Π1
1-index e. So if P = W1

e , then Q = W1
k(e). Let

ϕ1
e denote the partial function whose graph is W1

k(e).

3.3.2. Hyperarithmetical functions. A unary total function f is
said to be hyperarithmetical if its graph

Gf := { (n,m) | f(n) = m }

is hyperarithmetical. Let H be the class of all hyperarithmetical functions.
Notice that the following are equivalent.

(a) f ∈ H.
(b) Gf is Σ1

1-definable.
(c) Gf is Π1

1-definable.
This follows from the Theorem of Souslin/Kleene and the representation

¬Gf (n,m) ↔ ∃k (k 6= m ∧Gf (n, k)).

Corollary. If P is a Π1
1-definable relation, then

∀n∃mP (n,m) → ∃f∈H∀nP (n, f(n)).

Proof. This is an easy consequence of the fact above together with
Π1

1-Uniformization Lemma. �

The following proposition gives a stronger version of this fact; it already
is one half of Kreisel’s Theorem.

Proposition. If P is a Π1
1-definable relation, then

∀n∃f∈H P (f, n) → ∃g∈H∀n P ((g)n, n).

Here (g)n(m) := g(〈n,m〉).

Proof. Assume ∀n∃f∈H P (f, n). Then we have

∀n∃e [ϕ1
e is total ∧ ∀f (∀m,k (ϕ1

e(m) = k → f(m) = k) → P (f, n))].

Since “ϕ1
e is total” has the form ∀u∃v∀f∃s T2(f, k(e), u, v, s), the above for-

mula can be written in the form ∀n∃eS(n, e) with a Π1
1-definable relation

S. Now the Corollary above (to Π1
1-Uniformization) yields h ∈ H such

that ∀nS(n, h(n)), hence ∀nP (ϕ1
h(n), n). We must find g ∈ H such that

(g)n = ϕ1
h(n). Define g(p) := ϕ1

h((p)0)((p)1). Because of

g(n) = m↔ ϕ1
h((n)0)((n)1) = m

↔ ∀f∃s T (f, k(h((n)0)), (n)1,m, s)

we have g ∈ H, and clearly ∀nP ((g)n, n). �

66 3. HYPERARITHMETICAL SETS AND FUNCTIONS

3.3.3. Implicit definitions. Let us say that a (1, 0)-ary relation Q
implicitely defines a function f0 if

∀f (Q(f) ↔ f = f0).

We define a relation Ja for every a ∈ O by

Ja(n, b) :↔ b ≤O a ∧ n ∈ Hb.

Lemma. There is a (1,1)-ary arithmetical relation Q such that for every
a ∈ O the (1, 0)-ary relation Q(a) implicitely defines 〈cJa〉; here Q(a)(f) :↔
Q(f, a).

Proof. Fix a ∈ O.

cJa(n, b) = 1

↔ Ja(n, b)
↔ b ≤O a ∧ n ∈ Hb

↔ b ≤′O a ∧
[(b = 1 ∧ n 6= n) ∨

(b = 2(b)0 ∧ n ∈ (Hb−)′) ∨

(b = 3 · 5(b)2 ∧ (n)0 <′O b ∧ (n)1 ∈ H(n)0)]

↔ b ≤′O a ∧

[(b = 2(b)0 ∧ ∃sR(cH−
b

(s), n)) ∨

(b = 3 · 5(b)2 ∧ (n)0 <′O b ∧ cJa((n)1, (n)0) = 1)] for some recursive R

↔ b ≤′O a ∧

[(b = 2(b)0 ∧ ∃s∃x[R(x, n) ∧ ∧lh(x) = s ∧ ∀i<s ((x)i = cJa(i, b
−))]) ∨

(b = 3 · 5(b)2 ∧ (n)0 <′O b ∧ cJa((n)1, (n)0) = 1)].

Therefore we define

Q(f, a) :↔ ∀n(f(n) = f〈(n)0, (n)1〉 ≤ 1) ∧
∀n∀b (f〈n, b〉 = 1 ↔
b ≤′O a ∧

[(b = 2(b)0 ∧ ∃s∃x[R(x, n) ∧ lh(x) = s ∧ ∀i<s ((x)i = f〈i, b−〉)]) ∨

(b = 3 · 5(b)2 ∧ (n)0 <′O b ∧ f〈(n)1, (n)0〉 = 1)]).

Q is arithmetical and for a ∈ O we have Q(〈cJa〉, a). Conversely, fix a ∈ O
and assume Q(f, a). We must show that f = 〈cJa〉. Because of f(n) =
f〈(n)0, (n)1〉 ≤ 1 it suffices to show that

f〈n, b〉 = 1 ↔ Ja(n, b).

This is done by <O-induction on b ≤O a, since for b 6≤O a both sides of the
equivalence are false. �

3.3. HYPERARITHMETICAL FUNCTIONS AND THE AXIOM OF CHOICE 67

3.3.4. Kreisel’s theorem.

Theorem (Kreisel). H is the least non-empty set C of unary total func-
tions such that
(a) If f ∈ C and g is recursive in f , then g ∈ C.
(b) If P is a Π1

1-definable relation, then

∀n∃f∈CP (f, n) → ∃g∈C∀nP ((g)n, n).

Proof. (a) is true for H by the lemma in 3.2.1, and (b) holds for H by
3.3.2. For the converse assume that C satisfies (a) and (b). We must show
H ⊆ C. Since because of n ∈ Ha ↔ Ja(n, a) the set Ha is recursive in Ja.
Hence by (a) it suffices to show that 〈cJa〉 ∈ C for every a ∈ O. We prove
this by <O-induction on a.

Case 1: a = 1. This follows immediately from (a), since C 6= ∅ and 〈cJ1〉
is recursive.

Case 2: a denotes a successor number. Because of

Ja(n, b) ↔ b ≤O a ∧ n ∈ Hb

↔ (b = a ∧ n ∈ (Ha−)′) ∨ (b ≤′O a− ∧ n ∈ Hb)

the relation Ja is Σ0
1-definable in Ja− , i.e., for some recursive relation R we

have
〈cJa〉(n) = 1 ↔ ∃zR(〈cJa−

〉, n, z).
Therefore with the arithmetical Q from 3.3.3 we have by IH:

∀n∃m∃f∈C [Q(a−)(f) ∧ ([m = 1 ∧ ∃zR(f, n, z)] ∨ [m = 0 ∧ ¬∃zR(f, n, z)])].

The relation P described in the kernel [. . .] is arithmetical and we have
P (f, n,m) → 〈cJa〉(n) = m. Because of (a) we further obtain

∀n∃g∈C P (λx.g(x+ 1), n, g(0))

and hence using (b)

∃h∈C∀n P (λx.(h)n(x+ 1), n, (h)n(0)).

Hence for all n we have 〈cJa〉(n) = (h)n(0) =: f(n) with f ∈ C.
Case 3: a denotes a limit.

Ja(n, b) ↔ b ≤O a ∧ n ∈ Hb

↔ (b = a ∧ (n)0 <′O a ∧ (n)1 ∈ H(n)0) ∨ (b <′O a ∧ n ∈ Hb)

↔ ∃d<′Oa[(b = a ∧ d = (n)0 <′O a ∧ (n)1 ∈ Hd) ∨
(d = b <′O a ∧ n ∈ Hd)].

Therefore for some Σ0
1-definable relation R we have

〈cJa〉(n) = 1 ↔ ∃d<′OaR(〈cJd
〉, n, d).

By IH ∀d<′Oa∃f∈C (f = 〈cJd
〉), hence ∀d∃f∈C (d <′O a → Q(f, d)). This

implies by (b)
∃g∈C∀d<′OaQ((g)d, d).

Let

P (g, n,m) :↔ ∀d<′OaQ((g)d, d) ∧
[(m = 1 ∧ ∃d<′OaR((g)d, n, d)) ∨

68 3. HYPERARITHMETICAL SETS AND FUNCTIONS

(m = 0 ∧ ¬∃d<′OaR((g)d, n, d))].

P is arithmetical and we have ∀n∃y∃g∈CP (g, n, y) and also P (g, n,m) →
〈cJa〉(n) = m. This implies the claim just as in the second case. �

From the proof it is clear that in (b) we only need to require the validity
of the axiom of choice for arithmetical relations.

3.4. The Hyperarithmetical Quantifier Theorem

3.4.1. Σ1
1,H- and ∆1

1,H-definable sets. A setA is called Σ1
1,H-definable

if there is a recursive relation R such that

n ∈ A ↔ ∃f∈H∀sR(f, n, s).

Π1
1,H- and ∆1

1,H-definable sets are defined similarly.
Our goal is to show that a set is Π1

1-definable if and only if it is Σ1
1,H-

definable. To do this we need an auxiliary lemma.

Lemma. (a) If a ∈ O, then O|a| is ∆1
1-definable

(b) If a ∈ O, then O|a| is ∆1
1,H-definable.

(c) If a ∈ OA, then OB
|a|A is ∆1,A,B

1 -definable.

