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CHAPTER 1

Minimal Arithmetic in Finite Types

We develop an arithmetic HAω in finite types, which is based on de-
cidable predicates and uses the “negative” logical operators → and ∀ only.
Hence proofs in HAω have no “computational content”.

1.1. Gödel’s T

Gödel (1958) proposed to extend Hilbert’s concept of “finitary methods”
to include higher (but still finite) types. This makes it possible to consider
definition schemes for functions (like primitive recursion or transfinite recur-
sion) as higher type operators. Moreover, admittance of computable func-
tionals of higher type is a must when we want to capture the computational
content of proofs in arithmetic.

1.1.1. Types. A free algebra is given by its constructors, for instance
zero and successor for the natural numbers. We want to treat other data
types as well, like lists and binary trees. When dealing with inductively
defined sets, it will also be useful to explicitly refer to the generation tree.
Such trees are quite often infinitely branching, and hence we allow infinitary
free algebras.

The freeness of the constructors is expressed by requiring that their
ranges are disjoint and that they are injective. To allow for partiality –
which is mandatory when we want to deal with computable objects –, we
have to embed our algebras into domains. Both requirements together imply
that we need “lazy domains”.

Our type system is defined by two type forming operations: arrow types
ρ → σ and the formation of inductively generated types or base types µ~α~κ,
where ~α = (αj)j<N is a list of distinct “type variables”, and ~κ = (κi)i<k is
a list of “constructor types”, whose argument types contain α0, . . . , αN−1 in
strictly positive positions only.

For instance, µα(α, α → α) is the type of natural numbers; here the list
(α, α → α) stands for two generation principles: α for “there is a natural
number” (the 0), and α → α for “for every natural number there is a next
one” (its successor).
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2 1. MINIMAL ARITHMETIC IN FINITE TYPES

Definition. Let ~α = (αj)j<N be a list of distinct type variables. Types
ρ, σ, τ, µ ∈ Ty and constructor types κ ∈ KT~α are defined inductively:

~ρ, ~σ0, . . . , ~σn−1 ∈ Ty
~ρ → (~σν → αjν )ν<n → αj ∈ KT~α

(n ≥ 0),

κ0, . . . , κk−1 ∈ KT~α

(µ~α(κ0, . . . , κk−1))j ∈ Ty
(k ≥ 1),

ρ, σ ∈ Ty
ρ → σ ∈ Ty

.

Here ~ρ → σ means ρ0 → . . . → ρn−1 → σ, associated to the right. For a
constructor type ~ρ → (~σν → αjν )ν<n → αj we call ~ρ the parameter argument
types and the ~σν → αjν recursive argument types. We require that for every
αj (j < N) there is a nullary constructor type κij with value type αj , each
of whose recursive argument types has a value type αjν with jν < j.

We reserve µ for base types, i.e., types of the form (µ~α(κ0, . . . , κk−1))j .
The parameter types of µ are all parameter argument types of its constructor
types κ0, . . . , κk−1.

Examples.

U := µαα,

B := µα(α, α),

N := µα(α, α → α),

L(ρ) := µα(α, ρ → α → α),

ρ⊗ σ := µα(ρ → σ → α),

ρ + σ := µα(ρ → α, σ → α),

(tree, tlist) := µα,β(N → α, β → α, β, α → β → β),

bin := µα(α, α → α → α),

O := µα(α, α → α, (N → α) → α),
T0 := N,

Tn+1 := µα(α, (Tn → α) → α).

Note that there are many equivalent ways to define these types. For instance,
we could take U + U to be the type of booleans, and L(U) to be the type
of natural numbers.

A type is finitary if it is a µ-type with all its parameter types ~ρ finitary,
and all its constructor types have recursive argument types of the form αjm

only (so the ~σm in the general definition are all empty). In the examples
above U, B, N, tree, tlist and bin are all finitary, but O and Tn+1 are not.
L(ρ), ρ ⊗ σ and ρ + σ are finitary provided their parameter types are. An
argument position in a type is called finitary if it is occupied by a finitary
type.
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1.1.2. Recursion operators. The inductive structure of the types
~µ = µ~α~κ corresponds to two sorts of constants: with the constructors
C~µ

i : κi(~µ) we can build elements of a type µj , and with the (structural)
recursion operators R~µ,~τ

µj we can construct mappings recursion on the struc-
ture of ~µ.

In order to define the type of the recursion operators w.r.t. ~µ = µ~α~κ and
result types ~τ , we first define for

κi = ~ρ → (~σν → αjν )ν<n → αj ∈ KT~α

the step type

δ~µ,~τ
i := ~ρ → (~σν → µjν )ν<n → (~σν → τjν )ν<n → τj .

Here ~ρ, (~σν → µjν )ν<n correspond to the components of the object of type
µj under consideration, and (~σν → τjν )ν<N to the previously defined values.
The recursion operator R~µ,~τ

µj has type

R~µ,~τ
µj

: µj → δ~µ,~τ
0 → . . . → δ~µ,~τ

k−1 → τj

(recall that k is the total number of constructors for all types µj , j < N).
We will often write R~µ,~τ

j for R~µ,~τ
µj , and omit the upper indices ~µ, ~τ when

they are clear from the context. In case of a non-simultaneous free algebra,
i.e., of type µακ, for Rµ,τ

µ we write Rτ
µ.

For some common base types the constructors have standard names, as
follows. We also spell out the type of the recursion operators:

ttB := CB
1 , ffB := CB

2 ,

Rτ
B : B → τ → τ → τ,

0N := CN
1 , SN→N := CN

2 ,

Rτ
N : N → τ → (N → τ → τ) → τ,

nilL(ρ) := CL(ρ)
1 , consρ→L(ρ)→L(ρ) := CL(ρ)

2 ,

Rτ
L(ρ) : L(ρ) → τ → (ρ → L(ρ) → τ → τ) → τ,(

inlρσ

)ρ→ρ+σ := Cρ+σ
1 ,

(
inrρσ

)σ→ρ+σ := Cρ+σ
2 ,

Rτ
ρ+σ : ρ + σ → (ρ → τ) → (σ → τ) → τ,(
⊗+

ρσ

)ρ→σ→ρ⊗σ := Cρ⊗σ
1 ,

Rτ
ρ⊗σ : ρ⊗ σ → (ρ → σ → τ) → τ.

One often writes x :: l as shorthand for cons x l, and 〈y, z〉 for ⊗+yz.
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Terms are inductively defined from typed variables xρ and the constants,
that is, constructors C~µ

i and recursion operators R~µ,~τ
µj , by abstraction λxρMσ

and application Mρ→σNρ.

Examples. We define the canonical inhabitant ερ of a type ρ ∈ Ty:

εµj := C~µ
j ε~ρ(λ~x1

εµj1 ) . . . (λ~xnεµjn ), ερ→σ := λxεσ.

The projections of a pair to its components can be defined easily:

M0 := Rρ
ρ⊗σMρ⊗σ(λxρ,yσxρ), M1 := Rρ

ρ⊗σMρ⊗σ(λxρ,yσyσ).

The append -function :+: for lists is defined recursively by

nil :+: l2 := l2,

(x :: l1) :+: l2 := x :: (l1 :+: l2).

It can be defined as the term

l1 :+: l2 := RL(α)→L(α)
L(α) l1(λl2 l2)(λx,l1,p,l2(x :: (pl2)))l2.

Using the append function :+: we can define list reversal Rev by

Rev nil := nil,

Rev(x :: l) := (Rev l) :+: (x :: nil);

the corresponding term is

Rev l := RL(α)
L(α)l nil(λx,l,p(p :+: (x :: nil)).

1.1.3. Conversion. To define the conversion relation, it will be helpful
to use the following notation. Let ~µ = µ~α~κ and κi =

ρ0 → . . . → ρm−1 → (~σ0 → αj0) → . . . → (~σn−1 → αjn−1) → αj ∈ KT~α,

and consider C~µ
i

~N . We write ~NP = NP
0 , . . . , NP

m−1 for the parameter argu-
ments Nρ0

0 , . . . , N
ρm−1

m−1 and ~NR = NR
0 , . . . , NR

n−1 for the recursive arguments

N
~σ0→µj0
m , . . . , N

~σn−1→µjn−1

m+n−1 , and nR for the number n of recursive arguments.
We define a conversion relation 7→ρ between terms of type ρ by

(λxM)N 7→ M [x := N ],

λx(Mx) 7→ M if x /∈ FV(M) (M not an abstraction),

Rj(C
~µ
i

~N) ~M 7→ Mi
~N

(
(Rj0 · ~M) ◦NR

0

)
. . .

(
(Rjn−1 · ~M) ◦NR

n−1

)
.

Here we have written Rj · ~M for λxµj (R~µ,~τ
µj xµj ~M).

The one step reduction relation → can now be defined as follows. M →
N if N is obtained from M by replacing a subterm M ′ in M by N ′, where
M ′ 7→ N ′. The reduction relations →+ and →∗ are the transitive and the
reflexive transitive closure of →, respectively. For ~M = M1, . . . ,Mn we
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write ~M → ~M ′ if Mi → M ′
i for some i ∈ {1, . . . , n} and Mj = M ′

j for all
i 6= j ∈ {1, . . . , n}. A term M is normal (or in normal form) if there is no
term N such that M → N .

Clearly normal closed terms are of the form C~µ
i

~N .

Theorem. Every term can be reduced to a normal form.

1.2. Natural Deduction

We define Heyting Arithmetic HA and its extension HAω to a finitely
typed language.

1.2.1. Derivations as terms. Recall that we have a decidable equality
=µ : µ → µ → B, for finitary base types µ. Every atomic formula has the
form atom(rB), i.e., is built from a boolean term rB. In particular, there
is no need for (logical) falsity ⊥, since we can take the atomic formula
F := atom(ff) – called arithmetical falsity – built from the boolean constant
ff instead.

The formulas of HAω are built from atomic ones by the connectives →
and ∀. We define negation ¬A by A → F , and the weak (or “classical”)
existential quantifier by

∃̃xA := ¬∀x¬A.

We use natural deduction rules: →+, →−, ∀+ and ∀−.
It will be convenient to write derivations as terms, where the derived

formula is viewed as the type of the term. This representation is known
under the name Curry-Howard correspondence. From now on we use M , N
etc. to range over derivation terms, and r, s etc. for object terms.

We give an inductive definition of derivation terms in Table 1, where for
clarity we have written the corresponding derivations to the left. For the
universal quantifier ∀ there is an introduction rule ∀+x and an elimination
rule ∀−, whose right premise is the term r to be substituted. The rule ∀+x
is subject to the standard (Eigen-) variable condition: The derivation term
M of the premise A should not contain any open assumption with x as a
free variable.

1.2.2. Structural induction. The general form of (structural) induc-
tion over simultaneous free algebras ~µ = µ~α ~κ, with goal formulas Aj(x

µj

j )
is as follows (cf. 1.1.2). For the constructor type

κi = ~ρ → (~σν → αjν )ν<n → αj ∈ KT~α
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derivation term

u : A uA

[u : A]
| M
B →+uA → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B

| M
A ∀+x (with var.cond.)
∀xA

(λxMA)∀xA (with var.cond.)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Table 1. Derivation terms for → and ∀

we have the step formula

Di := ∀
y

ρ0
0 ,...,y

ρm−1
m−1 ,y

~σ0→µj0
m ,...,y

~σn−1→µjn−1
m+n−1(

∀~x~σ0 Aj0(ym+1~x ) → · · · → ∀
~x~σn−1 Ajn−1(ym+n−1~x ) → Aj(C

~µ
i ~y)

)
.

