Übungen zur Vorlesung "Ausgewählte Kapitel aus der Beweistheorie"

Aufgabe 21. Es seien A und B Informationssysteme und $f: |A| \to |B|$. Dann sind äquivalent:

- (a) f ist stetig bzgl. der Scott Topologie.
- (b) f ist monoton und erfüllt das "Prinzip des endlichen Trägers" (principle of finite support, PFS): ist $b \in f(x)$, so ist $b \in f(\overline{U})$ für ein $U \subseteq x$.
- (c) f ist monoton und kommutiert mit gerichteten Vereinigungen: für jedes gerichtete $D \subseteq |\mathbf{A}|$ (d.h. für alle $x,y \in D$ gibt es ein $z \in D$ mit $x,y \subseteq z$) gilt

$$f(\bigcup_{x \in D} x) = \bigcup_{x \in D} f(x).$$

Aufgabe 22. Es seien A und $B = (B, \operatorname{Con}_B, \vdash_B)$ Informationssysteme. Dann stehen die Ideale von $A \to B$ in einer natürlichen bijektiven Korrespondenz mit den stetigen Funktionen von |A| nach |B|, wie folgt.

(a) Jeder approximierbaren Abbildung $r\colon \pmb{A}\to \pmb{B}$ ordnet man eine stetige Funktion $|r|\colon |\pmb{A}|\to |\pmb{B}|$ zu durch

$$|r|(z) := \{ b \in B \mid r(U, b) \text{ für ein } U \subseteq z \}.$$

Man nennt |r|(z) die Anwendung von r auf z.

(b) Umgekehrt ordnet man jeder stetigen Funktion $f: |A| \to |B|$ eine approximierbare Abbildung $\hat{f}: A \to B$ zu durch

$$\hat{f}(U,b) := (b \in f(\overline{U})).$$

Man zeige, daß diese Zuordnungen wohldefiniert und invers zueinander sind, also $f = |\hat{f}|$ und $r = |\hat{r}|$.

Aufgabe 23. (a) Man zeige, daß $r_S := \{ (U, Sa^*) \mid U \vdash a^* \}$ ein Ideal ist.

(b) Nach der Definition von $|r_S|$ in Aufgabe 22(a) gilt $|r_S|(x) = \{Sa^* \mid \exists_{U \subset x} (U \vdash a^*)\}$. Man beweise $|r_S|(x) \subseteq |r_S|(y) \leftrightarrow x \subseteq y$.

Aufgabe 24. Für jede der folgenden Algebren ι gebe man den Typ des Rekursionsoperators $\mathcal{R}_{\iota}^{\tau}$ mit Wertetyp τ an.

- (a) $\mathbf{L}(\alpha)^+ := \mu_{\xi}(\alpha \to \xi, \alpha \to \xi \to \xi)$ (nicht leere Listen).
- (b) $\mathbf{T}_1 := \mu_{\xi}(\xi, (\mathbf{N} \to \xi) \to \xi)$ und $\mathbf{T}_2 := \mu_{\xi}(\xi, (\mathbf{T}_1 \to \xi) \to \xi)$ (Bäume).
- (c) $\mathbf{T} := \mu_{\mathcal{E}}(\mathbf{L}(\xi) \to \xi)$ (endlich verzweigte Bäume).

Abgabe. Mittwoch, 5. Juni 2013, in der Vorlesung.