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Introduction

The goal of this course is to study computable functionals, in the context
of a minimal logical system allowing to do proofs about them.

We develop a natural deduction system for minimal logic in the language
based on implication →, conjunction ∧, disjunction ∨ and the quantifiers
∀ and ∃. We present a general notion of a model suitable for minimal
logic, called Beth-structures. For such models we prove a soundness and a
completeness theorem; both proofs are constructive.

Intuitionistic logic can be embedded into minimal logic, and the sound-
ness and completeness proofs carry over, again with constructive proofs.

Classical logic can be embedded into minimal logic as well. For classical
logic a different notion of a structure and of validity in such structures is
appropriate. The soundness theorem for classical models is easy. We will
derive the completeness theorem for classical logic as a consequence of the
one for minimal logic. However, this proof will not be constructive any
more. We will need the law of excluded middle and the classical axiom of
dependent choice.

We also present a different completeness proof for classical logic. It
consists in simultaneously searching for a derivation and a counterexample.
Special attention is given to the principles used in this proof which go beyond
minimal logic. We show that a test for infinity of a binary decidable tree
suffices, and in fact is equivalent to the completeness theorem.
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CHAPTER 1

Logic

The main subject of Mathematical Logic is mathematical proof. In this
introductory chapter we deal with the basics of formalizing such proofs.
The system we pick for the representation of proofs is Gentzen’s natural
deduction, from (1934). Our reasons for this choice are twofold. First, as
the name says this is a natural notion of formal proof, which means that
the way proofs are represented corresponds very much to the way a care-
ful mathematician writing out all details of an argument would go anyway.
Second, formal proofs in natural deduction are closely related (via the so-
called Curry-Howard correspondence) to terms in typed lambda calculus.
This provides us not only with a compact notation for logical derivations
(which otherwise tend to become somewhat unmanagable tree-like struc-
tures), but also opens up a route to applying the computational techniques
which underpin lambda calculus.

Apart from classical logic we will also deal with more constructive logics:
minimal and intuitionistic logic. This will reveal some interesting aspects of
proofs, e.g., that it is possible und useful to distinguish beween existential
proofs that actually construct witnessing objects, and others that don’t.

An essential point for Mathematical Logic is to fix a formal language to
be used. We take implication→ and the universal quantifier ∀ as basic. Then
the logic rules correspond to lambda calculus. The additional connectives ⊥,
∃, ∨ and ∧ are defined via axiom schemes. These axiom schemes will later
be seen as special cases of introduction and elimination rules for inductive
definitions.

1.1. Formal Languages

1.1.1. Terms and formulas. Let a countable infinite set { vi | i ∈ N }
of variables be given; they will be denoted by x, y, z. A first order language
L then is determined by its signature, which is to mean the following.

• For every natural number n ≥ 0 a (possible empty) set of n-ary rela-
tion symbols (also called predicate symbols). 0-ary relation symbols
are called propositional symbols. ⊥ (read “falsum”) is required as
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4 1. LOGIC

a fixed propositional symbol. The language will not, unless stated
otherwise, contain = as a primitive.
• For every natural number n ≥ 0 a (possible empty) set of n-ary

function symbols. 0-ary function symbols are called constants.

We assume that all these sets of variables, relation and function symbols are
disjoint.
L-terms are inductively defined as follows.

• Every variable is an L-term.
• Every constant of L is an L-term.
• If t1, . . . , tn are L-terms and f is an n-ary function symbol of L

with n ≥ 1, then f(t1, . . . , tn) is an L-term.

From L-terms one constructs L-prime formulas, also called atomic for-
mulas of L: If t1, . . . , tn are terms and R is an n-ary relation symbol of L,
then R(t1, . . . , tn) is an L-prime formula.
L-formulas are inductively defined from L-prime formulas by

• Every L-prime formula is an L-formula.
• If A and B are L-formulas, then so are (A→ B) (“if A, then B”),

(A ∧B) (“A and B”) and (A ∨B) (“A or B”).
• If A is an L-formula and x is a variable, then ∀xA (“for all x, A

holds”) and ∃xA (“there is an x such that A”) are L-formulas.

Negation, classical disjunction, and the classical existential quantifier
are defined by

¬A := A→ ⊥,

A ∨̃ B := ¬A→ ¬B → ⊥,

∃̃xA := ¬∀x¬A.

Usually we fix a language L, and speak of terms and formulas instead
of L-terms and L-formulas. We use

r, s, t for terms,
x, y, z for variables,
c for constants,
P,Q,R for relation symbols,
f, g, h for function symbols,
A,B, C, D for formulas.