(1.1)

Here ~y = yρ0
0 , . . . , y

ρm−1

m−1 , y
~σ0→µj0
m , . . . , y

~σn−1→µjn−1

m+n−1 are the components of the
object C~µ

i ~y of type µj under consideration, and

∀~x~σ0Aj0(ym~x ), . . . ,∀
~x~σn−1Ajn−1(ym+n−1~x )
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are the hypotheses available when proving the induction step. The induction
axiom Ind~x, ~A

µj
then proves the universal closure of the formula

∀xj

(
D0 → · · · → Dk−1 → Aj(x

µj

j )
)
.

We will often write Ind~x, ~A
j for Ind~x, ~A

µj
, and omit the upper indices ~x, ~A

when they are clear from the context. In case of a non-simultaneous free
algebra, i.e., of type µα~κ, for Indx,A

µ we normally write Indx,A.

Examples.

Indp,A : ∀p

(
A(tt) → A(ff) → A(pB)

)
,

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
,

Indl,A : ∀l

(
A(nil) → ∀x,l′(A(l′) → A(x :: l′)) → A(lL(ρ))

)
,

Indx,A : ∀x

(
∀y1A(inl y1) → ∀y2A(inr y2) → A(xρ1+ρ2)

)
,

Indx,A : ∀x

(
∀yρ,zσA(〈y, z〉) → A(xρ∧σ)

)
,

where x :: l is shorthand for cons x l and 〈y, z〉 for ⊗+yz.

Let HAω be the theory based on the axioms above including the induc-
tion axioms.

1.2.3. Indirect proofs. We show that our arithmetic is “classical” in
the sense that the principle of indirect proof holds. Here we make essential
use of the fact that our formulas are built from (decidable) atomic ones by
the connectives → and ∀. Recall that negation ¬A and the weak existential
quantifier ∃̃xA are definable. In the next chapter we will (inductively) define
the strong (or “constructive”) existential quantifier, which will cause proofs
to have computational content. In this richer language the principle of
indirect proof does not hold any more.

Lemma (Ex falso quodlibet). HAω ` F → A.

Proof. Induction on A, using Indp,atom(p) in the prime formula case.
The details are left as an exercise.. �

The following lemma expresses the principle of indirect proof.

Lemma (Stability). HAω ` ¬¬A → A.

Proof. Induction on A (exercise). �

Lemma (Compatibility). For finitary µ,

HAω ` x1 =µ x2 → A(x1) → A(x2).

Proof. Induction on x1 with a side induction on x2, using ex falso
quodlibet. The details are left as an exercise. �
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1.3. Example: List Reversal

As a running example we treat list reversal; the example is taken from
Berger (2005). For its formulation in our language we view Rev as a function
parameter of type L(N) → L(N) → B, whose properties are axiomatized
by

Rev(nil,nil),(1.2)

Rev(v, w) → Rev(v :+: x:, x :: w).(1.3)

We use x :: v for the cons-operator, and v :+: w for the append function. x:
denotes x :: nil, i.e., the singleton list consisting of x. We prove

(1.4) ∀v∃̃wRev(v, w).

Fix v0 and assume Hyp : ∀w¬Rev(v0, w); we need to derive a contradiction.
To this end we prove that all initial segments of v are non-revertible, which
contradicts (1.2). More precisely, we prove

∀v

(
v :+: u = v0 → ∀w¬Rev(v, w)

)
,

by induction on u. For u = nil this follows from our initial assumption. For
the step case, assume v :+:(x :: u) = v0, fix w and assume further Rev(v, w).
We need to derive a contradiction. Properties of the append function (e.g.,
associativity) imply that (v :+: x:) :+: u = v0. The IH for v :+: x: gives
∀w¬Rev(v :+: x:, w). Now (1.3) yields the desired contradiction.

Does this proof of (1.4) have computational content? On the face of
it, no, because in our “negative” arithmetic HAω there is no computational
content at all. However, if we look closer, we can find computational content,
in fact by two different methods. The first “direct” one is dicussed now, the
second one in the next chapter, because it needs the (constructive) existential
quantifier, which will be introduced only there.

The “direct” method makes use of the fact that proofs in natural deduc-
tion can be brought into “normal form”, which does not make “detours”: all
assumptions are applied until an atomic formula is reached, and then built
up again. Moreover, we can assume that our proof of the closed formula
(1.4) from closed assumptions has no free variables.

Let M be this normal proof, for v0 := 2 :: 5:. Consider all occurrences
of the “false” assumption

Hyp : ∀w¬Rev(v0, w).

Each of them must be applied to a closed list wi, followed by a proof of
Rev(v0, wi). If we take an uppermost occurrence of our false assumption
Hyp, we obtain a proof of Rev(v0, wi) not containing this assumption. Hence
Rev(v0, wi) is true, and we can read off the desired reversal wi of our list v0.



CHAPTER 2

Inductive Constructions

We now add computational content to our arithmetic, in the form of
inductively defined predicates. It turns out that this is the only addition
necessary: for example, the existential quantifier ∃ will be a special case of
such an inductively defined predicate.

2.1. Inductively Defined Predicates

We study the concept of “computational content” of a proof. This only
makes sense after we have introduced inductively defined predicates to our
“negative” language of HAω involving ∀ and → only. The resulting system
will be called arithmetic with inductively defined predicates IDω.

The intended meaning of an inductively defined predicate I is quite
clear: the clauses correspond to constructors of an appropriate algebra µ
(or better µI). We associate to I a new predicate Ir, of arity (µ, ~ρ ), where
the first argument r of type µ represents a “generation tree”, witnessing how
the other arguments ~r were put into I. This object r of type µ is called a
“realizer” of the prime formula I(~r).

Moreover, we want to be able to select relevant parts of the complete
computational content of a proof. This will be possible if some “uniformi-
ties” hold; we express this fact by using a uniform variant ∀U of the universal
quantifier ∀ (as done by Berger (2005)) and in addition a uniform variant
→U of implication →. Both are governed by the same rules as the non-
uniform ones. However, we will have to put some uniformity conditions on
a proof to ensure that the extracted computational content will be correct.

As we have seen, type variables allow for a general treatment of induc-
tively generated types µ~α~κ. Similarly, we can use predicate variables to
inductively generate predicates µ ~X

~K.
More precisely, we allow the formation of inductively generated predi-

cates µ ~X
~K, where ~X = (Xj)j<N is a list of distinct predicate variables, and

~K = (Ki)i<k is a list of constructor formulas (or “clauses”) whoses premises
contain X0, . . . , XN−1 in strictly positive positions only.

2.1.1. Introduction and elimination axioms.

9
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Definition (Inductively defined predicates). Let ~X = (Xj)j<N be a
list of distinct predicate variables. Formulas A,B, C, D ∈ F, predicates
P,Q, I ∈ Preds and constructor formulas (or clauses) K ∈ KF ~X are defined
inductively as follows. Let ∀̆ denote either ∀ or ∀U, and →̆ denote either →
or →U.

~A, ~B0, . . . , ~Bn−1 ∈ F

∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Xjν (~sν))

)
ν<n

→ Xj(~t )
)
∈ KF ~X

(n ≥ 0)

K0, . . . ,Kk−1 ∈ KF ~X (k ≥ 1)
(µ ~X(K0, . . . ,Kk−1))j ∈ Preds

P ∈ Preds
P (~r ) ∈ F

C ∈ F
{ ~x | C } ∈ Preds

A,B ∈ F
A → B ∈ F

A ∈ F
∀xρA ∈ F

A,B ∈ F
A →U B ∈ F

A ∈ F
∀U

xρA ∈ F
atom(r) ∈ F.

Here ~A →̆ B means A0 →̆ . . . →̆ An−1 →̆ B, associated to the right. For a
constructor formula ∀̆~x( ~A →̆ (∀̆~yν ( ~Bν →̆ Xjν (~sν)))ν<n →̆ Xj(~t )) we call ~A

the parameter premises and the ∀̆~yν ( ~Bν →̆ Xjν (~sν)) recursive premises. We
require that for every Xj (j < N) there is a clause Kij with final conclusion
Xj(~t ), amongst whose premises there is either a parameter premise or else a
recursive premise with final conclusion Xjν (~sν) with jν < j. (The presence
of such clauses guarantees that we can derive ex-falso-quodlibet for every
inductively defined predicate I). A clause of the form ∀U

~x (F → Xj(~x )) is
called an efq-clause.

A predicate of the form { ~x | C } is called a comprehension term. We
identify { ~x | C(~x ) }(~r ) with C(~r ). I will be used for predicates of the form
(µ ~X (K0, . . . ,Kk−1))j .

Consider inductively defined predicates ~I := µ ~X(K0, . . . Kk−1). For each
of the k clauses we have an introduction axiom, as follows. Let the i-th clause
for Ij be

K(~x ) := ∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Xjν (~sν))

)
ν<n

→ Xj(~t )
)
.

The corresponding introduction axiom then is K(~I ), that is

(2.1) (Ij)+i : ∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Ijν (~sν))

)
ν<n

→ Ij(~t )
)
.

Also for every Ij we have the elimination axiom

∀U
~x

(
Ij(~x ) → K0(~P ) → · · · → Kk−1(~P ) → Pj(~x )

)
.

However, in applications one often wants to use a strengthened form of
the elimination axioms. For their formulation it is useful to introduce the
notation

K( ~Q, ~P ) := ∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Qjν (~sν))

)
ν<n

→
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∀̆~yν ( ~Bν →̆ Pjν (~sν))

)
ν<n

→ Pj(~t )
)
.

Then the strengthened elimination axioms are

(2.2) I−j : ∀U
~x

(
Ij(~x ) → K0(~I, ~P ) → · · · → Kk−1(~I, ~P ) → Pj(~x )

)
.

They are indeed stronger (and hence easier to use), since each premise
Ki(~I, ~P ) is weaker than Ki(~P ) (because Ki(~I, ~P ) has more premises than
Ki(~P )). However, there is no essential difference, because they are derivable
from the (ordinary) elimination axioms.

2.1.2. Examples. The following inductive definitions of the existential
quantifier, conjunction, falsity, equality and disjunction have been used by
Martin-Löf (1971).

Existential quantifier. Let α be a type variable, y an object variable of
type α, and Q̂ a predicate variable of arity (α). We have four variants,
depending on where we require uniformity.

Ex(α, Q̂) := µX

(
∀y(Q̂(y) → X)

)
,

ExL(α, Q̂) := µX

(
∀y(Q̂(y) →U X)

)
,

ExR(α, Q̂) := µX

(
∀U

y (Q̂(y) → X)
)
,

ExU(α, Q̂) := µX

(
∀U

y (Q̂(y) →U X)
)
.