(d) If a ∈ OA, then OB
|a|A is ∆1,A,B

1,HA,B -definable.

Proof. (a). This immediately follows from the proposition in 3.1.2
together with the theorem of Souslin/Kleene.

(b). We apply the Recursion Lemma to O and <O, with respect to the
relation

R(b, e) :↔ b ∈ O and (e)0 is Π1
1,H-index of O|a|

and (e)1 is Π1
1,H-index of ¬O|a|.

So we need to construct a recursive function χ such that for arbitrary t and
b ∈ O from the assumption

(3.4) ∀c<ObR(c, ϕt(c))

we can infer R(b, χ(t, b)).
Case 1: b = 1 or b = 1∗. Then we have O|1| = ∅ and O|1∗| = {1}, and

hence the claim is trivial.
Case 2: b and b− both denote successor numbers. As in the proof of the

proposition in 3.1.2 we have

a ∈ O|b| ↔ a ∈ O|b−| ∨ (a = 2(a)0 ∧ a− ∈ O|b−|)

↔ ∀f∈H∃s T2(f, (ϕt(b−))0, a, s) ∨

(a = 2(a)0 ∧ ∀f∈H∃s T2(f, (ϕt(b−))0, a−, s)

↔ ∀f∈H∃s T2(f, e0, t, b, a, s) for some e0
↔ ∀f∈H∃s T2(f, S(e0, t, b), a, s).

Let e′0 := S(e0, t, b). Because of a /∈ O|b| ↔ a /∈ O|b−| ∧ (a 6= 2(a)0 ∨ a− /∈
O|b−|) for the complement N \O|b| of O|b| we obtain a similar representation
as forO|b| above, and hence a Π1

1-index e′1. So in this case we define χ(t, a) :=
〈e′0, e′1〉.

3.4. THE HYPERARITHMETICAL QUANTIFIER THEOREM 69

Case 3: b denotes a successor number and b− denotes a limit. Here we
obtain as in the proposition in 3.1.2

a ∈ O|b| ↔ a ∈ O|b−| ∨ ∃e≤a [〈e, a〉 ∈ A ∧ e ∈ B],

where A is Π0
2-definable and B is Π0

1-definable in O|b−|. Using Kreisel’s
Theorem and the IH we obtain that A,B are Π1

1,H-definable, hence also O|b|
(effectively in b). The representation of the complement of O|b| can again
be obtained by negating the right hand side of the above equivalence.

Case 4: b denotes a limit. Then we have

a ∈ O|b| ↔ ∃n (a ∈ O|ϕ(b)2
(n)|)

↔ ∃n∀f∈H∃s T2(f, (ϕt(ϕ(b)2(n)))0, a, n, s)

↔ ∀f∈H∃n∃s T2((f)n, (ϕt(ϕ(b)2(n)))0, a, n, s) by Kreisel’s Theorem

↔ ∀f∈H∃s T2(f, e1, t, b, a, s) for some e1
↔ ∀f∈H∃s T2(f, S(e1, t, b), a, s).

For the complement of O|b| we proceed dually.
(c). Read the proof of (b) without restricting the function quantifiers,

and relativize.
(d). Again by reading of the proof of (b), this time with the function

quantifiers relativized to HA,B. �

Proposition. The set H of all hyperarithmetical functions is Π1
1-, but

not Σ1
1-definable.

Proof. We first show that H is Π1
1-definable. This follows from

f ∈ H ↔ ∃e∀n(f(n) = ϕ1
e(n))

↔ ∃e∀n∀f∃s T2(g, k(e), n, f(n), s),

using Π1
1-Uniformization. Now assume that H is Σ1

1-definable. Let

P (f, a) :↔ (f ∈ H ∧ a ∈ O ∧ f recursive in O|a|) ∨ (f /∈ H ∧ a = 1).

Since P is Π1
1-definable, Π1

1-Uniformization (which easily generalizes to re-
lations with function arguments) yields a Π1

1-definable relation Q ⊆ P such
that Q is the graph of a total function and its image =(Q) is an unbounded
subset of O. Moreover =(Q) is Σ1

1-definable, since

m ∈ =(Q) ↔ ∃fQ(f,m)

↔ ∃f∀n(n 6= m→ ¬Q(f, n)).

But this contradicts the Boundedness Lemma; hence H is not Σ1
1-definable.

�

3.4.2. The hyperarithmetical quantifier theorem.

Theorem (Hyperarithmetical Quantifier Theorem). A set A is Π1
1-

definable if and only if it is Σ1
1,H-definable.

Proof. Assume first that the set A is Σ1
1,H-definable. Then

n ∈ A
↔ ∃f∈H∀sR(f(s), n) for some recursive R

70 3. HYPERARITHMETICAL SETS AND FUNCTIONS

↔ ∃e [ϕ1
e is total ∧ ∀g (∀m,k (ϕ1

e(m) = k → g(m) = k) → ∀sR(g(s), s))].

Hence because of ϕ1
e(m) = k ↔ ∀f∃s T2(f, k(e), u, v, s) the set A is Π1

1-
definable (cf. the first few lines of the proof of the proposition in 3.3.2).

For the converse it suffices to show that O is Σ1
1,H-definable, since O is

Π1
1-complete. Since H is Π1

1-definable, for some e we have

cA ∈ H ↔ ∀f∃s T2(cA, e, f(s)).

Now by relativizing the proof of the Π1
1-completeness of O in 2.6.4 we have

a function h recursive in A such that

{ z | y ∗ z ∈ Tree(e, cA) } is well-founded ↔ h(y) ∈ OA.

So with e0 := h(〈〉) we have

cA ∈ H ↔ e0 ∈ OA.

But there is no a ∈ O such that

cA ∈ H ↔ e0 ∈ OA
|a|.

To see this assume that there would be such an a ∈ O. Then OA
|a| would be

∆1,A
1 -definable by part (c) of the lemma in 3.4.1, hence

n ∈ OA
|a| ↔ ∀f∃s T2(f, cA, e1, n, s) ↔ ∃f∀s ¬T2(f, cA, e2, n.s).

Therefore

cA ∈ H ↔ ∀f∃s T2(f, cA, e1, e0, s) ↔ ∃f∀s ¬T2(f, cA, e2, e0, s).

Hence H would be ∆1
1-definable, which contradicts the proposition in 3.4.1.

Hence { |e0|A | cA ∈ H} is unbounded in O. We now obtain

n ∈ O
↔ ∃cA∈H n ∈ O|e0|A

↔ ∃cA∈H∃f∈HA∀sR(cA, f(s), n) R recursive by (d) of the lemma in 3.4.1

↔ ∃g∈H∀sR
′(g(s), n) R′ recursive, by closure of H under ∆1

1-definability.

This yields the required representation of O. �

3.5. Paths in Kleene’s O

A subset P ⊆ O is called path in O if P is linearly ordered by <O and
with y also all x <O y are in P . P is called path through O if P is path in
O and every constructive ordinal is denoted by an element of P .

From the Boundedness Lemma we immediately obtain

Lemma. There is no Σ1
1-path through O. �

Theorem (Feferman, Spector). There is a Π1
1-path through O.

Proof. Let C(a) := {x | x <′O a }. We claim that O is the set of all
a ∈ N such that
(a) C(a) is well-ordered by <′O, and
(b) every b ∈ C(a) either has the form b = 1, or b = 2y for some y 6= 0, or

b = 3 · 5e with ϕe total and ∀n(ϕe(n) <′O ϕe(n+ 1)).

3.5. PATHS IN KLEENE’S O 71

The inclusion from left to right follows from 2.6.2. For the converse inclusion
we distinguish cases according to the form of b ∈ C(a), and use transfinite
induction on the well-ordering <′O on C(a).

Now define O∗ to be the set of all a ∈ N such that
(a) C(a) is well-ordered by <′O w.r.t. descending sequences from H, and
(b) as above.
We claim that O∗ is Σ1

1-definable. Condition (b) clearly is arithmetical, and
(a) says that <′O is a linear ordering on C(a), and ∀α∈H∃sP (α, a, s) with P
recursive, hence by the hyperarithmetic quantifier theorem also in the form
∃f∀sQ(f, a, s) with Q recursive.

Since clearly O ⊆ O∗, we must have O (O∗. Pick a∗ ∈ O∗ \ O, and let

Z := C(a∗) ∩ O.
Clearly Z is a Π1

1-definable path in O. We claim that Z is a path through
O.

So assume Z ⊆ O|b| for some b ∈ O; we need to derive a contradiction.
Then Z = C(a∗)∩O|b|, hence Z ∈ ∆1

1 by the proposition in 3.1.2. Therefore
also M := C(a∗) \O = C(a∗) \Z ∈ ∆1

1. Because of M 6= ∅, M ⊆ C(a∗) and
M ∈ ∆1

1 there is a <′O-minimal element a0 ∈M .
Case a0 = 1. Then a0 ∈ O, contradicting the definition of M .
Case a0 = 2b for some b 6= 0. Then b <′O a0, so b ∈ O and therefore

a0 ∈ O, a contradiction.
Case a0 = 3 · 5e with ϕe total and ∀n(ϕe(n) <′O ϕe(n + 1)). Then we

would have ϕe(n) <′O a0, hence ϕe(n) ∈ O for every n and therefore a0 ∈ O,
which again is a contradiction. �

Note that the proof gives us an interesting corollary.

