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3.2. A Linear Two-Sorted Variant LT(;) of Gödel’s T 68
3.3. Towards Curry-Howard Extensions to Arithmetic 80
3.4. Notes 80

Bibliography 81

Index 83

iii





Introduction

The goal of this course is to study the computational content of proofs.
We develop a natural deduction system for minimal logic in the language
based on implication →, conjunction ∧, disjunction ∨ and the quantifiers ∀
and ∃.
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CHAPTER 1

Arithmetic in Finite Types

1.1. ε0-Recursion

We aim at showing that the provably recursive functions of Peano Arith-
metic are exactly the ε0-recursive functions, i.e., those definable from the
primitive recursive functions by substitutions and (arbitrarily nested) recur-
sions over “standard” well orderings of the natural numbers with order-types
less than the ordinal

ε0 = sup{ω, ωω, ωωω
, . . .}.

As preliminaries, we must first develop some of the basic theory of these
ordinals, and their standard codings as well-orderings on N . Then we define
the hierarchies of fast-growing bounding functions naturally associated with
them. These will provide an important complexity characterization through
which we can more easily obtain the main result.

1.1.1. Ordinals below ε0. Throughout the rest of this chapter, α, β,
γ, δ, . . . will denote ordinals less than ε0. Every such ordinal is either 0 or
can be represented uniquely in so-called Cantor Normal Form thus:

α = ωγ1 · c1 + ωγ2 · c2 + · · ·+ ωγk · ck

where γk < · · · < γ2 < γ1 < α and the coefficients c1, c2, . . . , ck are arbitrary
positive integers. If γk = 0 then α is a successor ordinal, written Succ(α),
and its immediate predecessor α−1 has the same representation but with ck

reduced to ck−1. Otherwise α is a limit ordinal, written Lim(α), and it has
infinitely-many possible “fundamental sequences”, i.e., increasing sequences
of smaller ordinals whose supremum is α. However we shall pick out one
particular fundamental sequence {α(n)} for each such limit ordinal α, as
follows: first write α as δ + ωγ where δ = ωγ1 · c1 + · · ·+ ωγk · (ck − 1) and
γ = γk. Assume inductively that when γ is a limit, its fundamental sequence
{γ(n)} has already been specified. Then define, for each n ∈ N,

α(n) =

{
δ + ωγ−1 · (n + 1) if Succ(γ)
δ + ωγ(n) if Lim(γ).

Clearly {α(n)} is an increasing sequence of ordinals with supremum α.
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4 1. ARITHMETIC IN FINITE TYPES

Definition. With each α < ε0 and each natural number n, associate a
finite set of ordinals α[n] as follows:

α[n] =


∅ if α = 0
(α− 1)[n] ∪ {α− 1} if Succ(α)
α(n)[n] if Lim(α).

Lemma. For each α = δ + ωγ and all n,

α[n] = δ[n] ∪ { δ + ωγ1 · c1 + · · ·+ ωγk · ck | ∀i(γi ∈ γ[n] ∧ ci ≤ n) }.

Proof. By induction on γ. If γ = 0 then γ[n] is empty and so the right
hand side is just δ[n]∪{δ}, which is the same as α[n] = (δ +1)[n] according
to the definition above.

If γ is a limit then γ[n] = γ(n)[n] so the set on the right hand side is the
same as the one with γ(n)[n] instead of γ[n]. By the induction hypothesis
applied to α(n) = δ + ωγ(n), this set equals α(n)[n], which is just α[n] again
by definition.

Now suppose γ is a successor. Then α is a limit and α[n] = α(n)[n] where
α(n) = δ + ωγ−1 · (n + 1). This we can write as α(n) = α(n − 1) + ωγ−1

where, in case n = 0, α(−1) = δ. By the induction hypothesis for γ− 1, the
set α[n] is therefore equal to

α(n−1)[n]∪{α(n−1)+ωγ1 · c1 + · · ·+ωγk · ck | ∀i(γi ∈ (γ−1)[n]∧ ci ≤ n) }

and similarly for each of α(n−1)[n], α(n−2)[n], ... , α(1)[n]. Since for each
m ≤ n, α(m− 1) = δ + ωγ−1 ·m, this last set is the same as

δ[n]∪{ δ+ωγ−1 ·m+ωγ1 ·c1+· · ·+ωγk ·ck | m ≤ n∧∀i(γi ∈ (γ−1)[n]∧ci≤n) }

and this is the set required because γ[n] = (γ−1)[n]∪{γ−1}. This completes
the proof. �

Corollary. (i) For every limit ordinal α < ε0 and every n, α(n) ∈
α[n + 1]. (ii) If β ∈ γ[n] then ωβ ∈ ωγ [n] provided n 6= 0.

Definition. The maximum coefficient of β = ωβ1 · b1 + · · ·+ ωβl · bl is
defined inductively to be the maximum of all the bi and all the maximum
coefficients of the exponents βi.

Lemma. If β < α and the maximum coefficient of β is ≤ n then β ∈
α[n].

Proof. By induction on α. Let α = δ + ωγ . If β < δ, then β ∈ δ[n] by
IH and δ[n] ⊆ α[n] by the lemma. Otherwise β = δ + ωβ1 · b1 + · · ·+ ωβk · bk

with α > γ > β1 > · · · > βk and bi ≤ n. By IH βi ∈ γ[n]. Hence β ∈ α[n]
by the lemma. �
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Definition. Let Gα(n) denote the cardinality of the finite set α[n].
Then immediately from the definition of α[n] we have

Gα(n) =


0 if α = 0
Gα−1(n) + 1 if Succ(α)
Gα(n)(n) if Lim(α).

The hierarchy of functions Gα is called the “slow growing” hierarchy.

Lemma. If α = δ + ωγ then for all n

Gα(n) = Gδ(n) + (n + 1)Gγ(n).

Therefore for each α < ε0, Gα(n) is the elementary function which results
by substituting n + 1 for every occurrence of ω in the Cantor Normal Form
of α.

Proof. By induction on γ. If γ = 0 then α = δ+1, so Gα(n) = Gδ(n)+
1 = Gδ(n) + (n + 1)0 as required. If γ is a successor then α is a limit and
α(n) = δ+ωγ−1 ·(n+1), so by n+1 applications of the induction hypothesis
for γ − 1 we have Gα(n) = Gα(n)(n) = Gδ(n) + (n + 1)Gγ−1(n) · (n + 1) =
Gδ(n)+ (n+1)Gγ(n) since Gγ−1(n)+1 = Gγ(n). Finally, if γ is a limit then
α(n) = δ + ωγ(n), so applying the induction hypothesis to γ(n), we have
Gα(n) = Gα(n)(n) = Gδ(n) + (n + 1)Gγ(n)(n) which immediately gives the
desired result since Gγ(n)(n) = Gγ(n) by definition. �

Definition (Coding ordinals). Encode each ordinal β = ωβ1 · b1 + ωβ2 ·
b2+· · ·+ωβl ·bl by the sequence number β̄ constructed recursively as follows:

β̄ = 〈〈β̄1, b1〉, 〈β̄2, b2〉, . . . , 〈β̄l, bl〉〉.

The ordinal 0 is coded by the empty sequence number, also 0. Note that β̄
is numerically greater than the maximum coefficient of β, and greater than
the codes β̄i of all its exponents, and their exponents etcetera.

Lemma. (a) There is an elementary function h(m,n) such that, with
m = β̄,

h(β̄, n) =


0 if β = 0
β − 1 if Succ(β)
β(n) if Lim(β).

(b) For each fixed α < ε0 there is an elementary well-ordering ≺α⊂ N2 such
that for all b, c ∈ N, b ≺α c if and only if b = β̄ and c = γ̄ for some
β < γ < α.
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Proof. (a) Thinking of m as a β̄, define h(m,n) as follows: First set
h(0, n) = 0. Then if m is a non-zero sequence number, see if its final
(rightmost) component π2(m) is a pair 〈m′, n′〉. If so, and m′ = 0 but
n′ 6= 0, then β is a successor and the code of its predecessor, h(m,n), is
then defined to be the new sequence number obtained by reducing n′ by
one (or removing this final component altogether if n′ = 1). Otherwise if
π2(m) = 〈m′, n′〉 where m′ and n′ are both positive, then β is a limit of the
form δ + ωγ · n′ where m′ = γ̄. Now let k be the code of δ + ωγ · (n′ − 1),
obtained by reducing n′ by one inside m (or if n′ = 1, deleting the final
component from m). Set k aside for the moment. At the “righthand end”
of β we have a spare ωγ which, in order to produce β(n), must be reduced
to ωγ−1 · (n + 1) if Succ(γ), or to ωγ(n) if Lim(γ). Therefore the required
code h(m,n) of β(n) will in this case be obtained by tagging onto the end
of the sequence number k one extra pair coding this additional term. But
if we assume inductively that h(m′, n) has already been defined for m′ < m
then this additional component must be either 〈h(m′, n), n + 1〉 if Succ(γ)
or 〈h(m′, n), 1〉 if Lim(γ).

This defines h(m,n), once we agree to set its value to zero in all extrane-
ous cases where m is not a sequence number of the right form. However the
definition so far given is a primitive recursion (depending on previous values
for smaller m’s). To make it elementary we need to check that h(m,n) is
also elementarily bounded, for then h is defined by “limited recursion” from
elementary functions, and we know that the result will then be an elemen-
tary function. Now when m codes a successor then clearly, h(m,n) < m. In
the limit case, h(m,n) is obtained from the sequence number k (numerically
smaller than m) by adding one new pair on the end. Recall that an extra
item i is tagged onto the end of a sequence number k by the function π(k, i)
which is quadratic in k and i. If the item added is the pair 〈h(m′, n), n + 1〉
where Succ(γ), then h(m′, n) < m and so h(m, n) is numerically bounded by
some fixed polynomial in m and n. In the other case, however, all we can say
immediately is that h(m,n) is numerically less than some fixed polynomial
of m and h(m′, n). But since m′ codes an exponent in the Cantor Normal
Form coded by m, this second polynomial cannot be iterated more than d
times, where d is the “exponential height” of the normal form. Therefore
h(m,n) is bounded by some d-times iterated polynomial of m + n. Since
d < m it is therefore bounded by the elementary function 22c(m+n)

for some
constant c. Thus h(m,n) is defined by limited recursion, so it is elementary.

(b) Fix α < ε0 and let d be the exponential height of its Cantor Normal
Form. We use the function h just defined in part (a), and note that if we only
apply it to codes for ordinals below α, they will all have exponential height
≤ d, and so with this restriction we can consider h as being bounded by some
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fixed polynomial of its two arguments. Define g(0, n) = ᾱ and g(i + 1, n) =
h(g(i, n), n), and notice that g is therefore bounded by an i-times iterated
polynomial, so g is defined by an elementarily limited recursion from h, and
hence is itself elementary.

Now define b ≺α c if and only if c 6= 0 and there are i and j such that
0 < i < j ≤ Gα(max(b, c)+1) and g(i,max(b, c)) = c and g(j, max(b, c)) = b.
Since the functions g and Gα are elementary, and since the quantifiers are
bounded, the relation ≺α is elementary. Furthermore by the properties of
h it is clear that if i < j then g(i,max(b, c)) codes an ordinal greater than
g(j,max(b, c)) (provided the first is not zero). Hence if b ≺α c then b = β̄
and c = γ̄ for some β < γ < α.

We must show the converse, so suppose b = β̄ and c = γ̄ where β <
γ < α. Then since the code of an ordinal is greater than its maximum
coefficient, we have β ∈ α[max(b, c)] and γ ∈ α[max(b, c)]. This means that
the sequence starting with α and at each stage descending from a δ to either
δ − 1 if Succ(δ) or δ(max(b, c)) if Lim(δ), must pass through first γ and
later, β. In terms of codes it means that there is an i and a j such that
0 < i < j and g(i,max(b, c)) = c and g(j, max(b, c)) = b. Thus b ≺α c holds
if we can show that j ≤ Gα(max(b, c) + 1). In the descending sequence just
described, only the successor stages actually contribute an element δ − 1 to
α[max(b, c)]. At the limit stages, δ(max(b, c)) does not get put in. However
although δ(n) does not belong to δ[n], it does belong to δ[n + 1]. Therefore
all the ordinals in the descending sequence lie in α[max(b, c) + 1]. So j can
be no bigger than the cardinality of this set, which is Gα(max(b, c) + 1).
This completes the proof. �

Thus the principles of transfinite induction and transfinite recursion over
initial segments of the ordinals below ε0, can all be expressed in the language
of elementary recursive arithmetic.

1.1.2. The fast growing hierarchy and ε0-recursion.

Definition. The “Hardy Hierarchy” {Hα}α<ε0 is defined by recursion
on α thus (cf. Hardy (1904)):

Hα(n) =


n if α = 0
Hα−1(n + 1) if Succ(α)
Hα(n)(n) if Lim(α).

The “Fast Growing Hierarchy” {Fα}α<ε0 is defined by recursion on α thus:

Fα(n) =


n + 1 if α = 0
Fn+1

α−1 (n) if Succ(α)
Fα(n)(n) if Lim(α)
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where Fn+1
α−1 (n) is the n + 1-times iterate of Fα−1 on n.

Note. The Hα and Fα functions could equally well be defined purely
number-theoretically, by working over the well-orderings ≺α instead of di-
rectly over the ordinals themselves. Thus they are ε0-recursive functions.

Lemma. For all α, β and all n,
(a) Hα+β(n) = Hα(Hβ(n)),
(b) Hωα(n) = Fα(n).

Proof. The first part is proven by induction on β, the unstated as-
sumption being that the Cantor Normal Form of α + β is just the re-
sult of concatenating their two separate Cantor Normal Forms, so that
(α + β)(n) = α + β(n). This of course requires that the leading exponent in
the normal form of β is not greater than the final exponent in the normal
form of α. We shall always make this assumption when writing α + β.

If β = 0 the equation holds trivially because H0 is the identity function.
If Succ(β) then by the definition of the Hardy functions and the induction
hypothesis for β − 1,

Hα+β(n) = Hα+(β−1)(n + 1) = Hα(Hβ−1(n + 1)) = Hα(Hβ(n)).

If Lim(β) then by the induction hypothesis for β(n),

Hα+β(n) = Hα+β(n)(n) = Hα(Hβ(n)(n)) = Hα(Hβ(n)).

The second part is proved by induction on α. If α = 0 then Hω0(n) =
H1(n) = n + 1 = F0(n). If Succ(α) then by the limit case of the definition
of H, the induction hypothesis, and the first part above,

Hωα(n) = Hωα−1·(n+1)(n) = Hn+1
ωα−1(n) = Fn+1

α−1 (n) = Fα(n).

If Lim(α) then the equation follows immediately by the induction hypothesis
for α(n). This completes the proof. �

Lemma. For each α < ε0, Hα is strictly increasing and Hβ(n) < Hα(n)
whenever β ∈ α[n]. The same holds for Fα, with the slight restriction that
n 6= 0, for when n = 0 we have Fα(0) = 1 for all α.

Proof. By induction on α. The case α = 0 is trivial since H0 is the
identity function and 0[n] is empty. If Succ(α) then Hα is Hα−1 composed
with the successor function, so it is strictly increasing by the induction
hypothesis. Furthermore if β ∈ α[n] then either β ∈ (α− 1)[n] or β = α− 1
so, again by the induction hypothesis, Hβ(n) ≤ Hα−1(n) < Hα−1(n + 1) =
Hα(n). If Lim(α) then Hα(n) = Hα(n)(n) < Hα(n)(n + 1) by the induction
hypothesis. But as noted previously, α(n) ∈ α[n + 1] = α(n + 1)[n + 1], so
by applying the induction hypothesis to α(n + 1) we have Hα(n)(n + 1) <
Hα(n+1)(n + 1) = Hα(n + 1). Thus Hα(n) < Hα(n + 1). Furthermore if
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β ∈ α[n] then β ∈ α(n)[n] so Hβ(n) < Hα(n)(n) = Hα(n) straightaway by
the induction hypothesis for α(n).

The same holds for Fα = Hωα provided we restrict to n 6= 0 since if
β ∈ α[n] we then have ωβ ∈ ωα[n]. This completes the proof. �

Lemma. If β ∈ α[n] then Fβ+1(m) ≤ Fα(m) for all m ≥ n.

Proof. By induction on α, the zero case being trivial. If α is a successor
then either β ∈ (α− 1)[n] in which case the result follows straight from the
induction hypothesis, or β = α − 1 in which case it’s immediate. If α is
a limit then we have β ∈ α(n)[n] and hence by the induction hypothesis,
Fβ+1(m) ≤ Fα(n)(m). But Fα(n)(m) ≤ Fα(m) either by definition of F in
case m = n, or by the last lemma when m > n since then α(n) ∈ α[m]. �

Definition (α-recursion).
(a) An α-recursion is a function-definition of the following form, defining

f : Nk+1 → N from given functions g0, g1, . . . , gs by two clauses (in the
second, n 6= 0):

f(0, ~m) = g0(~m)

f(n, ~m) = T (g1, . . . , gs, f≺n, n, ~m)

where T (g1, . . . , gs, f≺n, n, ~m) is a fixed term built up from the number-
variables n, ~m by applications of the functions g1, . . . , gs and the function
f≺n given by

f≺n(n′, ~m) =

{
f(n′, ~m) if n′ ≺α n

0 otherwise.

It is always assumed, when doing α-recursion, that α 6= 0.
(b) An unnested α-recursion is one of the special form:

f(0, ~m) = g0(~m)

f(n, ~m) = g1(n, ~m, f(g2(n, ~m), . . . , gk+2(n, ~m)))

with just one recursive call on f where g2(n, ~m) ≺α n for all n and all
~m.

(c) Let ε0(0) = ω and ε0(i + 1) = ωε0(i). Then for each fixed i, a function
is said to be ε0(i)-recursive if it can be defined from primitive recursive
functions by successive substitutions and α-recursions with α < ε0(i).
It is unnested ε0(i)-recursive if all the α-recursions used in its definition
are unnested. It is ε0-recursive if it is ε0(i)-recursive for some (any) i.

Note. The ε0(0)-recursive functions are just the primitive recursive
ones, since if α < ω then α-recursion is just a finitely-iterated substitu-
tion. So the definition of ε0(0)-recursion simply amounts to the closure of
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the primitive recursive functions under substitution, which of course does
not enlarge the primitive recursive class.

Lemma (Bounds for α-recursion). Suppose f is defined from g1, . . . , gs

by an α-recursion:
f(0, ~m) = g0(~m)

f(n, ~m) = T (g1, . . . , gs, f≺n, n, ~m)

where for each i ≤ s, gi(~a) < Fβ(k + max~a) for all numerical arguments ~a.
(The β and k are arbitrary constants, but it is assumed that the last exponent
in the Cantor Normal Form of β is ≥ the first exponent in the normal form
of α, so that β + α is automatically in Cantor Normal Form). Then there
is a constant d such that for all n, ~m,

f(n, ~m) < Fβ+α(k + 2d + max(n, ~m)).

Proof. The constant d will be the depth of nesting of the term T , where
variables have depth of nesting 0 and each compositional term g(T1, . . . , Tl)
has depth of nesting one greater than the maximum depth of nesting of the
subterms Tj .

First suppose n lies in the field of the well-ordering ≺α. Then n = γ̄ for
some γ < α. We claim by induction on γ that

f(n, ~m) < Fβ+γ+1(k + 2d + max(n, ~m)).

This holds immediately when n = 0, because g0(~m) < Fβ(k+max ~m) and Fβ

is strictly increasing and bounded by Fβ+1. So suppose n 6= 0 and assume
the claim for all n′ = δ̄ where δ < γ.

Let T ′ be any subterm of T (g1, . . . , gs, f≺n, n, ~m) with depth of nesting d′,
built up by application of one of the functions g1, . . . , gs or f≺n to subterms
T1, . . . , Tl. Now assume (for a sub-induction on d′) that each of these Tj ’s has
numerical value vj less than F

2(d′−1)
β+γ (k + 2d + max(n, ~m)). If T ′ is obtained

by application of one of the functions gi then its numerical value will be

gi(v1, . . . , vl) < Fβ(k + F
2(d′−1)
β+γ (k + 2d + max(n, ~m)))

< F 2d′
β+γ(k + 2d + max(n, ~m))

since if k < u then Fβ(k + u) < Fβ(2u) < F 2
β (u) provided β 6= 0. On the

other hand, if T ′ is obtained by application of the function f≺n, its value
will be f(v1, . . . , vl) if v1 ≺α n, or 0 otherwise. Suppose v1 = δ̄ ≺α γ̄. Then
by the induction hypothesis,

f(v1, . . . , vl) < Fβ+δ+1(k + 2d + max~v) ≤ Fβ+γ(k + 2d + max~v)

because v1 is greater than the maximum coefficient of δ, so δ ∈ γ[v1], so
β + δ ∈ (β + γ)[v1] and hence Fβ+δ+1 is bounded by Fβ+γ on arguments
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≥ v1. Therefore, inserting the assumed bounds for the vj , we have

f(v1, . . . , vl) < Fβ+γ(k + 2d + F
2(d′−1)
β+γ (k + 2d + max(n, ~m)))

and then by the same argument as before,

f(v1, . . . , vl) < F 2d′
β+γ(k + 2d + max(n, ~m))).

We have now shown that the value of every subterm of T with depth of
nesting d′ is less than F 2d′

β+γ(k + 2d + max(n, ~m))). Applying this to T itself
with depth of nesting d we thus obtain

f(n, ~m) < F 2d
β+γ(k + 2d + max(n, ~m))) < Fβ+γ+1(k + 2d + max(n, ~m)))

as required. This proves the claim.
To derive the result of the lemma is now easy. If n = γ̄ lies in the field

of ≺α then β + γ ∈ (β + α)[n] and so

f(n, ~m) < Fβ+γ+1(k + 2d + max(n, ~m))) ≤ Fβ+α(k + 2d + max(n, ~m))).