The introduction axioms are

∃+ : ∀x(A → ∃xA),

(∃L)
+

: ∀x(A →U ∃L
xA),

(∃R)
+

: ∀U
x (A → ∃R

xA),

(∃U)
+

: ∀U
x (A →U ∃U

xA),

where ∃xA abbreviates Ex(ρ, {xρ | A }) (and similarly for the other ones),
and the elimination axioms are (with x /∈ FV(C))

∃− : ∃xA → ∀x(A → C) → C,

(∃L)
−

: ∃L
xA → ∀x(A →U C) → C,

(∃R)
−

: ∃R
xA → ∀U

x (A → C) → C,

(∃U)
−

: ∃U
xA → ∀U

x (A →U C) → C.

Conversion:

∃−~p~q
(
∃+~prρNA(~p,r)

)
M∀n(A(~p)→Q(~p,~q)) 7→ MrN.

Conjunction can be treated similarly.
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Falsity. ⊥ := µX(F → X). This example is somewhat extreme, since
the list ~K in the general form µ ~X

~K is almost empty here: it only consists
of an efq-clause. The only introduction axiom is

⊥+ : F → ⊥
and the elimination axiom

⊥− : ⊥ → C.

Conversion (assuming that there are no free variables in C): Let N0 : F → C.

(⊥−)⊥→C
(
(⊥+)F→⊥MF

)
7→ N0M.

Equality. Let α be a type variable, x, y object variables of type α, and
X a predicate variable of arity (α, α). We define Leibniz equality by

Eq(α) := µX

(
∀U

x,y(F → X(x, y)),∀U
xX(x, x)

)
.

The introduction axioms are

Eq+
0 : ∀U

n,m(F → Eq(n, m)), Eq+
1 : ∀U

nEq(n, n)

where Eq(n, m) abbreviates Eq(ρ)(nρ,mρ), and the elimination axiom is

Eq− : ∀U
n,m

(
Eq(n, m) → ∀U

nQ(n, n) → Q(n, m)
)
.

One easily proves symmetry, transitivity and also compatibility of Eq:

Lemma (CompatEq). ∀U
n1,n2

(
Eq(n1, n2) → Q(n1) → Q(n2)

)
.

Proof. Use Eq−; the details are left as an exercise. �

The even numbers. The introduction axioms are

Even+
0 : ∀U

n(F → Even(n)),

Even+
1 : Even(0),

Even+
2 : ∀U

n(Even(n) → Even(S(Sn)))

and the (strengthened) elimination axiom is Even−:

∀U
m

(
Even(m) → P (0) → ∀U

n(Even(n) → P (n) → P (S(Sn))) → P (m)
)
.

The accessible part of an ordering. Let ≺ be a binary relation. Assume
that we have decidable sets M of its minimal elements and I of its interior
elements. Then the accessible part of ≺ is inductively defined as follows.
The introduction axioms are

Acc+
0 : ∀x(M(x) →U Acc(x)),

Acc+
1 : ∀x(I(x) →U ∀y≺xAcc(y) → Acc(x)),

and the (strengthened) elimination axiom is as expected.
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The transitive closure of a relation ≺. The introduction axioms are

∀x,y(x ≺ y →U TrCl(x, y)),

∀x∀U
y,z(x ≺ y →U TrCl(y, z) → TrCl(x, z))

and the (strengthened) elimination axiom is

∀U
x1,y1

(
TrCl(x1, y1) → ∀x,y(x ≺ y →U P (x, y)) →

∀x∀U
y,z(x ≺ y →U TrCl(y, z) → P (y, z) → P (x, z)) →

P (x1, y1)
)
.

Pointwise equality. For a type ρ let fvt(ρ) be the set of its final value
types, consisting of base types. We define fvt(ρ) by induction on ρ: fvt(ρ →
σ) := fvt(σ), and for a base type µ = (µ~α(κ0, . . . , κk−1))j , fvt(µ) consists
of all the (base) types µ~α(κ0, . . . , κk−1), plus the final value types of all
parameter types of µ.

For every type ρ we inductively define pointwise equality =ρ. The intro-
duction axioms are, for every base type µ without parameter types,

∀U
x1,x2

(F → x1 =µ x2).

For every constructor Ci of a base type µj we have an introduction axiom

∀U
~y,~z

(
~yP =~ρ ~zP →

(
∀~xν (yR

m+ν~xν =µjν
zR
m+ν~xν)

)
ν<n

→ Ci~y =µj Ci~z
)
.

For every arrow type ρ → σ we have the introduction axiom

∀U
x1,x2

(
∀y(x1y =σ x2y) → x1 =ρ→σ x2

)
.

For example, =N is inductively defined by

∀U
n1,n2

(F → n1 =N n2),
0 =N 0,

∀U
n1,n2

(n1 =N n2 → Sn1 =N Sn2),

and the elimination axiom is

∀U
m1,m2

(
m1 =N m2 → P (0, 0) →

∀U
n1,n2

(
n1 =N n2 → P (n1, n2) → P (Sn1,Sn2)

)
→

P (m1,m2)
)
.

An example with a non-finitary base type is =T with T := T1 (cf. 1.1.1):

∀U
x1,x2

(F → x1 =T x2),
0 =T 0,

∀U
f1,f2

(∀n(f1n =T f2n) → Supf1 =T Supf2),
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and the elimination axiom is
=−

T : ∀U
x1,x2

(
x1 =T x2 → P (0, 0) →

∀U
f1,f2

(
∀n(f1n =T f2n) → ∀nP (f1n, f2n) →
P (Supf1,Supf2)

)
→

P (x1, x2)
)
.

One can prove reflexivity of =ρ, using meta-induction on ρ, and induction
on the types in fvt(ρ).

Lemma (ReflPtEq). ∀n(n =ρ n).

A consequence is that Leibniz equality implies pointwise equality:

Lemma (EqToPtEq). ∀n1,n2

(
Eq(n1, n2) → n1 =ρ n2

)
.

Proof. Use CompatEq and ReflPtEq. �

2.1.3. Further axioms and their consequences. We express ex-
tensionality of our intended model by stipulating that pointwise equality
implies Leibniz equality:

Axiom (PtEqToEq). ∀n1,n2

(
n1 =ρ n2 → Eq(n1, n2)

)
.

Notice that this implies the following proposition, which is sometimes
called extensionality as well:

Lemma (CompatPtEqFct). ∀f∀U
n1,n2

(n1 =ρ n2 → fn1 =σ fn2).

Proof. We obtain Eq(n1, n2) by PtEqToEq. By ReflPtEq we have
fn1 =σ fn1, hence fn1 =σ fn2 by CompatEq. �

A consequence of the extensionality axioms is that compatibility holds
for pointwise equality as well:

Lemma (CompatPtEq). ∀U
n1,n2

(
n1 =ρ n2 → P (n1) → P (n2)

)
.

Proof. Use PtEqToEq and CompatEq. �

We write E-IDω when the extensionality axioms PtEqToEq are present.
In E-IDω we can prove properties of the constructors of our free algebras:
that they are injective, and have disjoint ranges. For finitary algebras this
can be seen easily, using boolean-valued equality. However, for non-finitary
algebras we need extensionality. Since extensionality implies that pointwise
and Leibniz equality are equivalent, it suffices to consider pointwise equality.
Rather than dealing with the general case, we confine ourselves with the
algebra T.

The proof uses some recursive functions: TreeSup: T → B defined by

TreeSup(0) := ff, TreeSup(Supf) := tt
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and a predecessor function TreePred: T → N → B defined by

TreePred(0, n) := 0, TreePred(Supf, n) := fn.

Lemma. 0 =T Supf → F , and ∀U
f1,f2

(Supf1 =T Supf2 → f1 =N→T f2).

Proof. The proof uses the various compatibilities, and the fact that
conversions give rise to Leibniz equalities. �

We now list some further axioms, which will be mentioned when we
use them. All of them involve (inductively defined) existentially quantified
formulas, wich come in four versions, with ∃,∃R,∃L,∃U. Let ∃̆ denote any of
these. When ∃̆ appears more than once in an axiom below, it is understood
that it denotes the same quantifier each time.

The axiom of choice (AC) is the scheme

Axiom (AC). ∀xρ ∃̆yσA(x, y) → ∃̆fρ→σ∀xρA(x, f(x)).

The independence axioms express the intended meaning of uniformities.
The independence of premise axiom (IP) is

Axiom (IP). (A →U ∃̆xB) → ∃̆x(A →U B) (x /∈ FV(A)).

Similarly we have an independence of quantifier axiom (IQ) axiom

Axiom (IQ). ∀U
x ∃̆yA → ∃̆y∀U

xA (x /∈ FV(A)).

2.2. Computational Content

Along the inductive definition of formulas, predicates and constructor
formulas (or clauses) in 2.1.1, we define simultaneously

• the type τ(A) of a formula A;
• when a formula is computationally relevant ;
• the formula z realizes A, written z r A, for a variable z of type

τ(A);
• when a formula is negative;
• when an inductively defined predicate requires witnesses;
• for an inductively defined I requiring witnesses, its base type µI ,

and – if I has an efq-clause – when an object of type µI is efq-free;
• for an inductively defined predicate I of arity ~ρ requiring witnesses,

a witnessing predicate Ir of arity (µI , ~ρ ), and a predicate Ief of
arity (µI) expressing efq-freeness.
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2.2.1. The type of a formula. Every formula A possibly containing
inductively defined predicates can be seen as a “computational problem”.
We define τ(A) as the type of a potential realizer of A, i.e., the type of the
term (or “program”) to be extracted from a proof of A.

More precisely, we assign to every formula A an object τ(A) (a type or
the “nulltype” symbol ε). In case τ(A) = ε proofs of A have no computa-
tional content; such formulas A are called Harrop formulas, or computation-
ally irrelevant (c.i.). Non-Harrop formulas are also called computationally
relevant (c.r.).

The definition can be conveniently written if we extend the use of ρ → σ
to the nulltype symbol ε:

(ρ → ε) := ε, (ε → σ) := σ, (ε → ε) := ε.

With this understanding of ρ → σ we can simply write

τ(atom(r)) := ε, τ(I(~r )) :=

{
ε if I does not require witnesses
µI otherwise,

τ(A → B) := (τ(A) → τ(B)), τ(∀xρA) := (ρ → τ(A)),

τ(A →U B) := τ(B), τ(∀U
xρA) := τ(A).

2.2.2. Realizability. Let A be a formula and z either a variable of
type τ(A) if the latter is a type, or the nullterm symbol ε if τ(A) = ε. For a
convenient definition we extend the use of term application to the nullterm
symbol ε:

εx := ε, zε := z, εε := ε.

We define the formula z r A, to be read z realizes A. The definition uses
the predicates Ir and Ief introduced below.

z r atom(s) := atom(s),

z r I(~s ) :=


I(~s ) if I does not require witnesses
Ir(z,~s ) if not, and I has no efq-clause
Ief (z) ∧ Ir(z,~s ) otherwise,

z r (A → B) := ∀x(x r A → zx r B),

z r (∀xA) := ∀x zx r A,

z r (A →U B) := (A → z r B),

z r (∀U
xA) := ∀x z r A.

Formulas which do not contain inductively defined predicates requiring wit-
nesses play a special role in this context; we call them negative. Their crucial
property is (ε r A) = A. Notice also that every formula z r A is negative.
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2.2.3. Witnesses. Consider a particularly simple inductively defined
predicate, where

• there is at most one clause apart from an efq-clause, and
• this clause is uniform, i.e., contains no ∀ but ∀U only, and its

premises are either negative or followed by →U .
Examples are ∃U, ∧U, ⊥, Eq. We call those predicates “uniform one-clause”
defined. An inductively defined predicate requires witnesses if it is not one
of those, and not one of the predicates Ir and Ief introduced below.