Corollary. There is a recursively enumerable linear ordering which
is a well-ordering w.r.t. hyperarithmetic decreasing sequences but not w.r.t.
arbitrary decreasing sequences.

Proof. Take <′O on C(a∗) = {x | x <′O a∗ }, with a∗ ∈ O∗ \ O as
constructed in the proof above. �

CHAPTER 4

Computation with Partial Continuous Functionals

The logic considered up to now is very general, and for instance does not
allow to speak of natural numbers. We therefore introduce inductive types
(or free algebras) as base domains; they are given by constructors. We also
allow function spaces, with the inductive types as base types. We specialize
our minimal logic to a simply typed one, where the variables are typed, and
the formation of terms is adapted. We add induction axioms, to express
the minimality of the inductive types. Every inductive type comes with a
recursion operator, which has certain conversion or definitional equality rules
associated with it. We prove that every term (possibly with free variables)
can be converted into normal (or canonical) form.

We describe a constructive theory of computable functionals, based on
the partial continuous functionals as their intendend domain. Such a task
had been started by Scott [1969] and continued by Scott and Strachey [1971]
and continued (and implemented) by Milner [1972, 1973], who also coined
the name LCF. However, the prime example of such a theory, the type the-
ory of Martin-Löf [1984], in its present form deals with total (structural
recursive) functionals only. An early attempt of Martin-Löf [1983] to give a
domain theoretic interpretation of his type theory has not even been pub-
lished, probably because it was felt that a more general approach – such as
formal topology, see Coquand et al. [2003] – would be more appropriate.

Here we try to make a fresh start, and do full justice to the fundamental
notion of computability in finite types, with the partial continuous function-
als as underlying domains. The total ones then appear as a dense subset
[Kreisel, 1959, Ershov, 1972, Berger, 1993, Stoltenberg-Hansen et al., 1994,
Schwichtenberg, 1996, Kristiansen and Normann, 1997], and seem to be best
treated in this way.

Computable functionals and logic. Types are built from base types by
the formation of function types, ρ ⇒ σ. As domains for the base types
we choose non-flat (cf. Fig. 2 on page 81) and possibly infinitary free alge-
bras, given by their constructors. The main reason for taking non-flat base
domains is that we want the constructors to be injective and with disjoint
ranges.

The naive model of such a finitely typed theory is the full set theoretic
hierarchy of functionals of finite types. However, this immediately leads
to higher cardinalities, and does not lend itself well for a theory of com-
putability. A more appropriate semantics for typed languages has its roots
in [Kreisel, 1959] (which used formal neighborhoods) and [Kleene, 1959].
This line of research was taken up and developed in a mathematically more
satisfactory way by Scott [1970] and Ershov [1974]. Today this theory is

73

74 4. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS

usually presented in the context of abstract domain theory (see Stoltenberg-
Hansen et al. [1994], Abramsky and Jung [1994]); it is based on classical
logic.

The present work can be seen as an attempt to develop a constructive
theory of formal neighborhoods for continuous functionals, in a direct and
intuitive style. The task is to replace abstract domain theory by a more
concrete and (in case of finitary free algebras) finitary theory of representa-
tions. As a framework we use Scott’s information systems (see Scott [1982],
Larsen and Winskel [1991], Stoltenberg-Hansen et al. [1994]). It turns out
that we only need to deal with “atomic” and “coherent” information sys-
tems (abbreviated acis), which simplifies matters considerably. In this setup
the basic notion is that of a “token”, or unit of information. The elements
of the domain appear as abstract or “ideal” entitites: possibly infinite sets
of tokens, which are “consistent” and “deductively closed”.

Total functionals. One reason to be interested in total functionals is
that for base types, that is free algebras, we can prove properties of total
objects by structural induction. This is also true for the more general class
of structure-total objects, where the arguments at parameter positions in
constructor terms need not be total. An example is a list whose length is
determined, but whose elements need not be total.

We show that the standard way to single out the total functionals from
the partial ones works with non-flat base domains as well, and that Berger’s
proof [1993] of Kreisel’s [1959] density theorem can be adapted.

Terms and their denotational and operational semantics. Since we have
introduced domains via concrete representations, it is easy to define the
computable functionals, simply as recursively enumerable ideals (= sets of
tokens). However, this way to deal with computability is too general for
concrete applications. In practice, one wants to define computable functio-
nals by recursion equations. We show that and how computation rules (see
Berger et al. [2003], Berger [2005]) can be used to achieve this task. The
meaning [[λ~xM]] of a term M (with free variables in ~x) involving constants
D defined by computation rules will be an inductively defined set of tokens
(~U, b), of the type of λ~xM .

So we extend the term language of Plotkin’s PCF [1977], by constants
defined via “computation rules”. One instance of such rules is the definition
of the fixed point operators Yρ of type (ρ ⇒ ρ) ⇒ ρ, by Yρf = f(Yρf).
Another instance is the structural recursion operator Rτ

nat, defined by

Rτ
nat(f, g, 0) = f, Rτ

nat(f, g, Sn) = g(n,Rτ
nat(f, g, n)).

Operationally, the term language provides some natural conversion rules
to “simplify” terms: β, η, and – for every defined constant D – the defi-
ning equations D~P 7→M with non-overlapping constructor patterns ~P ; the
equivalence generated by these conversions is called operational semantics.
We show that the (denotational) values are preserved under conversions,
including computation rules.

Computational adequacy. Clearly we want to know that the conversions
mentioned above give rise to a “computationally adequate” operational se-
mantics: If [[M]] = k, then the conversion rules suffice to actually reduce M

4. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS 75

to the numeral k. We show that this holds true in our somewhat extended
setting as well, with computation rules and non-flat base domains.

Structural recursion. An important example of computation rules are
those of the (Gödel) structural recursion operators. We prove their totality,
by showing that the rules are strongly normalizing. A predicative proof of
this fact has been given by Abel and Altenkirch [2000], based on Aczel’s
notion of a set-based relation. Our proof is predicative as well, but – being
based on an extension of Tait’s method of strong computability predicates –
more along the standard line of such proofs. Moreover, it extends the result
to the present setting.

Related work. The development of constructive theories of computable
functionals of finite type began with Gödel’s [1958]. There the emphasis was
on particular computable functionals, the structural (or primitive) recursive
ones. In contrast to what was done later by Kreisel, Kleene, Scott and
Ershov, the domains for these functionals were not constructed explicitly,
but rather considered as described axiomatically by the theory.

Denotational semantics for PCF-like languages is well-developed, and
usually (as in Plotkin’s [1977]) done in a domain-theoretic setting. The study
of the semantics of non-overlapping higher type recursion equations - called
here computation rules - has been initiated in Berger et al. [2003], again
in a domain-theoretic setting. Recently Berger [2005] he has introduced
a “strict” variant of this domain-theoretic semantics, and used it to prove
strong normalization of extensions of Gödel’s T by different versions of bar
recursion. Information systems have been conceived by Scott [1982], as
an intuitive approach to domains for denotational semantics. The idea to
consider atomic information systems is due to Ulrich Berger (unpublished
work); coherent information systems have been introduced by Plotkin [1978,
p.210]. Taking up Kreisel’s [1959] idea of neighborhood systems, Martin-
Löf developed in unpublished (but somewhat distributed) notes [1983] a
domain theoretic interpretation of his type theory. The intersection type
discipline of Barendregt, Coppo, and Dezani-Ciancaglini [1983] can be seen
as a different style of presenting the idea of a neighborhood system. The
desire to have a more general framework for these ideas has lead Martin-
Löf, Sambin and others to develop a formal topology; cf. Coquand, Sambin,
Smith, and Valentini [2003].

It seems likely that the method in [Kristiansen and Normann, 1997,
Section 3.5] (which is based on an idea of Ulrich Berger) can be used to
prove density in the present case, but this would require some substantial
rewriting.

The first proof of an adequacy theorem (not under this name) is due to
Plotkin [1977, Theorem 3.1]; Plotkin’s proof is by induction on the types,
and uses a computability predicate. A similar result in a type-theoretic
setting is in Martin-Löf’s notes [1983, Second Theorem]. Adequacy theorems
have been proved in many contexts, by Abramsky [1991], Amadio and Curien
[1998], Barendregt et al. [1983], Martin-Löf [1983]. Coquand and Spiwack
[2005] – building on the work of Martin-Löf [1983] and Berger [2005] –
observed that the adequacy result even holds for untyped languages, hence
also for dependently typed ones.