If n does not lie in the field of ≺α then the function f≺n is the constant
zero function, and so in evaluating f(n, ~m) by the term T only applications
of the gi-functions come into play. Therefore a much simpler version of the
above argument gives the desired

f(n, ~m) < F 2d
β (k + 2d + max(n, ~m)) < Fβ+α(k + 2d + max(n, ~m))

since α 6= 0. This completes the proof. �

Theorem. For each i, a function is ε0(i)-recursive if and only if it is
register-machine computable in a number of steps bounded by Fα for some
α < ε0(i).

Proof. For the “if” part, recall that for every register-machine com-
putable function g there is an elementary function U such that for all argu-
ments ~m, if s(~m) bounds the number of steps needed to compute g(~m) then
g(~m) = U(~m, s(~m)). Thus if g is computable in a number of steps bounded
by Fα, this means that g can be defined from Fα by the substitution

g(~m) = U(~m,Fα(max ~m)).

Hence g will be ε0(i)-recursive if Fα is. We therefore need to show that if
α < ε0(i) then Fα is ε0(i)-recursive. This is clearly true when i = 0 since
then α is finite, and the finite levels of the F hierarchy are all primitive
recursive, and therefore ε0(0)-recursive. Suppose then, that i > 0, and that
α = ωγ1 · c1 + · · ·+ ωγk · ck is less than ε0(i). Adding one to each exponent,
and inserting a successor term at the end, produces the ordinal β = α′ + n
where α′ is the limit ωγ1+1 · c1 + · · · + ωγk+1 · ck. Since i > 0 it is still the
case that β < ε0(i). Obviously, from the code for α, here denoted a, we can
elementarily compute the code for α′, denoted a′, and then b = π(a′, 〈0, n〉)
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will be the code for β. Conversely from such a b we can elementarily decode
a′ and hence a, and also the n. Choosing a large enough δ < ε0(i) so that
β < δ, we can now define a function f(b, m) by δ-recursion, with the property
that when b is the code for β = α′ + n, then f(b, m) = Fn

α (m). To explicate
matters we shall expose the components from which b is constructed by
writing b = (a, n). Then the recursion defining f(b, m) = f((a, n),m) has
the following form, using the elementary function h(a, n) defined earlier,
which gives the code for α− 1 if Succ(α), or α(n) if Lim(α):

f((a, n),m) =



m + n if a = 0 or n = 0
f((h(a,m),m + 1),m) if Succ(a) and n = 1
f((h(a,m), 1),m) if Lim(a) and n = 1
f((a, 1), f((a, n− 1),m)) if n > 1
0 otherwise.

Clearly then, f is ε0(i)-recursive, and Fα(m) = f((ᾱ, 1),m), so Fα is ε0(i)-
recursive for every α < ε0(i).

For the “only if” part note first that the number of steps needed to
compute a compositional term g(T1, . . . , Tl) is the sum of the numbers of
steps needed to compute all the subterms Tj , plus the number of steps
needed to compute g(v1, . . . , vl) where vj is the value of Tj . Furthermore, in
a register-machine computation, these values vj are bounded by the number
of computation steps plus the maximum input. This means that we can
compute a bound on the computation-steps for any such term, and we can
do it elementarily from given bounds for the input data. Now suppose
f(n, ~m) = T (g1, . . . , gs, f≺n, n, ~m) is any recursion-step of an α-recursion.
Then if we are given bounding functions on the numbers of steps to compute
each of the gi’s, and we assume inductively that we already have a bound on
the number of steps to compute f(n′,−) whenever n′ ≺α n, it follows that
we can elementarily estimate a bound on the number of steps to compute
f(n, ~m). In other words, for any function defined by an α-recursion from
given functions ~g, a bounding function (on the number of steps needed to
compute f) is also definable by α-recursion from given bounding functions
for the g’s. Exactly the same thing holds for primitive recursions. But in
the preceding lemma we showed that as we successively define functions by
α-recursions, with α < ε0(i), their values are bounded by functions Fβ+α

where also, β < ε0(i). But ε0(i) is closed under addition, so β + α < ε0(i).
Hence every ε0(i)-recursive function is register-machine computable in a
number of steps bounded by some Fγ where γ < ε0(i). This completes the
proof. �
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The following reduction of nested to unnested recursion is due to Tait
(1961); see also Fairtlough and Wainer (1992) .

Corollary. For each i, a function is ε0(i)-recursive if and only if it is
unnested ε0(i + 1)-recursive.

Proof. By the Theorem, every ε0(i)-recursive function is computable
in “time” bounded by Fα = Hωα where α < ε0(i). It is therefore prim-
itive recursively definable from Hωα . But Hωα is defined by an unnested
ωα-recursion, and clearly, ωα < ε0(i + 1). Hence arbitrarily nested ε0(i)-
recursions are reducible to unnested ε0(i + 1)-recursions.

Conversely, suppose f is defined from given functions g0, g1, . . . , gk+2 by
an unnested α-recursion where α < ε0(i + 1):

f(0, ~m) = g0(~m)

f(n, ~m) = g1(n, ~m, f(g2(n, ~m), . . . , gk+2(n, ~m)))

with g2(n, ~m) ≺α n for all n and ~m. Then the number of recursion steps
needed to compute f(n, ~m) is f ′(n, ~m) where

f ′(0, ~m) = 0

f ′(n, ~m) = 1 + f ′(g2(n, ~m), . . . , gk+2(n, ~m))

and f is then primitive recursively definable from g2, . . . , gk+2 and any bound
for f ′. Now assume that the given functions gj are all primitive recursively
definable from, and bounded by Hβ where β < ε0(i+1). Then a similar, but
easier, argument to that used in proving the lemma above providing bounds
for α-recursion shows that f ′(n, ~m) is bounded by Hβ·γ where n = γ̄. This
is simply because

Hβ·(γ+1)(x) = Hβ·γ+β(x) = Hβ·γ(Hβ(x)).

Therefore f is primitive recursively definable from Hβ and Hβ·α. Clearly,
since β, α < ε0(i + 1) we may choose β = ωβ′ and α = ωα′ for appropriate
β′, α′ < ε0(i). Then Hβ = Fβ′ and Hβ·α = Fβ′+α′ where of course, β′ +α′ <
ε0(i). Therefore f is ε0(i)-recursive. �

1.1.3. Arithmetical theories. We aim at proving that for every α <
ε0(i), with i > 0, the function Fα is “provably recursive” in certain arith-
metical theories. Here we define what these theories are, and also define the
notion of provable recursiveness.

Let ∆0(exp) be the arithmetical theory based on the language

{=, 0, S, P,+,−· , · , exp2}
where S, P denote the successor and predecessor functions. We shall gen-
erally use infix notations x + 1, x−· 1, 2x rather than the more formal S(x),
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P (x), exp2(x) etcetera. The axioms of I∆0(exp) are the usual axioms for
equality, the following defining axioms for the constants:

x + 1 6= 0 x + 1 = y + 1 → x = y
0−· 1 = 0 (x + 1)−· 1 = x
x + 0 = x x + (y + 1) = (x + y) + 1
x−· 0 = x x−· (y + 1) = (x−· y)−· 1
x · 0 = 0 x · (y + 1) = (x · y) + x
20 = 1 (= 0 + 1) 2x+1 = 2x + 2x

and the axiom-scheme of “bounded induction”:

B(0) → ∀x(B(x) → B(x + 1)) → B(x)

for all “bounded” formulas B as defined below. Furthermore, we allow the
“cases” scheme

B(0) → ∀xB(x + 1) → B(x)

for arbitrary formulas B.

Definition. We write t1 ≤ t2 for t1−· t2 = 0 and t1 < t2 for t1 +1 ≤ t2,
where t1, t2 denote arbitrary terms of the language.

A ∆0- or bounded formula is a formula in the langage of I∆0(exp), in
which all quantifiers occur bounded, thus ∀x<t B(x) stands for ∀x(x < t →
B(x)) and ∃x<t B(x) stands for ∃x(x < t ∧B(x)) (similarly with ≤ instead
of <).

A Σ1-formula is any formula of the form ∃x1∃x2 . . .∃xk
B where B is a

bounded formula. The prefix of unbounded existential quantifiers is allowed
to be empty, thus bounded formulas are Σ1.

The first task in any axiomatic theory is to develop, from the axioms,
those basic algebraic properties which are going to be used frequently with-
out further reference. Thus, in the case of I∆0(exp) we need to establish the
usual associativity, commutativity and distributivity laws for addition and
multiplication, the laws of exponentiation, and rules governing the relations
≤ and < just defined.

Lemma. In I∆0(exp) one can prove (the universal closures of) case-
distinction:

x = 0 ∨ x = (x−· 1) + 1

the associativity laws for addition and multiplication:

x + (y + z) = (x + y) + z and x · (y · z) = (x · y) · z

the distributivity law:

x · (y + z) = x · y + x · z
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the commutativity laws:

x + y = y + x and x · y = y · x
the law:

x−· (y + z) = (x−· y)−· z

and the exponentiation law:

2x+y = 2x · 2y.

Proof. Since 0 = 0 and x + 1 = ((x + 1)−· 1) + 1 by axioms, a trivial
induction on x gives the cases-distinction. A straightforward induction on z
gives associativity for +, and distributivity follows from this by an equally
straightforward induction, again on z. Associativity of multiplication is
proven similarly, but requires distributivity. The commutativity of + is
done by induction on y (or x) using sub-inductions to first prove 0 + x = x
and (y + x) + 1 = (y + 1) + x. Commutativity of · is done similarly using
0 · x = 0 and y · x + x = (y + 1) · x, this latter requiring both associativity
and commutativity of +. That x −· (y + z) = (x −· y) −· z follows easily
by a direct induction on z. The base-case for the exponentiation law is
2x+0 = 2x = 0 + 2x = 2x · 0 + 2x = 2x · (0 + 1) = 2x · 20 and the induction
step needs distributivity to give 2x+y+1 = 2x · 2y + 2x · 2y = 2x · 2y+1. �

Lemma. The following (and their universal closures) are provable in
I∆0(exp):

(1) x ≤ 0 ↔ x = 0 and ¬x < 0
(2) 0 ≤ x and x ≤ x and x < x + 1
(3) x < y + 1 ↔ x ≤ y
(4) x ≤ y ↔ x < y ∨ x = y
(5) x ≤ y ∧ y ≤ z → x ≤ z and x < y ∧ y < z → x < z
(6) x ≤ y ∨ y < x
(7) x < y → x + z < y + z
(8) x < y → x · (z + 1) < y · (z + 1)
(9) x < 2x and x < y → 2x < 2y.

Proof. (1) This is an immediate consequence of the axioms x−· 0 = x
and x + 1 6= 0. (2) A simple induction proves 0 −· x = 0, that is 0 ≤ x.
Another induction on y gives (x + 1)−· (y + 1) = x−· y, and then a further
induction proves x−· x = 0, which is x ≤ x. Replacing x by x+1 then gives
x < x+1. (3) This follows straight from the equation (x+1)−· (y+1) = x−· y.
(4) From x ≤ x we obtain x = y → x ≤ y, and from x−· y = (x+1)−· (y+1)
we obtain x < y → x ≤ y, hence x < y ∨ x = y → x ≤ y. The converse
x ≤ y → x < y ∨ x = y is proven by a case-distinction on y, the case y = 0
being immediate from part 1. In the other case y = (y−· 1)+1 and one obtains
x ≤ y → x−· (y−· 1) = 0∨x−· (y−· 1) = 1 by a case-distinction on x−· (y−· 1).
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Since (x + 1)−· y = x−· (y −· 1) this gives x ≤ y → x < y ∨ x−· (y −· 1) = 1.
It therefore remains only to prove x −· (y −· 1) = 1 → x = y. But this
follows immediately from x −· z 6= 0 → x = z + (x −· z), which is proven
by induction on z using (z + 1) + (x −· (z + 1)) = z + (x −· (z + 1)) + 1 =
z + ((x −· z) −· 1) + 1 = z + (x −· z). (5) Transitivity of ≤ is proven by
induction on z using parts 1 for the basis and 4 for the induction step.
Then, by replacing x by x + 1 and y by y + 1, the transitivity of < follows.
(6) can be proved by induction on x. The basis is immediate from 0 ≤ y. The
induction step is straightforward since y < x → y < x+1 by transitivity, and
x ≤ y → x < y∨x = y → x+1 ≤ y∨y < x+1 by previous facts. (7) requires
a simple induction on z, the induction step being x+z < y+z → x+z+1 ≤
y + z < y + z + 1. (8) follows from part 7 and transitivity by another easy
induction on z. (9) Using part 7 and transitivity again, one easily proves
by induction, 2x < 2x+1. Then x < 2x follows straightforwardly by another
induction, as does x < y → 2x < 2y by induction on y, the induction
step being x < y + 1 → x ≤ y → 2x ≤ 2y → 2x < 2y+1 by means of
transitivity. �

Note. All of the inductions used in the lemmas above are inductions
on “open”, i.e., quantifier-free, formulas.

Of course in any theory many new functions and relations can be defined
out of the given constants. What we are interested in are those which can
not only be defined in the language of the theory, but also can be proven to
exist. This gives rise to the following definition.

Definition. We say that a function f : Nk → N is provably recursive in
an arithmetical theory T if there is a Σ1 formula F (~x, y), called a “defining
formula” for f , such that

• f(~n) = m if and only if F (~n, m) is true; (in the standard model);
• T ` ∃y F (~x, y);
• T ` F (~x, y) → F (~x, y′) → y = y′.

The main result on concerning this notion and I∆0(exp) is:

Theorem. A number-theoretic function is elementary if and only if it
is provably recursive in I∆0(exp).

Proof. Exercise. �

We now introduce stronger theories, which fewer restrictions on the for-
mulas allowed in the recursion scheme. At this point it is important to
distinguish the (constructive) existential quantifier ∃ from the weak (or clas-
sical) one, which we write as ∃̃. The reason is that – as we shall see later
– a proof of ∃xA always has algorithmic content, whereas a proof of ∃̃xA
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in general only has one if A is a bounded formula (and even in this case a
proof of ∃xA has a more direct algorithmic content).

Call a formula ∃-free if it does not contain ∃; in the literature such
formulas are also called negative. A formula is calles almost ∃-free or almost
negative if ∃ only occurs in contexts ∃~xA0 with A0 bounded. It turns out
that we only need to allow induction over almost negative formulas to derive
that the Fα are provably recursive. To determine exactly which instances of
induction are needed we introduce some subclasses of the almost negative
formulas. For formulas involving the constructive existential quantifier ∃
there is no prenex normal form, and hence the usual notions of Σn- and
Πn-formulas do not make sense. Instead we define the level of an almost
negative formula as follows. Let A0, B0 etc. range over bounded formulas.
Then lev(A0) := 0, and for unbounded formulas A we define lev(A) by

lev(∃~xA) := 1,

lev(A → B) :=


1 if A ≡ ∃~xA0 and B ≡ ∀~yB0

1 if A ≡ ∀~xA0 and B bounded
max(lev(A) + 1, lev(B)) otherwise,

lev(∀xA) :=


1 if A bounded
2 if A ≡ ∃~yA0

lev(A) otherwise.

We can now define the arithmetical theories we want to consider.

Definition. The theories below are all based on I∆0(exp). They always
contain the cases scheme B(0) → ∀xB(x + 1) → B(x).
(a) Zi is the theory with induction restricted to almost negative formulas

with lev(A) ≤ i.
(b) IΣi is the theory with induction restricted to (negative) Σi-formulas.

It doesn’t matter whether one restricts to Σi or Πi induction formulas
since, in the presence of the subtraction function, induction on a Πi formula
A is reducible to induction on its Σi dual ¬A, and vice-versa.

For if one replaces A(a) by ¬A(t−· a) in the induction axiom, and then
contraposes (using the equivalence of A → B → C and A → ¬C → ¬B),
one obtains

A(t−· t) → ∀a(A(t−· (a + 1)) → A(t−· a)) → A(t−· 0)

from which follows the induction axiom for A(a) itself, since t −· t = 0,
t−· 0 = t, and t−· a = (t−· (a + 1)) + 1 if t−· a 6= 0.

Proof. Exercise. For negative formulas, A → B → C and A → ¬C →
¬B are equivalent. �
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The main result concerning provable recursive functions and the theories
IΣ1 and Z1 is due to Parsons (1966).

Theorem. For a number-theoretic function f the following are equiva-
lent.
(a) f is primitive recursive;
(b) f is provably recursive in IΣ1;
(c) f is provably recursive in Z1.

Proof. Exercise. �

Definition. A function f : Nk → N is called classically provably recur-
sive in an arithmetical theory T if there is a Σ1 formula F (~x, y) (i.e., one
obtained by prefixing finitely many unbounded classical existential quanti-
fiers to a ∆0(exp) formula) such that

• f(~n) = m if and only if F (~n, m) is true; (in the standard model)
• T ` ∃̃y F (~x, y);
• T ` F (~x, y) → F (~x, y′) → y = y′.

Note that by the Gödel-Gentzen translation (also known as “double
negation translation”) every proof of A in Zi yields a proof of Ã in IΣi,
but not conversely. Hence it is more general to prove that Fα is provably
recursive in the theory Zi.

1.1.4. Provable recursiveness of Hα and Fα. We now prove that
for every α < ε0(i), with i > 0, the function Fα is provably recursive in the
theory Zi+1.

Since all of the machinery we have developed for coding ordinals below ε0

is elementary, we can safely assume that it is available to us in an appropriate
conservative extension of I∆0(exp), and can in fact be defined (with all
relevant properties proven) in I∆0(exp) itself. In particular we shall again
make use of the function h such that, if a codes a successor ordinal α then
h(a, n) codes α− 1, and if a codes a limit ordinal α then h(a, n) codes α(n).
Note that we can decide whether a codes a succesor ordinal (Succ(a)) or
a limit ordinal (Lim(a)), by asking whether h(a, 0) = h(a, 1) or not. It is
easiest to develop first the provable recursiveness of the Hardy functions Hα,
since they have a simpler, unnested recursive definition. The fast growing
functions are then easily obtained by the equation Fα = Hωα .

Definition. Let H(a, x, y, z) denote the following ∆0(exp) formula:

(z)0 = 〈0, y〉 ∧ π2(z) = 〈a, x〉 ∧
∀i<lh(z)(lh((z)i) = 2 ∧ (i > 0 → (z)i,0 > 0)) ∧
∀0<i<lh(z)(Succ((z)i,0) → (z)i−1,0 = h((z)i,0, (z)i,1) ∧ (z)i−1,1 = (z)i,1+1) ∧
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∀0<i<lh(z)(Lim((z)i,0) → (z)i−1,0 = h((z)i,0, (z)i,1) ∧ (z)i−1,1 = (z)i,1)

Lemma (Definability of Hα). Hα(n) = m if and only if ∃zH(ᾱ, n, m, z)
is true. Furthermore, for each α < ε0 we can prove in Z1,

∃zH(ᾱ, x, y, z) → ∃zH(ᾱ, x, y′, z) → y = y′.

Proof. The meaning of the formula ∃zH(ᾱ, n, m, z) is that there is a
finite sequence of pairs 〈αi, ni〉, beginning with 〈0,m〉 and ending with 〈α, n〉,
such that at each i > 0, if Succ(αi) then αi−1 = αi−1 and ni−1 = ni+1, and
if Lim(αi) then αi−1 = αi(ni) and ni−1 = ni. Thus by induction up along
the sequence, and using the original definition of Hα, we easily see that for
each i > 0, Hαi(ni) = m, and thus at the end, Hα(n) = m. Conversely, if
Hα(n) = m then there must exist such a computation-sequence, and this
proves the first part of the lemma.

For the second part notice that, by induction on the length of the
computation-sequence s, we can prove, for each n, m,m′, s, s′ that

H(ᾱ, n, m, s) → H(ᾱ, n, m′, s′) → s = s′ ∧m = m′.

This proof can be formalized directly in I∆0(exp) to give

H(ᾱ, x, y, z) → H(ᾱ, x, y′, z′) → z = z′ ∧ y = y′

and hence
∃zH(ᾱ, x, y, z) → ∃zH(ᾱ, x, y′, z) → y = y′. �

Remark. Thus in order for Hα to be provably recursive it remains only
to prove (in the required theory) ∃y∃zH(ᾱ, x, y, z).

Lemma. In I∆0(exp) we can prove

∃zH(ωa, x, y, z) → ∃zH(ωa · c, y, w, z) → ∃zH(ωa · (c + 1), x, w, z)

where ωa is the elementary term 〈〈a, 1〉〉 which constructs, from the code a
of an ordinal α, the code for the ordinal ωα, and b ·0 = 0, b ·(z+1) = b ·z⊕b,
with ⊕ the elementary function which computes α + β from ᾱ and β̄.

Proof. By assumption we have sequences s, s′ satisfying H(ωa, n,m, s)
and H(ωa · c,m, k, s′). Add ωa · c (in the sense of ⊕) to the first component
of each pair in s. Then the last pair in s′ and the first pair in s become
identical. By concatenating the two – taking this double pair only once –
construct an elementary term t(s, s′) satisfying H(ωa · (c + 1), n, k, t). We
can then prove

H(ωa, x, y, z) → H(ωa · c, y, w, z′) → H(ωa · (c + 1), x, w, t)

in a conservative extension of I∆0(exp), and hence in I∆0(exp) derive

∃zH(ωa, x, y, z) → ∃zH(ωa · c, y, w, z) → ∃zH(ωa · (c + 1), x, w, z). �
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Lemma. Let H(a) be the Π2 formula ∀x∃y∃zH(a, x, y, z). Then with
Π2-induction we can prove the following:
(a) H(ω0).
(b) Succ(a) → H(ωh(a,0)) → H(ωa).
(c) Lim(a) → ∀xH(ωh(a,x)) → H(ωa).