For an inductively defined predicate I requiring witnesses, we define µI

to be the corresponding component of the types ~µ = µ~α~κ generated from
constructor types κi := τ(Ki) for all constructor formulas K0, . . . Kk−1 from
~I = µ ~X(K0, . . . Kk−1). An object of type µI is called efq-free it it does not
contain a constructor of µI corresponding to an efq-clause.

The witnessing predicate Ir of arity (µI , ~ρ ) can now be defined as follows.
For every constructor formula

K = ∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Xjν (~sν))

)
ν<n

→ Xj(~t )
)

of the original inductive definition of ~I we build the new constructor formula

Kr := ∀̆~x∀~u,~f

(
~u r ~A →

(
∀̆~yν ,~vν (~vν r ~Bν → Yjν (fν~yν~vν , ~sν))

)
ν<n

→

Yj(C~x~u~f,~t )
)
,

with the understanding that

• only those xi with a non-uniform ∀xi occur as arguments in C~x~u~f ,
• only those ui with Ai a non-uniform premise and τ(Ai) 6= ε actually

appear (for the other Ai we take either Ai or ε r Ai),
and similarly for yν,i, vν,i and fν~yν~vν . Here C is the constructor of the
algebra ~µ = µ~α~κ generated from our constructor types κi := τ(Ki) (i.e., for
Ki we have C := Ci). Then ~Ir := µ~Y ( ~Kr). The corresponding introduction
axiom then is Kr(~Ir), that is

(Ir
j )+i : ∀

~x,~u, ~f

(
~u r ~A →

(
∀~yν ,~vν (~vν r ~Bν → Ir

jν
(fν~yν~vν , ~sν))

)
ν<n

→

Ir
j (C~x~u~f,~t )

)(2.3)

and the (strengthened) elimination axiom is

(2.4) (Ir
j )− : ∀w∀U

~x

(
Ir
j (w, ~x ) →

(
Kr

i (~Ir, ~P )
)
i<k

→ Pj(w, ~x )
)

with

Kr(~Ir, ~P ) := ∀̆~x∀~u,~f

(
~u r ~A →

(
∀~yν ,~vν (~vν r ~Bν → Ir

jν
(fν~yν~vν , ~sν))

)
ν<n

→(
∀̆~yν ,~vν (~vν r ~Bν → Pjν (fν~yν~vν , ~sν))

)
ν<n

→



18 2. INDUCTIVE CONSTRUCTIONS

Pj(C~x~u~f,~t )
)
.

Notice that each of the clauses (Ir
j )+i has a conclusion Ir

j (C~x~u~f,~t ) with
its own constructor C. Therefore it is to be expected that the following
inversion properties for Ir hold:

Lemma (Inversion).

(Ir
j )invEq

i : Ir
j (C~x~u~f, ~z ) → ∃~yEq(~z,~t ) (~y the uniform variables),

(Ir
j )invP

i : Ir
j (C~x~u~f,~t ) → ~u r ~A,

(Ir
j )invR,ν

i : Ir
j (C~x~u~f,~t ) → ∀~yν ,~vν (~vν r ~Bν → Ir

jν
(fν~yν~vν , ~sν)).

For an inductively defined predicate I requiring witnesses and with an
efq-clause we define the predicate Ief of arity (µI) expressing efq-freeness as
follows. For every constructor formula

K = ∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Xjν (~sν))

)
ν<n

→̆ Xj(~t )
)

of the original inductive definition of ~I except the efq-clause the correspond-
ing introduction axiom is (Ief

j )+i :

(2.5) ∀̆
~x,~u, ~f

(
~u r ~A →

(
∀̆~yν ,~vν (~vν r ~Bν → Ief

jν
(fν~yν~vν))

)
ν<n

→ Ief
j (C~x~u~f )

)
and the elimination axiom is

(2.6) (Ief
j )− : ∀w

(
Ief
j (w) →

(
Kef

i (~Ief , ~P )
)
i<k

→ Pj(w)
)
.

As before we can prove

Lemma (Inversion).

(Ief
j )invP

i : Ief
j (C~x~u~f ) → ~u r ~A,

(Ief
j )invR,ν

i : Ief
j (C~x~u~f ) → ∀~yν ,~vν (~vν r ~Bν → Ief

jν
(fν~yν~vν)).

2.3. Extracted Terms and Uniform Proofs

We define the extracted term of a proof, and (using this concept) the
notion of a uniform proof, which gives a special treatment to uniform impli-
cation →U and the uniform universal quantifier ∀U.

2.3.1. Extracted terms. For a derivation M in IDω +AC+IPε+Axε,
we simultaneously define

• its extracted term [[M ]], of type τ(A), and
• when M is uniform.
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For derivations MA where τ(A) = ε (i.e., A is a Harrop formula) let
[[M ]] := ε (the nullterm symbol); every such derivation is uniform. Now
assume that M derives a formula A with τ(A) 6= ε. Recall our extended use
of term application to the nullterm symbol ε: εx := ε, zε := z, εε := ε. We
also understand that in case τ(A) = ε, λ

x
τ(A)
u

[[M ]] means just [[M ]]. Then

[[uA]] := xτ(A)
u (xτ(A)

u uniquely associated with uA),

[[λuAM ]] := λ
x

τ(A)
u

[[M ]],

[[MA→BN ]] := [[M ]][[N ]],

[[(λxρM)∀xA]] := λxρ [[M ]],

[[M∀xAr]] := [[M ]]r.

[[λU
uAM ]] := [[MA→UBN ]] := [[(λU

xρM)∀
U
xA]] := [[M∀U

xAr]] := [[M ]].

In all these cases uniformity is preserved, except possibly in those involving
λU: λU

uAM is uniform if M is and xu /∈ FV([[M ]]), and λU
xρM is uniform if

M is and – in addition to the usual variable condition – x /∈ FV([[M ]]).
It remains to define extracted terms for the axioms: structural induction,

introduction and elimation axioms for inductively defined predicates, (AC)
and (IPε).

The extracted term [[Indj ]] of an induction axiom is defined to be the
recursion operator R~µ,~τ

µj . For example, in case of an induction scheme

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
we have

[[Indn,A]] := Rτ
N : N → τ → (N → τ → τ) → τ (τ := τ(A) 6= ε).

Generally, the ~µ, ~τ in R~µ,~τ
µj list only the types µj , τj with τj := τ(Aj) 6= ε,

i.e., the recursion operator is simplified accordingly.
For the introduction axiom (2.1) and the (strengthened) elimination ax-

iom (2.2) of an inductively defined predicate I we define

[[(Ij)+i ]] := C, [[I−j ]] := Rj ,

and similary for the introduction and elimination axioms for Ir and Ief :
(2.3), (2.4) and (2.5), (2.6), respectively.

As extracted terms of (AC), (IP) and (IQ) we take identities of the
appropriate types.

2.3.2. Uniform derivations. Here we collect some general remarks
on uniform derivations.

Lemma. There are purely logical uniform derivations of
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(a) A → B from A →U B;
(b) A →U B from A → B, provided τ(A) = ε or τ(B) = ε;
(c) ∀xA from ∀U

xA;
(d) ∀U

xA from ∀xA, provided τ(A) = ε.

Proof. (a). λv(uA→UBvA) is uniform (there are no conditions on λv).
(b). If τ(B) = ε, then λU

v (uA→BvA) is unform because its conclusion is
a Harrop formula. Now assume τ(A) = ε. Then for λU

v (uA→BvA) to be
uniform we need to know that xv /∈ FV([[uv]]). But [[uv]] = [[u]] because of
τ(A) = ε. (c). Exercise. �

We certainly want to know that in formulas involving →U and ∀U we
can replace a subformula by an equivalent one.

Lemma. There are purely logical uniform derivations of
(a) (A →U B) → (B → B′) → A →U B′;
(b) (A′ → A) →U (A →U B) → A′ →U B;
(c) ∀U

xA → (A → A′) → ∀U
xA′.

Proof. (a). Exercise. (b). Exercise. (c). λu,vλ
U
x (vA→A′(u∀

U
xAx)) is

uniform because [[v(ux)]] = xvxu does not contain x free. �

For the (inductively defined) existential quantifiers ∃,∃R,∃L,∃U we ob-
serve the following. Let ∃̆ denote any of these.

Lemma. There are uniform derivations using ∃-axioms only of
(a) ∃xA → ∃̆xA;
(b) ∃̆xA → ∃U

xA;
(c) ∃L

xA → ∃xA, provided τ(A) = ε.

Proof. (a) Use ∃− : ∃xA → ∀x(A → ∃̆xA) → ∃̆xA. We derive the
second premise using an introduction axiom. An example is

(∃L)+ : ∀x(A →U ∃L
xA) x u : A

∃L
xA

→+u
A → ∃L

xA
∀+x∀x(A → ∃L

xA)
(b). Exercise. (c). Exercise. �

2.3.3. Characterization. We consider the question when a formula A
and its modified realizability interpretation ∃x x r A are equivalent.

Theorem (Characterization; cf. Troelstra (1973, 3.4.8)).

IDω + AC + IP + IQ ` A ↔ ∃x x r A.
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Proof. Induction on A, along the inductive definition of formulas, pred-
icates and constructor formulas (or clauses) in 2.1.1. The case of an induc-
tively defined predicate is similar to the examples above. Case A → B.

(A → B) ↔ (∃x x r A → ∃z z r B) by IH

↔ ∀x(x r A → ∃z z r B)

↔ ∀x∃z(x r A → z r B) by (IP)

↔ ∃f∀x(x r A → f(x) r B) by (AC)

↔ ∃ff r (A → B).

Case ∀xA.

∀xA ↔ ∀x∃z z r A by IH

↔ ∃f∀x fx r A by (AC)
↔ ∃ff r ∀xA.

Case A →U B.

(A →U B) ↔ (A →U ∃z z r B) by IH

↔ ∃z(A →U z r B) by (IP)

↔ ∃z z r (A →U B).

Case ∀U
xA.

∀U
xA ↔ ∀U

x∃z z r A by IH

↔ ∃z∀U
x z r A by (IQ)

↔ ∃z z r ∀U
xA.

This concludes the proof. �

2.3.4. Soundness. We address the question how we know that the
term extracted from a proof of A indeed “realizes” (Kolmogorov (1925):
solves) the formula (Kolmogorov (1925): problem) A. Making use of the
fact that what we extract is a term in our arithmetical language T, we can
indeed prove such a “soundness” theorem. It implies that every theorem in
E-IDω + AC + IP + IQ + Axε has a realizer. Here (Axε) is an arbitrary set
of Harrop formulas viewed as axioms.

Theorem (Soundness). We work in IDω + AC + IP + IQ. Let M be
a derivation of A from assumptions ui : Ci (i < n). Then we can find a
derivation σ(M) of [[M ]] r A from assumptions ūi : xui r Ci for a non-
uniform ui (i.e., xui ∈ FV([[M ]])), and ūi : Ci for the other ones.