76 4. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS

The problem of proving strong normalization for extensions of typed
λ-calculi by higher order rewrite rules has been studied extensively in the
literature: Tait [1971], Girard [1971], Troelstra [1973], Blanqui et al. [1999],
Abel and Altenkirch [2000], Berger [2005]. Most of these proofs use impred-
icative methods (e.g., by reducing the problem to strong normalization of
second order propositional logic, called system F by Girard [1971]). Our
definition of the strong computability predicates and also the proof are re-
lated to Zucker’s [1973] proof of strong normalization of his term system for
recursion on the first three number or tree classes. However, Zucker uses a
combinatory term system and defines strong computability for closed terms
only. Following some ideas in an unpublished note of Berger, Benl (in his
diploma thesis [1998]) transferred this proof to terms in simply typed λ-
calculus, possibly involving free variables. Here it is adapted to the present
context.

Organization of the chapter. In Sec.4.1 atomic coherent information sys-
tems are defined, and used as a concrete representation of the relevant do-
mains, based on non-flat and possibly infinitary free algebras. The struc-
tural recursion operators are defined in Sec.4.2. Sec.4.3 deals with total and
structure-total ideals; it is shown that the density theorem holds.

4.1. Partial Continuous Functionals

Information systems have been introduced by Scott [1982], as an intuitive
approach to deal constructively with ideal, infinite objects in function spaces,
by means of their finite approximations. One works with atomic units of
information, called tokens, and a notion of consistency for finite sets of
tokens. Finally there is an entailment relation, between consistent finite
sets of tokens and single tokens. The ideals (or objects) of an information
system are defined to be the consistent and deductively closed sets of tokens;
we write |A| for the set of ideals of A. One shows easily that |A| is a domain
w.r.t. the inclusion relation. Conversely, every domain with countable basis
can be represented as the set of all ideals of an appropriate information
system [Larsen and Winskel, 1991].

Here we take Scott’s notion of an information system as a basis to intro-
duce the partial continuous functionals. Call an information system atomic
if the entailment relation U ` b is given by ∃a∈U{a} ` b and hence deter-
mined by a transitive relation on A (namely {a} ` b, written a ≥ b). Call
it coherent [Plotkin, 1978, p.210] when a finite set U of tokens is consistent
if and only if every two-element subset of it is. We will show below that if
B is atomic (coherent), then so is the “function space” A → B. Since our
algebras will be given by atomic coherent information systems, this is the
only kind of information systems we will have to deal with.

4.1.1. Types. A free algebra is given by its constructors, for instance
zero and successor for the natural numbers. We want to treat other data
types as well, like lists and binary trees. When dealing with inductively
defined sets, it will also be useful to explicitly refer to the generation tree.
Such trees are quite often infinitely branching, and hence we allow infinitary
free algebras.

4.1. PARTIAL CONTINUOUS FUNCTIONALS 77

The freeness of the constructors is expressed by requiring that their
ranges are disjoint and that they are injective. To allow for partiality –
which is mandatory when we want to deal with computable objects –, we
have to embed our algebras into domains. Both requirements together imply
that we need “lazy domains”.

Our type system is defined by two type forming operations: arrow types
ρ ⇒ σ and the formation of inductively generated types µ~α~κ, where ~α =
(αj)j=1,...,N is a list of distinct “type variables”, and ~κ = (κi)i=1,...,k is a list
of “constructor types”, whose argument types contain α1, . . . , αN in strictly
positive positions only.

For instance, µα(α, α⇒ α) is the type of natural numbers; here the list
(α, α ⇒ α) stands for two generation principles: α for “there is a natural
number” (the 0), and α ⇒ α for “for every natural number there is a next
one” (its successor).

Definition. Let ~α = (αj)j=1,...,N be a list of distinct type variables.
Types ρ, σ, τ, µ ∈ Ty and constructor types κ ∈ KT(~α) are defined induc-
tively by

~ρ, ~σ1, . . . , ~σn ∈ Ty
~ρ⇒ (~σ1 ⇒ αj1) ⇒ . . .⇒ (~σn ⇒ αjn) ⇒ αj ∈ KT(~α)

(n ≥ 0)

κ1, . . . , κn ∈ KT(~α)
(µ~α (κ1, . . . , κn))j ∈ Ty

(n ≥ 1)
ρ, σ ∈ Ty
ρ⇒ σ ∈ Ty

Here ~ρ ⇒ σ means ρ1 ⇒ . . . ⇒ ρm ⇒ σ, associated to the right. We
reserve µ for types of the form (µ~α (κ1, . . . , κk))j . The parameter types of µ
are the members of all ~ρ appearing in its constructor types κ1, . . . , κk.

Note. Types ρ ∈ Ty are closed in the sense that they do not contain
free type parameters α. If one wants to allow say ~β as free type parameters,
one must add rules ~β ∈ Ty.

Examples.

unit := µαα,

boole := µα (α, α),

nat := µα (α, α⇒ α),

list(ρ) := µα (α, ρ⇒ α⇒ α),

ρ⊗ σ := µα (ρ⇒ σ ⇒ α),

ρ+ σ := µα (ρ⇒ α, σ ⇒ α),

(tree, tlist) := µ(α, β) (nat ⇒ α, β ⇒ α, β, α⇒ β ⇒ β),

bin := µα (α, α⇒ α⇒ α),

O := µα (α, α⇒ α, (nat ⇒ α) ⇒ α),
T0 := nat,

Tn+1 := µα (α, (Tn ⇒ α) ⇒ α).

Notice that there are many equivalent ways to define these types. For
instance, we could take unit+unit to be the type of booleans, and list(unit)
to be the type of natural numbers.

78 4. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS

A type is called finitary if it is a µ-type with all its parameter types ~ρ
finitary, and all its constructor types are of the form

(4.1) ~ρ⇒ αj1 ⇒ . . .⇒ αjn ⇒ αj ,

so the ~σ1, . . . , ~σn in the general definition are all empty. In the examples
above unit, boole, nat, tree, tlist and bin are all finitary, whereas O and
Tn+1 are not. list(ρ), ρ⊗ σ and ρ+ σ are finitary provided their parameter
types are. An argument position in a type is called finitary if it is occupied
by a finitary type.

A non-simultaneous type µα(κ1, . . . , κn) is said to have a nullary con-
structor if one of its constructor types is of the form ~ρ⇒ α. More generally,
a type µα1, . . . , αN (κ1, . . . , κn) is said to have nullary constructors if for
every j (1 ≤ j ≤ N) there is a constructor type κij of form (4.1) with
j1, . . . , jn < j. All types in our examples list have nullary constructors.

In what follows we restrict ourselves to finitary µ-types with nullary
constructors.

4.1.2. Atomic coherent information systems.

Definition. An atomic coherent information system (abbreviated acis)
is a triple (A,`,≥) with A a countable set (the tokens, denoted a, b, . . .), `
a reflexive and symmetric relation on A (the consistency relation), and ≥ a
reflexive and transitive relation on A (the entailment relation) which satisfy

(4.2) a ` b→ b ≥ c→ a ` c.

A subset x ⊆ A is called consistent if ∀a,b∈x a ` b. Let Con be the set of
all finite consistent subsets of A. The elements of Con are called formal
neighborhoods and are denoted U, V,

We write U ≥ a for ∃b∈U b ≥ a, and U ≥ V for ∀a∈V U ≥ a. – Every
acis is an information system in the sense of Scott [1982]; this follows from

Lemma. Let A = (A,`,≥) be an acis. U ≥ V1, V2 implies V1∪V2 ∈ Con.

Proof. Let b1 ∈ V1, b2 ∈ V2. Then we have a1, a2 ∈ U such that ai ≥ bi.
From a1 ` a2 we obtain a1 ` b2 by (c), hence b1 ` b2 again by (c). �

Definition. Let A = (A,`A,≥A) and B = (B,`B,≥B) be acis’s.
Define A → B = (C,`,≥) by

C := ConA ×B,

(U, b) ` (V, c) :↔ (U ∪ V ∈ ConA → b ` c),

(U, b) ≥ (V, c) :↔ V ≥A U ∧ b ≥B c.

Lemma. Let A = (A,`A,≥A) and B = (B,`B,≥B) be acis’s. Then
A → B is an acis again.

Proof. Clearly ≥ is reflexive and transitive, and ` is reflexive and
symmetric; it remains to check (4.2). So let (U1, b1) ` (U2, b2) and (U2, b2) ≥
(V, c), hence V ≥ U2 and b2 ≥ c. We must show (U1, b1) ` (V, c). So assume
U1 ∪ V ∈ Con; we must show b1 ` c. Now U1 ∪ V ∈ Con and V ≥ U2 by
the previous lemma imply U1 ∪ U2 ∈ Con. But then b1 ` b2, hence b1 ` c
by (4.2). �

4.1. PARTIAL CONTINUOUS FUNCTIONALS 79

Scott [1982] introduced the notion of an approximable map from A to
B. Such a map is given by a relation r between ConA and B, where r(U, b)
intuitively means that whenever we are given the information U ∈ ConA on
the argument, then we know that at least the token b appears in the value.