Proof. The term t0 = 〈〈0, x+1〉, 〈1, x〉〉 witnesses H(ω0, x, x+1, t0) in
I∆0(exp), so H(ω0) is immediate.

With the aid of the lemma just proven we can derive

H(ωh(a,0)) → H(ωh(a,0) · c) → H(ωh(a,0)) · (c + 1)

Therefore by Π2 induction we obtain

H(ωh(a,0)) → H(ωh(a,0) · (x + 1))

and then
H(ωh(a,0)) → ∃y∃zH(ωh(a,0) · (x + 1), x, y, z).

But there is an elementary term t1 with the property

Succ(a) → H(ωh(a,0) · (x + 1), x, y, z) → H(ωa, x, y, t1)

since t1 only needs to tagg onto the end of the sequence z the new pair
〈ωa, x〉, thus t1 = π(z, 〈ωa, x〉). Hence by the quantifier rules,

Succ(a) → H(ωh(a,0)) → H(ωa).

The final case is now straightforward, since the term t1 just constructed
also gives

Lim(a) → H(ωh(a,x), x, y, z) → H(ωa, x, y, t1)

and so by quantifier rules again,

Lim(a) → ∀xH(ωh(a,x)) → H(ωa). �

Definition (Structural Transfinite Induction). The structural progres-
siveness of a formula A(a) is expressed by SProgaA, which is the con-
junction of the formulas A(0), ∀a(Succ(a) → A(h(a, 0)) → A(a)), and
∀a(Lim(a) → ∀xA(h(a, x)) → A(a)). The principle of structural transfi-
nite induction up to an ordinal α is then the following axiom-scheme, for all
formulas A:

SProgaA → ∀a≺ᾱA(a)

where a ≺ ᾱ means a lies in the field of the well-ordering ≺α, in other words
a = 0 ∨ 0 ≺α a.

Note. The last lemma shows that the Π2 formula H(ωa) is structural
progressive, and that this is provable with Π2-induction.
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We now make use of a famous result of Gentzen (1936), which says that
transfinite induction is provable in arithmetic up to any α < ε0. For later
use we prove this fact in a slightly more general form, where one can recur to
all points strictly below the present one, and need not refer to distinguished
fundamental sequences.

Definition (Transfinite Induction). The (general) progressiveness of a
formula A(a) is

ProgaA(a) := ∀a

(
∀b≺aA(b) → A(a)

)
.

The principle of transfinite induction up to an ordinal α is the scheme

ProgaA(a) → ∀a≺ᾱA(a)

where again a ≺ ᾱ means a lies in the field of the well-ordering ≺α.

It is easy to see that structural transfinite induction up to α is derivable
from transfinite induction up to α.

Proof. Let A be an arbitrary formula and assume SProgaA; we must
show ∀a≺ᾱA(a). Using transfinite induction for the formula a ≺ ᾱ → A(a)
it suffices to prove

∀a

(
∀b≺a;b≺ᾱA(b) → a ≺ ᾱ → A(a)

)
which is equivalent to

∀a≺ᾱ

(
∀b≺aA(b) → A(a)

)
.

This is easily proved from SProgaA, using the properties of the h function,
and distinguishing the cases a = 0, Succ(a) and Lim(a). �

Remark. Induction over an arbitrary well-founded set is an easy con-
sequence. Comparisons are made by means of a “measure function” µ, into
an initial segment of the ordinals. The principle of “well-founded induction”
up to an ordinal α is

Progµ
xA(x) → ∀x;µx≺ᾱA(x)

where Progµ
xA(x) expresses “µ-progressiveness” w.r.t. the measure function

µ and the ordering ≺:=≺α

Progµ
xA(x) := ∀a

(
∀y;µy≺aA(y) → ∀x;µx=aA(x)

)
.

One proves easily that well-founded induction up to an ordinal α is provable
from transfinite induction up to α.

Proof. Assume Progµ
xA(x); we must show ∀x;µx≺ᾱA(x). Consider

B(a) := ∀x;µx=aA(x).
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It suffices to prove ∀a≺ᾱB(a), which is ∀a≺ᾱ∀x;µx=aA(x). By transfinite
induction it suffices to prove ProgaB, which is

∀a

(
∀b≺a∀y;µy=bA(y) → ∀x;µx=aA(x)

)
.

But this follows from the assumption Progµ
xA(x), since ∀b≺a∀y;µy=bA(y) im-

plies ∀y;µy≺aA(y). �

We now come to Gentzen’s theorem. In the proof we will need some
properties of ≺ which can all be proved in I∆0(exp): irreflexivity and tran-
sitivity for ≺, and also (following Schütte)

a ≺ 0 → A,(1.1)

c ≺ b⊕ ω0 → (c ≺ b → A) → (c = b → A) → A,(1.2)

a⊕ 0 = a,(1.3)

a⊕ (b⊕ c) = (a⊕ b)⊕ c,(1.4)

0⊕ a = a,(1.5)

ωa0 = 0,(1.6)

ωa(x + 1) = ωax⊕ ωa,(1.7)

a 6= 0 → c ≺ b⊕ ωa → c ≺ b⊕ ωe(a,b,c)m(a, b, c),(1.8)

a 6= 0 → c ≺ b⊕ ωa → e(a, b, c) ≺ a,(1.9)

where e and m denote the appropriate function constants and A is any
formula. (The reader should check that e, m can be taken to be elementary.)

Theorem (Gentzen (1936)). For every formula F with lev(F ) = 2 and
each i > 0 we can prove in Zi+1 the principle of transfinite induction up to
α for all α < ε0(i).

Proof. Starting with any formula A(a) of level j, we construct the
formula

A+(a) := ∀b(∀c≺bA(c) → ∀c≺b⊕ωaA(c))
where, as mentioned above, ⊕ is the elementary addition function on ordinal-
codes thus: ᾱ ⊕ γ̄ = α + γ. Note that lev(A) = j implies lev(A+) = j + 1.
The crucial point is that

Zj ` ProgaA(a) → ProgaA
+(a).

So assume ProgaA(a), that is, ∀a(∀b≺aA(b) → A(a)) and

(1.10) ∀b≺aA
+(b)

We have to show A+(a). So assume further

(1.11) ∀c≺bA(c)

and c ≺ b⊕ ωa. We have to show A(c).
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If a = 0, then c ≺ b⊕ ω0. By (1.2) it suffices to derive A(c) from c ≺ b
as well as from c = b. If c ≺ b, then A(c) follows from (1.11), and if c = b,
then A(c) follows from (1.11) and ProgaA.

If a 6= 0, from c ≺ b ⊕ ωa we obtain c ≺ b ⊕ ωe(a,b,c)m(a, b, c) by (1.8)
and e(a, b, c) ≺ a by (1.9). From (1.10) we obtain A+(e(a, b, c)). By the
definition of A+(x) we get

∀u≺b⊕ωe(a,b,c)xA(u) → ∀u≺(b⊕ωe(a,b,c)x)⊕ωe(a,b,c)A(u)

and hence, using (1.4) and (1.7)

∀u≺b⊕ωe(a,b,c)xA(u) → ∀u≺b⊕ωe(a,b,c)(x+1)A(u).

Also from (1.11) and (1.6), (1.3) we obtain

∀u≺b⊕ωe(a,b,c)0A(u).

Using an appropriate instance of the induction schema we can conclude

∀u≺b⊕ωe(a,b,c)m(a,b,c)A(u)

and hence A(c).
Now fix i > 0 and (throughout the rest of this proof) let ≺ denote the

well-ordering ≺ε0(i). Given any formula F (v) of level 2 define A(a) to be
the formula ∀v≺aF (v). Then A is also of level 2 and furthermore it is easy
to see that ProgvF (v) → ProgaA(a) is derivable in I∆0(exp). Therefore
by iterating the above procedure i times starting with j = 2, we obtain
successively the formulas A+, A++, ... A(i) where A(i) has level i + 2 and

Zi+1 ` ProgvF (v) → ProguA(i)(u).

Now fix any α < ε0(i) and choose k so that α ≤ ε0(i)(k). By applying k + 1
times the progressiveness of A(i)(u), one obtains A(i)(k + 1) without need of
any further induction, since k is fixed. Therefore

Zi+1 ` ProgvF (v) → A(i)(k + 1).

But by instantiating the outermost universally quantified variable of A(i)

to zero we have A(i)(k + 1) → A(i−1)(ωk+1). Again instantiating to zero
the outermost universally quantified variable in A(i−1) we similarly obtain
A(i−1)(ωk+1) → A(i−2)(ωωk+1

). Continuing in this way, and noting that
ε0(i)(k) consists of an exponential stack of i ω’s with k + 1 on the top, we
finally get down (after i steps) to

Zi+1 ` ProgvF (v) → A(ε0(i)(k)).

Since A(ε0(i)(k)) is just ∀
v≺ε0(i)(k)

F (v) we have therefore proved, in Zi+1,
transfinite induction for F up to ε0(i)(k), and hence up to the given α. �
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Theorem. For each i and every α < ε0(i), the fast growing function Fα

is provably recursive in Zi+1.

Proof. If i = 0 then α is finite and Fα is therefore primitive recursive,
so it is provably recursive in Z1.

Now suppose i > 0. Since Fα = Hωα we need only show, for every
α < ε0(i), that Hωα is provably recursive in Zi+1. But we have shown
above that its defining Π2 formula H(ωa) is provably progressive in Z2, and
therefore by Gentzen’s result,

Zi+1 ` ∀a≺ᾱH(ωa).

One further application of progressiveness then gives

Zi+1 ` H(ωᾱ)

which, together with the definability of Hα proved above, shows that Hωα

is provably recursiveness of in Zi+1. �

Corollary. Any ε0(i)-recursive function is provably recursive in Zi+1.

Proof. We have seen already that each ε0(i)-recursive function is re-
gister-machine computable in a number of steps bounded by some Fα with
α < ε0(i). Consequently, each such function is primitive recursively, and
in fact elementarily, definable from an Fα which itself is provably recursive
in Zi+1. But primitive recursions only need Σ1-inductions to prove them
defined. Thus in Zi+1 we can prove the Σ1-definability of all ε0(i)-recursive
functions. �

1.2. Gödel’s T

Gödel (1958) proposed to extend Hilbert’s concept of “finitary methods”
to include higher (but still finite) types. This makes it possible to consider
definition schemes for functions (like primitive recursion or transfinite re-
cursion) as higher type operators. Moreover, admittance of computable
functionals of higher type is a must when we want to capture the compu-
tational content of proofs in arithmetic. In the present section we give the
definition of a system of finitely typed terms known as Gödel’s T based on
higher type primitive recursion, and prove some of its basic properties:

• Every function Fα (α < ε0) of the fast growing hierarchy is definable
in T, using iteration operators only.

• T has good closure properties, in the sense that it is closed under
many forms of recursive definitions. This applies in particular to
≺α-recursion.

• Every term r in T can be “computed”, that is, “converted” into
a normal form. In particular, if r is closed and of the type N of
natural numbers, then its normal form is a numeral.
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1.2.1. Types. A free algebra is given by its constructors, for instance
zero and successor for the natural numbers. We want to treat other data
types as well, like lists and binary trees. When dealing with inductively
defined sets, it will also be useful to explicitly refer to the generation tree.
Such trees are quite often infinitely branching, and hence we allow infinitary
free algebras.

The freeness of the constructors is expressed by requiring that their
ranges are disjoint and that they are injective. To allow for partiality –
which is mandatory when we want to deal with computable objects –, we
have to embed our algebras into domains. Both requirements together imply
that we need “lazy domains”.

Our type system is defined by two type forming operations: arrow types
ρ → σ and the formation of inductively generated types or base types µ~α~κ,
where ~α = (αj)j<N is a list of distinct “type variables”, and ~κ = (κi)i<k is
a list of “constructor types”, whose argument types contain α0, . . . , αN−1 in
strictly positive positions only.

For instance, µα(α, α → α) is the type of natural numbers; here the list
(α, α → α) stands for two generation principles: α for “there is a natural
number” (the 0), and α → α for “for every natural number there is a next
one” (its successor).

Definition. Let ~α = (αj)j<N be a list of distinct type variables. Types
ρ, σ, τ, µ ∈ Ty and constructor types κ ∈ KT~α are defined inductively:

~ρ, ~σ0, . . . , ~σn−1 ∈ Ty
~ρ → (~σν → αjν )ν<n → αj ∈ KT~α

(n ≥ 0),

κ0, . . . , κk−1 ∈ KT~α

(µ~α(κ0, . . . , κk−1))j ∈ Ty
(k ≥ 1),

ρ, σ ∈ Ty
ρ → σ ∈ Ty

.

Here ~ρ → σ means ρ0 → . . . → ρn−1 → σ, associated to the right. For a
constructor type ~ρ → (~σν → αjν )ν<n → αj we call ~ρ the parameter argument
types and the ~σν → αjν recursive argument types. We require that for every
αj (j < N) there is a nullary constructor type κij with value type αj , each
of whose recursive argument types has a value type αjν with jν < j.

We reserve µ for base types, i.e., types of the form (µ~α(κ0, . . . , κk−1))j .
The parameter types of µ are all parameter argument types of its constructor
types κ0, . . . , κk−1.

Note. Types ρ ∈ Ty are closed in the sense that they do not contain
free type parameters α. If one wants to allow say ~β as free type parameters,
one must add rules ~β ∈ Ty.

Examples.

U := µαα,
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B := µα(α, α),

N := µα(α, α → α),

L(ρ) := µα(α, ρ → α → α),

ρ⊗ σ := µα(ρ → σ → α),

ρ + σ := µα(ρ → α, σ → α),

(tree, tlist) := µα,β(N → α, β → α, β, α → β → β),

bin := µα(α, α → α → α),

O := µα(α, α → α, (N → α) → α),
T0 := N,

Tn+1 := µα(α, (Tn → α) → α).

Note that there are many equivalent ways to define these types. For instance,
we could take U + U to be the type of booleans, and L(U) to be the type
of natural numbers.

A type is finitary if it is a µ-type with all its parameter types ~ρ finitary,
and all its constructor types have recursive argument types of the form αjm

only (so the ~σm in the general definition are all empty). In the examples
above U, B, N, tree, tlist and bin are all finitary, but O and Tn+1 are not.
L(ρ), ρ ⊗ σ and ρ + σ are finitary provided their parameter types are. An
argument position in a type is called finitary if it is occupied by a finitary
type.

In what follows we often restrict to finitary µ-types. Usually it even
suffices to consider types built from the base types N and B by the formation
of arrows ρ → σ and products ρ∧ σ. For such types we define the level of a
type by

lev(N) := 0,

lev(B) := 0,

lev(ρ → σ) := max(lev(ρ) + 1, lev(σ)),

lev(ρ ∧ σ) := max(lev(ρ), lev(σ)).

1.2.2. The power of finite types. To demonstrate the usefulness and
strength provided by finite types we show that all Fα (α < ε0) can be defined
explicitely from higher type iteration operators alone. We define finite type
extensions of the functions Fα, such that for α = 0 we obtain iteration
operators. Define the pure types ρn, by ρ0 := N and ρn+1 := ρn → ρn. Let
xn be a variable of pure type ρn.

Fαxn . . . x0 :=


x0 + 1 if α = 0 and n = 0,
xx0

n xn−1 . . . x0 if α = 0 and n > 0,
F x0

α−1xn . . . x0 if Succ(α),
Fα(x0)xn . . . x0 if Lim(α).
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Lemma. FαFβ = Fβ+ωα, where it is assumed that α and β have Cantor
Normal Forms which can simply be concatenated to form the normal form
of α + β.

Proof. By induction on α. If α = 0,

F0Fβxn−1 . . . x0 = F x0
β xn−1 . . . x0 = Fβ+1xn−1 . . . x0.

If Succ(α),

FαFβxn−1 . . . x0 = F x0
α−1Fβxn−1 . . . x0

= Fβ+ωα−1·x0
xn−1 . . . x0 by IH

= F(β+ωα)(x0)xn−1 . . . x0

= Fβ+ωαxn−1 . . . x0.

If Lim(α),

FαFβxn−1 . . . x0 = F x0

α(x0)Fβxn−1 . . . x0

= Fβ+ωα(x0)·x0
xn−1 . . . x0 by IH

= F(β+ωα)(x0)xn−1 . . . x0

= Fβ+ωαxn−1 . . . x0.

This completes the proof. �

1.2.3. Recursion operators. The inductive structure of the types
~µ = µ~α~κ corresponds to two sorts of constants: with the constructors
C~µ

i : κi(~µ) we can build elements of a type µj , and with the (structural)
recursion operators R~µ,~τ

µj we can construct mappings recursion on the struc-
ture of ~µ.

In order to define the type of the recursion operators w.r.t. ~µ = µ~α~κ and
result types ~τ , we first define for

κi = ~ρ → (~σν → αjν )ν<n → αj ∈ KT~α

the step type

δ~µ,~τ
i := ~ρ → (~σν → µjν )ν<n → (~σν → τjν )ν<n → τj .

Here ~ρ, (~σν → µjν )ν<n correspond to the components of the object of type
µj under consideration, and (~σν → τjν )ν<N to the previously defined values.
The recursion operator R~µ,~τ

µj has type

R~µ,~τ
µj

: µj → δ~µ,~τ
0 → . . . → δ~µ,~τ

k−1 → τj

(recall that k is the total number of constructors for all types µj , j < N).
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We will often write R~µ,~τ
j for R~µ,~τ

µj , and omit the upper indices ~µ, ~τ when
they are clear from the context. In case of a non-simultaneous free algebra,
i.e., of type µακ, for Rµ,τ

µ we write Rτ
µ.

For some common base types the constructors have standard names, as
follows. We also spell out the type of the recursion operators:

ttB := CB
1 , ffB := CB

2 ,

Rτ
B : B → τ → τ → τ,

0N := CN
1 , SN→N := CN

2 ,

Rτ
N : N → τ → (N → τ → τ) → τ,

nilL(ρ) := CL(ρ)
1 , consρ→L(ρ)→L(ρ) := CL(ρ)

2 ,

Rτ
L(ρ) : L(ρ) → τ → (ρ → L(ρ) → τ → τ) → τ,(

inlρσ

)ρ→ρ+σ := Cρ+σ
1 ,

(
inrρσ

)σ→ρ+σ := Cρ+σ
2 ,

Rτ
ρ+σ : ρ + σ → (ρ → τ) → (σ → τ) → τ,(
⊗+

ρσ

)ρ→σ→ρ⊗σ := Cρ⊗σ
1 ,

Rτ
ρ⊗σ : ρ⊗ σ → (ρ → σ → τ) → τ.

One often writes x :: l as shorthand for cons x l, and 〈y, z〉 for ⊗+yz.
Terms are inductively defined from typed variables xρ and the constants,

that is, constructors C~µ
i and recursion operators R~µ,~τ

µj , by abstraction λxρMσ

and application Mρ→σNρ.

Examples. We define the canonical inhabitant ερ of a type ρ ∈ Ty:

εµj := C~µ
j ε~ρ(λ~x1

εµj1 ) . . . (λ~xnεµjn ), ερ→σ := λxεσ.

The projections of a pair to its components can be defined easily:

M0 := Rρ
ρ⊗σMρ⊗σ(λxρ,yσxρ), M1 := Rρ

ρ⊗σMρ⊗σ(λxρ,yσyσ).

The append -function :+: for lists is defined recursively by

nil :+: l2 := l2,

(x :: l1) :+: l2 := x :: (l1 :+: l2).

It can be defined as the term

l1 :+: l2 := RL(α)→L(α)
L(α) l1(λl2 l2)(λx,l1,p,l2(x :: (pl2)))l2.

Using the append function :+: we can define list reversal Rev by

Rev nil := nil,
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Rev(x :: l) := (Rev l) :+: (x :: nil);

the corresponding term is

Rev l := RL(α)
L(α)l nil(λx,l,p(p :+: (x :: nil)).

Assume we want to define by simultaneous recursion two functions on
N, say even, odd: N → B. We want

even(0) := tt, odd(0) := ff,

even(S n) := odd(n), odd(Sn) := even(n).

This can be achieved by using pair types: we recursively define the single
function evenodd: N → B ∧B. The step types are

δ0 = B ∧B, δ1 = N → B ∧B → B ∧B,

and we can define evenoddm := RB∧B
N m〈tt, ff〉(λn,p〈p1, p0〉).

Another exmple concerns the simultaneously defined free algebras tree
and tlist, whose constructors C(tree,tlist)

i for i ∈ {0, . . . , 3} are

LeafN→tree, Branchtlist→tree, Emptytlist, Tconstree→tlist→tlist.

Observe that the elements of the algebra tree are just the finitely branching
trees, which carry natural numbers on their leaves.

Let us compute the types of the recursion operators w.r.t. the result
types τ0, τ1, i.e., of R(tree,tlist),(τ0,τ1)

tree and R(tree,tlist),(τ0,τ1)
tlist , or shortly Rtree

and Rtlist. The step types are

δ0 := N → τ0,

δ1 := tlist → τ1 → τ0,

δ2 := τ1,

δ3 := tree → tlist → τ0 → τ1 → τ1.

Hence the types of the recursion operators are

Rtree : tree → δ0 → δ1 → δ2 → δ3 → τ0,

Rtlist : tlist → δ0 → δ1 → δ2 → δ3 → τ1.