Proof. Induction on M . �
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2.4. Examples: List Reversal Again

We again consider list reversal, but now extract terms from proofs with
computational content. In fact, we will exemplify four different methods to
do this, with different results.

2.4.1. A constructive proof of the existence of reverted lists.
We first prove that every non-empty list can be written in the form v :+: x:.
Using this, ∀v∃wRev(v, w) can be proved by induction on the length of v.
In the step case, our list is non-empty, and hence can be written in the form
v :+: x:. Since v has a smaller length, the IH yields its reversal w. Then we
can take x :: w. Here is the term extracted (with the Minlog proof assistant
(www.minlog-system.de)) from a formalization of this proof:
(Rec nat=>list nat=>list nat)([v2](Nil nat))
([n2,f3,v4]

[if v4
(Nil nat)
([n5,v6][let p7 (cListInitLastNat v6 n5)

(right p7::f3 left p7)])])

It contains the term cListInitLastNat denoting the content of the auxiliary
proposition, and in the step recursively calls itself via f3. The represented
algorithm takes quadratic time.

2.4.2. Proving the correctness of the reversal function. Our
arithmetical language based on Gödel’s T allows to define functions recur-
sively. In particular, we may directly define the list reversal function R
by

R(nil) = nil,

R(x :: v) = R(v) :+: x:.

Then we can prove ∀v∃wR(v, w), and extract a term from this proof. The
result is
[Rev0]
(Rec nat=>list nat=>list nat)([v3](Nil nat))
([n3,f4,v5]

[if v5
(Nil nat)
([n6,v7]right(cListInitLastNat v7 n6)::f4

left(cListInitLastNat v7 n6))])

By a slight variation of the proof (insertion of an “identity” lemma P →
P ) we can avoid the double calculation of cListInitLastNat v7 n6 and
introduce a let instead:
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(Rec nat=>list nat=>list nat)([v2](Nil nat))
([n2,f3,v4]

[if v4
(Nil nat)
([n5,v6][let p7 (cListInitLastNat v6 n5)

(right p7::f3 left p7)])])

Again the represented algorithm takes quadratic time.

2.4.3. Defining list reversal inductively, and using symmetry.
We may avoid the existential quantifier altogether and consider the graph
of the list reversal function as an inductively defined predicate. The clauses
are

Rev+
0 : ∀U

v,w(F → Rev(v, w)),

Rev+
1 : Rev(nil,nil),

Rev+
2 : ∀U

v,w∀x(Rev(v, w) → Rev(v :+: x:, x :: w))

and the (strengthened) elimination axiom is Rev−:

∀U
v,w

(
∀U

v,w(F → P (v, w)) →
P (nil,nil) →

∀U
v,w∀x

(
Rev(v, w) → P (v, w) → P (v :+: x:, x :: w)

)
→

Rev(v, w) → P (v, w)
)
.

Then we can prove, using Rev−

Lemma (RevCons).

∀U
v,w

(
Rev(v, w) → ∀xRev(x :: v, v :+: x:)

)
.

The extracted term is

(Rec algRev=>nat=>algRev)
([n2]cEfqRev)([n2]cGenRev n2 cInitRev)
([n2,algRev3,(nat=>algRev)_4,n5]

cGenRev n2((nat=>algRev)_4 n5))

Using RevCons and the property R(v :+:x:) = x :: R(v) of the reversal func-
tion we then can prove symmetry in the form Rev(v, w) → Rev(R(v), R(w)).
The term extracted from a formalization of this proof is

(Rec algRev=>algRev)cEfqRev cInitRev
([n1,algRev2,algRev3]cRevCons algRev3 n1)

This again is the usual quadratic algorithm.
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2.4.4. The content of weak existence proofs. The proof given in
1.3 contains the propositional symbol ⊥ for falsity; however, being a proof
in minimal logic, it does not assume anything about ⊥. Apart from the
clauses for Rev (which do not involve ⊥), it only made use of the “false”
assumption

u : ∀w(Rev(v, w) → ⊥).
The end formula is ⊥. Therefore we may replace ⊥ throughout by an arbi-
trary formula, for instance ∃wRev(v, w). After this substitution the “false”
assumption becomes trivially provable, and the end formula is ⊥ becomes
∃wRev(v, w). So now we have converted the weak existence proof into a
strong one. Here is its extracted term:
[Rev0,u1]
(Rec list nat=>list nat=>list nat=>list nat)([u2,u3]u3)
([n2,u3,(list nat=>list nat=>list nat)_4,u5,u6]

(list nat=>list nat=>list nat)_4(u5:+:n2:)(n2::u6))
u1
(Nil nat)
(Nil nat)

Recall that in the proof we have made use of an auxiliary proposition

∀v

(
v :+: u = v0 → ∀w¬Rev(v, w)

)
.

It turns out that this proof does not use v computationally, that is, we can
replace the leading universal quantifier ∀v by the uniform quantifier ∀U

v . The
extracted term then is
[Rev0,u1]
(Rec list nat=>list nat=>list nat)
([u2]u2)([n2,u3,f4,u5]f4(n2::u5))u1
(Nil nat)

In fact, the underlying algorithm defines an auxiliary function h by

h(nil, u) := u,

h(x :: v, u) := h(v, x :: u)

and gives the result by applying h to the original list and nil. So we have ob-
tained (by automated extraction from a weak existence proof) the standard
linear algorithm for list reversal, with its use of an accumulator.

The method described here is a simple special case of a certain refinement
of the so-called “A-translation” of Dragalin (1979) and Friedman (1978); it
is developed more generally in Berger et al. (2002); Berger (2005).



CHAPTER 3

Complexity

A natural question coming up when one extracts terms from proofs is
what can be said about the complexity of the evaluation of these terms,
when we view them as functional programs.

To demonstrate the usefulness and strength provided by finite types we
show that all Fα (α < ε0) of the “fast growing” (or extended Grzegorczyk)
hierarchy can be defined explicitely from higher type iteration operators
alone. The Fα’s are defined by recursion on α thus:

Fα(n) =


n + 1 if α = 0
Fn+1

α−1 (n) if Succ(α)
Fα(n)(n) if Lim(α)

where Fn+1
α−1 (n) is the n + 1-times iterate of Fα−1 on n.

For instance, F2 already has exponential growth, Fω is essentially the
Ackermann function (which grows faster than all primitive recursive func-
tions), and every function definable in arithmetic is majorizable by one of
the Fα’s.

We define finite type extensions of the functions Fα, such that for α = 0
we obtain iteration operators. Define the pure types ρn, by ρ0 := N and
ρn+1 := ρn → ρn. Let xn be a variable of pure type ρn.

Fαxn . . . x0 :=


x0 + 1 if α = 0 and n = 0,
xx0

n xn−1 . . . x0 if α = 0 and n > 0,
F x0

α−1xn . . . x0 if Succ(α),
Fα(x0)xn . . . x0 if Lim(α).

The lemma below shows that all Fα can be obtained by substitution
alone from finite type iteration functionals F0.

Lemma. FαFβ = Fβ+ωα, where it is assumed that α and β have Cantor
Normal Forms which can simply be concatenated to form the normal form
of α + β.

Proof. By induction on α. If α = 0,

F0Fβxn−1 . . . x0 = F x0
β xn−1 . . . x0 = Fβ+1xn−1 . . . x0.

25
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If Succ(α),

FαFβxn−1 . . . x0 = F x0
α−1Fβxn−1 . . . x0

= Fβ+ωα−1·x0
xn−1 . . . x0 by IH

= F(β+ωα)(x0)xn−1 . . . x0

= Fβ+ωαxn−1 . . . x0.

If Lim(α),

FαFβxn−1 . . . x0 = F x0

α(x0)Fβxn−1 . . . x0

= Fβ+ωα(x0)·x0
xn−1 . . . x0 by IH

= F(β+ωα)(x0)xn−1 . . . x0

= Fβ+ωαxn−1 . . . x0.

This completes the proof. �

3.1. A Two-Sorted Variant T(; ) of Gödel’s T

We define a two-sorted variant T(; ) of Gödel’s T, by lifting the approach
of Simmons (1988) and Bellantoni and Cook (1992) to higher types. It
is shown that the functions definable in T(; ) are exactly the elementary
functions. The proof is based on the observation that β-normalization of
terms of rank ≤ k has elementary complexity, and that the two-sortedness
restriction allows to unfold R in a controlled way.

The elementary variant of Gödel’s T developed in 3.1 has many relatives
in the literature.

Beckmann and Weiermann (1996) characterize the elementary functions
by means of a restriction of the combinatory logic version of Gödel’s T.
The restriction consists in allowing occurrences of the iteration operator
only when immediately applied to a type N argument. For the proof they
use an ordinal assignment due to Howard (1970) and Schütte (1977). The
authors remark (on p. 477) that the methods of their paper can also be
applied to a λ-formulation of T: the restriction on terms then consists in
allowing only iterators of the form Iρt

N and in disallowing λ-abstraction of
the form λx . . . Iρt

N . . . where x occurs in tN; however, no details are given.
Moreover, our restrictions are slightly more liberal (input variables in t can
be abstracted), and also the proof method is very different.

Aehlig and Johannsen (2005) characterize the elementary functions by
means of a fragment of Girard’s system F . They make essential use of the
Church style representation of numbers in F . A somewhat different approach
for characterizing the elementary functions based on a “predicative” setting
has been developed by Leivant (1994).
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3.1.1. Higher order terms with input/output restrictions. We
shall work with two forms of arrow types and abstraction terms:{

N → σ

λnr
as well as

{
ρ ( σ

λzr

and a corresponding syntactic distinction between input and output (typed)
variables. Formally we proceed as follows. The types are

ρ, σ, τ ::= N | N → ρ | ρ ( σ,

and the level of a type is defined by

l(N) := 0,

l(ρ → σ) := l(ρ ( σ) := max{l(σ), 1 + l(ρ)}.
Ground types are the types of level 0, and a higher type is any type of level
at least 1. The →-free types are called safe. In particular, every ground
type is safe.

The constants are 0: N and
S: N ( N,

Rτ : N → τ ( (N → τ ( τ) ( τ (τ safe).

The restriction to safe types τ is needed in the proof of the Normalization
Theorem below. Generally, the typing of Rτ with its peculiar choices of
→ and ( deserves some comments. The first argument is the one that is
recursed on and hence must be an input argument, so the type starts with
N → · · · . The third argument is the step argument; here we have used the
type N → τ ( τ rather than N ( τ ( τ , because then we can construct
a step term in the form λn,pt rather than λa,pt, which is more flexible.

We shall work with typed variables. A variable of type N is either an
input or an output variable; variables of a type different from N are always
output variables. We use the following conventions:

x (input or output) variable;
z output variable;
n, m input variable of type N;
a output variable of type N.

T(; )-terms (terms for short) are

r, s, t ::= x | C | (λnr)N→σ | rN→σsN (s input term) |
(λzr)ρ(σ | rρ(σsρ.

We call s an input term if all its free variables are input variables. C is a
constant.
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The size (or length) |r| of a term r is the number of occurrences of
constructors, variables and constants in r: |x| = |C| = 1, |λnr| = |λzr| =
|r|+ 1, and |rs| = |r|+ |s|+ 1.