Definition (Approximable map). Let A and B be acis’s. A relation
r ⊆ ConA ×B is an approximable map from A to B (written r : A → B) if
and only if
(a) if r(U, b1) and r(U, b2), then b1 `B b2, and
(b) if r(U, b), V ≥A U and b ≥B c, then r(V, c).

Call a (possibly infinite) set x of tokens consistent if U ∈ Con for every
finite subset U ⊆ x, and deductively closed if ∀a∈x∀b≤a b ∈ x. The ideals
(or objects) of an information system are defined to be the consistent and
deductively closed sets of tokens; we write |A| for the set of ideals of A.

Theorem. Let A and B be acis’s. The ideals of A → B are exactly
the approximable maps from A to B.

Proof. We show that r ∈ |A → B| satisfies the axioms for approx-
imable maps. (a). Let r(U, b1) and r(U, b2). Then b1 `B b2 by the consis-
tency of r. (b). Let r(U, b), V ≥A U and b ≥B c. Then (U, b) ≥ (V, c) by
definition, hence r(V, c) by the deductive closure of r.

For the other direction suppose r : A → B is an approximable map. We
must show that r ∈ |A → B|. Consistency of r: Suppose r(U1, b1), r(U2, b2)
and U = U1 ∪ U2 ∈ ConA. We must show that b1 `B b2. Now by definition
of approximable maps, from r(Ui, bi) and U ≥A Ui we obtain r(U, bi), and
hence b1 `B b2. Deductive closure of r: Suppose r(U, b) and (U, b) ≥ (V, c),
i.e., V ≥A U ∧b ≥B c. Then r(V, c) by definition of approximable maps. �

The set |A| of ideals for A carries a natural topology (the Scott topo-
logy), which has the cones Ũ := { z | z ⊇ U } generated by the formal
neighborhoods U as basis. The continuous maps f : |A| → |B| and the ideals
r ∈ |A → B| are in a bijective correspondence. With any r ∈ |A → B| we
can associate a continuous |r| : |A| → |B|:

|r|(z) := { b ∈ B | r(U, b) for some U ⊆ z },

and with any continuous f : |A| → |B| we can associate f̂ ∈ |A → B|:

f̂(U, b) :⇐⇒ b ∈ f(U).

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|. – We
will usually write r(z) for |r|(z), and similarly f(U, b) for f̂(U, b). It will be
clear from the context where the mods and hats should be inserted.

4.1.3. Algebras with approximations. Recall that we restrict our-
selves to finitary µ-types with nullary constructors.

We now define the acis Cµj of an algebra µj , given by constructors Ci.
• The tokens are all type correct constructor expressions with an

outermost Ci, such that at every argument position we have ei-
ther a token or else special symbol – written ∗ –, which carries no
information. – By an extended token a∗ we mean a token or ∗.

80 4. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS

•∗@
@@
•0

�
��
• S∗@

@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

...

Figure 1. Tokens and entailment for nat

• Two tokens are in the entailment relation ≥ if they start with the
same constructor, and for every argument position the arguments
located there are extended tokens a∗, b∗ such that a∗ ≥ b∗. –
a∗ ≥ b∗ means that b∗ is ∗, or both are tokens and the entailment
relation holds

• Two tokens are consistent if both start with the same constructor
and have consistent extended tokens at corresponding argument
positions.

For example, the (extended) tokens for the algebra nat are as shown in
Fig. 1 on page 80. A token a entails another one b if and only if there is a
path from a (up) to b (down). In this case (and similarly for every finitary
algebra) a finite set U of tokens is consistent if and only if it has an upper
bound. Every constructor C generates

rC := { (~U,C ~b∗) | ~U ≥ ~b∗ }.
The continuous map |rC| is defined by

|rC|(~z) := { b | (~U, b) ∈ rC for some ~U ⊆ ~z }.
Hence the (continuous maps corresponding to) constructors are injective and
their ranges are disjoint, which is what we wanted to achieve.

The ideals x for µ are – as for any information system – the consistent
and deductively closed sets of tokens. Clearly all tokens in x begin with the
same constructor. For instance, {S(S0), S(S∗), S∗}, {S(S∗), S∗}, {0} are
ideals for nat, but also the infinite set {Sn∗ | n > 0 }. The ideals for nat
and their inclusion relation are pictured in Fig. 2 on page 81. Here we have
denoted the ideals ∅, {0}, {Sn∗ | n > 0 } by ⊥, 0, ∞, respectively, and any
other ideal by applications of (the continuous map corresponding to) the
constructor S to 0 or ⊥. The ambiguous notation – S denotes a symbol in
constructor expressions and also the continuous map |rS | – should not lead
to confusion.

Definition (Partial continuous functionals). Fix a set B of finitary µ-
types with nullary constructors. For types ρ over base types from B, define
the acis Cρ inductively, by

Cµ as above, for µ ∈ B,
Cρ⇒σ := Cρ → Cσ.

The ideals x ∈ |Cρ| are called partial continuous functionals of type ρ.

4.2. STRUCTURAL RECURSION 81

•⊥@
@@
•0

�
��
• S⊥@

@@
•S0

�
��
• S(S⊥)@

@@
•S(S0)

�
��
• S(S(S⊥))@

@@
•S(S(S0))

�
��

...
• ∞

Figure 2. Ideals and inclusion for nat, i.e., its domain

Remark (Coquand). Let C be the binary and 0 the unary constructor of
the type bin of binary trees. Then one might think that the two tokens C∗0
and C0∗ should entail C00, which in our approach with atomic information
system and a binary entailment relation this is cannot be the case. However,
we are not interested in a complete representation of all possible formal
neighborhoods but in the end only in the limits, that is, the ideals. In
this particular case we have to consistently extend the neighborhood to
{C∗0, C0∗, C00}, to achive that it entails C00.

4.2. Structural Recursion

The inductive structure of the types ~µ = µ~α~κ corresponds to two sorts
of constants: with the constructors C~µ

i : κi[~µ] we can construct elements of a
type µj , and with the recursion operators R~µ,~τ

µj we can construct mappings
from µj to τj by recursion on the structure of ~µ.

4.2.1. Recursion operators. In order to define the type of the recur-
sion operators w.r.t. ~µ = µ~α~κ and result types ~τ , we first define for

κi = ~ρ⇒ (~σ1 ⇒ αj1) ⇒ . . .⇒ (~σn ⇒ αjn) ⇒ αj ∈ KT(~α)

the step type

δ~µ,~τ
i := ~ρ⇒ (~σ1 ⇒ µj1) ⇒ . . .⇒ (~σn ⇒ µjn) ⇒

(~σ1 ⇒ τj1) ⇒ . . .⇒ (~σn ⇒ τjn) ⇒ τj .

Here ~ρ, (~σ1 ⇒ µj1), . . . , (~σn ⇒ µjn) correspond to the components of the
object of type µj under consideration, and (~σ1 ⇒ τj1), . . . , (~σn ⇒ τjn) to the
previously defined values. The recursion operator R~µ,~τ

µj has type

R~µ,~τ
µj

: δ~µ,~τ
1 ⇒ . . .⇒ δ~µ,~τ

k ⇒ µj ⇒ τj

(recall that k is the total number of constructors for all types µ1, . . . , µN).

Note. The type µj ⇒ δ~µ,~τ
1 ⇒ . . . ⇒ δ~µ,~τ

k ⇒ τj would probably be
better, because it corresponds to the structure necessary for conversion.

We will often write R~µ,~τ
j for R~µ,~τ

µj , and omit the upper indices ~µ, ~τ when
they are clear from the context. In case of a non-simultaneous free algebra,
i.e., of type µακ, for Rµ,τ

µ we write Rτ
µ.

82 4. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS

4.2.2. Examples.

ttboole := Cboole
1 , ffboole := Cboole

2 ,

Rτ
boole : τ ⇒ τ ⇒ boole ⇒ τ,

0nat := Cnat
1 , Snat⇒nat := Cnat

2 ,

Rτ
nat : τ ⇒ (nat ⇒ τ ⇒ τ) ⇒ nat ⇒ τ,

nillist(α) := Clist(α)
1 , consα⇒list(α)⇒list(α) := Clist(α)

2 ,

Rτ
list(α) : τ ⇒ (α⇒ list(α) ⇒ τ ⇒ τ) ⇒ list(α) ⇒ τ,(

inlρσ

)ρ⇒ρ+σ := Cρ+σ
1 ,(

inrρσ

)σ⇒ρ+σ := Cρ+σ
2 ,

Rτ
ρ+σ : (ρ⇒ τ) ⇒ (σ ⇒ τ) ⇒ ρ+ σ ⇒ τ,(
⊗+

ρσ

)ρ⇒σ⇒ρ⊗σ := Cρ⊗σ
1 ,

Rτ
ρ⊗σ : (ρ⇒ σ ⇒ τ) ⇒ ρ⊗σ ⇒ τ.