To see a concrete example, let us recursively define addition +: tree →
tree → tree and ⊕ : tlist → tree → tlist. The recursion equations to be
satisfied are

+(Leaf n) = λaa,

+(Branch bs) = λa.Branch(⊕ bs a),

⊕Empty = λa Empty,

⊕(Tcons b bs) = λa.Tcons(+ b a)(⊕ bs a).

We define + and ⊕ by means of the recursion operators Rtree and Rtlist with
result types

τ0 := tree → tree, τ1 := tree → tlist.
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The step terms are

M0 := λn,aa,

M1 := λbs,gτ1 ,a.Branch(g a),

M3 := λa Empty,

M4 := λb,bs,fτ0 ,gτ1 ,a.Tcons(f a)(g a).

Then
a + b := Rtreea ~Mb, bs ⊕ a := Rtlistbs ~Ma.

Furthermore, for every finitary base type µ one can define a boolean-
valued function for decidable equality =µ : µ → µ → B, using recursion
operators. The recursion equation for N are

(0 = 0) := tt,

(0 = S(n)) := ff,

(S(m) = 0) := ff,

(S(m) = S(n)) := (m = n).

1.2.4. Special cases of structural recursion; general recursion.
Simplified simultaneous recursion. In a recursion on simultaneously de-

fined algebras one may need to recur on some of those algebras only. Then
we can simplify the type of the recursion operator accordingly, by

• omitting all step types δ~µ,~τ
i with irrelevant value type τj , and

• simplifying the remaining step types by omitting from the recursive
argument types (~σν → τjν )ν<n all those with irrelevant τjν .

In the tree, tlist-example, if we only want to recur on tlist, then the step
types are

δ2 := τ1, δ3 := tree → tlist → τ1 → τ1.

Hence the type of the simplified recursion operator is

Rtlist : tlist → δ2 → δ3 → τ1.

An example is the recursive definition of the length of a tlist. The recursion
equations are

lh(Empty) = 0, lh(Tcons b bs) = lh(bs) + 1.

The step terms are

M2 := 0, M3 := λb,bs,p(p + 1).

Cases. There is an important variant of recursion, where no recursive
calls occur. This variant is called the cases operator ; it distinguishes cases
according to the outer constructor form. Here all step types have the form

δ~µ,~τ
i := ~ρ → (~σν → µjν )ν<n → τj .

The intended meaning of the cases operator is given by the conversion rule

Cj(C
~µ
i

~N) ~M 7→ Mi
~N.
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Notice that only those step terms are used whose value type is the present
τj ; this is due to the fact that there are no recursive calls. Therefore the
type of the cases operator is

C~µ
µj→τj

: µj → δi0 → . . . → δiq−1 → τj ,

where δi0 , . . . , δiq−1 consists of all δi with value type τj . We write Cτj
µj or

even Cj for C~µ
µj→τj .

The simplest example (for the type B) is if-then-else. Another example
is the predecessor function on N, i.e., P(0) := 0, P(S(n)) := n. It can
formally be defined by the term

P(m) := CN
Nm0(λnn).

In the tree, tlist-example we have

Cτ1
tlist : tlist → τ1 → (tree → tlist → τ1) → τ1.

When computing the value of a cases term, we do not want to (eagerly)
evaluate all arguments, but rather compute the test argument first and de-
pending on the result (lazily) evaluate at most one of the other arguments.
This phenomenon is well known in functional languages; for instance, in
Scheme the if-construct is called a special form (as opposed to an oper-
ator). Therefore instead of taking the cases operator applied to a full list
of arguments, one rather uses a case-construct to build this term; it differs
from the former only in that it employs lazy evaluation. Hence the predeces-
sor function is written in the form [case m of 0, λnn]. If there are exactly
two cases, we also write λm[if m then 0 else λnn] instead.

General recursion. In practice it often happens that one needs to re-
cur to an argument which is not an immediate component of the present
constructor object; this is not allowed in structural recursion. Of course,
in order to ensure that the recursion terminates we have to assume that
the recurrence is w.r.t. a given well-founded set; for simplicity we restrict
ourselves to the base type N. However, we do allow that the recurrence is
with respect to a measure function µ, with values in N. The operator F of
general recursion then is defined by

(1.12) FµxG = Gx
(
λy[if µy < µx then FµyG else ε]

)
,

where ε denotes a canonical inhabitant of the range. We leave it as an
exercise to prove that F is definable from an appropriate structural recursion
operator.

1.2.5. Conversion. To define the conversion relation, it will be helpful
to use the following notation. Let ~µ = µ~α~κ and κi =

ρ0 → . . . → ρm−1 → (~σ0 → αj0) → . . . → (~σn−1 → αjn−1) → αj ∈ KT~α,
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and consider C~µ
i

~N . We write ~NP = NP
0 , . . . , NP

m−1 for the parameter argu-
ments Nρ0

0 , . . . , N
ρm−1

m−1 and ~NR = NR
0 , . . . , NR

n−1 for the recursive arguments

N
~σ0→µj0
m , . . . , N

~σn−1→µjn−1

m+n−1 , and nR for the number n of recursive arguments.
We define a conversion relation 7→ρ between terms of type ρ by

(λxM)N 7→ M [x := N ],

λx(Mx) 7→ M if x /∈ FV(M) (M not an abstraction),

Rj(C
~µ
i

~N) ~M 7→ Mi
~N

(
(Rj0 · ~M) ◦NR

0

)
. . .

(
(Rjn−1 · ~M) ◦NR

n−1

)
.

Here we have written Rj · ~M for λxµj (R~µ,~τ
µj xµj ~M).

The one step reduction relation → can now be defined as follows. M →
N if N is obtained from M by replacing a subterm M ′ in M by N ′, where
M ′ 7→ N ′. The reduction relations →+ and →∗ are the transitive and the
reflexive transitive closure of →, respectively. For ~M = M1, . . . ,Mn we
write ~M → ~M ′ if Mi → M ′

i for some i ∈ {1, . . . , n} and Mj = M ′
j for all

i 6= j ∈ {1, . . . , n}. A term M is normal (or in normal form) if there is no
term N such that M → N .

Clearly normal closed terms are of the form C~µ
i

~N .

Theorem. Every term can be reduced to a normal form.

1.3. HAω

We define Heyting Arithmetic HA and its extension HAω to a finitely
typed language.

1.3.1. Derivations as terms. Recall that we have a decidable equality
=µ : µ → µ → B, for finitary base types µ. Every atomic formula has the
form atom(rB), i.e., is built from a boolean term rB. In particular, there
is no need for (logical) falsity ⊥, since we can take the atomic formula
F := atom(ff) – called arithmetical falsity – built from the boolean constant
ff instead.

The formulas of HAω are built from atomic ones by the connectives →
and ∀. We define negation ¬A by A → F . We use natural deduction rules:
→+, →−, ∀+ and ∀−.

It will be convenient to write derivations as terms, where the derived
formula is viewed as the type of the term. This representation is known
under the name Curry-Howard correspondence. From now on we use M , N
etc. to range over derivation terms, and r, s etc. for object terms.

We give an inductive definition of derivation terms in Table 1, where for
clarity we have written the corresponding derivations to the left. For the
universal quantifier ∀ there is an introduction rule ∀+x and an elimination
rule ∀−, whose right premise is the term r to be substituted. The rule ∀+x
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derivation term

u : A uA

[u : A]
| M
B →+uA → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B

| M
A ∀+x (with var.cond.)
∀xA

(λxMA)∀xA (with var.cond.)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Table 1. Derivation terms for → and ∀

is subject to the standard (Eigen-) variable condition: The derivation term
M of the premise A should not contain any open assumption with x as a
free variable.

We require the truth axiom Axtt : atom(tt).

1.3.2. Structural induction. The general form of (structural) induc-
tion over simultaneous free algebras ~µ = µ~α ~κ, with goal formulas Aj(x

µj

j )
is as follows (cf. 1.2.3). For the constructor type

κi = ~ρ → (~σν → αjν )ν<n → αj ∈ KT~α
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we have the step formula

Di := ∀
y

ρ0
0 ,...,y

ρm−1
m−1 ,y

~σ0→µj0
m ,...,y

~σn−1→µjn−1
m+n−1(

∀~x~σ0 Aj0(ym+1~x ) → · · · → ∀
~x~σn−1 Ajn−1(ym+n−1~x ) → Aj(C

~µ
i ~y)

)
.

(1.13)

Here ~y = yρ0
0 , . . . , y

ρm−1

m−1 , y
~σ0→µj0
m , . . . , y

~σn−1→µjn−1

m+n−1 are the components of the
object C~µ

i ~y of type µj under consideration, and

∀~x~σ0Aj0(ym~x ), . . . ,∀
~x~σn−1Ajn−1(ym+n−1~x )

are the hypotheses available when proving the induction step. The induction
axiom Ind~x, ~A

µj
then proves the universal closure of the formula

∀xj

(
D0 → · · · → Dk−1 → Aj(x

µj

j )
)
.

We will often write Ind~x, ~A
j for Ind~x, ~A

µj
, and omit the upper indices ~x, ~A

when they are clear from the context. In case of a non-simultaneous free
algebra, i.e., of type µα~κ, for Indx,A

µ we normally write Indx,A.

Examples.

Indp,A : ∀p

(
A(tt) → A(ff) → A(pB)

)
,

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
,

Indl,A : ∀l

(
A(nil) → ∀x,l′(A(l′) → A(x :: l′)) → A(lL(ρ))

)
,

Indx,A : ∀x

(
∀y1A(inl y1) → ∀y2A(inr y2) → A(xρ1+ρ2)

)
,

Indx,A : ∀x

(
∀yρ,zσA(〈y, z〉) → A(xρ∧σ)

)
,

where x :: l is shorthand for cons x l and 〈y, z〉 for ⊗+yz.

Let HAω be the theory based on the axioms above including the in-
duction axioms, and MLω be the (many-sorted) minimal logic, where the
induction axioms are left out.

Lemma (Ex falso quodlibet). HAω ` F → A.

Proof. Induction on A, using Indp,atom(p) in the prime formula case.
The details are left as an exercise. �

Lemma (Stability). HAω ` ¬¬A → A.

Proof. Induction on A (exercise). �

Lemma (Compatibility). For finitary µ,

HAω ` x1 =µ x2 → A(x1) → A(x2).
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Proof. Induction on x1 with a side induction on x2, using ex falso
quodlibet. The details are left as an exercise. �

1.3.3. Special cases of structural induction; general induction.
As for structural recursion in 1.2.4, we can single out some special cases
of (structural) induction: simplified simultaneous induction, and a “cases”
variant of induction, where no inductive calls occur.

Parallel to general recursion, one can also consider a more general form of
induction, called “general induction”, which allows recurrence to all points
“strictly below” the present one. For applications it is best to make the
necessary comparisons w.r.t. a “measure function” µ. Then it suffices to use
an initial segment of the ordinals instead of a well-founded set. For simplicity
we here restrict ourselves to the segment given by ω, so the ordering we refer
to is just the standard <-relation on the natural numbers. The principle of
general induction then is

(1.14) ∀µ,x

(
Progµ

xA(x) → A(x)
)

where Progµ
xA(x) expresses “progressiveness” w.r.t. the measure function µ

and the ordering <:

Progµ
xA(x) := ∀x

(
∀y;µy<µxA(y) → A(x)

)
.

It is easy to see that in our special case of the <-relation we can prove
(1.14) from structural induction. However, using the general induction as
a primitive axiom has an advantage when we consider its computational
content, which is general recursion.





CHAPTER 2

Realizability Interpretation

We now study the concept of “computational content” of a proof. This
only makes sense after we have introduced inductively defined predicates
to our “negative” language of HAω involving ∀ and → only. The resulting
system will be called arithmetic with inductively defined predicates IDω.

The intended meaning of an inductively defined predicate I is quite
clear: the clauses correspond to constructors of an appropriate algebra µ
(or better µI). We associate to I a new predicate Ir, of arity (µ, ~ρ ), where
the first argument r of type µ represents a “generation tree”, witnessing how
the other arguments ~r were put into I. This object r of type µ is called a
“realizer” of the prime formula I(~r).

Moreover, we want to be able to select relevant parts of the complete
computational content of a proof. This will be possible if some “uniformi-
ties” hold; we express this fact by using a uniform variant ∀U of the universal
quantifier ∀ (as done by Berger (2005)) and in addition a uniform variant
→U of implication →. Both are governed by the same rules as the non-
uniform ones. However, we will have to put some uniformity conditions on
a proof to ensure that the extracted computational content will be correct.

2.1. Inductively Defined Predicates and Uniformity

As we have seen, type variables allow for a general treatment of induc-
tively generated types µ~α~κ. Similarly, we can use predicate variables to
inductively generate predicates µ ~X

~K.
More precisely, we allow the formation of inductively generated predi-

cates µ ~X
~K, where ~X = (Xj)j<N is a list of distinct predicate variables, and

~K = (Ki)i<k is a list of constructor formulas (or “clauses”) whoses premises
contain X0, . . . , XN−1 in strictly positive positions only.

2.1.1. Introduction and elimination axioms.

Definition (Inductively defined predicates). Let ~X = (Xj)j<N be a
list of distinct predicate variables. Formulas A,B, C, D ∈ F, predicates
P,Q, I ∈ Preds and constructor formulas (or clauses) K ∈ KF ~X are defined
inductively as follows. Let ∀̆ denote either ∀ or ∀U, and →̆ denote either →

37
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or →U.
~A, ~B0, . . . , ~Bn−1 ∈ F

∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Xjν (~sν))

)
ν<n

→ Xj(~t )
)
∈ KF ~X

(n ≥ 0)

K0, . . . ,Kk−1 ∈ KF ~X (k ≥ 1)
(µ ~X(K0, . . . ,Kk−1))j ∈ Preds

P ∈ Preds
P (~r ) ∈ F

C ∈ F
{ ~x | C } ∈ Preds

A,B ∈ F
A → B ∈ F

A ∈ F
∀xρA ∈ F

A,B ∈ F
A →U B ∈ F

A ∈ F
∀U

xρA ∈ F
atom(r) ∈ F.

Here ~A →̆ B means A0 →̆ . . . →̆ An−1 →̆ B, associated to the right. For a
constructor formula ∀̆~x( ~A →̆ (∀̆~yν ( ~Bν →̆ Xjν (~sν)))ν<n →̆ Xj(~t )) we call ~A

the parameter premises and the ∀̆~yν ( ~Bν →̆ Xjν (~sν)) recursive premises. We
require that for every Xj (j < N) there is a clause Kij with final conclusion
Xj(~t ), amongst whose premises there is either a parameter premise or else a
recursive premise with final conclusion Xjν (~sν) with jν < j. (The presence
of such clauses guarantees that we can derive ex-falso-quodlibet for every
inductively defined predicate I). A clause of the form ∀U

~x (F → Xj(~x )) is
called an efq-clause.

A predicate of the form { ~x | C } is called a comprehension term. We
identify { ~x | C(~x ) }(~r ) with C(~r ). I will be used for predicates of the form
(µ ~X (K0, . . . ,Kk−1))j .

Consider inductively defined predicates ~I := µ ~X(K0, . . . Kk−1). For each
of the k clauses we have an introduction axiom, as follows. Let the i-th clause
for Ij be

K(~x ) := ∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Xjν (~sν))

)
ν<n

→ Xj(~t )
)
.

The corresponding introduction axiom then is K(~I ), that is

(2.1) (Ij)+i : ∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Ijν (~sν))

)
ν<n

→ Ij(~t )
)
.

Also for every Ij we have the elimination axiom

∀U
~x

(
Ij(~x ) → K0(~P ) → · · · → Kk−1(~P ) → Pj(~x )

)
.

However, in applications one often wants to use a strengthened form of
the elimination axioms. For their formulation it is useful to introduce the
notation

K( ~Q, ~P ) := ∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Qjν (~sν))

)
ν<n

→(
∀̆~yν ( ~Bν →̆ Pjν (~sν))

)
ν<n

→ Pj(~t )
)
.

Then the strengthened elimination axioms are

(2.2) I−j : ∀U
~x

(
Ij(~x ) → K0(~I, ~P ) → · · · → Kk−1(~I, ~P ) → Pj(~x )

)
.
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They are indeed stronger (and hence easier to use), since each premise
Ki(~I, ~P ) is weaker than Ki(~P ) (because Ki(~I, ~P ) has more premises than
Ki(~P )). However, there is no essential difference, because from the (ordi-
nary) elimination axiom

∀U
~x

(
Ij(~x ) → K0(~I ∧ ~P ) → · · · → Kk−1(~I ∧ ~P ) → Ij(~x ) ∧ Pj(~x )

)
(with ~I ∧ ~P denoting the list of predicates { ~x | Ij(~x ) ∧ Pj(~x ) }, and con-
junction ∧ as defined below)) we can derive the strengthened one

∀U
~x

(
Ij(~x ) → K0(~I, ~P ) → · · · → Kk−1(~I, ~P ) → Pj(~x )

)
.

To see this, assume ~x and Ij(~x ), K0(~I, ~A) . . . Kk−1(~I, ~A). We must show
Aj(~x ). To this end we use the ordinary elimination axiom above. Hence it
suffices to prove each Ki(~I ∧ ~A). Assume ~x, ~A, ∀~yν ( ~Bν → Ijν (~sν)∧Ajν (~sν))
for ν < n. We must show Ij(~t ) ∧ Aj(~t ). Now Ij(~t ) follows from the
introduction axioms, and Aj(~t ) follows from Ki(~I, ~A).

We shall exclusively use the strengthened elimination axioms. Moreover,
we often omit all premises Ki(~I, ~P ) stemming from efq-clauses, since they
are derivable. However, when we later in 2.4.2 prove the soundness theorem
for the elimination axioms, we must take their “official” form, with the
premises from efq-clauses. This is necessary to ensure that the recursion
operator has the right number of arguments.

As is to be expected from the terminology, we have conversion rules,
converting a (strengthened) elimination immediately following an introduc-
tion:

I−j ~p~q~ti[~xi := ~ri]((Ij)+i ~p~ri
~NP

i
~NR

i )(MKl(~I(~p), ~P (~p,~q))
l )l<k 7→

Mi~ri
~NP

i
~NR

i

(
λ~yiν ,~uiν

(I−jiν
~p~q~siν [~xi:=~ri](NR

iν~yiν~uiν)(Ml)l<k)
)
ν<ni

,

for j < N . Here ~p are to be substituted for the free variables of ~I, and ~q

for those of ~P which are not in ~I. Moreover, the ~NP
i are the parameter

arguments for the i-th introduction axiom Ki(~I) (i.e., proofs of its premises
~Ai), and ~NR

i are the recursive arguments (i.e., proofs of its further premises
∀~yiν( ~Biν → Ijiν (~siν))).

2.1.2. Examples. The following inductive definitions of the existential
quantifier, conjunction, falsity, equality and disjunction have been used by
Martin-Löf (1971).

Existential quantifier. Let α be a type variable, y an object variable of
type α, and Q̂ a predicate variable of arity (α). We have four variants,
depending on where we require uniformity.

Ex(α, Q̂) := µX

(
∀y(Q̂(y) → X)

)
,



40 2. REALIZABILITY INTERPRETATION

ExL(α, Q̂) := µX

(
∀y(Q̂(y) →U X)

)
,

ExR(α, Q̂) := µX

(
∀U

y (Q̂(y) → X)
)
,

ExU(α, Q̂) := µX

(
∀U

y (Q̂(y) →U X)
)
.

The introduction axioms are

∃+ : ∀x(A → ∃xA),

(∃L)
+

: ∀x(A →U ∃L
xA),

(∃R)
+

: ∀U
x (A → ∃R

xA),

(∃U)
+

: ∀U
x (A →U ∃U

xA),

where ∃xA abbreviates Ex(ρ, {xρ | A }) (and similarly for the other ones),
and the elimination axioms are (with x /∈ FV(C))

∃− : ∃xA → ∀x(A → C) → C,

(∃L)
−

: ∃L
xA → ∀x(A →U C) → C,

(∃R)
−

: ∃R
xA → ∀U

x (A → C) → C,

(∃U)
−

: ∃U
xA → ∀U

x (A →U C) → C.

Conversion:

∃−~p~q
(
∃+~prρNA(~p,r)

)
M∀n(A(~p)→Q(~p,~q)) 7→ MrN.

Conjunction. Let P̂ , Q̂ be nullary predicate variables. We define

And(P̂ , Q̂) := µX

(
P̂ → Q̂ → X

)
.

AndL(P̂ , Q̂) := µX

(
P̂ → Q̂ →U X

)
.

AndR(P̂ , Q̂) := µX

(
P̂ →U Q̂ → X

)
.

AndU(P̂ , Q̂) := µX

(
P̂ →U Q̂ →U X

)
.

The introduction axioms are

∧+ : A → B → A ∧B,

(∧L)
+

: A → B →U A ∧L B,

(∧R)
+

: A →U B → A ∧R B,

(∧U)
+

: A →U B →U A ∧U B

where A ∧ B abbreviates And({ | A }, { | B }) (and similarly for the other
ones), and elimination axioms

∧− : A ∧B → (A → B → C) → C,
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(∧L)
−

: A ∧L B → (A → B →U C) → C,

(∧R)
−

: A ∧R B → (A →U B → C) → C,

(∧U)
−

: A ∧U B → (A →U B →U C) → C.

Conversion (assuming that there are no free variables in A, B and C):

∧−(∧+NA
0 NB

1 )MA→B→C 7→ MN0N1.