3.1.2. β-normalization. In this section, the distinction between input
and output variables and our two type formers → and ( plays no role.

We are interested in the following process of simplification of terms:

(3.1)
(
λ~x,xr(~x, x)

)
~ss 7→

(
λ~xr(~x, s)

)
~s.

Terms of the form (λ~x,xr(~x, x))~ss are called β-convertible. (3.1) is called the
(generalized) β-conversion rule. Later we will also consider conversion rules
for the recursion operator:

Rτ0ts 7→ t,

Rτ (Sn)ts 7→ sn(Rτnts).

Note that converting (λ~x,xr(~x, x))~ss into (λ~xr(~x, s))~s may be viewed
as first converting (λ~x,xr)~ss “permutatively” into (λ~x((λxr)s))~s and then
performing the inner conversion to obtain (λ~x(r[x := s]))~s. One may ask
why we take this conversion relation as our basis and not the more com-
mon (λxr(x))s 7→ r(s). The reason is that our notion of level is defined
with the clause l(ρ → σ) := l(ρ ( σ) := max{l(σ), 1 + l(ρ)} and not
:= max{l(σ), l(ρ)} + 1; this in turn seems reasonable since then the level
of ρ1, . . . , ρm → σ (i.e., of (ρ1 → (ρ2 → . . . (ρm → σ) . . . ))) is 1 and hence
independent of m. But given this definition of level, and given the need in
some arguments (e.g., in the proof of the β-normalization theorem below)
to perform conversions of highest level first, we must be able to convert
(λ~x,xr(~x, x))~ss with ~x of a low and x of a high level into (λ~xr(~x, s))~s.

β-redexes are instances of the left side of (3.1). We write r → r′ (r →∗ r′)
if r can be reduced into r′ by one (an arbitrary number of) β-conversion of
a subterm. A term is said to be in β normal form if it does not contain a
β-redex.

We want to show that every term reduces to a β normal form. This can
be seen easily if we follow a certain order in our conversions. To define this
order we have to make use of the fact that all our terms have types.

A β-convertible term (
λ~x,xr(~x~ρ, xρ)

)
~ss

is also called a cut with cut-type ρ. By the level of a cut we mean the level
of its cut-type. The cut-rank of a term r is the least number bigger than
the levels of all cuts in r. Now let t be a term of cut-rank k + 1. Pick a
cut of the maximal level k in t, such that s does not contain another cut
of level k. (E.g., pick the rightmost cut of level k.) Then it is easy to see
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that replacing the picked occurrence of (λ~x,xr(~x~ρ, xρ))~ss in t by (λ~xr(~x, s))~s
reduces the number of cuts of the maximal level k in t by 1. Hence

Theorem (β-Normalization). We have an algorithm which reduces any
given term into a β normal form.

We now want to give an estimate of the number of conversion steps our
algorithm takes until it reaches the normal form. The key observation for
this estimate is the obvious fact that replacing one occurrence of(

λ~x,xr(~x, x)
)
~ss by

(
λ~xr(~x, s)

)
~s.

in a given term t at most squares the size of t.
A bound Ek(l) for the number of steps our algorithm takes to reduce

the rank of a given term of size l by k can be derived inductively, as follows.
Let E0(l) := 0. To obtain Ek+1(l), first note that by induction hypothesis it
takes ≤ Ek(l) steps to reduce the rank by k. The size of the resulting term
is ≤ l2

s
where s := Ek(l) since any step (i.e., β-conversion) at most squares

the size. Now to reduce the rank by one more, we convert – as described
above – one by one all cuts of the present rank, where each such conversion
does not produce new cuts of this rank. Therefore the number of additional
steps is bounded by the size s. Hence the total number of steps to reduce
the rank by k + 1 is bounded by

Ek(l) + l2
Ek(l)

=: Ek+1(l).

Theorem (Upper bound for the complexity of β-normalization). The
β-normalization algorithm given in the proof above takes at most Ek(l) steps
to reduce a given term of cut-rank k and size l to normal form, where

E0(l) := 0 and Ek+1(l) := Ek(l) + l2
Ek(l)

.

3.1.3. Examples. A function f is called definable in T(; ) if there is a
closed T(; )-term r : N � . . .N � N (�∈ {→,(}) in T(; ) denoting this
function.

We show that in spite of our restrictions on the formation of types and
terms we can define functions of exponential growth. By other examples we
explain how our restrictions prevent obtaining superelementary growth.

Probably the easiest function of exponential growth is B(n, a) = a + 2n

of type B : N → N ( N, with the defining equations

B(0, a) = a + 1,

B(n + 1, a) = B(n, B(n, a)).

We formally define B as a term in T(; ) by

B := λn

(
RN(NnS

(
λm,p,a(pN(N(pa))

))
.
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From B we can define the exponential function E := λn(Bn0) of type
E : N → N, and also iterated exponential functions like λn(E(En)).

Now consider iteration I(n, f) = fn, with f a variable of type N ( N.

I(0, f, a) := a,

I(n + 1, f, a) := I(n, f, f(a)),
or

I(0, f) := id,

I(n + 1, f) := I(n, f) ◦ f.

Formally, for every variable f of type N ( N we have the term

If := λn

(
RN(Nn(λaa)

(
λm,p,a(pN(N(fa))

))
.

For the general definition we need the pure safe types ρk, defined by ρ0 := N
and ρk+1 := ρk ( ρk. Then within T(; ) we can define

Inak . . . a0 := an
kak−1 . . . a0,

with ak of type ρk. However, a definition F0ak . . . a0 := Ia0ak . . . a0 is not
possible: Ia0 is not allowed.

We now discuss the necessity of the restrictions on the type of R. We
must require that the value type is a safe type, for otherwise we could define

IE := λn

(
RN→Nn(λmm)

(
λn,p,m(pN→N(Em)))

))
,

and IE(n, m) = En(m), a function of superelementary growth.
We also need to require that the “previous”-variable is an output vari-

able, because otherwise we could define

S := λn

(
RNn0

(
λn,m(Em)

))
(superelementary).

Then S(n) = En(0).

3.1.4. Normalization. We show that we can also eliminate the recur-
sion operator, and still have an elementary estimate on the time needed.

Lemma (R Elimination). Let t(~x ) be a β-normal term of safe type.
There is an elementary function Et such that: if ~s are safe type R-free
terms and the free variables of t(~s ) are output variables of safe type, then in
time Et(|~s |) (with |~s | :=

∑
i |si|) one can compute an R-free term rf(t; ~x;~s )

such that t(~s ) →∗ rf(t; ~x;~s ).

Proof. Induction on t.
If t(~x ) has the form λxu1, then x is an output variable and x, u1 have

safe type because t has safe type. If t(~x ) is of the form D~u with D a variable
or a constant different from R, then each ui is a safe type term. Here (in
case D is a variable) we need that ~x and the free variables of t(~s ) are of safe
type.

In all of the preceding cases, the free variables of each ui(~s ) are output
variables of safe type. Apply the IH to obtain u∗i := rf(ui; ~x;~s ). Let t∗ be
obtained from t by replacing each ui by u∗i . Then t∗ is R-free. The result
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is obtained in linear time from ~u∗. This finishes the lemma in all of these
cases.

The only remaining case is if t is an R clause. Then it is of the form
Rrus~t, because the term has safe type. One obtains rf(r; ~x;~s ) in time
Er(|~s |) by the IH. By assumption t(~s ) has free output variables only. Hence
r(~s ) is closed, because the type of R requires r(~s ) to be an input term. By
β-normalization one obtains the number N := nf(rf(r; ~x;~s )) in a further
elementary time, E′

r(|~s |).
Now consider sn with a new variable n, and let s′ be its β normal

form. Since s is β-normal, |s′| ≤ |s| + 1 < |t|. Applying the IH to s′ one
obtains a monotone elementary bounding function Esn. One computes all
si := rf(s′; ~x, n;~s, i) (i < N) in a total time of at most∑

i<N

Esn(|~s |+ i) ≤ E′
r(|~s |) · Esn(|~s |+ E′

r(|~s |)).

Consider u, ~t. The IH gives û := rf(u; ~x;~s ) in time Eu(|~s |), and all
t̂i := rf(ti; ~x;~s ) in time

∑
i Eti(|~s |). These terms are also R-free by IH.

Using additional time bounded by a polynomial P in the lengths of these
computed values, one constructs the R-free term

rf(Rrus~t; ~x;~s ) :=
(
sN−1 . . . (s1(s0û )) . . .

)~̂t.
Defining Et(l) := P (Eu(l)+

∑
i Eti(l)+E′

r(l) ·Esn(l+E′
r(l))), the total time

used in this case is at most Et(|~s |). �

We can now combine our results and state the final theorem. Let the
R-rank of a term t be the least number bigger than the level of all value
types τ of recursion operators Rτ in t. By the rank of a term we mean the
maximum of its cut-rank and its R-rank.

Theorem. For every k there is an elementary function Nk such that
every term t of T(; ) of rank ≤ k can be reduced in time Nk(|t|) to normal
form.

3.2. A Linear Two-Sorted Variant LT(; ) of Gödel’s T

We now add some linearity restrictions, which will allow us to character-
ize the polynomial-time computable functions as those definable in a certain
fragment of Gödel’s T. The exposition in based on Bellantoni et al. (2000)
and Schwichtenberg and Bellantoni (2002).

When discussing polynomial time, it is appropriate to work with a bi-
nary (rather than unary) representation of the natural numbers, with two
successors S0(a) = 2a and S1(a) = 2a + 1.



32 3. COMPLEXITY

Recall that in the first example above of a recursion producing exponen-
tial growth, the definition of B(n, a) = a + 2n, we had the defining term

B := λn

(
RN(NnS

(
λm,p,a(pN(N(pa))

))
with the higher type variable p for the “previous” value appearing twice in
the step term. The linearity restriction will forbid this.

We essentially keep the definitions of types, safe types, input/output
variables from 3.1.1. However, the term definition will be different: it now
involves a linearity constraint. Moreover, the typing of the recursion oper-
ator R needs to be changed: its (higher type) step argument will be used
many times, and hence we need a → after it. As a consequence, we now
allow higher types as argument types for →. Therefore we change the names
of input/output variables into normal/safe variables.

3.2.1. Feasible computation with higher types. We shall work
with two forms of arrow types and abstraction terms:{

ρ → σ

λx̄ρr
as well as

{
ρ ( σ

λxρr

and a corresponding syntactic distinction between normal and safe (typed)
variables, x̄ and x. The intuition is that a function of type ρ → σ may
recurse on its argument (if it is of ground type) or use it many times (if it is
of higher type), whereas a function of type ρ ( σ is not allowed to recurse
on its argument (if it is of ground type) or can use it only once (if it is of
higher type). As is well known, we then need a corresponding distinction
for product types: the ordinary product ∧ for →, and the tensor product ⊗
for the linear arrow (. Formally we proceed as follows. The types are

ρ, σ, τ ::= U | B | L(ρ) | ρ → σ | ρ ( σ | ρ ∧ σ | ρ⊗ σ,

and the level of a type is defined by

l(U) := 0,

l(B) := 0,

l(L(ρ)) := l(ρ),

l(ρ → σ) := l(ρ ( σ) := max{l(σ), 1 + l(ρ)},
l(ρ ∧ σ) := l(ρ⊗ σ) := max{l(ρ), l(σ)}.