Terms are inductively defined from typed variables xρ and the constants,
that is, constructors C~µ

i and recursion operatorsR~µ,~τ
µj , by abstraction λxρMσ

and application Mρ⇒σNρ. One can see easily that for instance the following
functions can be “expressed” by means of terms involving recursion oper-
ators: existence Enat : nat ⇒ boole and Elist(α) : nat ⇒ boole, and equality
=: nat ⇒ nat ⇒ boole.

Enat(0) := tt,

Enat(S(n)) := Enat(n);

Elist(α)(nil) := tt,

Elist(α)(cons(x, l)) := Elist(α)(l);

(0 = 0) := tt,

(0 = S(n)) := ff,

(S(m) = 0) := ff,

(S(m) = S(n)) := (n = m).

4.3. Total Functionals

We now single out the total continuous functionals from the partial ones.
Our main goal will be the density theorem, which says that every finite
functional can be extended to a total one. It was first stated by Kreisel
[1959]. Proofs of various versions of the density theorem have been given
by Ershov [1972], Berger [1993], Stoltenberg-Hansen et al. [1994], Schwicht-
enberg [1996] and Kristiansen and Normann [1997]. Here we give a proof
for the practically important case where the base domains are not just the
flat domain of natural numbers, but non-flat and possibly parametrized free
algebras.

4.3.1. Total and structure-total ideals. It is well-known how one
can single out the total functionals from the partial ones.

Definition. The total ideals of type ρ are defined inductively.
• Case µ. For an algebra µ, the total ideals x are those of the form

C~z with C a constructor of µ and ~z total (C denotes the continuous
function |rC|).

4.3. TOTAL FUNCTIONALS 83

• Case ρ⇒ σ. An ideal r of type ρ⇒ σ is total if and only if for all
total z of type ρ, the result |r|(z) of applying r to z is total.

The structure-total ideals are defined similarly; the difference is that in case
µ the ideals at parameter positions of C need not be total. – We write
x ∈ Gρ to mean that x is a total ideal of type ρ.

For instance, for nat the ideals 0, S0, S(S0) etc. in Fig. 2 on page 81
are total, but ⊥, S⊥, S(S⊥), . . . , ∞ are not. For list(ρ), precisely all ideals
of the form cons(x1, . . . cons(xn,nil) . . .) are structure-total. The total ones
are those where in addition all list elements x1, . . . , xn are total.

Remark. Notice that in the arrow case of the definition of totality, we
have made use of the universal quantifier “for all total z of type ρ” with
an implication is its kernel. So using the concept of a total computable
functional to explain the meaning of the logical connectives – as it is done
in the well-known Brouwer-Heyting-Kolmogorov interpretation – is in this
sense circular.

For non-flat base domains it is easy to see that there are maximal but not
total ideals: ∞ is an example for nat. This is less easy for flat base domains;
a counterexample has been given by Ershov [1974]; a more perspicious one
(at type (nat ⇒ nat) ⇒ nat) is in [Stoltenberg-Hansen et al., 1994].

Conversely, the total continuous functionals need not be maximal ideals
in Cρ: A counterexample is { (Sn0, 0) | n ∈ nat }, which clearly is a total
object of type nat ⇒ nat representing the constant function with value 0.
However, addition of the pair (∅, 0) yields a different total object of type
nat ⇒ nat. However, it is easy to show both functionals are “equivalent” in
the sense that they have the same behaviour on total arguments.

4.3.2. Equality for total functionals.

Definition. An equivalence ∼ρ between total ideals x1, x2 ∈ Gρ is
defined inductively.

• Case µ. For an algebra µ, two total ideals x1, x2 are equivalent if
both are of the form C~zi with the same constructor C of µ, and we
have z1j ∼τ z2j for all j.

• Case ρ ⇒ σ. Two ideals f, g of type ρ ⇒ σ are equivalent if and
only if ∀x∈Gρ f(x) ∼σ g(x).

Clearly ∼ρ is an equivalence relation. Similarly, one can define an equiva-
lence relation ≈ρ between structure-total ideals x1, x2.

We obviously want to know that ∼ρ (and similarly ≈ρ) is compatible
with application; we only treat ∼ρ here. The nontrivial part of this argument
is to show that x ∼ρ y implies f(x) ∼σ f(y). First we need some lemmata.
Recall that our partial continuous functionals are ideals (i.e., certain sets of
tokens) in the information systems Cρ.

Lemma. If f ∈ Gρ, g ∈ |Cρ| and f ⊆ g, then g ∈ Gρ.

Proof. By induction on ρ. For base types µ the claim easily follows
from the IH. ρ⇒ σ: Assume f ∈ Gρ⇒σ and f ⊆ g. We must show g ∈ Gρ⇒σ.
So let x ∈ Gρ. We have to show g(x) ∈ Gσ. But g(x) ⊇ f(x) ∈ Gσ, so the
claim follows by IH. �

84 4. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS

Lemma.

(4.3) (f1 ∩ f2)(x) = f1(x) ∩ f2(x), for f1, f2 ∈ |Cρ⇒σ| and x ∈ |Cρ|.

Proof. By the definition of |r|,
|f1 ∩ f2|(x)
= { b ∈ Cσ | ∃U⊆x (U, b) ∈ f1 ∩ f2 }
= { b ∈ Cσ | ∃U1⊆x (U1, b) ∈ f1 } ∩ { b ∈ Cσ | ∃U2⊆x (U2, b) ∈ f2 }
= |f1|(x) ∩ |f2|(x).

The part ⊆ of the middle equality is obvious. For ⊇, let Ui ⊆ x with
(Ui, b) ∈ fi be given. Choose U = U1 ∪ U2. Then clearly (U, b) ∈ fi (as
(Ui, b) ≥ (U, b) and fi is deductively closed). �

Lemma. f ∼ρ g if and only if f ∩ g ∈ Gρ, for f, g ∈ Gρ.

Proof. By induction on ρ. For base types µ the claim easily follows
from the IH. ρ⇒ σ:

f ∼ρ⇒σ g ⇐⇒ ∀x∈Gρ f(x) ∼σ g(x)

⇐⇒ ∀x∈Gρ f(x) ∩ g(x) ∈ Gσ by IH

⇐⇒ ∀x∈Gρ (f ∩ g)x ∈ Gσ by (4.3)
⇐⇒ f ∩ g ∈ Gρ⇒σ.

This completes the proof. �

Theorem. x ∼ρ y implies f(x) ∼σ f(y), for x, y ∈ Gρ and f ∈ Gρ⇒σ.

Proof. Since x ∼ρ y we have x ∩ y ∈ Gρ by the last lemma. Now
f(x), f(y) ⊇ f(x∩ y) and hence f(x)∩ f(y) ∈ Gσ. But this implies f(x) ∼σ

f(y) again by the last lemma. �

4.3.3. Dense and separating sets. We now prove the density theo-
rem, which says that every finitely generated functional (i.e., every U with
U ∈ Conρ) can be extended to a total functional.

However, we need some assumptions on the base types for this theorem
to hold. Otherwise, density might fail for the trivial reason that there are
no total ideals at all (e.g., in µα (α → α)). A type µα1, . . . , αN (κ1, . . . , κn)
is said to have total ideals if for every j (1 ≤ j ≤ N) there is a constructor
type κij of form (4.1) with j1, . . . , jn < j. Then clearly for every j we have
a total ideal of type αj ; call it zj . Moreover, we assume that all base types
are finitary. Then their total ideals are finite and maximal, which will be
used in the proof.

Theorem (Density). Assume that all base types are finitary and have
total ideals. Then for every U ∈ Conρ we can find an x ∈ Gρ such that
U ⊆ x.

Proof. Call a type ρ dense if ∀U∈Conρ∃x∈Gρ U ⊆ x, and separating if

∀U1,U2∈Conρ

(
U1 ∪ U2 /∈ Conρ ⇒ ∃~z∈G InCon(U1(~z) ∪ U2(~z))

)
.

Here ~z ∈ G means that ~z is a sequence of total zi such that Uj(~z) is of a base
type µ. Cleary InCon(x) means that the (possibly infinite) set x of atoms

4.3. TOTAL FUNCTIONALS 85

contains a finite subset U /∈ Con. We prove by simultaneous induction on
ρ that every type ρ is dense and separating. This extended claim is needed
for the inductive argument.

For base types µ both claims are easy: the fact that µ is separating
is obvious, and density for µ can be inferred from the IH, as follows. For
simplicity of notation assume that µ is non-simultaneously defined. Let
U ∈ Conµ. Then (since µ is finitary) ∃b∀a∈U b ≥ a. In the token b, replace
every constructor symbol by its corresponding continuous function, every
token at a parameter argument position by a total ideal of its type (which
exists by IH), and every ∗ at a type-µ-position by the total ideal z of type
µ (which exists by assumption). The result is the required total ideal.