Falsity. ⊥ := µX(F → X). This example is somewhat extreme, since
the list ~K in the general form µ ~X

~K is almost empty here: it only consists
of an efq-clause. The only introduction axiom is

⊥+ : F → ⊥

and the elimination axiom

⊥− : ⊥ → C.

Conversion (assuming that there are no free variables in C): Let N0 : F → C.

(⊥−)⊥→C
(
(⊥+)F→⊥MF

)
7→ N0M.

Equality. Let α be a type variable, x, y object variables of type α, and
X a predicate variable of arity (α, α). We define Leibniz equality by

Eq(α) := µX

(
∀U

x,y(F → X(x, y)),∀U
xX(x, x)

)
.

The introduction axioms are

Eq+
0 : ∀U

n,m(F → Eq(n, m)), Eq+
1 : ∀U

nEq(n, n)

where Eq(n, m) abbreviates Eq(ρ)(nρ,mρ), and the elimination axiom is

Eq− : ∀U
n,m

(
Eq(n, m) → ∀U

nQ(n, n) → Q(n, m)
)
.

One easily proves symmetry, transitivity and also compatibility of Eq:

Lemma (CompatEq). ∀U
n1,n2

(
Eq(n1, n2) → Q(n1) → Q(n2)

)
.

Proof. Use Eq−; the details are left as an exercise. �

Conversions:

(Eq+
0 )∀n,m(F→Eq(n,m))rsMF {N∀n,m(F→Q(n,m))

0 , N
∀nQ(n,n)
1 } 7→ N0rsM,

(Eq+
1 )∀nEq(n,n)t{N∀n,m(F→Q(n,m))

0 , N
∀nQ(n,n)
1 } 7→ N1t.
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Disjunction. Let P̂ , Q̂ be nullary predicate variables. We define

Or(P̂ , Q̂) := µX

(
P̂ → X, Q̂ → X

)
.

The introduction axioms are

∨+
0 : A → A ∨B, ∨+

1 : B → A ∨B

where A ∨B abbreviates Or({ | A }, { | B }), and the elimination axiom is

∨− : A ∨B → (A → C) → (B → C) → C.

Conversions:

∨−
(
∨+

0 NA
)
MA→C

0 MB→C
1 7→ M0N,

∨−
(
∨+

1 NB
)
MA→C

0 MB→C
1 7→ M1N,

and in case A∨B has free variables to be substituted by ~p and the remaining
free variables of C are to be substituted by ~q

∨−~p~q
(
∨+

0 ~pNA(~p)
)
M

A(~p)→Q(~p,~q)
0 M

B(~p)→Q(~p,~q)
1 7→ M0N,

∨−~p~q
(
∨+

1 ~pNB(~p)
)
M

A(~p)→Q(~p,~q)
0 M

B(~p)→Q(~p,~q)
1 7→ M1N.

The even numbers. The introduction axioms are

Even+
0 : ∀U

n(F → Even(n)),

Even+
1 : Even(0),

Even+
2 : ∀U

n(Even(n) → Even(S(Sn)))

and the (strengthened) elimination axiom is Even−:

∀U
m

(
Even(m) → P (0) → ∀U

n(Even(n) → P (n) → P (S(Sn))) → P (m)
)
.

Notice that Even when defined inductively “requires witnesses” (as de-
fined in 2.2.3 below), which intuitively means that it has computational
content. However, for the boolean-valued function even: N → B we can
prove

∀n

(
Even(n) → atom(even(n))

)
,

∀n

(
atom(even(n)) → Even(n)

)
.

The first proof uses Even− and the fact that atom(even(n)) has the right
closure properties. The second one employs induction on n, using Even+

1

and Even+
2 .
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The even and the odd numbers. As an easy example of a simultaneous
inductive definition we take the sets Ev and Od of the even and odd num-
bers. Again we choose the natural numbers as the underlying algebra. The
introduction axioms are

Ev+
0 : ∀U

n(F → Ev(n)),

Ev+
1 : Ev(0),

Ev+
2 : ∀U

n

(
Od(n) → Ev(Sn)

)
,

Od+
0 : ∀U

n(F → Od(n)),

Od+
1 : ∀U

n

(
Ev(n) → Od(Sn)

)
and the (strengthened) elimination axioms are

Ev− : ∀U
n

(
P0(0) → ∀U

n(Od(n) → P1(n) → P0(Sn)) →

∀U
n(Ev(n) → P0(n) → P1(Sn)) → Ev(n) → P0(n)

)
,

Od− : ∀U
n

(
P0(0) → ∀U

n(Od(n) → P1(n) → P0(Sn)) →

∀U
n(Ev(n) → P0(n) → P1(Sn)) → Od(n) → P1(n)

)
.

The accessible part of an ordering. Let ≺ be a binary relation. Assume
that we have decidable sets M of its minimal elements and I of its interior
elements. Then the accessible part of ≺ is inductively defined as follows.
The introduction axioms are

Acc+
0 : ∀x(M(x) →U Acc(x)),

Acc+
1 : ∀x(I(x) →U ∀y≺xAcc(y) → Acc(x)),

and the (strengthened) elimination axiom is as expected.
The bar predicate. Call a sequence w0, . . . , wn−1 of words good if there

are indices i < j < n and an embedding f of wi into wj . The introduction
axioms are

∀U
ws,i,j,f (Good(ws, i, j, f) → Bar(ws)),

∀U
ws(∀wBar(ws ∗ w) → Bar(ws))

and the (strengthened) elimination axiom is

∀U
ws

(
Bar(ws) → ∀U

ws,i,j,f (Good(ws, i, j, f) → P (ws)) →

∀U
ws(∀wBar(ws ∗ w) → ∀wP (ws ∗ w) → P (ws)) →

P (ws)
)
.

The transitive closure of a relation ≺. The introduction axioms are

∀x,y(x ≺ y →U TrCl(x, y)),

∀x∀U
y,z(x ≺ y →U TrCl(y, z) → TrCl(x, z))
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and the (strengthened) elimination axiom is

∀U
x1,y1

(
TrCl(x1, y1) → ∀x,y(x ≺ y →U P (x, y)) →

∀x∀U
y,z(x ≺ y →U TrCl(y, z) → P (y, z) → P (x, z)) →

P (x1, y1)
)
.

Pointwise equality. For a type ρ let fvt(ρ) be the set of its final value
types, consisting of base types. We define fvt(ρ) by induction on ρ: fvt(ρ →
σ) := fvt(σ), and for a base type µ = (µ~α(κ0, . . . , κk−1))j , fvt(µ) consists
of all the (base) types µ~α(κ0, . . . , κk−1), plus the final value types of all
parameter types of µ.

For every type ρ we inductively define pointwise equality =ρ. The intro-
duction axioms are, for every base type µ without parameter types,

∀U
x1,x2

(F → x1 =µ x2).

For every constructor Ci of a base type µj we have an introduction axiom

∀U
~y,~z

(
~yP =~ρ ~zP →

(
∀~xν (yR

m+ν~xν =µjν
zR
m+ν~xν)

)
ν<n

→ Ci~y =µj Ci~z
)
.

For every arrow type ρ → σ we have the introduction axiom

∀U
x1,x2

(
∀y(x1y =σ x2y) → x1 =ρ→σ x2

)
.

For example, =N is inductively defined by

∀U
n1,n2

(F → n1 =N n2),
0 =N 0,

∀U
n1,n2

(n1 =N n2 → Sn1 =N Sn2),

and the elimination axiom is

∀U
m1,m2

(
m1 =N m2 → P (0, 0) →

∀U
n1,n2

(
n1 =N n2 → P (n1, n2) → P (Sn1,Sn2)

)
→

P (m1,m2)
)
.

An example with a non-finitary base type is =T with T := T1 (cf. 1.2.1):

∀U
x1,x2

(F → x1 =T x2),
0 =T 0,

∀U
f1,f2

(∀n(f1n =T f2n) → Supf1 =T Supf2),
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and the elimination axiom is
=−

T : ∀U
x1,x2

(
x1 =T x2 → P (0, 0) →

∀U
f1,f2

(
∀n(f1n =T f2n) → ∀nP (f1n, f2n) →
P (Supf1,Supf2)

)
→

P (x1, x2)
)
.

Recall that in 1.2.3 we have defined, for a finitary base type µ, (decid-
able) equality as a boolean-valued function =µ : µ → µ → B. It is easy to
see that we can derive

∀x1,x2

(
x1 =µ x2 → atom(=µ (x1, x2))

)
,

∀x1,x2

(
atom(=µ (x1, x2)) → x1 =µ x2

)
.

The proof uses the elimination axiom in the first case, and in the second one
a double induction on x1 and x2, and the clause ∀U

x1,x2
(F → x1 =µ x2). The

details are left as an exercise. However, for a non-finitary base type like T
this alternative definition is not available.

One can prove reflexivity of =ρ, using meta-induction on ρ, and induction
on the types in fvt(ρ).

Lemma (ReflPtEq). ∀n(n =ρ n).

A consequence is that Leibniz equality implies pointwise equality:

Lemma (EqToPtEq). ∀n1,n2

(
Eq(n1, n2) → n1 =ρ n2

)
.

Proof. Use CompatEq and ReflPtEq. �

2.1.3. Further axioms and their consequences. We express ex-
tensionality of our intended model by stipulating that pointwise equality
implies Leibniz equality:

Axiom (PtEqToEq). ∀n1,n2

(
n1 =ρ n2 → Eq(n1, n2)

)
.

Notice that this implies the following proposition, which is sometimes
called extensionality as well:

Lemma (CompatPtEqFct). ∀f∀U
n1,n2

(n1 =ρ n2 → fn1 =σ fn2).

Proof. We obtain Eq(n1, n2) by PtEqToEq. By ReflPtEq we have
fn1 =σ fn1, hence fn1 =σ fn2 by CompatEq. �

A consequence of the extensionality axioms is that compatibility holds
for pointwise equality as well:

Lemma (CompatPtEq). ∀U
n1,n2

(
n1 =ρ n2 → P (n1) → P (n2)

)
.

Proof. Use PtEqToEq and CompatEq. �
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We write E-IDω when the extensionality axioms PtEqToEq are present.
In E-IDω we can prove properties of the constructors of our free algebras:
that they are injective, and have disjoint ranges. For finitary algebras this
can be seen easily, using boolean-valued equality. However, for non-finitary
algebras we need extensionality. Since extensionality implies that pointwise
and Leibniz equality are equivalent, it suffices to consider pointwise equality.
Rather than dealing with the general case, we confine ourselves with the
algebra T.

The proof uses some recursive functions: TreeSup: T → B defined by

TreeSup(0) := ff, TreeSup(Supf) := tt

and a predecessor function TreePred: T → N → B defined by

TreePred(0, n) := 0, TreePred(Supf, n) := fn.

Lemma. 0 =T Supf → F , and ∀U
f1,f2

(Supf1 =T Supf2 → f1 =N→T f2).

Proof. The proof uses the various compatibilities, and the fact that
conversions give rise to Leibniz equalities. �

We now list some further axioms, which will be mentioned when we
use them. All of them involve (inductively defined) existentially quantified
formulas, wich come in four versions, with ∃,∃R,∃L,∃U. Let ∃̆ denote any of
these. When ∃̆ appears more than once in an axiom below, it is understood
that it denotes the same quantifier each time.

The axiom of choice (AC) is the scheme

Axiom (AC). ∀xρ ∃̆yσA(x, y) → ∃̆fρ→σ∀xρA(x, f(x)).

The independence axioms express the intended meaning of uniformities.
The independence of premise axiom (IP) is

Axiom (IP). (A →U ∃̆xB) → ∃̆x(A →U B) (x /∈ FV(A)).

Similarly we have an independence of quantifier axiom (IQ) axiom

Axiom (IQ). ∀U
x ∃̆yA → ∃̆y∀U

xA (x /∈ FV(A)).

We will also consider the (constructively doubtful) Markov principle, for
a higher type variable xρ and decidable atoms A0, B0:

Axiom (MP). (∀xρA0 → B0) → ∃xρ(A0 → B0) (xρ /∈ FV(B0)).

2.2. Computational Content

Along the inductive definition of formulas, predicates and constructor
formulas (or clauses) in 2.1.1, we define simultaneously

• the type τ(A) of a formula A;
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• when a formula is computationally relevant ;
• the formula z realizes A, written z r A, for a variable z of type

τ(A);
• when a formula is negative;
• when an inductively defined predicate requires witnesses;
• for an inductively defined I requiring witnesses, its base type µI ,

and – if I has an efq-clause – when an object of type µI is efq-free;
• for an inductively defined predicate I of arity ~ρ requiring witnesses,

a witnessing predicate Ir of arity (µI , ~ρ ), and a predicate Ief of
arity (µI) expressing efq-freeness.

2.2.1. The type of a formula. Every formula A possibly containing
inductively defined predicates can be seen as a “computational problem”.
We define τ(A) as the type of a potential realizer of A, i.e., the type of the
term (or “program”) to be extracted from a proof of A.

More precisely, we assign to every formula A an object τ(A) (a type or
the “nulltype” symbol ε). In case τ(A) = ε proofs of A have no computa-
tional content; such formulas A are called Harrop formulas, or computation-
ally irrelevant (c.i.). Non-Harrop formulas are also called computationally
relevant (c.r.).

The definition can be conveniently written if we extend the use of ρ → σ
to the nulltype symbol ε:

(ρ → ε) := ε, (ε → σ) := σ, (ε → ε) := ε.

With this understanding of ρ → σ we can simply write

τ(atom(r)) := ε, τ(I(~r )) :=

{
ε if I does not require witnesses
µI otherwise,

τ(A → B) := (τ(A) → τ(B)), τ(∀xρA) := (ρ → τ(A)),

τ(A →U B) := τ(B), τ(∀U
xρA) := τ(A).

2.2.2. Realizability. Let A be a formula and z either a variable of
type τ(A) if the latter is a type, or the nullterm symbol ε if τ(A) = ε. For a
convenient definition we extend the use of term application to the nullterm
symbol ε:

εx := ε, zε := z, εε := ε.

We define the formula z r A, to be read z realizes A. The definition uses
the predicates Ir and Ief introduced below.

z r atom(s) := atom(s),
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z r I(~s ) :=


I(~s ) if I does not require witnesses
Ir(z,~s ) if not, and I has no efq-clause
Ief (z) ∧ Ir(z,~s ) otherwise,

z r (A → B) := ∀x(x r A → zx r B),

z r (∀xA) := ∀x zx r A,

z r (A →U B) := (A → z r B),

z r (∀U
xA) := ∀x z r A.

Formulas which do not contain inductively defined predicates requiring wit-
nesses play a special role in this context; we call them negative. Their crucial
property is (ε r A) = A. Notice also that every formula z r A is negative.

2.2.3. Witnesses. Consider a particularly simple inductively defined
predicate, where

• there is at most one clause apart from an efq-clause, and
• this clause is uniform, i.e., contains no ∀ but ∀U only, and its

premises are either negative or followed by →U .
Examples are ∃U, ∧U, ⊥, Eq. We call those predicates “uniform one-clause”
defined. An inductively defined predicate requires witnesses if it is not one
of those, and not one of the predicates Ir and Ief introduced below.

For an inductively defined predicate I requiring witnesses, we define µI

to be the corresponding component of the types ~µ = µ~α~κ generated from
constructor types κi := τ(Ki) for all constructor formulas K0, . . . Kk−1 from
~I = µ ~X(K0, . . . Kk−1). An object of type µI is called efq-free it it does not
contain a constructor of µI corresponding to an efq-clause.

The witnessing predicate Ir of arity (µI , ~ρ ) can now be defined as follows.
For every constructor formula

K = ∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Xjν (~sν))

)
ν<n

→ Xj(~t )
)

of the original inductive definition of ~I we build the new constructor formula

Kr := ∀̆~x∀~u,~f

(
~u r ~A →

(
∀̆~yν ,~vν (~vν r ~Bν → Yjν (fν~yν~vν , ~sν))

)
ν<n

→

Yj(C~x~u~f,~t )
)
,

with the understanding that
• only those xi with a non-uniform ∀xi occur as arguments in C~x~u~f ,
• only those ui with Ai a non-uniform premise and τ(Ai) 6= ε actually

appear (for the other Ai we take either Ai or ε r Ai),
and similarly for yν,i, vν,i and fν~yν~vν . Here C is the constructor of the
algebra ~µ = µ~α~κ generated from our constructor types κi := τ(Ki) (i.e., for
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Ki we have C := Ci). Then ~Ir := µ~Y ( ~Kr). The corresponding introduction
axiom then is Kr(~Ir), that is

(Ir
j )+i : ∀

~x,~u, ~f

(
~u r ~A →

(
∀~yν ,~vν (~vν r ~Bν → Ir

jν
(fν~yν~vν , ~sν))

)
ν<n

→

Ir
j (C~x~u~f,~t )

)(2.3)

and the (strengthened) elimination axiom is

(2.4) (Ir
j )− : ∀w∀U

~x

(
Ir
j (w, ~x ) →

(
Kr

i (~Ir, ~P )
)
i<k

→ Pj(w, ~x )
)

with

Kr(~Ir, ~P ) := ∀̆~x∀~u,~f

(
~u r ~A →

(
∀~yν ,~vν (~vν r ~Bν → Ir

jν
(fν~yν~vν , ~sν))

)
ν<n

→(
∀̆~yν ,~vν (~vν r ~Bν → Pjν (fν~yν~vν , ~sν))

)
ν<n

→

Pj(C~x~u~f,~t )
)
.

Notice that each of the clauses (Ir
j )+i has a conclusion Ir

j (C~x~u~f,~t ) with
its own constructor C. Therefore it is to be expected that the following
inversion properties for Ir hold:

Lemma (Inversion).

(Ir
j )invEq

i : Ir
j (C~x~u~f, ~z ) → ∃~yEq(~z,~t ) (~y the uniform variables),

(Ir
j )invP

i : Ir
j (C~x~u~f,~t ) → ~u r ~A,

(Ir
j )invR,ν

i : Ir
j (C~x~u~f,~t ) → ∀~yν ,~vν (~vν r ~Bν → Ir

jν
(fν~yν~vν , ~sν)).

Proof. (Ir
j )invEq

i . We use (Ir
j )− with P (w,~z ) :=

∀
~x,~x′,~u, ~f

(
w = C~x′~u~f → ∃~yEq(~z,~t )

)
with ~x the non-uniform and ~y the uniform outside universally quantified
variables of the clause. It suffices to prove all Kr

i (~Ir, ~P ) for these ~P . Since
constructors have disjoint ranges, we only need to consider the C-clause. Its
conclusion follows from the injectivity of C.

(Ir
j )invP

i . We use (Ir
j )− with

P (w,~z ) := ∀
~x,~x′,~u, ~f

(
w = C~x′~u~f → ~z = ~t → ~u r ~A

)
.

It suffices to prove all Kr
i (~Ir, ~P ) for these ~P . The conclusion of its C-clause

follows from its first premise, using the injectivity of C.
(Ir

j )invR,ν
i . We use (Ir

j )− with

P (w,~z ) := ∀
~x,~x′,~u, ~f

(
w = C~x′~u~f → ~z = ~t →

∀~yν ,~vν (~vν r ~Bν → Ir
jν

(fν~yν~vν , ~sν))
)
.
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It suffices to prove all Kr
i (~Ir, ~P ) for these ~P . The conclusion of its C-clause

follows from its second premise, again using the injectivity of C. �

For an inductively defined predicate I requiring witnesses and with an
efq-clause we define the predicate Ief of arity (µI) expressing efq-freeness as
follows. For every constructor formula

K = ∀̆~x

(
~A →̆

(
∀̆~yν ( ~Bν →̆ Xjν (~sν))

)
ν<n

→̆ Xj(~t )
)

of the original inductive definition of ~I except the efq-clause the correspond-
ing introduction axiom is (Ief

j )+i :

(2.5) ∀̆
~x,~u, ~f

(
~u r ~A →

(
∀̆~yν ,~vν (~vν r ~Bν → Ief

jν
(fν~yν~vν))

)
ν<n

→ Ief
j (C~x~u~f )

)
and the elimination axiom is

(2.6) (Ief
j )− : ∀w

(
Ief
j (w) →

(
Kef

i (~Ief , ~P )
)
i<k

→ Pj(w)
)
.

As before we can prove

Lemma (Inversion).

(Ief
j )invP

i : Ief
j (C~x~u~f ) → ~u r ~A,

(Ief
j )invR,ν

i : Ief
j (C~x~u~f ) → ∀~yν ,~vν (~vν r ~Bν → Ief

jν
(fν~yν~vν)).

As an example of an inductive definition requiring non-finitary witnesses
consider pointwise equality =T for the algebra T (cf. 2.1.2). Recall that the
constructors of T are 0 and Sup. Let C0,C1,C2 denote the constructors of
the witnessing algebra µ=T . The introduction axioms for the inductively
defined witnessing predicate =r

T are

(=r
T)+0 : ∀x1,x2

(
F → =r

T(C0, x1, x2)
)
,

(=r
T)+1 : =r

T(C1, 0, 0),

(=r
T)+2 : ∀f,f1,f2

(
∀n =r

T(fn, f1n, f2n) → =r
T(C2f,Supf1,Supf2)

)
and the elimination axiom is

(=r
T)− : ∀w∀U

x1,x2

(
=r

T(w, x1, x2) →
P (C1, 0, 0) →

∀f∀U
f1,f2

(
∀n =r

T(fn, f1n, f2n) → ∀nP (fn, f1n, f2n) →
P (C2f,Supf1,Supf2)

)
→

P (w, x1, x2)
)
.

The inversion lemma is
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Lemma (Inversion).