Ground types are the types of level 0, and a higher type is any type of level
at least 1. The →-free types are also called safe. In particular, every ground
type is safe.
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The constants are u : U, tt, ff : B, nilρ : L(ρ) and

::ρ : ρ ( L(ρ) ( L(ρ),

ifτ : B ( τ ∧ τ ( τ (τ safe),

cρ
τ : L(ρ) ( τ ∧ (ρ ( L(ρ) ( τ) ( τ (τ safe),

Rρ
τ : L(ρ) → τ ( (ρ ( L(ρ) → τ ( τ) → τ (ρ ground, τ safe).

The restriction to safe types τ is needed in the proof of the Normalization
Theorem below (in 3.2.4). cρ

τ is used for definition by cases (on the con-
structor form of a list), and Rρ

τ as a recursion operator. Note that a single
recursion operator (over lists) is used here to cover both, numeric and word
recursion.

The typing of Rρ
τ with its peculiar choices of → and ( deserves some

comments. The first argument is the one that is recursed on and hence must
be normal, so the type starts with L(ρ) → · · · . The third argument is for
the step term, which is of a higher type and will be used many times (when
the recursion operator is unfolded), so it must be normal as well. Hence
we need a → after the step type. We will crucially need this typing when
we prove (in the Sufficiency Lemma below) that the functions definable in
LT(; ) are closed under “safe recursion”.

Further constants are, for safe ρ, σ, τ ,

⊗+
ρσ : ρ ( σ ( ρ⊗ σ,

⊗−
ρστ : ρ⊗ σ ( (ρ ( σ ( τ) ( τ,

∧+
ρσ : ρ ( σ ( ρ ∧ σ if ρ, σ ground,

∧+
ρστ : (τ ( ρ) ( (τ ( σ) ( τ ( ρ ∧ σ if l(ρ ∧ σ) > 0,

fstρσ : ρ ∧ σ ( ρ,

sndρσ : ρ ∧ σ ( σ.

The restriction to safe types ρ, σ, τ again will be needed in the proof of the
Normalization Theorem. The type of ∧+

ρστ can be explained as follows. In
our linear setting, using a term of type ρ∧σ might be allowed only once. So if
one picks one component, the other one is lost. Therefore it is perfectly legal
to have an occurrence of a higher type safe variable in both components.
Now the type of ∧+

ρστ allows such duplications, via the argument of type τ .
For ρ, σ both ground duplication is no problem, so we can use the simpler
∧+

ρσ in this case.

Definition. LT(; )-terms (terms for short) are built from these con-
stants and typed variables x̄σ (normal variables) and xσ (safe variables) by
introduction and elimination rules for the two type forms ρ → σ and ρ ( σ,
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i.e.,

x̄ρ (normal variable) |
xρ (safe variable) |
Cρ (constant) |
(λx̄ρrσ)ρ→σ |
(rρ→σsρ)σ (s “normal”) |
(λxρrσ)ρ(σ |
(rρ(σsρ)σ (higher type safe variables in r, s distinct),

where a term s is called normal if all its free variables are normal.

By the restriction on safe variables in the formation of an application
rρ(σs, every higher type safe variable can occur at most once in a given
term.

The conversion rules are as expected: β-conversion (for normal and safe
variables) plus

ifτ tts 7→ fstττs,

ifτ ffs 7→ sndττs,

cρ
τnilρs 7→ fstτσs for σ := ρ ( L(ρ) ( τ ,

cρ
τ (r ::ρ l)s 7→ sndτσsrl for σ := ρ ( L(ρ) ( τ ,
Rρ

τnilρts 7→ t,

Rρ
τ (r ::ρ l)ts 7→ srl(Rρ

τ lts),

⊗−
ρστ (⊗+

ρσrs)t 7→ trs,

fstρσ(∧+
ρσrs) 7→ r,

sndρσ(∧+
ρσrs) 7→ s,

fstρσ(∧+
ρστrst) 7→ rt,

sndρσ(∧+
ρστrst) 7→ st.

Redexes are subterms shown on the left side of the conversion rules above.
We write r → r′ (r →∗ r′) if r can be reduced into r′ by one (an arbitrary
number of) conversion of a subterm.

Note that projections w.r.t. ρ⊗ σ can be defined easily: For a term t of
type ρ⊗ σ let

t0 := ⊗−
ρσρt(λxρ,yσx) and t1 := ⊗−

ρσσt(λxρ,yσy).
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Then clearly

(⊗+
ρσrs)0 = ⊗−

ρσρ(⊗+
ρσrs)(λxρ,yσx) 7→ (λxρ,yσx)rs →∗ r,

(⊗+
ρσrs)1 = ⊗−

ρσσ(⊗+
ρσrs)(λxρ,yσy) 7→ (λxρ,yσy)rs →∗ s.

A function f is called definable in LT(; ) if there is a closed LT(; )-term
r : W � . . .W � W (�∈ {→,(}) in LT(; ) denoting this function.

3.2.2. Examples. We now look at some examples intended to explain
how our restrictions on the formation of types and terms make it impossible
obtain exponential growth. However, for definiteness we first have to say
precisely what we mean by a numeral .

Terms of the form rρ
1 ::ρ (rρ

2 ::ρ . . . (rρ
n ::ρ nilρ) . . .) are called lists. We

abbreviate N := L(U) and W := L(B).

0 := nilU,

S := λl.u :: lN,

1 := nilB,

S0 := λl.ff :: lW,

S1 := λl.tt :: lW.

Particular lists are S(. . . (S0) . . . ) and Si1(. . . (Sin1) . . . ). The former are
called unary numerals, and the latter binary numerals (or numerals of type
W). We denote binary numerals by ν.

Two recursions. Consider
D(1) := S0(1),

D(Si(x)) := S0(S0(D(x))),

E(1) := 1,

E(Si(x)) := D(E(x)).

The corresponding terms are

D := λx̄.RWx̄(λzλl̄λp.S0(S0p))(S01),

E := λx̄.RWx̄(λzλl̄λp.Dp)1.

Here D is legal, but E is not: the application Dp is not allowed.
Recursion with parameter substitution. Consider

E(1, y) := S0(y),

E(Si(x), y) := E(x,E(x, y)),
or

E(1) := S0,

E(Si(x)) := E(x) ◦ E(x).

The corresponding term

λx̄.RW(Wx̄(λzλl̄λpW(Wλy.p(py))S0

does not satisfy the linearity condition: the higher type variable p occurs
twice, and the typing of R requires p to be safe.

A different form of recursion with parameter substitution is
E(1, y) := y,

E(Si(x), y) := E(x,D(y)),
or

E(1) := id,

E(Si(x)) := E(x) ◦D.
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The corresponding term would be

λx̄.RW→Wx̄(λzλl̄λpW→Wλx̄.p(Dx̄))(λyy),

but it is not legal, since the result type is not safe.
Higher argument types: iteration. Consider

I(1, f, y) := y,

I(Si(x), f, y) := f(I(x, f, y)),
or

I(1, f) := id,

I(Si(x), f) := f ◦ I(x, f)

with the corresponding term

If := λx̄.RW(Wx̄(λzλl̄λpW(Wλy.f(py))(λyy),
E := λx.IDx1.

Here If is legal, but E is not: the type of D prohibits iteration. – Note that
in PVω (see Cook and Kapron (1990), Cook (1992)) I is not definable, for
otherwise we could define λz.IDz.

A related phenomenon occurrs in

E(1) := id,

E(Si(x)) := E(x) ◦D.

Now the terms are

If := λx.RW(Wx̄(λzλl̄λpW(Wλy.f(py))(λyy),

E := λx̄.RW(Wx̄(λzλl̄λqW(W .Iq(S0(S01)))S0.

Again E is not legal, this time because the free parameter f in the step
term of If is substituted with the safe variable q. This variable needs to be
normal because of the typing of the recursion operator.

3.2.3. Polynomials. It is high time that we give some examples of
what can de done in our term system. It is easy to define ⊕ : W → W ( W
such that x⊕ y concatenates |x| bits onto y:

1⊕ y = S0y,

(Six)⊕ y = S0(x⊕ y).

The representing term is

x̄⊕ y := RW(Wx̄(λzλl̄λpW(Wλy.S0(py))S0y.

Similarly we define � : W → W → W such that x�y has output length
|x| · |y|:

x� 1 = x,

x� (Siy) = x⊕ (x� y).

The representing term is x̄� ȳ := RWȳ(λzλl̄λp.x̄⊕ p)x̄.
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Note that the typing ⊕ : W → W ( W is crucial: it allows using
the safe variable p in the definition of �. If we try to go on and define
exponentiation from multiplication � just as � was defined from ⊕, we find
out that we cannot go ahead, because of the different typing � : W → W →
W.

3.2.4. Normalization. A dag is a directed acyclic graph. A parse dag
is a structure like a parse tree but admitting in-degree greater than one. For
example, a parse dag for λxr has a node containing λx and a pointer to a
parse dag for r. A parse dag for (rs) has a node containing a pair of pointers,
one to a parse dag for r and the other to a parse dag for s. Terminal nodes
are labeled by constants and variables.

The size |d| of a parse dag d is the number of nodes in it, but counting
3 for cτ nodes. Starting at any given node in the parse dag, one obtains a
term by a depth-first traversal; it is the term represented by that node. We
may refer to a node as if it were the term it represents.

A parse dag is conformal if (i) every node having in-degree greater than
1 is of ground type, and (ii) every maximal path to a bound variable x passes
through the same binding λx node.

A parse dag is h-affine if every higher-type variable occurs at most once
in the dag.

We adopt a model of computation over parse dags in which operations
such as the following can be performed in unit time: creation of a node
given its label and pointers to the sub-dags; deletion of a node; obtaining a
pointer to one of the subsidiary nodes given a pointer to an interior node;
conditional test on the type of node or on the constant or variable in the
node. Concerning computation over terms (including numerals), we use the
same model and identify each term with its parse tree. Although not all
parse dags are conformal, every term is conformal (assuming a relabeling of
bound variables).

A term is called simple if contains no higher type normal variables.
Obviously simple terms are closed under reductions, taking of subterms,
and applications. Every simple term is h-affine, due to the linearity of safe
higher-type variables.

Lemma (Simplicity). Let t be a ground type term whose free variables
are of ground type. Then nf(t) contains no higher type normal variables.

Proof. Suppose a variable x̄σ with l(σ) > 0 occurs in nf(t). It must
be bound in a subterm (λx̄σr)σ→τ of nf(t). By the well known subtype
property of normal terms, the type σ → τ either occurs positively in the
type of nf(t), or else negatively in the type of one of the constants or free
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Figure 1. Redex (λxr)s with r of ground type

variables of nf(t). The former is impossible since t is of ground type, and
the latter by inspection of the types of the constants. �

Lemma (Sharing Normalization). Let t be an R-free simple term. Then
a parse dag for nf(t), of size at most |t|, can be computed from t in time
O(|t|2).

Proof. Under our model of computation, the input t is a parse tree.
Since t is simple, it is an h-affine conformal parse dag of size at most |t|. If
there are no nodes which represent a redex, then we are done. Otherwise,
locate a node representing a redex; this takes time at most O(|t|). We show
how to update the dag in time O(|t|) so that the size of the dag has strictly
decreased and the redex has been eliminated, while preserving conformality.
Thus, after at most |t| iterations the resulting dag represents the normal-
form term nf(t). The total time therefore is O(|t|2).