ρ ⇒ σ is separating: This will follow from the inductive hypotheses
that ρ is dense and σ is separating. So let W,W ′ ∈ Conρ⇒σ such that
W ∪W ′ /∈ Conρ⇒σ. Then there are (U, a) ∈W and (U ′, a′) ∈W ′ such that
U ∪ U ′ ∈ Conρ but a 6` a′. Since ρ is dense, we have a z ∈ Gρ such that
U ∪ U ′ ⊆ z. Hence a ∈ W (z) and a′ ∈ W ′(z). Now since σ is separating
there are ~z ∈ G such that

InCon({a}(~z) ∪ {a′}(~z)),

hence also
InCon(W (z, ~z) ∪W ′(z, ~z)).

This concludes the proof that ρ⇒ σ is separating.
ρ ⇒ σ is dense: This will follow from the inductive hypotheses that ρ

is separating and σ is dense. So fix W = { (Ui, ai) | i ∈ I } ∈ Conρ⇒σ.
Consider i, j such that ai 6` aj . Then Ui ∪Uj /∈ Conρ. Since ρ is separating,
there are ~zij ∈ G and kij , lij ∈ Gµ such that with kij := Ui(~zij) and lij :=
Uj(~zij)

InCon(kij ∪ lij).
We clearly may assume that ~zij = ~zji and (kij , lij) = (lji, kji).

Now define for every U ∈ Conρ a set IU of indices i ∈ I such that “U
behaves as Ui with respect to the ~zij”. More precisely, let

IU := { i ∈ I | ∀j(ai 6` aj → U(~zij) = kij) }.

We first show that

(4.4) { ai | i ∈ IU } ∈ Conσ.

It suffices to show that ai ` aj for all i, j ∈ IU . So let i, j ∈ IU and assume
ai 6` aj . Then U(~zij) = kij as i ∈ IU and U(~zji) = kji as j ∈ IU , and
because of ~zij = ~zji and InCon(kij ∪ kji) (recall lij = kji) we could conclude
that U(~zij) would be inconsistent. This contradiction proves ai ` aj and
hence (4.4).

Since (4.4) holds and σ is dense by IH, we can find yIU
∈ Gσ such that

ai ∈ yIU
for all i ∈ IU . Define r ⊆ Conρ × Cσ by

r(U, a) ⇐⇒

{
a ∈ yIU

, if U(~zij) is finite and maximal for all ~zij ;
∃i∈IU

ai ≥σ a, otherwise.

We will show that r ∈ Gρ⇒σ and W ⊆ r.

86 4. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS

For W ⊆ r we have to show r(Ui, ai) for all i ∈ I. But this holds, since
clearly i ∈ IUi and also ai ∈ yIUi

.
We now show that r is an approximable map, i.e., that r ∈ |Cρ⇒σ|. To

prove this we have to verify the defining properties of approximable maps.
(a). r(U, b1) and r(U, b2) implies b1 ` b2. If U(~zij) is finite and maximal

for all ~zij , the claim follows from the consistency of yIU
. If not, the claim

follows from the general properties of acis’s.
(b). r(U, b), V ≥A U and b ≥B c implies r(V, c). First assume that

U(~zij) is finite and maximal for all ~zij . Then also V (~zij) is maximal for all
~zij . From r(U, b) we get b ∈ yIU

. We have to show that c ∈ yIV
. But since

U(~zij) and V (~zij) are maximal for all ~zij and V ≥ρ U , they must have the
same values on the ~zij , hence IU = IV , so yIU

= yIV
and therefore c ∈ yIV

by deductive closure. Now assume the contrary. From r(U, b) we get ai ≥σ b
for some i ∈ IU . From V ≥ρ U we can conclude IU ⊆ IV , by the definition
of IU . Hence i ∈ IV , and also b ∈ yIV

(since ai ∈ yIU
for all i ∈ IU , and yIV

is deductively closed). Therefore r(V, b) and hence r(V, c).
This concludes the proof that r is an approximable map. It remains to

prove r ∈ Gρ⇒σ. So let x ∈ Gρ. We must show

|r|(x) = { a ∈ Cσ | ∃U⊆x r(U, a) } ∈ Gσ.

Now x(~zij) is total for all i, j, hence by our assumption on base types finite
and maximal. So there is some Uij ⊆ x such that Uij(~zij) = x(~zij). Let
U ⊆ x be the union of all the Uij . Then by definition r(U, a) for all a ∈ yIU

.
Therefore yIU

⊆ |r|(x) and hence |r|(x) ∈ Gσ. �

As an application of the density theorem we prove a choice principle for
total continuous functionals.

Theorem (Choice principle for total functionals). There is an ideal
Γ ∈ |C(ρ⇒σ⇒boole)⇒ρ⇒σ| such that for every F ∈ Gρ⇒σ⇒boole satisfying

∀x∈Gρ∃y∈Gσ F (x, y) = tt

we have Γ(F) ∈ Gρ⇒σ and

∀x∈Gρ F (x,Γ(F, x)) = tt.

Proof. Let V0, V1, V2, . . . be an enumeration of Conσ. By the density
theorem we can find yn ∈ Gσ such that Vn ⊆ yn. Define a relation r ⊆
Conρ⇒σ⇒boole × Cρ⇒σ by

r(W,U, a) ⇐⇒ ∃m∀i<m (W (U, yi) = ff ∧W (U, ym) = tt ∧ a ∈ ym).

We first show that Γ := r is an approximable map. To prove this we have
to verify the clauses of the definition of approximable maps.

(a). r(W,U1, a1) and r(W,U2, a2) imply U1, a1) ` (U2, a2). Assume the
premise and U := U1 ∪ U2 ∈ Conρ. We show a1 ` a2. The numbers mi in
the definition of r(W,Ui, ai) are the same, = m say. Hence a1, a2 ∈ ym, and
the claim follows from the consistency of ym.

(b). r(W ′, U, a), W ≥ W ′ and (U, a) ≥ (V, b) implies r(W,V, b). Then
V ≥ U and a ≥ b. The claim follows from the definition of r, using the
deductive closure of ym. The m from r(W ′, U, a) can be used for r(W,U, a).

4.3. TOTAL FUNCTIONALS 87

We finally show that for all F ∈ Gρ⇒σ⇒boole satisfying

∀x∈Gρ∃y∈Gσ F (x, y) = tt

and all x ∈ Gρ we have Γ(F, x) ∈ Gσ and F (x,Γ(F, x)) = tt. So let F and x
with these properties be given. By assumption there is a y ∈ Gσ such that
F (x, y) = tt. Hence by the definition of application there is a Vn ∈ Conσ

such that F (x, Vn) = tt. Since Vn ⊆ yn we also have F (x, yn) = tt. Clearly
we may assume here that n is minimal with this property, i.e., that

F (x, y0) = ff, . . . , F (x, yn−1) = ff.

We show that Γ(F, x) ⊇ yn; this suffices because the extension of a total
ideals is total. Recall that

Γ(F) = { (U, a) ∈ Conρ × Cσ | ∃W⊆F r(W,U, a) }

and

Γ(F, x) = { a ∈ Cσ | ∃U⊆x (U, a) ∈ Γ(F) }
= { a ∈ Cσ | ∃U⊆x∃W⊆F r(W,U, a) }.

Let a ∈ yn. By the choice of n we get U ⊆ x and W ⊆ F such that

∀i<nW (U, yi) = ff and W (U, yn) = tt.

Therefore r(W,U, a) and hence a ∈ Γ(F, x). �

4.3.4. Effectiveness. From the proofs of both theorems it can be seen
that the functionals constructed are in fact computable. More precisely we
have:

Theorem (Effective density). For every U ∈ Conρ we can find a com-
putable x ∈ Gρ such that U ⊆ x.

Proof. By inspection of the proof of the density theorem. To see that
r (in the proof that ρ⇒ σ is dense) is Σ0

1-definable observe that ∃i∈IU
ai ≥ a

implies a ∈ yIU
for all U and a, since by definition ai ∈ yIU

for all i ∈ IU .
Hence

r(U, a) ⇐⇒
∃i∈IU

ai ≥ a or (a ∈ yIU
and U(~zij) is finite and maximal for all ~zij).

Moreover, if U(~zij) is finite and maximal for all ~zij , one can actually compute
IU (and not only an enumeration procedure for IU). �

Theorem (Effective choice principle). There is a computable Γ of type
(ρ⇒ σ ⇒ boole) ⇒ ρ⇒ σ such that for every F ∈ Gρ⇒σ⇒boole satisfying

∀x∈Gρ∃y∈Gσ F (x, y) = tt

we have Γ(F) ∈ Gρ⇒σ and

∀x∈Gρ F (x,Γ(F, x)) = tt.

Proof. Immediate from the proof of the choice principle for total con-
tinuous functionals. �

88 4. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS

The effective choice principle generalizes the simple fact that when-
ever we know the truth of ∀x∈N∃y∈N P (x, y) with P (x, y) decidable, then
given x we can just search for a y such that P (x, y) holds; the truth of
∀x∈N∃y∈N P (x, y) guarantees termination of the search.

Bibliography

A. Abel and T. Altenkirch. A predicative strong normalization proof for
a λ-calculus with interleaving inductive types. In Types for Proofs and
Programs, International Workshop, TYPES ’99, Lökeberg, Sweden, June
1999, volume 1956 of LNCS, pages 21–40. Springer Verlag, Berlin, Hei-
delberg, New York, 2000.