(=r
T)invEq

2 : =r
T(C2f, z1, z2) → ∃fi

Eq(zi,Supfi) (i = 1, 2),

(=r
T)invR

2 : =r
T(C2f,Supf1,Supf2) → ∀n =r

T(fn, f1n, f2n).

Proof. (=r
T)invEq

2 . We use (=r
T)− with

Pi(w, z1, z2) := ∀f

(
w = C2f → ∃fi

Eq(zi,Supfi)
)

(i = 1, 2).

It suffices to prove all clauses for Pi. Let i = 1. The first clause is P1(C1, 0, 0),
i.e.,

∀f

(
C1 = C2f → ∃f1Eq(0,Supf1)

)
.

This holds since constructors have disjoint ranges. Now consider the second
one. Its conclusion is P1(C2f,Supf1,Supf2), i.e.,

∀f ′
(
C2f = C2f

′ → ∃f ′1
Eq(Supf1,Supf ′1)

)
.

This follows from reflexivity of Eq.
(=r

T)invR
2 . We use (=r

T)− with

P (w, z1, z2) := ∀f1,f2,f

(
w = C2f → z1 = Supf1 → z2 = Supf2 →
∀n=r

T(fn, f1n, f2n)
)
.

It suffices to prove all clauses for P . The first clause is P (C1, 0, 0), which
holds since constructors have disjoint ranges. Now consider the second one.
Its conclusion is P (C2f,Supf1,Supf2), i.e.,

∀f ′1,f ′2,f ′
(
C2f = C2f

′ → Supf1 = Supf ′1 → Supf2 = Supf ′2 →
∀n=r

T(f ′n, f ′1n, f ′2n)
)
.

Using the injectivity of constructors, this follows from its first premise. �

The predicate =ef
T expressing efq-freeness has the introduction axioms

(=ef
T )+1 : =ef

T (C1),

(=ef
T )+2 : ∀f

(
∀n =ef

T (fn) → =ef
T (C2f)

)
and the elimination axiom (=ef

T )−:

∀w

(
=ef

T (w) → P (C1) → ∀f

(
∀n =ef

T (fn) → ∀nP (fn) → P (C2f)
)
→ P (w)

)
.

One part of the inversion lemma is

=ef
T (C2f) → ∀n =ef

T (fn).

2.3. Extracted Terms and Uniform Derivations

We define the extracted term of a derivation, and (using this concept)
the notion of a uniform proof, which gives a special treatment to uniform
implication →U and the uniform universal quantifier ∀U.
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2.3.1. Extracted terms. For a derivation M in IDω +AC+IPε+Axε,
we simultaneously define

• its extracted term [[M ]], of type τ(A), and
• when M is uniform.

For derivations MA where τ(A) = ε (i.e., A is a Harrop formula) let
[[M ]] := ε (the nullterm symbol); every such derivation is uniform. Now
assume that M derives a formula A with τ(A) 6= ε. Recall our extended use
of term application to the nullterm symbol ε: εx := ε, zε := z, εε := ε. We
also understand that in case τ(A) = ε, λ

x
τ(A)
u

[[M ]] means just [[M ]]. Then

[[uA]] := xτ(A)
u (xτ(A)

u uniquely associated with uA),

[[λuAM ]] := λ
x

τ(A)
u

[[M ]],

[[MA→BN ]] := [[M ]][[N ]],

[[(λxρM)∀xA]] := λxρ [[M ]],

[[M∀xAr]] := [[M ]]r.

[[λU
uAM ]] := [[MA→UBN ]] := [[(λU

xρM)∀
U
xA]] := [[M∀U

xAr]] := [[M ]].

In all these cases uniformity is preserved, except possibly in those involving
λU: λU

uAM is uniform if M is and xu /∈ FV([[M ]]), and λU
xρM is uniform if

M is and – in addition to the usual variable condition – x /∈ FV([[M ]]).
It remains to define extracted terms for the axioms: structural and gen-

eral induction, introduction and elimation axioms for inductively defined
predicates, (AC) and (IPε).

The extracted term [[Indj ]] of an induction axiom is defined to be the
recursion operator R~µ,~τ

µj . For example, in case of an induction scheme

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
we have

[[Indn,A]] := Rτ
N : N → τ → (N → τ → τ) → τ (τ := τ(A) 6= ε).

Generally, the ~µ, ~τ in R~µ,~τ
µj list only the types µj , τj with τj := τ(Aj) 6= ε,

i.e., the recursion operator is simplified accordingly.
For general induction, we take general recursion as its extracted term.

For the introduction axiom (2.1) and the (strengthened) elimination axiom
(2.2) of an inductively defined predicate I we define

[[(Ij)+i ]] := C, [[I−j ]] := Rj ,

and similary for the introduction and elimination axioms for Ir and Ief :
(2.3), (2.4) and (2.5), (2.6), respectively.
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As extracted terms of (AC), (IP) and (IQ) we take identities of the
appropriate types.

2.3.2. Uniform derivations. Here we collect some general remarks
on uniform derivations.

Lemma. There are purely logical uniform derivations of

(a) A → B from A →U B;
(b) A →U B from A → B, provided τ(A) = ε or τ(B) = ε;
(c) ∀xA from ∀U

xA;
(d) ∀U

xA from ∀xA, provided τ(A) = ε.

Proof. (a). λv(uA→UBvA) is uniform (there are no conditions on λv).
(b). If τ(B) = ε, then λU

v (uA→BvA) is unform because its conclusion is
a Harrop formula. Now assume τ(A) = ε. Then for λU

v (uA→BvA) to be
uniform we need to know that xv /∈ FV([[uv]]). But [[uv]] = [[u]] because
of τ(A) = ε. (c). λx(u∀

U
xAx) is uniform (there is only the usual variable

condition on λx). (d). λU
x (u∀xAx) is uniform because its conclusion is a

Harrop formula. �

We certainly want to know that in formulas involving →U and ∀U we
can replace a subformula by an equivalent one.

Lemma. There are purely logical uniform derivations of

(a) (A →U B) → (B → B′) → A →U B′;
(b) (A′ → A) →U (A →U B) → A′ →U B;
(c) ∀U

xA → (A → A′) → ∀U
xA′.

Proof. (a). λu,vλ
U
w(vB→B′(uA→UBwA)) is uniform because [[v(uw)]] =

xvxu does not contain xw free. (b). λU
uλvλ

U
w(vA→UB(uA′→AwA′)) is uniform

since [[v(uw)]] = xv does not contain xu, xw free. (c). λu,vλ
U
x (vA→A′(u∀

U
xAx))

is uniform because [[v(ux)]] = xvxu does not contain x free. �

For the (inductively defined) existential quantifiers ∃,∃R,∃L,∃U we ob-
serve the following. Let ∃̆ denote any of these.

Lemma. There are uniform derivations using ∃-axioms only of

(a) ∃xA → ∃̆xA;
(b) ∃̆xA → ∃U

xA;
(c) ∃L

xA → ∃xA, provided τ(A) = ε.
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Proof. (a) Use ∃− : ∃xA → ∀x(A → ∃̆xA) → ∃̆xA. We derive the
second premise using an introduction axiom. An example is

(∃L)+ : ∀x(A →U ∃L
xA) x u : A

∃L
xA

→+u
A → ∃L

xA
∀+x∀x(A → ∃L

xA)

(b). Assume ∃̆ is ∃L. Use (∃L)− : ∃L
xA → ∀x(A →U ∃U

xA) → ∃U
xA. We

can prove the second premise uniformly from (∃U)+ : ∀U
x (A →U ∃U

xA), by
λxλU

u ((∃U)+xuA). (c). Use (∃L)− : ∃L
xA → ∀x(A →U ∃xA) → ∃xA. This

time the second premise is proven uniformly from ∃+ : ∀x(A → ∃xA) by
λxλU

u (∃+xuA), because τ(A) = ε implies [[∃+xuA]] = x. �

2.3.3. Characterization. We consider the question when a formula A
and its modified realizability interpretation ∃x x r A are equivalent.

Let us first look at some examples. First take ∃xA, which abbreviates
Ex(ρ, {xρ | A }). Recall that ∃xA is an inductively defined predicate requir-
ing witnesses, and that it has no efq-clause. We want to compare ∃xA with
∃w (w r ∃xA), which is ∃w(∃xA)r(w). One direction

∃w(∃xA)r(w) → ∃xA

is proved using

((∃xA)r)− : ∀w

(
(∃xA)r(w) → ∀x,u

(
u r A → P (Cxu)

)
→ P (w)

)
,

with P (w) := ∃xA. We only need to show ∀x,u(u r A → ∃xA). Fix x, u and
assume u r A. Then A by IH (we need to do an induction along the inductive
definition of formulas, predicates and constructor formulas (or clauses) in
2.1.1), and ∃xA by ∃+. For the other direction

∃xA → ∃w(∃xA)r(w)

we use ∃−. Then we have so show ∀x(A → ∃w(∃xA)r(w)). Fix x and assume
A. Then u r A for some u by IH. The claim follows from ∃+ and

((∃xA)r)+ : ∀x,u

(
u r A → (∃xA)r(Cxu)

)
.

As our second example we take A to be x1 =T x2. Recall that =T

is an inductively defined predicate requiring witnesses, and that it has an
efq-clause. We want to compare x1 =T x2 with ∃w w r (x1 =T x2), which is
∃w(=ef

T (w) ∧=r
T(w, x1, x2)). One direction

∀w

(
=ef

T (w) → =r
T(w, x1, x2) → x1 =T x2

)
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is proved using (=ef
T )−, with P (w) := ∀U

x1,x2
(=r

T(w, x1, x2) → x1 =T x2)
(exercise). For the other direction

x1 =T x2 → ∃w

(
=ef

T (w) ∧=r
T(w, x1, x2)

)
we use =−

T (cf. 2.1.2), for

P (x1, x2) := ∃w

(
=ef

T (w) ∧=r
T(w, x1, x2)

)
.

Since P (0, 0) clearly holds with w := C1, it suffices to show

∀U
f1,f2

(
∀n(f1n =T f2n) → ∀nP (f1n, f2n) → P (Supf1,Supf2)

)
.

Assume f1, f2 and the premises. By (AC) we have an f such that

∀n=ef
T (fn) ∧ ∀n=r

T(fn, f1n, f2n)

We can now take w := C2f , since =ef
T (C2f) and =r

T(C2f,Supf1,Supf2)
follow from (=ef

T )+2 and (=r
T)+2 , respectively.

Theorem (Characterization; cf. Troelstra (1973, 3.4.8)).

IDω + AC + IP + IQ ` A ↔ ∃x x r A.

Proof. Induction on A, along the inductive definition of formulas, pred-
icates and constructor formulas (or clauses) in 2.1.1. The case of an induc-
tively defined predicate is similar to the examples above. Case A → B.

(A → B) ↔ (∃x x r A → ∃z z r B) by IH

↔ ∀x(x r A → ∃z z r B)

↔ ∀x∃z(x r A → z r B) by (IP)

↔ ∃f∀x(x r A → f(x) r B) by (AC)

↔ ∃ff r (A → B).

Case ∀xA.

∀xA ↔ ∀x∃z z r A by IH

↔ ∃f∀x fx r A by (AC)
↔ ∃ff r ∀xA.

Case A →U B.

(A →U B) ↔ (A →U ∃z z r B) by IH

↔ ∃z(A →U z r B) by (IP)

↔ ∃z z r (A →U B).

Case ∀U
xA.

∀U
xA ↔ ∀U

x∃z z r A by IH
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↔ ∃z∀U
x z r A by (IQ)

↔ ∃z z r ∀U
xA.

This concludes the proof. �

2.4. Soundness

We prove that every theorem in E-IDω+AC+IP+IQ+Axε has a realizer.
Here (Axε) is an arbitrary set of Harrop formulas viewed as axioms.

2.4.1. Soundness for induction and general induction. We show
that general recursion provides a realizer for general induction. For struc-
tural induction the argument is similar (and simpler). Recall that according
to (1.14) general induction is the scheme

∀µ,x

(
Progµ

xA(x) → A(x)
)

where Progµ
xA(x) expresses “progressiveness” w.r.t. the measure function µ

and the ordering <:

Progµ
xA(x) := ∀x

(
∀y;µy<µxA(y) → A(x)

)
.

Lemma (Realizability Interpretation of General Induction).

F r ∀µ,x

(
Progµ

xA(x) → A(x)
)
.

Proof. We must show

∀µ,x,G

(
G r ∀x(∀y;µy<µxA(y) → A(x)) → FµxG r A(x)

)
.

Fix µ, x, G and assume the premise, which unfolds into

(2.7) ∀x,f

(
(∀y;µy<µxfy r A(y)) → Gxf r A(x)

)
.

We have to show FµxG r A(x). To this end we use an instance of general
induction with the formula FµxG r A(x), that is

∀x

(
∀y;µy<µxFµyG r A(y) → FµxG r A(x)

)
→ FµxG r A(x).

It suffices to prove the premise. Fix x and assume ∀y;µy<µxFµyG r A(y).
We must show FµxG r A(x). Recall that by definition (1.12)

FµxG = Gxf0 with f0 := λy[if µy < µx then FµyG else ε].

Hence we can apply (2.7) to x, f0, and it remains to show

∀y;µy<µxf0y r A(y).

Fix y with µy < µx. Then f0y = FµyG, and by the last assumption we
have FµyG r A(y). �
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2.4.2. Soundness for introduction and elimination axioms. We
first treat inductively defined predicates requiring witnesses. Recall the
introduction axioms (2.3) and the (strengthened) elimination axiom (2.4)
for Ir

j .
By Kr(~Ir) we clearly have C r (Ij)+i .

Lemma. Rj r I−j .

Proof. For to prove

Rj r ∀U
~x

(
Ij(~x ) →

(
Ki(~I, ~P )

)
i<k

→ Pj(~x )
)
,

let ~x,w be given and assume w r Ij(~x ). Let further w0, . . . , wk−1 be such
that wi r Ki(~I, ~P ), i.e.,

∀̆~x∀~u,~f,~g

(
~u r ~A →

(
∀~yν ,~vν (~vν r ~Bν → fν~yν~vν r Ijν (~sν))

)
ν<n

→(
∀̆~yν ,~vν (~vν r ~Bν → gν~yν~vν r Pjν (~sν))

)
ν<n

→

wi~x~u~f~g r Pj(~t )
)
.

(2.8)

Our goal is
Rjw~w r Pj(~x ) =: Qj(w, ~x ).

We use the (strengthened) elimination axiom for Ir
j with Qj(w, ~x ), i.e.,

∀w∀U
~x

(
Ir
j (w, ~x ) →

(
Kr

i (~Ir, ~Q)
)
i<k

→ Qj(w, ~x )
)
.

Hence it suffices to prove Kr(~Ir, ~Q) for every constructor formula K, i.e.,

∀̆~x∀~u,~f

(
~u r ~A →

(
∀~yν ,~vν (~vν r ~Bν → Ir

jν
(fν~yν~vν , ~sν))

)
ν<n

→(
∀̆~yν ,~vν (~vν r ~Bν → Qjν (fν~yν~vν , ~sν))

)
ν<n

→

Qj(C~x~u~f,~t )
)
.

(2.9)

So assume ~x, ~u, ~f and the premises of (2.9). We show Qj(C~x~u~f,~t ), i.e.,

Rj(C~x~u~f )~w r Pj(~t ).

Since C = Ci, by the conversion rules for R (cf. 1.2.5) this is the same as

wi~x~u~f
(
λ~yν ,~vνRjν (fν~yν~vν)~w

)
ν<n

r Pj(~t ).

To this end we use (2.8) with ~x, ~u, ~f, (λ~yν ,~vνRjν (fν~yν~vν)~w)ν<n. Its conclusion
is what we want, and its premises follow from the premises of (2.9). �

We now treat inductively defined predicates not requiring witnesses. Re-
alizability of the introduction axioms follows from the very same axioms,
since all the formulas involved are negative. For a uniform one-clause induc-
tively defined predicates the elimination axiom is realized by the identity.
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For Ir realizability of the elimination axiom by the recursion operator
can be shown as above:

Lemma. Rj r (Ir
j )−.

Proof. For to prove

Rj r ∀w∀U
~x

(
Ir
j (w, ~x ) →

(
Kr

i (~Ir, ~P )
)
i<k

→ Pj(w, ~x )
)
,

let w, ~x be given and assume Ir
j (w, ~x ). Let further w0, . . . , wk−1 be such

that wi r Kr
i (~Ir, ~P ), i.e.,

∀̆~x∀~u,~f,~g

(
~u r ~A →(
∀~yν ,~vν (~vν r ~Bν → Ir

jν
(fν~yν~vν , ~sν))

)
ν<n

→(
∀̆~yν ,~vν (~vν r ~Bν → gν~yν~vν r Pjν (fν~yν~vν , ~sν))

)
ν<n

→

wi~x~u~f~g r Pj(C~x~u~f,~t )
)
.

(2.10)

Our goal is
Rjw~w r Pj(w, ~x ) =: Qj(w, ~x ).

We use the (strengthened) elimination axiom for Ir
j with Qj(w, ~x ), i.e.,

∀w,~x

(
Ir
j (w, ~x ) →

(
Kr

i (~Ir, ~Q)
)
i<k

→ Qj(w, ~x )
)
.

Hence it suffices to prove Kr(~Ir, ~Q) for every constructor formula K, i.e.,

∀̆~x∀~u,~f

(
~u r ~A →

(
∀~yν ,~vν (~vν r ~Bν → Ir

jν
(fν~yν~vν , ~sν))

)
ν<n

→(
∀̆~yν ,~vν (~vν r ~Bν → Qjν (fν~yν~vν , ~sν))

)
ν<n

→

Qj(C~x~u~f,~t )
)
.

(2.11)

So assume ~x, ~u, ~f and the premises of (2.11). We show Qj(C~x~u~f,~t ), i.e.,

Rj(C~x~u~f )~w r Pj(C~x~u~f,~t ).

Since C = Ci, by the conversion rules for R (cf. 1.2.5) this is the same as

wi~x~u~f
(
λ~yν ,~vνRjν (fν~yν~vν)~w

)
ν<n

r Pj(C~x~u~f,~t ).

To this end we use (2.10) with ~x, ~u, ~f, (λ~yν ,~vνRjν (fν~yν~vν)~w)ν<n. Its conclu-
sion is what we want, and its premises follow from the premises of (2.11). �

For Ief the elimination axiom (2.6) again is realized by a recursion op-
erator; this can be proved as above, but somewhat simpler.
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2.4.3. Soundness theorem. We work in IDω + AC + IP + IQ.

Theorem (Soundness). Let M be a derivation of A from assumptions
ui : Ci (i < n). Then we can find a derivation σ(M) of [[M ]] r A from
assumptions ūi : xui r Ci for a non-uniform ui (i.e., xui ∈ FV([[M ]])), and
ūi : Ci for the other ones.

Proof. Induction on M . Case u : A. Let σ(u) := ū.
Case c : A, c an axiom. These cases have been treated above.
Case λuAMB. We must find a derivation σ(λuM) of

[[λuM ]] r (A → B), which is ∀x(x r A → [[λuM ]]x r B).

Recall that [[λuM ]] = λxu [[M ]].
Subcase xu ∈ FV([[M ]]). Renaming x into xu, our goal is to find a

derivation of
∀xu(xu r A → [[M ]] r B),

since we identify terms with the same β-normal form. By IH we have
a derivation σ(M) of [[M ]] r B from ū : xu r A. Hence we can define
σ(λuM) := λxuλūσ(M).

Subcase xu /∈ FV([[M ]]). By IH we have a derivation σ(M) of [[M ]] r B
from ū : A. By the Characterization Theorem we obtain a derivation

KA : ∀x(x r A → A).

Then we have a derivation

λxλv

(
(λuσ(M))(KAxvxrA)

)
: ∀x(x r A → [[M ]] r B).

The claim follows from [[M ]] = (λxu [[M ]])x, since xu /∈ FV([[M ]]).
Case MA→BNA. We must find a derivation σ(MN) of [[MN ]] r B.

Recall that [[MN ]] = [[M ]][[N ]]. By IH we have derivations σ(M) of

[[M ]] r (A → B), which is ∀x(x r A → [[M ]]x r B)

and σ(N) of [[N ]] r A; hence we can define σ(MN) := σ(M)[[N ]]σ(N).
Case λxMA. We must find a derivation σ(λxM) of [[λxM ]] r ∀xA. By

definition [[λxM ]] = λx[[M ]]. Recall that

λx[[M ]] r ∀xA, which is ∀x(λx[[M ]])x r A.

Since we identify terms with the same β-normal form, by IH we can define
σ(λxM) := λxσ(M). It is easy to see that the variable condition is satisfied.

Case M∀xA(x)t. We must find a derivation σ(Mt) of [[Mt]] r A(t). By
definition [[Mt]] = [[M ]]t, and by IH we have a derivation σ(M) of

[[M ]] r ∀xA(x), which is ∀x([[M ]]x r A(x)).

Hence we can define σ(Mt) := σ(M)t.



60 2. REALIZABILITY INTERPRETATION

Case λU
uAMB. We must find a derivation σ(λU

uM) of

[[λU
uM ]] r (A →U B), which is A → [[M ]] r B.

Because of xu /∈ FV([[M ]]), by IH we have [[M ]] r B from ū : A. Hence we
can define σ(λU

uM) := λūσ(M).
Case MA→UBNA. We must find a derivation σ(MN) of [[MN ]] r B.

Recall that [[MN ]] = [[M ]]. By IH we have derivations σ(M) of

[[M ]] r (A →U B), which is A → [[M ]] r B

and σ(N) of [[N ]] r A. The Characterization Theorem gives a derivation
KA[[N ]]σ(N) of A. Hence we can define σ(MN) := σ(M)(KA[[N ]]σ(N)).