Assume first that the redex in t is (λxr)s with x of ground type (see
Figure 1); the argument is similar for a normal variable x̄. Replace pointers
to x in r by pointers to s. Since s does not contain x, no cycles are created.
Delete the λx node and the root node for (λxr)s which points to it. By
conformality (i) no other node points to the λx node. Update any node
which pointed to the deleted node for (λxr)s, so that it now points to the
revised r subdag. This completes the β reduction on the dag (one may also
delete the x nodes). Conformality (ii) gives that the updated dag represents
a term t′ such that t → t′.

One can verify that the resulting parse dag is conformal and h-affine,
with conformality (i) following from the fact that s has ground type.

If the redex in t is (λxr)s with x of higher type (see Figure 2), then x
occurs at most once in r because the parse dag is h-affine. By conformality
(i) there is at most one pointer to that occurrence of x. Update it to point
to s instead, deleting the x node. As in the preceding case, delete the λx

and the (λxr)s node pointing to it, and update other nodes to point to the
revised r. Again by conformality (ii) the updated dag represents t′ such that
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Figure 2. Redex (λxr)s with r of higher type
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Figure 3. cτ (r ::ρ l)s 7→ snd srl with ρ a ground type

t → t′. Conformality and acyclicity are preserved, observing this time that
conformality (i) follows because there is at most one pointer to s.

The remaining reductions are for the constant symbols.
Case ifτ tts 7→ fstττs. Easy; similar for ff.
Case cτnilρs 7→ fst s. Easy.
Case cτ (r ::ρ l)s 7→ snd srl with ρ a ground type (see Figure 3). Note

that the new dag has one node more than the original one, but one cτ -
node less. Since we count the cτ -nodes 3-fold, the total number of nodes
decreases.

The remaining cases are treated in the Figures 4 – 7 below. Note that
in the final one, where fstρσ(∧+

ρστrst) 7→ rt, we need that ρ ∧ σ in this case
is not a ground type. The case sndρσ(∧+

ρστrst) 7→ st is of course similar. �

Corollary (Base Normalization). Let t be a closed R-free simple term
of type W. Then the binary numeral nf(t) can be computed from t in time
O(|t|2), and |nf(t)| ≤ |t|.
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ρστ (⊗+

ρσrs)t 7→ trs with ρ⊗ σ a ground type.
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Figure 6. ⊗−
ρστ (⊗+

ρσrs)t 7→ trs with ρ⊗ σ not a ground type.

Proof. By the Sharing Normalization Lemma we obtain a parse dag for
nf(t) of size at most |t|, in time O(|t|2). Since nf(t) is a binary numeral, there
is only one possible parse dag for it – namely, the parse tree of the numeral.
This is identified with the numeral itself in our model of computation. �
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Lemma (R Elimination). Let t(~x ) be a simple term of safe type. There is
a polynomial pt such that: if ~m are safe type R-free closed simple terms and
the free variables of t(~m) are safe and of safe type, then in time pt(|~m|) one
can compute an R-free simple term rf(t; ~x; ~m) such that t(~m) →∗ rf(t; ~x; ~m).

Proof. By induction on |t|.
If t(~x ) has the form λzu1, then z is safe and z, u1 have safe type because

t has safe type. If t(~x ) is of the form D~u with D a variable or one of the
symbols u, tt, ff, nilρ, ::ρ, ifτ , cτ , ⊗+

ρσ, ⊗−
ρστ , ∧+

ρστ , fstρσ or sndρσ, then each
ui is a safe type term. Here (in case D is a variable xi) we need that xi is
safe.

In all of the preceding cases, each ui(~m) has only safe free variables of
safe type. Apply the IH as required to simple terms ui to obtain u∗i :=
rf(ui; ~x; ~m); so each u∗i is R-free. Let t∗ be obtained from t by replacing
each ui by u∗i . Then t∗ is an R-free simple term; here we need that ~m are
closed, to avoid duplication of variables. The result is obtained in linear
time from ~u∗. This finishes the lemma in all of these cases.

If t is (λyr)s~u with a safe variable y of ground type, apply the IH to
yield (r~u)∗ := rf(r~u; ~x; ~m) and s∗ := rf(s; ~x; ~m). Redirect the pointers to
y in (r~u)∗ to point to s∗ instead. If t is (λȳr)s~u with a normal variable
ȳ of ground type, apply the IH to yield s∗ := rf(s; ~x; ~m). Note that s∗
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is closed, since it is normal and the free variables of s(~m) are safe. Then
apply the IH again to obtain rf(r~u; ~x, ȳ; ~m, s∗). The total time is at most
q(|t|)+ps(|~m|)+pr(|~m|+ps(|~m|)), as it takes at most linear time to construct
r~u from (λyr)s~u.

If t is (λyr(y))s~u with y of higher type, then y can occur at most once
in r, because t is simple. Thus |r(s)~u| < |(λyr)s~u|. Apply the IH to obtain
rf(r(s)~u; ~x; ~m). Note that the time is bounded by q(|t|) + pr(s)~u(|~m|) for
a degree one polynomial q, since it takes at most linear time to make the
at-most-one substitution in the parse tree.

The only remaining case is if the term is an R clause. Then it is of the
form Rls~t, because the term has safe type.

Since l is normal, all free variables of l are normal – they must be in
~x since free variables of (Rls~t )[~x := ~m] are safe. Then l(~m) is closed,
implying nf(l(~m)) is a list. One obtains rf(l; ~x; ~m) in time pl(|~m|) by the
IH. Then by Base Normalization one obtains the list l̂ := nf(rf(l; ~x; ~m)) in
a further polynomial time. Let l̂ = r0 ::ρ (r1 ::ρ . . . (rN ::ρ nilρ) . . .) and let
li, 0 ≤ i ≤ N be obtained from l̂ by omitting the initial elements r0, . . . , ri.
Thus all { ri, li | i ≤ N } are obtained in a total time bounded by p′l(|~m|) for
a polynomial p′l.

Now consider szȳ with new variables zρ and ȳL(ρ). Applying the IH to
szȳ one obtains a monotone bounding polynomial pszȳ. One computes all
si := rf(szȳ; ~x, z, ȳ; ~m, ri, li) in a total time of at most

N∑
i=1

pszȳ(|ri|+ |li|+ |~m|) ≤ p′l(|~m|) · pszȳ(2p′l(|~m|) + |~m|).

Each si is R-free by the IH. Furthermore, no si has a free safe variable: any
such variable would also be free in s contradicting that s is normal.

Consider ~t. The IH gives all t̂i := rf(ti; ~x; ~m) in time
∑

i pti(|~m|). These
terms are also R-free by IH. Clearly the ti do not have any free (or bound)
higher type safe variables in common. The same is true of all t̂i.

Using additional time bounded by a polynomial p in the lengths of these
computed values, one constructs the R-free term(

λx.s0(s1 . . . (sNx) . . . )
)~̂t.

Defining pt(n) := p(
∑

i pti(n) + p′l(n) · pszȳ(2p′l(n) + n)), the total time used
in this case is at most pt(|~m|). The result is a term because the t̂i are terms
which do not have any free higher-type safe variable in common and because
si does not have any free higher-type safe variables at all. �

Theorem (Normalization). Let r be a closed LT(; )-term of type W �
. . .W � W (�∈ {→,(}). Then r denotes a polytime function.
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Proof. One must find a polynomial qt such that for all R-free simple
closed terms ~n of types ~ρ one can compute nf(t~n) in time qt(|~n|). Let ~x be
new variables of types ~ρ. The normal form of t~x is computed in an amount
of time that may be large, but it is still only a constant with respect to ~n.

nf(t~x) is simple by the Simplicity Lemma. ByR Elimination one reduces
to an R-free simple term rf(nf(t~x); ~x;~n) in time pt(|~n|). Since the running
time bounds the size of the produced term, |rf(nf(t~x); ~x;~n)| ≤ pt(|~n|).

By Sharing Normalization one can compute

nf(t~n) = nf(rf(nf(t~x); ~x;~n))

in time O(pt(|~n|)2). Let qt be the polynomial referred to by the big-O
notation. �

3.2.5. Sufficiency. The converse holds as well. The proof uses a char-
acterization of the polynomial-time computable functions given by Bellan-
toni and Cook (1992). There the polynomial time computable functions
are characterized by a function algebra B based on safe recursion and safe
composition. There every function is written in the form f(~x; ~y) where ~x; ~y
denotes a bookkeeping of those variables ~x that are used in a recursion
defining f , and those variables ~y that are not recursed on. We proceed by
induction on the definition of f(x1, . . . , xk; y1, . . . , yl) in B, associating to f

a closed term tf of type W(k) → W(l) ( W, such that t denotes f .
The functions in B were defined over the non-negative integers rather

than the positive ones, but this clearly is a minor point. We use the bijection
x ∈ N ⇔ (2|x| + x) ∈ Z+.

Lemma (Sufficiency). Let f be a polynomial-time computable function.
Then f is denoted by a closed LT(; )-term r.

Proof. If f in B is an initial function 0, S0, S1, P , conditional C or
projection πm,n

i , then tf is easily defined.
If f is defined by safe composition in system B, then

f(~x; ~y) := g(r1(~x; ), . . . , rm(~x; ); s1(~x; ~y), . . . , sn(~x; ~y)).

Using the IH to obtain tg, t~r and t~s, define

tf := λ~̄xλ~y.tg(tr1
~̄x) . . . (trm

~̄x) (ts1
~̄x~y) . . . (trm

~̄x~y).

Finally consider f defined by safe recursion in system B.

f(0, ~x; ~y) := g(~x; ~y),

f(Sin, ~x; ~y) := hi(n, ~x; ~y, f(n, ~x; ~y)) for Sin 6= 0.
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One has tg, th0 and th1 by IH. Let p be a variable of type τ := W(#(~y)) ( W;
this is the safe type used in the recursion. Then define a step term by

s := λxλl̄λpλ~y.ifW(Wx
(
∧+(λz.th0 l̄~̄x~yz)(λz.th1 l̄~̄x~yz)

)
(p~y ).

Note p is used only once. Let tf := λn̄λ~̄x.Rτ n̄s(tg~̄x ). �

3.3. Towards Curry-Howard Extensions to Arithmetic

Curry and Howard observed that types correspond to formulas, and
terms to proofs, when the logic is formulated in Gentzen’s natural deduction
calculus. Therefore it is tempting the transfer our restricted term systems
to arithmetical theories, which then by construction have limited compu-
tational power: elementary arithmetic A(; ) for T(; ), and polynomial-time
arithmetic LA(; ) for LT(; ). Initial attempts in this direction have already
been carried out: Ostrin and Wainer (2005) for the elementary case, and
Schwichtenberg (2006) for the polynomial-time case. There is also related
work by Bellantoni and Hofmann (2002), which however uses a different
approach based on the Hilbert calculus.

It remains to be seen whether such attempts to obtain feasible pro-
grams become feasible in practice. In any case, since such programs are
automatically generated by extraction from checkable proofs, by their very
construction the meet the highest possible security demands.
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