S. Abramsky. Domain theory in logical form. Annals of Pure and Applied
Logic, 51:1–77, 1991.

S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 3, pages 1–168. Clarendon Press, 1994.

R. M. Amadio and P.-L. Curien. Domains and Lambda-Calculi. Cambridge
University Press, 1998.

H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. The Journal of Symbolic Logic,
48(4):931–940, 1983.

H. Benl. Konstruktive Interpretation induktiver Definitionen. Master’s the-
sis, Mathematisches Institut der Universität München, 1998.

U. Berger. Total sets and objects in domain theory. Annals of Pure and
Applied Logic, 60:91–117, 1993.

U. Berger. Continuous semantics for strong normalization. In Proc. CiE
2005, volume 3526 of LNCS, pages 23–34, 2005.

U. Berger, M. Eberl, and H. Schwichtenberg. Term rewriting for normaliza-
tion by evaluation. Information and Computation, 183:19–42, 2003.

F. Blanqui, J.-P. Jouannaud, and M. Okada. The Calculus of Algebraic
Constructions. In RTA’99. LNCS 1631, 1999.

T. Coquand, G. Sambin, J. Smith, and S. Valentini. Inductively generated
formal topologies. Annals of Pure and Applied Logic, 124:71–106, 2003.

T. Coquand and A. Spiwack. Proof of normalisation using domain theory.
Slides of a talk, October 2005.

H. B. Enderton and D. Luckham. Hierarchies over recursive well-orderings.
The Journal of Symbolic Logic, 29:183–190, 1964.

Y. L. Ershov. Everywhere defined continuous functionals. Algebra i Logika,
11(6):656–665, 1972.

Y. L. Ershov. Maximal and everywhere defined functionals. Algebra i Logika,
13(4):374–397, 1974.

J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et son
application à l’élimination des coupures dans l’analyse et la théorie des
types. In J. Fenstad, editor, Proceedings of the Second Scandinavian Logic
Symposium, pages 63–92. North–Holland, Amsterdam, 1971.

89

90 Bibliography

K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten
Standpunkts. Dialectica, 12:280–287, 1958.

P. G. Hinman. Recursion–Theoretic Hierarchies. Springer Verlag, Berlin,
Heidelberg, New York, 1978.

S. C. Kleene. On the forms of the predicates in the theory of constructive
ordinals. Amer. J. Math., 66:41–58, 1944.

S. C. Kleene. Introduction to Metamathematics. D. van Nostrand Comp.,
New York, 1952.

S. C. Kleene. On the forms of the predicates in the theory of constructive
ordinals (second paper). Amer. J. Math., 77:405–428, 1955.

S. C. Kleene. Countable functionals. In A. Heyting, editor, Constructivity
in Mathematics, pages 81–100. North–Holland, Amsterdam, 1959.

G. Kreisel. Interpretation of analysis by means of constructive functionals of
finite types. In A. Heyting, editor, Constructivity in Mathematics, pages
101–128. North–Holland, Amsterdam, 1959.

L. Kristiansen and D. Normann. Total objects in inductively defined types.
Archive for Mathematical Logic, 36(6):405–436, 1997.

K. G. Larsen and G. Winskel. Using information systems to solve recursive
domain equations. Information and Computation, 91:232–258, 1991.

P. Martin-Löf. The domain interpretation of type theory. Talk at the
workshop on semantics of programming languages, Chalmers University,
Göteborg, August 1983.

P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
R. Milner. Implementation and applications of Scott’s logic for computable

functions. In Proc ACM Conf on Proving Assertions About Programs, Las
Cruces, New Mexico, 1972.

R. Milner. Models of LCF. Technical Report Memo Aim-186, Stanford
Artificial Intelligence Laboratory, January 1973.

G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

G. D. Plotkin. Tω as a universal domain. Journal of Computer and System
Sciences, 17:209–236, 1978.

H. Rogers. Theory of recursive functions and effective computability. Mc
Graw Hill, 1967.

H. Schwichtenberg. Density and choice for total continuous functionals. In
P. Odifreddi, editor, Kreiseliana. About and Around Georg Kreisel, pages
335–362. A.K. Peters, Wellesley, Massachusetts, 1996.

H. Schwichtenberg. Recursion on the partial continuous functionals. In
C. Dimitracopoulos, L. Newelski, D. Normann, and J. Steel, editors, Logic
Colloquium ’05, volume 28 of Lecture Notes in Logic, pages 173–201. As-
sociation for Symbolic Logic, 2006.

D. Scott. A type theoretical alternative to ISWIM, CUCH, OWHY. Pub-
lished in Theoret. Comput. Sci. 121 (1993), 411–440, 1969.

D. Scott. Outline of a mathematical theory of computation. Technical
Monograph PRG–2, Oxford University Computing Laboratory, 1970.

D. Scott. Domains for denotational semantics. In E. Nielsen and E. Schmidt,
editors, Automata, Languages and Programming, volume 140 of LNCS,
pages 577–613. Springer Verlag, Berlin, Heidelberg, New York, 1982.

Bibliography 91

A corrected and expanded version of a paper prepared for ICALP’82,
Aarhus, Denmark.

D. Scott and C. Strachey. Toward a mathematical semantics for computer
languages. Technical Monograph PRG–6, Oxford University Computing
Laboratory, 1971.

J. Shepherdson and H. Sturgis. Computability of recursive functions. J.
Ass. Computing Machinery, 10:217–255, 1963.

J. R. Shoenfield. Mathematical Logic. Addison–Wesley Publ. Comp., Read-
ing, Massachusetts, 1967.

R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Math-
ematical Logic. Springer Verlag, Berlin, Heidelberg, New York, 1987.

C. Spector. Recursive well–orderings. The Journal of Symbolic Logic, 20:
151–163, 1955.

C. Spector. Inductively defined sets of natural numbers. In Infinitistic Meth-
ods. Proceedings of the Symposium on Foundations of Mathematics, pages
97–102. Panstwowe Wydawnictwo Naukowe (PWN), Warschau, 1961.

V. Stoltenberg-Hansen, E. Griffor, and I. Lindström. Mathematical Theory
of Domains. Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1994.

W. W. Tait. Normal form theorem for bar recursive functions of finite
type. In J. Fenstad, editor, Proceedings of the Second Scandinavian Logic
Symposium, pages 353–367. North–Holland, Amsterdam, 1971.

A. S. Troelstra, editor. Metamathematical Investigation of Intuitionistic
Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics.
Springer Verlag, Berlin, Heidelberg, New York, 1973.

J. Zucker. Iterated inductive definitions, trees and ordinals. In A. Troel-
stra, editor, Mathematical Investigation of Intuitionistic Arithmetic and
Analysis, volume 344 of Lecture Notes in Mathematics, pages 392–453.
Springer Verlag, Berlin, Heidelberg, New York, 1973.

Index

Π1
1-index, 62

accessible part, 44
Ackermann-Péter function, 23
approximable map, 79
arrow types, 77
axiom of choice, 64
axiom of dependent choice, 45

closure ordinal, 42
concatenation, 9
continuous, 43

DC, 45
decoding, 9
degree, 33
directed, 43

equality
decidable, 82

existence, 82

field, 35
fixed point

least, 15
function

computable, 14
elementary, 4
hyperarithmetical, 65
µ-recursive, 13
recursive, 18
subelementary, 4, 24

functional
partial recursive, 31

Grzegorczyk, 24

honest, 24
hyperarithmetical hierarchy, 58
hyperarithmetical set, 58

ideal, 79
implicit definition, 66
induction principle, 42
inductive definition

monotone, 41

instruction number, 10

jump, 33, 34, 57

Kleene, 1
Kleene-Brouwer ordering, 39

least fixed point, 41
least number operator, 4
length, 9

Normal Form Theorem, 11

object, 79
operator, 41

Σ0
r-definable, 45

closure of an, 42
continuous, 43
inclusive, 42
monotone, 41

ordinal
recursive, 39

ordinal notation, 48
ordinal predecessor, 58
ordinal successor, 58

path in O, 70
path through O, 70

recursion theorem
first, 16

recursive
in B with index e, 57

recursive successor, 33
reducible, 28
reduction sequence, 44
reduction system, 44
register machine computable, 3
register machine, 1
relation

∆0
r-definable, 26

∆1
r-definable, 35

Π0
r-definable, 26

Π1
r-definable, 35

Σ0
r-complete, 28

Σ0
r-definable, 26

93

94 INDEX

Σ1
r-complete, 38

Σ1
r-definable, 35

Σ1
1,H-definable, 68

analytical, 35
arithmetical, 26
elementarily enumerable, 13
elementary, 6
noetherian, 44
recursively enumerable, 25
terminating, 44
universal, 27

state
of computation, 11

substitution
in function arguments, 32

Substitution Lemma
for Σ0

1-definable relations, 25

term, 82
Turing, 1