Case λU
xMA. We must find a derivation σ(λU

xM) of

[[λU
xM ]] r ∀U

xA, which is ∀x [[M ]] r A.

By IH we have a derivation of [[M ]] r A. Let σ(λU
xM) := λxσ(M).

Case M∀U
xA(x)t. We must find a derivation σ(Mt) of [[Mt]] r A(t). By

definition [[Mt]] = [[M ]], and by IH we have a derivation σ(M) of

[[M ]] r ∀U
xA(x), which is ∀x [[M ]] r A(x).

Hence we can define σ(Mt) := σ(M)t. �

As a corollary to the Soundness Theorem we obtain the following. Let M
be a closed derivation (in IDω +AC+IP+IQ) of ∀x∃yA, with A an arbitrary
formula. Then [[M ]] r ∀x∃yA, i.e., ∀x [[M ]]x r ∃yA, which by definition is
∀x(∃yA)r([[M ]]x). Hence [[M ]]x is a witness for ∃yA.



CHAPTER 3

Complexity

We now focus much of the technical/logical work of the previous chap-
ter onto theories with limited (more feasible) computational strength. The
initial motivation is the surprising result of Bellantoni and Cook (1992) char-
acterizing the polynomial-time functions by the primitive recursion schemes,
but with a judicially placed semicolon first used by Simmons (1988), separat-
ing the variables into two kinds (or sorts). The first “normal” kind controls
the length of recursions, and the second “safe” kind marks the places where
substitutions are allowed. (Various alternative names have arisen for the two
sorts of variables, which will play a fundamental role throughout this chap-
ter, thus “normal”/“input”/“complete” and “safe”/“output”/“incomplete”.
The important distinction here is that complete and incomplete variables
will not just be of ground type, but may be of arbitrary higher type.)

We aim at developing a basic version of arithmetic which incorporates
this variable separation. This theory EA(;) or simply A(;) will have elemen-
tary recursive strength (hence the prefix E) and sub-elementary (polynomi-
ally bounded) strength when restricted to its Σ1-inductive fragment. We
first extend the Bellantoni and Cook variable separation to also incorporate
higher types. This produces a two-sorted version T(;) of Gödel’s T, which
will give a functional interpretation for A(;). We then go a stage further
in formulating a theory LA(;) all of whose provable recursions, not just the
Σ1-inductive fragment, are polynomially bounded; but to achieve this, an
important additional aspect now comes into play. We need the logic to be
linear (hence the prefix L) and the corresponding term system LT(;) to have
a linearity restriction on higher type “incomplete” (or “safe”) variables in
order to ensure that the computational content remains polynomial-time
computable.

Our goal is to develop the restricted versions T(;) and LT(;) of Gödel’s
T so that the following relationships hold between the theories and their
corresponding functional interpretations:

Arithmetic
Gödel’s T

=
A(;)
T(;)

=
LA(;)
LT(;)

.

61
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The leading intuition is of course that one should use the Curry-Howard
correspondence between terms in lambda-calculus and derivations in arith-
metic. However, in the two-sorted versions we are about to develop, care
must be taken to arrive at flexible and easy-to-use systems which can be
understood in their own right.

3.1. A Two-Sorted Variant T(;) of Gödel’s T

We define a two-sorted variant T(;) of Gödel’s T, by lifting the approach
of Simmons (1988) and Bellantoni and Cook (1992) to higher types. It
is shown that the functions definable in T(;) are exactly the elementary
functions. The proof is based on the observation that β-normalization of
terms of rank ≤ k has elementary complexity, and that the two-sortedness
restriction allows to unfold R in a controlled way.

3.1.1. Higher order terms with input/output restrictions. We
shall work with two forms of arrow types and abstraction terms:{

N → σ

λnr
as well as

{
ρ ( σ

λzr

and a corresponding syntactic distinction between input and output (typed)
variables. Formally we proceed as follows. The types are

ρ, σ, τ ::= N | N → ρ | ρ ( σ,

and the level of a type is defined by

l(N) := 0,

l(ρ → σ) := l(ρ ( σ) := max{l(σ), 1 + l(ρ)}.

Ground types are the types of level 0, and a higher type is any type of level
at least 1. The →-free types are called safe. In particular, every ground
type is safe.

The constants are 0: N and, for safe τ ,
S : N ( N,

Cτ : N ( τ ( (N ( τ) ( τ,

Rτ : N → τ ( (N → τ ( τ) ( τ.

The restriction to safe types τ is needed in the proof of the Normalization
Theorem below. Cτ is used for definition by cases, and Rτ as a recursion
operator. Generally, the typing of Rτ with its peculiar choices of → and (
deserves some comments. The first argument is the one that is recursed on
and hence must be an input argument, so the type starts with N → · · · . The
third argument is the step argument; here we have used the type N → τ ( τ
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rather than N ( τ ( τ , because then we can construct a step term in the
form λn,pt rather than λa,pt, which is more flexible.

We shall work with typed variables. A variable of type N is either an
input or an output variable, and variables of a type different from N are
always output variables. We use the following conventions:

x (input or output) variable;
z output variable;
n, m input variable of type N;
a output variable of type N.

T(;)-terms (terms for short) are

r, s, t ::= x | C | (λnr)N→σ | rN→σsN (s input term) |
(λzr)ρ(σ | rρ(σsρ.

We call s an input term if all its free variables are input variables. C is a
constant.

The conversion rules are(
λ~x,xr(~x, x)

)
~ss 7→

(
λ~xr(~x, s)

)
~s,

Cτ0ts 7→ t,

Cτ (Sr)ts 7→ sr,

Rτ0ts 7→ t,

Rτ (Sr)ts 7→ sr(Rτrts).

Note that converting (λ~x,xr(~x, x))~ss into (λ~xr(~x, s))~s may be viewed as
first converting (λ~x,xr(~x, x))~ss “permutatively” into (λ~x((λxr(~x, x))s))~s and
then performing the inner conversion to obtain (λ~xr(~x, s))~s. One may ask
why we take this conversion relation as our basis and not the more com-
mon (λxr(x))s 7→ r(s). The reason is that our notion of level is defined
with the clause l(ρ → σ) := l(ρ ( σ) := max{l(σ), 1 + l(ρ)} and not
:= max{l(σ), l(ρ)} + 1; this in turn seems reasonable since then the level
of ρ1, . . . , ρm → σ (i.e., of (ρ1 → (ρ2 → . . . (ρm → σ) . . . ))) is 1 and hence
independent of m. But given this definition of level, and given the need in
some arguments (e.g., in the proof of the β-normalization theorem below)
to perform conversions of highest level first, we must be able to convert
(λ~x,xr(~x, x))~ss with ~x of a low and x of a high level into (λ~xr(~x, s))~s.

Redexes are subterms shown on the left side of the conversion rules
above. We write r → r′ (r →∗ r′) if r can be reduced into r′ by one (an
arbitrary number of) conversion of a subterm. A term is in normal form if
it does not contain a redex as a subterm.
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A function f is called definable in T(;) if there is a closed T(;)-term
tf : N � . . .N � N (�∈ {→,(}) in T(;) denoting this function. Notice
that it is always desirable to have more ( in the type of tf , because then
there are less restrictions on its argument terms.

3.1.2. Examples. Addition can be defined by a term t+ of type N (
N → N. The recursion equations are

a + 0 := a, a + (Sn) := S(a + n),

and the representing term is

t+ := λa,n.RNna(λn,p.Sp).

The predecessor function P can be defined by a term tP of type N ( N if
we use the cases operator C:

tP := λa.CNa0(λbb).

From the predecessor function we can define modified subtraction −· :

a−· 0 := a, a−· (Sn) := P (a−· n)

by the term
t−· := λa,n.RNna(λn,p.Pp).

If f is defined from g by bounded summation f(~n, n) :=
∑

i<n g(~n, i), i.e.,

f(~n, 0) := 0, f(~n,Sn) := f(~n, n) + g(~n,Sn)

and we have a term tg of type N(k+1) → N defining g, then we can build a
term tf of type N(k+1) → N defining f by

tf := λ~n,n.RNn0(λn,p.p + (tg~nn)).

We now show that in spite of our restrictions on the formation of types
and terms we can define functions of exponential growth.

Probably the easiest function of exponential growth is B(n, a) = a + 2n

of type B : N → N ( N, with the defining equations

B(0, a) = a + 1,

B(n + 1, a) = B(n, B(n, a)).

We formally define B as a term in T(;) by

B := λn

(
RN(NnS

(
λm,p,a(pN(N(pa))

))
.

From B we can define the exponential function E := λn(Bn0) of type
E : N → N, and also iterated exponential functions like λn(E(En)).

Now consider iteration I(n, f) = fn, with f a variable of type N ( N.
I(0, f, a) := a,

I(n + 1, f, a) := I(n, f, f(a)),
or

I(0, f) := id,

I(n + 1, f) := I(n, f) ◦ f.
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Formally, for every variable f of type N ( N we have the term

If := λn

(
RN(Nn(λaa)

(
λm,p,a(pN(N(fa))

))
.

For the general definition we need the pure safe types ρk, defined by ρ0 := N
and ρk+1 := ρk ( ρk. Then within T(;) we can define

Inak . . . a0 := an
kak−1 . . . a0,

with ak of type ρk. However, a definition F0ak . . . a0 := Ia0ak . . . a0 is not
possible: Ia0 is not allowed.

We now discuss the necessity of the restrictions on the type of R. We
must require that the value type is a safe type, for otherwise we could define

IE := λn

(
RN→Nn(λmm)

(
λn,p,m(pN→N(Em)))

))
,

and IE(n, m) = En(m), a function of superelementary growth.
We also need to require that the “previous”-variable is an output vari-

able, because otherwise we could define

S := λn

(
RNn0

(
λn,m(Em)

))
(superelementary).

Then S(n) = En(0).

3.1.3. Normalization. The size (or length) |r| of a term r is the num-
ber of occurrences of constructors, variables and constants in r: |x| = |C| =
1, |λnr| = |λzr| = |r|+ 1, and |rs| = |r|+ |s|+ 1.

In this section, the distinction between input and output variables and
our two type formers → and ( plays no role.

We first deal with the (generalized) β-conversion rule above:(
λ~x,xr(~x, x)

)
~ss 7→

(
λ~xr(~x, s)

)
~s.

β-redexes are instances of the left side of the β-conversion rule. A term is
said to be in β-normal form if it does not contain a β-redex.

We want to show that every term reduces to a β-normal form. This can
be seen easily if we follow a certain order in our conversions. To define this
order we have to make use of the fact that all our terms have types.

A β-convertible term
(
λ~x,xr(~x~ρ, xρ)

)
~ss is also called a cut with cut-type

ρ. By the level of a cut we mean the level of its cut-type. The cut-rank of
a term r is the least number bigger than the levels of all cuts in r. Now let
t be a term of cut-rank k + 1. Pick a cut of the maximal level k in t, such
that s does not contain another cut of level k. (E.g., pick the rightmost
cut of level k.) Then it is easy to see that replacing the picked occurrence
of (λ~x,xr(~x~ρ, xρ))~ss in t by (λ~xr(~x, s))~s reduces the number of cuts of the
maximal level k in t by 1. Hence

Theorem (β-Normalization). We have an algorithm which reduces any
given term into a β-normal form.
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We now want to give an estimate of the number of conversion steps our
algorithm takes until it reaches the normal form. The key observation for
this estimate is the obvious fact that replacing one occurrence of(

λ~x,xr(~x, x)
)
~ss by

(
λ~xr(~x, s)

)
~s.

in a given term t at most squares the size of t.
An elementary bound Ek(l) for the number of steps our algorithm takes

to reduce the rank of a given term of size l by k can be derived inductively,
as follows. Let E0(l) := 0. To obtain Ek+1(l), first note that by induction
hypothesis it takes ≤ Ek(l) steps to reduce the rank by k. The size of the
resulting term is ≤ l2

n
where n := Ek(l) since any step (i.e., β-conversion)

at most squares the size. Now to reduce the rank by one more, we convert –
as described above – one by one all cuts of the present rank, where each such
conversion does not produce new cuts of this rank. Therefore the number of
additional steps is bounded by the size n. Hence the total number of steps
to reduce the rank by k + 1 is bounded by

Ek(l) + l2
Ek(l)

=: Ek+1(l).

Theorem (Upper bound for the complexity of β-normalization). The
β-normalization algorithm given in the proof above takes at most Ek(l) steps
to reduce a given term of cut-rank k and size l to normal form, where

E0(l) := 0 and Ek+1(l) := Ek(l) + l2
Ek(l)

.

We now show that we can also eliminate the recursion operator, and still
have an elementary estimate on the time needed.

Lemma (R Elimination). Let t(~x ) be a β-normal term of safe type.
There is an elementary function Et such that: if ~m are safe type R-free
terms and the free variables of t(~m) are output variables of safe type, then
in time Et(|~m|) (with |~m| :=

∑
i |mi|) one can compute an R-free term

rf(t; ~x; ~m) such that t(~m) →∗ rf(t; ~x; ~m).

Proof. Induction on |t|.
If t(~x ) has the form λxu1, then x is an output variable and x, u1 have

safe type because t has safe type. If t(~x ) is of the form D~u with D a variable
or a constant different from R, then each ui is a safe type term. Here (in
case D is a variable) we need that ~x and the free variables of t(~m) are of
safe type.

In all of the preceding cases, the free variables of each ui(~m) are output
variables of safe type. Apply the IH to obtain u∗i := rf(ui; ~x; ~m). Let t∗ be
obtained from t by replacing each ui by u∗i . Then t∗ is R-free. The result
is obtained in linear time from ~u∗. This finishes the lemma in all of these
cases.
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The only remaining case is if t is an R clause. Then it is of the form
Rrus~t, because the term has safe type. One obtains rf(r; ~x; ~m) in time
Er(|~m|) by the IH. By assumption t(~m) has free output variables only. Hence
r(~m) is closed, because the type of R requires r(~m) to be an input term. By
β-normalization one obtains the number N := nf(rf(r; ~x; ~m)) in a further
elementary time, E′

r(|~m|).
Now consider sn with a new variable n, and let s′ be its β-normal form.

Since s is β-normal, |s′| ≤ |s| + 1 < |t|. Applying the IH to s′ one obtains
a monotone elementary bounding function Esn. One computes all si :=
rf(s′; ~x, n; ~m, i) (i < N) in a total time of at most∑

i<N

Esn(|~m|+ i) ≤ E′
r(|~m|) · Esn(|~m|+ E′

r(|~m|)).

Consider u, ~t. The IH gives û := rf(u; ~x; ~m) in time Eu(|~m|), and all
t̂i := rf(ti; ~x; ~m) in time

∑
i Eti(|~m|). These terms are also R-free by IH.

Using additional time bounded by a polynomial P in the lengths of these
computed values, one constructs the R-free term

rf(Rrus~t; ~x; ~m) :=
(
sN−1 . . . (s1(s0û )) . . .

)~̂t.
Defining Et(l) := P (Eu(l)+

∑
i Eti(l)+E′

r(l) ·Esn(l+E′
r(l))), the total time

used in this case is at most Et(|~m|). �

Let the R-rank of a term t be the least number bigger than the level
of all value types τ of recursion operators Rτ in t. By the rank of a term
we mean the maximum of its cut-rank and its R-rank. Combining last two
lemmas gives the following.

Lemma. For every k there is an elementary function Nk such that every
T(;)-term t of rank ≤ k can be reduced in time Nk(|t|) to βR normal form.

It remains to remove the occurrences of the cases operator C. We may
assume that only CN occurs.

Lemma (C Elimination). Let t be an R-free closed β-normal term of
ground type N. Then in time linear in |t| one can reduce t to a numeral.

Proof. If the term does not contain C we are done. Otherwise remove
all occurrences of C, as follows. The term has the form Sr or Crts. Proceed
with r and iterate until we reach Crts where r does not contain C. Then r
is 0 or Sr0. In the first case, convert C0ts to t. In the second case, notice
that s has the form λas0(a). Convert C(Sr0)t(λas0(a)) first into (λas0(a))r0

and then into s0(r0). Each time we have removed one occurrence of C. �

We can now combine our results and state the final theorem.
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Theorem (Normalization). Let t be a closed T(;)-term of type N �
. . .N � N (�∈ {→,(}). Then t denotes an elementary function.

Proof. We produce an elementary function Et such that for all numer-
als ~n with t~n is of type N one can compute nf(t~n) in time Et(|~n|). Let ~x be
new variables such that t~x is of type N. The β normal form β-nf(t~x) of t~x
is computed in an amount of time that may be large, but it is still only a
constant with respect to ~n.

ByR Elimination one reduces to anR-free term rf(β-nf(t~x); ~x;~n) in time
Ft(|~n|) with Ft elementary. Since the running time bounds the size of the
produced term, |rf(β-nf(t~x); ~x;~n)| ≤ Ft(|~n|). By a further β-normalization
one can compute

βR-nf(t~n) = β-nf(rf(β-nf(t~x); ~x;~n))

in time elementary in |~n|. Finally in time linear in the result we can remove
all occurrences of C and arrive at a numeral. �

3.1.4. Sufficiency. Conversely, it is not hard to see that every elemen-
tary function is definable in T(;). More precisely, we show that for every
elementary function f there is a term tf of type N(k) → N defining f .

For the proof it is easiest to use the following characterization of ele-
mentary functions: The class E consists of those number theoretic functions
which can be defined from the initial functions: constant 0, successor S,
projections (onto the ith coordinate), addition +, modified subtraction −· ,
multiplication · and exponentiation 2x, by applications of composition and
bounded minimization.

Recall that bounded minimization

f(~n,m) = µk<m(g(~n, k) = 0)

is definable from bounded summation and −· :

f(~n,m) =
∑
i<m

(
1−·

∑
k≤i

(1−· g(~n, k))
)
.

Now the claim follows from the first examples in 3.1.2 above.

3.2. A Linear Two-Sorted Variant LT(;) of Gödel’s T

We now add some linearity restrictions, which will allow us to charac-
terize the polynomially computable functions as those definable in a certain
fragment of Gödel’s T. Recall that in the first example above of a recursion
producing exponential growth, the definition of B(n, a) = a + 2n, we had
the defining term

B := λn

(
RN(NnS

(
λm,p,a(pN(N(pa))

))
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with the higher type variable p for the “previous” value appearing twice in
the step term. The linearity restriction will forbid this.

When discussing polynomial time, it is appropriate to work with a bi-
nary (rather than unary) representation of the natural numbers, with two
successors S0(a) = 2a and S1(a) = 2a + 1.

We essentially keep the definitions of types, safe types, input/output
variables from 3.1.1. However, the term definition will be different: it now
involves a linearity constraint. Moreover, the typing of the recursion oper-
ator R needs to be changed: its (higher type) step argument will be used
many times, and hence we need a → after it. As a consequence, we now
allow higher types as argument types for →. Therefore we change the names
of input/output variables into normal/safe variables.

3.2.1. Feasible computation with higher types. We shall work
with two forms of arrow types and abstraction terms:{

ρ → σ

λx̄ρr
as well as

{
ρ ( σ

λxρr

and a corresponding syntactic distinction between normal and safe (typed)
variables, x̄ and x. The intuition is that a function of type ρ → σ may
recurse on its argument (if it is of ground type) or use it many times (if it is
of higher type), whereas a function of type ρ ( σ is not allowed to recurse
on its argument (if it is of ground type) or can use it only once (if it is of
higher type). As is well known, we then need a corresponding distinction
for product types: the ordinary product ∧ for →, and the tensor product ⊗
for the linear arrow (. Formally we proceed as follows. The types are

ρ, σ, τ ::= U | B | L(ρ) | ρ → σ | ρ ( σ | ρ ∧ σ | ρ⊗ σ,

and the level of a type is defined by
l(U) := 0,

l(B) := 0,

l(L(ρ)) := l(ρ),

l(ρ → σ) := l(ρ ( σ) := max{l(σ), 1 + l(ρ)},
l(ρ ∧ σ) := l(ρ⊗ σ) := max{l(ρ), l(σ)}.

Ground types are the types of level 0, and a higher type is any type of level
at least 1. The →-free types are also called safe. In particular, every ground
type is safe.

The constants are u : U, tt, ff : B, nilρ : L(ρ) and, for safe ρ, τ ,

::ρ : ρ ( L(ρ) ( L(ρ),
ifτ : B ( τ ∧ τ ( τ,

Cρ
τ : L(ρ) ( τ ∧ (ρ ( L(ρ) ( τ) ( τ,

Rρ
τ : L(ρ) → τ ( (ρ → L(ρ) → τ ( τ) → τ (ρ ground).
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The restriction to safe types τ is needed in the proof of the Normalization
Theorem below (in 3.2.4). Cρ

τ is used for definition by cases (on the con-
structor form of a list), and Rρ

τ as a recursion operator. Note that a single
recursion operator (over lists) is used here to cover both, numeric and word
recursion.

The typing of Rρ
τ with its peculiar choices of → and ( deserves some

comments. The first argument is the one that is recursed on and hence must
be normal, so the type starts with L(ρ) → · · · . The third argument is for
the step term, which is of a higher type and will be used many times (when
the recursion operator is unfolded), so it must be normal as well. Hence
we need a → after the step type. We will crucially need this typing when
we prove (in the Sufficiency Lemma below) that the functions definable in
LT(;) are closed under “safe recursion”.

Further constants are, for safe ρ, σ, τ ,

⊗+
ρσ : ρ ( σ ( ρ⊗ σ,

⊗−ρστ : ρ⊗ σ ( (ρ ( σ ( τ) ( τ,

∧+
ρσ : ρ ( σ ( ρ ∧ σ,

fstρσ : ρ ∧ σ ( ρ, sndρσ : ρ ∧ σ ( σ.

The restriction to safe types ρ, σ, τ again will be needed in the proof of the
Normalization Theorem.

LT(;)-terms (terms for short) are built from these constants and typed
variables x̄σ (normal variables) and xσ (safe variables) by introduction and
elimination rules for the two type forms ρ → σ and ρ ( σ, i.e.,

x̄ρ | xρ | Cρ (constant) |
(λx̄ρrσ)ρ→σ | (rρ→σsρ)σ (s “normal”) |
(λxρrσ)ρ(σ | (rρ(σsρ)σ (higher type safe variables in r, s distinct),

where a term s is called normal if all its free variables are normal. By the
restriction on safe variables in the formation of an application rρ(σs, every
higher type safe variable can occur at most once in a given term.

The conversion rules are as expected: β-conversion (for normal and safe
variables) plus

ifτ tts 7→ fstττs, ifτ ffs 7→ sndττs,

Cρ
τ nilρs 7→ fstτσs, Cρ

τ (r ::ρ l)s 7→ sndτσsrl (σ := ρ ( L(ρ) ( τ),

Rρ
τnilρts 7→ t, Rρ

τ (r ::ρ l)ts 7→ srl(Rρ
τ lts),

⊗−ρστ (⊗+
ρσrs)t 7→ trs,

fstρσ(∧+
ρσrs) 7→ r, sndρσ(∧+

ρσrs) 7→ s.



3.2. A LINEAR TWO-SORTED VARIANT LT(;) OF GÖDEL’S T 71

Redexes are subterms shown on the left side of the conversion rules above.
We write r → r′ (r →∗ r′) if r can be reduced into r′ by one (an arbitrary
number of) conversion of a subterm.

Note that projections w.r.t. ρ⊗ σ can be defined easily: For a term t of
type ρ⊗ σ let

t0 := ⊗−ρσρt(λxρ,yσx) and t1 := ⊗−ρσσt(λxρ,yσy).

Then clearly

(⊗+
ρσrs)0 = ⊗−ρσρ(⊗+

ρσrs)(λxρ,yσx) 7→ (λxρ,yσx)rs →∗ r,

(⊗+
ρσrs)1 = ⊗−ρσσ(⊗+

ρσrs)(λxρ,yσy) 7→ (λxρ,yσy)rs →∗ s.

A function f is called definable in LT(;) if there is a closed LT(;)-term
r : W � . . .W � W (�∈ {→,(}) in LT(;) denoting this function.

3.2.2. Examples. We now look at some examples intended to explain
how our restrictions on the formation of types and terms make it impossible
obtain exponential growth. However, for definiteness we first have to say
precisely what we mean by a numeral .

Terms of the form rρ
1 ::ρ (rρ

2 ::ρ . . . (rρ
n ::ρ nilρ) . . .) are called lists. We

abbreviate N := L(U) and W := L(B).

0 := nilU,

S := λl.u :: lN,

1 := nilB,

S0 := λl.ff :: lW,

S1 := λl.tt :: lW.

Particular lists are S(. . . (S0) . . . ) and Si1(. . . (Sin1) . . . ). The former are
called unary numerals, and the latter binary numerals (or numerals of type
W). We denote binary numerals by ν.

Two recursions. Consider
D(1) := S0(1),

D(Si(x)) := S0(S0(D(x))),

E(1) := 1,

E(Si(x)) := D(E(x)).

The corresponding terms are

D := λx̄.RWx̄(S01)(λz̄,l̄,p.S0(S0p)),

E := λx̄.RWx̄1(λz̄,l̄,p.Dp).

Here D is legal, but E is not: the application Dp is not allowed.
Recursion with parameter substitution. Consider

E(1, y) := S0(y),

E(Si(x), y) := E(x,E(x, y)),
or

E(1) := S0,

E(Si(x)) := E(x) ◦ E(x).

The corresponding term

λx̄.RW(Wx̄S0(λz̄,l̄,p,y.p
W(W(py))
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does not satisfy the linearity condition: the higher type variable p occurs
twice, and the typing of R requires p to be safe.

A different form of recursion with parameter substitution is

E(1, y) := y,

E(Si(x), y) := E(x,D(y)),
or

E(1) := id,

E(Si(x)) := E(x) ◦D.

The corresponding term would be

λx̄.RW→Wx̄(λyy)(λz̄,l̄,p,x̄.pW→W(Dx̄)),

but it is not legal, since the result type is not safe.
Higher argument types: iteration. Consider

I(1, f, y) := y,

I(Si(x), f, y) := f(I(x, f, y)),
or

I(1, f) := id,

I(Si(x), f) := f ◦ I(x, f)

with the corresponding term

If := λx̄.RW(Wx̄(λyy)(λz̄,l̄,p,y.f(pW(Wy)),
E := λx.IDx1.

Here If is legal, but E is not: the type of D prohibits iteration, i.e., formation
of ID. – Note that in PVω (see Cook and Kapron (1990), Cook (1992)) I is
not definable, for otherwise we could define λz.IDz.

A related phenomenon occurs in

E(1) := id,

E(Si(x)) := E(x) ◦D.

Now the term is

E := λx̄.RW(Wx̄S0(λz̄,l̄,qW(W .Iq(S0(S01))).

Again E is not legal, this time because the free parameter f in the step
term of If is substituted with the safe variable q. This variable needs to be
normal because of the typing of the recursion operator.

3.2.3. Polynomials. It is high time that we give some examples of
what can de done in our term system. It is easy to define ⊕ : W → W ( W
such that x⊕ y concatenates |x| bits onto y:

1⊕ y = S0y,

(Six)⊕ y = S0(x⊕ y).

The representing term is

x̄⊕ y := RW(Wx̄S0(λz̄,l̄,p,y.S0(pW(Wy))y.
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Similarly we define � : W → W → W such that x�y has output length
|x| · |y|:

x� 1 = x,

x� (Siy) = x⊕ (x� y).

The representing term is x̄� ȳ := RWȳx̄(λz̄,l̄,p.x̄⊕ p).
Note that the typing ⊕ : W → W ( W is crucial: it allows using

the safe variable p in the definition of �. If we try to go on and define
exponentiation from multiplication � just as � was defined from ⊕, we find
that we cannot go ahead, because of the different typing � : W → W → W.

3.2.4. Normalization. A dag is a directed acyclic graph. A parse dag
is a structure like a parse tree but admitting in-degree greater than one. For
example, a parse dag for λxr has a node containing λx and a pointer to a
parse dag for r. A parse dag for (rs) has a node containing a pair of pointers,
one to a parse dag for r and the other to a parse dag for s. Terminal nodes
are labeled by constants and variables.

The size |d| of a parse dag d is the number of nodes in it, but counting
3 for Cτ nodes. Starting at any given node in the parse dag, one obtains a
term by a depth-first traversal; it is the term represented by that node. We
may refer to a node as if it were the term it represents.

A parse dag is conformal if (i) every node having in-degree greater than
1 is of ground type, and (ii) every maximal path to a bound variable x passes
through the same binding λx node.

A parse dag is h-affine if every higher-type variable occurs at most once
in the dag.

We adopt a model of computation over parse dags in which operations
such as the following can be performed in unit time: creation of a node
given its label and pointers to the sub-dags; deletion of a node; obtaining a
pointer to one of the subsidiary nodes given a pointer to an interior node;
conditional test on the type of node or on the constant or variable in the
node. Concerning computation over terms (including numerals), we use the
same model and identify each term with its parse tree. Although not all
parse dags are conformal, every term is conformal (assuming a relabeling of
bound variables).

A term is called simple if it contains no higher type normal variables.
Obviously simple terms are closed under reductions, taking of subterms,
and applications. Every simple term is h-affine, due to the linearity of safe
higher-type variables.

Lemma (Simplicity). Let t be a ground type term whose free variables
are of ground type. Then nf(t) contains no higher type normal variables.



74 3. COMPLEXITY

•
x

•
�

�
�
�

A
A
A
A

r

◦
?

λx

•
��	 @@R• s

•
�

�
�
�

A
A
A
A

r

• s


 	

�-


 	

�-

Figure 1. Redex (λxr)s with r of ground type.

Proof. Suppose a variable x̄σ with l(σ) > 0 occurs in nf(t). It must
be bound in a subterm (λx̄σr)σ→τ of nf(t). By the well known subtype
property of normal terms, the type σ → τ either occurs positively in the
type of nf(t), or else negatively in the type of one of the constants or free
variables of nf(t). The former is impossible since t is of ground type, and
the latter by inspection of the types of the constants. �

Lemma (Sharing Normalization). Let t be an R-free simple term. Then
a parse dag for nf(t), of size at most |t|, can be computed from t in time
O(|t|2).

Proof. Under our model of computation, the input t is a parse tree.
Since t is simple, it is an h-affine conformal parse dag of size at most |t|. If
there are no nodes which represent a redex, then we are done. Otherwise,
locate a node representing a redex; this takes time at most O(|t|). We show
how to update the dag in time O(|t|) so that the size of the dag has strictly
decreased and the redex has been eliminated, while preserving conformality.
Thus, after at most |t| iterations the resulting dag represents the normal-
form term nf(t). The total time therefore is O(|t|2).

Assume first that the redex in t is (λxr)s with x of ground type (see
Figure 1); the argument is similar for a normal variable x̄. Replace pointers
to x in r by pointers to s. Since s does not contain x, no cycles are created.
Delete the λx node and the root node for (λxr)s which points to it. By
conformality (i) no other node points to the λx node. Update any node
which pointed to the deleted node for (λxr)s, so that it now points to the
revised r subdag. This completes the β reduction on the dag (one may also
delete the x nodes). Conformality (ii) gives that the updated dag represents
a term t′ such that t → t′.

One can verify that the resulting parse dag is conformal and h-affine,
with conformality (i) following from the fact that s has ground type.

If the redex in t is (λxr)s with x of higher type (see Figure 2), then x
occurs at most once in r because the parse dag is h-affine. By conformality
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◦
x

•
�

�
�
�

A
A
A
A

r

◦
?

λx

•
��	 @@R◦ s

•
�

�
�
�

A
A
A
A

r

◦ s


 	

�-

Figure 2. Redex (λxr)s with r of higher type.
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Figure 3. Cτ (r ::ρ l)s 7→ snd srl with ρ a ground type.

(i) there is at most one pointer to that occurrence of x. Update it to point
to s instead, deleting the x node. As in the preceding case, delete the λx

and the (λxr)s node pointing to it, and update other nodes to point to the
revised r. Again by conformality (ii) the updated dag represents t′ such that
t → t′. Conformality and acyclicity are preserved, observing this time that
conformality (i) follows because there is at most one pointer to s.

The remaining reductions are for the constant symbols.
Case ifτ tts 7→ fstττs. Easy; similar for ff.
Case Cτnilρs 7→ fst s. Easy.
Case Cτ (r ::ρ l)s 7→ snd srl with ρ a ground type (see Figure 3). Note

that the new dag has one node more than the original one, but one Cτ -
node less. Since we count the Cτ -nodes 3-fold, the total number of nodes
decreases.

The remaining cases are treated in the Figures 4 – 7 below. �
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Figure 4. Cτ (r ::ρ l)s 7→ snd srl with ρ not a ground type.
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Figure 5. ⊗−ρστ (⊗+
ρσrs)t 7→ trs with ρ⊗ σ a ground type.
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Figure 6. ⊗−ρστ (⊗+
ρσrs)t 7→ trs with ρ⊗ σ not a ground type.

Corollary (Base Normalization). Let t be a closed R-free simple term
of type W. Then the binary numeral nf(t) can be computed from t in time
O(|t|2), and |nf(t)| ≤ |t|.

Proof. By the Sharing Normalization Lemma we obtain a parse dag for
nf(t) of size at most |t|, in time O(|t|2). Since nf(t) is a binary numeral, there
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Figure 7. fstρσ(∧+
ρσrs) 7→ r with ρ ∧ σ a ground type.

is only one possible parse dag for it – namely, the parse tree of the numeral.
This is identified with the numeral itself in our model of computation. �

Lemma (R Elimination). Let t(~x ) be a simple term of safe type. There is
a polynomial Pt such that: if ~m are safe type R-free closed simple terms and
the free variables of t(~m) are safe and of safe type, then in time Pt(|~m|) one
can compute an R-free simple term rf(t; ~x; ~m) such that t(~m) →∗ rf(t; ~x; ~m).

Proof. By induction on |t|.
If t(~x ) has the form λzu1, then z is safe and z, u1 have safe type because

t has safe type. If t(~x ) is of the form D~u with D a variable or one of the
constants u, tt, ff, nilρ, ::ρ, ifτ , Cτ , ⊗+

ρσ, ⊗−ρστ , ∧+
ρστ , fstρσ or sndρσ, then

each ui is a safe type term. Here (in case D is a variable xi) we need that
xi is of safe type.

In all of the preceding cases, each ui(~m) has only safe free variables of
safe type. Apply the IH as required to simple terms ui to obtain u∗i :=
rf(ui; ~x; ~m); so each u∗i is R-free. Let t∗ be obtained from t by replacing
each ui by u∗i . Then t∗ is an R-free simple term; here we need that ~m are
closed, to avoid duplication of variables. The result is obtained in linear
time from ~u∗. This finishes the lemma in all of these cases.

If t is (λyr)s~u with a safe variable y of ground type, apply the IH to
yield (r~u)∗ := rf(r~u; ~x; ~m) and s∗ := rf(s; ~x; ~m). Redirect the pointers to
y in (r~u)∗ to point to s∗ instead. If t is (λȳr)s~u with a normal variable
ȳ of ground type, apply the IH to yield s∗ := rf(s; ~x; ~m). Note that s∗

is closed, since it is normal and the free variables of s(~m) are safe. Then
apply the IH again to obtain rf(r~u; ~x, ȳ; ~m, s∗). The total time is at most
Q(|t|) + Ps(|~m|) + Pr(|~m| + Ps(|~m|)), as it takes at most linear time to
construct r~u from (λyr)s~u.

If t is (λyr(y))s~u with y of higher type, then y can occur at most once
in r, because t is simple. Thus |r(s)~u| < |(λyr)s~u|. Apply the IH to obtain
rf(r(s)~u; ~x; ~m). Note that the time is bounded by Q(|t|) + Pr(s)~u(|~m|) for
a degree one polynomial q, since it takes at most linear time to make the
at-most-one substitution in the parse tree.
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The only remaining case is if the term is an R clause. Then it is of the
form Rlus~t, because the term has safe type.

Since l is normal, all free variables of l are normal – they must be in ~x
since free variables of (Rlus~t[~x := ~m] are safe. Then l(~m) is closed, implying
nf(l(~m)) is a list. One obtains rf(l; ~x; ~m) in time Pl(|~m|) by the IH. Then
by Base Normalization one obtains the list l̂ := nf(rf(l; ~x; ~m)) in a further
polynomial time. Let l̂ = r0 ::ρ (r1 ::ρ . . . (rN−1 ::ρ nilρ) . . .) and let li,
i < N be obtained from l̂ by omitting the initial elements r0, . . . , ri. Thus
all { ri, li | i < N } are obtained in a total time bounded by P ′

l (|~m|) for a
polynomial P ′

l .
Now consider sz̄ȳ with new variables z̄ρ and ȳL(ρ). Applying the IH to

sz̄ȳ one obtains a monotone bounding polynomial Psz̄ȳ. One computes all
si := rf(sz̄ȳ; ~x, z̄, ȳ; ~m, ri, li) in a total time of at most∑

i<N

Psz̄ȳ(|ri|+ |li|+ |~m|) ≤ P ′
l (|~m|) · Psz̄ȳ(2P ′

l (|~m|) + |~m|).

Each si is R-free by the IH. Furthermore, no si has a free safe variable: any
such variable would also be free in s contradicting that s is normal.

Consider u, ~t. The IH gives û := rf(u; ~x; ~m) in time Pu(|~m|), and all
t̂i := rf(ti; ~x; ~m) in time

∑
i Pti(|~m|). These terms are also R-free by IH.

Clearly u and the ti do not have any free (or bound) higher type safe variables
in common. The same is true of û and all t̂i.

Using additional time bounded by a polynomial p in the lengths of these
computed values, one constructs the R-free term(

λx.s0(s1 . . . (sN−1x) . . . )
)
û~̂t.

Defining Pt(n) := P (
∑

i Pti(n) + P ′
l (n) · Psz̄ȳ(2P ′

l (n) + n)), the total time
used in this case is at most Pt(|~m|). The result is a term because û and the
t̂i are terms which do not have any free higher-type safe variable in common
and because si does not have any free higher-type safe variables at all. �

Theorem (Normalization). Let r be a closed LT(;)-term of type W �
. . .W � W (�∈ {→,(}). Then r denotes a polytime function.

Proof. One must find a polynomial Qt such that for all R-free simple
closed terms ~n of types ~ρ one can compute nf(t~n) in time Qt(|~n|). Let ~x be
new variables of types ~ρ. The normal form of t~x is computed in an amount
of time that may be large, but it is still only a constant with respect to ~n.

nf(t~x) is simple by the Simplicity Lemma. ByR Elimination one reduces
to an R-free simple term rf(nf(t~x); ~x;~n) in time Pt(|~n|). Since the running
time bounds the size of the produced term, |rf(nf(t~x); ~x;~n)| ≤ Pt(|~n|).
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By Sharing Normalization one can compute

nf(t~n) = nf(rf(nf(t~x); ~x;~n))

in time O(Pt(|~n|)2). Let Qt be the polynomial referred to by the big-O
notation. �

3.2.5. Sufficiency. The converse holds as well. The proof uses a char-
acterization of the polynomial-time computable functions given by Bellan-
toni and Cook (1992). There the polynomial time computable functions
are characterized by a function algebra B based on safe recursion and safe
composition. There every function is written in the form f(~x; ~y) where ~x; ~y
denotes a bookkeeping of those variables ~x that are used in a recursion
defining f , and those variables ~y that are not recursed on. We proceed by
induction on the definition of f(x1, . . . , xk; y1, . . . , yl) in B, associating to f

a closed term tf of type W(k) → W(l) ( W, such that t denotes f .
The functions in B were defined over the non-negative integers rather

than the positive ones, but this clearly is a minor point.

Lemma (Sufficiency). Let f be a polynomial-time computable function.
Then f is denoted by a closed LT(;)-term tf .

Proof. If f in B is an initial function 1, S0, S1, P , conditional C or
projection πm,n

i , then tf is easily defined. For example, the predecessor
function P of type W ( W with the recursion equations P (; 1) := 1 and
P (;Sin) := n is denoted by tP := λn.CWns with s := ∧+

W,B(W(W1(λz,nn).
If f is defined by safe composition, then

f(~x; ~y) := g(r1(~x; ), . . . , rm(~x; ); s1(~x; ~y), . . . , sn(~x; ~y)).

Using the IH to obtain tg, t~r and t~s, define

tf := λ~̄x,~y.tg(tr1
~̄x) . . . (trm

~̄x) (ts1
~̄x~y) . . . (trm

~̄x~y).

Finally consider f defined by safe recursion,

f(1, ~x; ~y) := g(~x; ~y),

f(Sin, ~x; ~y) := hi(n, ~x; ~y, f(n, ~x; ~y)).

One has tg, th0 and th1 by IH. Let p be a variable of type τ := W(#(~y)) ( W;
this is the safe type used in the recursion. Then define a step term by

s := λx̄,l̄,p,~y.ifW(Wx̄
(
∧+(λz.th0 l̄~̄x~yz)(λz.th1 l̄~̄x~yz)

)
(p~y ).

Note p is used only once. Let tf := λn̄,~̄x.Rτ n̄(tg~̄x )s. �
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3.3. Towards Curry-Howard Extensions to Arithmetic

Curry and Howard observed that types correspond to formulas, and
terms to proofs, when the logic is formulated in Gentzen’s natural deduction
calculus. Therefore it is tempting the transfer our restricted term systems
to arithmetical theories, which then by construction have limited compu-
tational power: elementary arithmetic A(;) for T(;), and polynomial-time
arithmetic LA(;) for LT(;). Initial attempts in this direction have already
been carried out: by Ostrin and Wainer (2005) for the elementary case, and
by Schwichtenberg (2006) for the polynomial-time case. There is also related
work by Bellantoni and Hofmann (2002), which however uses a different ap-
proach based on the Hilbert calculus.

It remains to be seen whether such attempts to obtain feasible pro-
grams become feasible in practice. In any case, since such programs are
automatically generated by extraction from checkable proofs, by their very
construction the meet the highest possible security demands.

3.4. Notes

The elementary variant T(;) of Gödel’s T developed in 3.1 has many
relatives in the literature.

Beckmann and Weiermann (1996) characterize the elementary functions
by means of a restriction of the combinatory logic version of Gödel’s T.
The restriction consists in allowing occurrences of the iteration operator
only when immediately applied to a type N argument. For the proof they
use an ordinal assignment due to Howard (1970) and Schütte (1977). The
authors remark (on p. 477) that the methods of their paper can also be
applied to a λ-formulation of T: the restriction on terms then consists in
allowing only iterators of the form Iρt

N and in disallowing λ-abstraction of
the form λx . . . Iρt

N . . . where x occurs in tN; however, no details are given.
Moreover, our restrictions are slightly more liberal (input variables in t can
be abstracted), and also the proof method is very different.

Aehlig and Johannsen (2005) characterize the elementary functions by
means of a fragment of Girard’s system F . They make essential use of the
Church style representation of numbers in F . A somewhat different approach
for characterizing the elementary functions based on a “predicative” setting
has been developed by Leivant (1994).
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