Definition. The depth dp(A) of a formula A is the maximum length
of a branch in its construction tree. In other words, we define recursively
dp(P ) = 0 for atomic P , dp(A ◦ B) = max(dp(A),dp(B)) + 1 for binary
operators ◦, dp(◦A) = dp(A) + 1 for unary operators ◦.
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The size or length |A| of a formula A is the number of occurrences of
logical symbols and atomic formulas (parentheses not counted) in A: |P | = 1
for P atomic, |A ◦B| = |A|+ |B|+ 1 for binary operators ◦, | ◦A| = |A|+ 1
for unary operators ◦.

One can show easily that |A|+ 1 ≤ 2dp(A)+1.

Notation (Saving on parentheses). In writing formulas we save on
parentheses by assuming that ∀,∃,¬ bind more strongly than ∧,∨, and
that in turn ∧,∨ bind more strongly than →,↔ (where A↔ B abbreviates
(A → B) ∧ (B → A)). Outermost parentheses are also usually dropped.
Thus A ∧ ¬B → C is read as ((A ∧ (¬B)) → C). In the case of iterated
implications we sometimes use the short notation

A1 → A2 → . . . An−1 → An for A1 → (A2 → . . . (An−1 → An) . . . ).

To save parentheses in quantified formulas, we might use a mild form of
the dot notation: a dot immediately after ∀x or ∃x makes the scope of that
quantifier as large as possible, given the parentheses around. So ∀x.A→ B
means ∀x(A→ B), not (∀xA)→ B.

We also save on parentheses by writing, e.g., Rxyz, Rt0t1t2 instead of
R(x, y, z), R(t0, t1, t2), where R is some predicate symbol. Similarly for a
unary function symbol with a (typographically) simple argument, so fx for
f(x), etc. In this case no confusion will arise. But readability requires that
we write in full R(fx, gy, hz), instead of Rfxgyhz.

Binary function and relation symbols are usually written in infix nota-
tion, e.g., x + y instead of +(x, y), and x < y instead of <(x, y). We write
t 6= s for ¬(t = s) and t 6< s for ¬(t < s).

1.1.2. Substitution, free and bound variables. Expressions E , E ′
which differ only in the names of bound variables will be regarded as iden-
tical. This is sometimes expressed by saying that E and E ′ are α-equivalent.
In other words, we are only interested in expressions “modulo renaming of
bound variables”. There are methods of finding unique representatives for
such expressions, for example the namefree terms of de Bruijn (1972). For
the human reader such representations are less convenient, so we shall stick
to the use of bound variables.

In the definition of “substitution of expression E ′ for variable x in ex-
pression E”, either one requires that no variable free in E ′ becomes bound
by a variable-binding operator in E , when the free occurrences of x are re-
placed by E ′ (also expressed by saying that there must be no “clashes of
variables”), “E ′ is free for x in E”, or the substitution operation is taken to
involve a systematic renaming operation for the bound variables, avoiding
clashes. Having stated that we are only interested in expressions modulo
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renaming bound variables, we can without loss of generality assume that
substitution is always possible.

Also, it is never a real restriction to assume that distinct quantifier
occurrences are followed by distinct variables, and that the sets of bound
and free variables of a formula are disjoint.

Notation. “FV” is used for the (set of) free variables of an expression;
so FV(t) is the set of variables free in the term t, FV(A) the set of variables
free in formula A etc.
E [x := t] denotes the result of substituting the term t for the variable

x in the expression E . Similarly, E [~x := ~t ] is the result of simultaneously
substituting the terms ~t = t1, . . . , tn for the variables ~x = x1, . . . , xn, respec-
tively.

Locally we shall adopt the following convention. In an argument, once
a formula has been introduced as A(x), i.e., A with a designated variable x,
we write A(t) for A[x := t], and similarly with more variables. �

1.1.3. Subformulas. Unless stated otherwise, the notion of subfor-
mula we use will be that of a subformula in the sense of Gentzen.

Definition. (Gentzen) subformulas of A are defined by
(a) A is a subformula of A;
(b) if B ◦ C is a subformula of A then so are B, C, for ◦ = →,∧,∨;
(c) if ∀xB or ∃xB is a subformula of A, then so is B[x := t], for all t free

for x in B.
If we replace the third clause by:
(c)′ if ∀xB or ∃xB is a subformula of A then so is B,
we obtain the notion of literal subformula.

Definition. The notions of positive, negative, strictly positive subfor-
mula are defined in a similar style:
(a) A is a positive and a stricly positive subformula of itself;
(b) if B ∧C or B ∨C is a positive [negative, strictly positive] subformula of

A, then so are B, C;
(c) if ∀xB or ∃xB is a positive [negative, strictly positive] subformula of A,

then so is B[x := t];
(d) if B → C is a positive [negative] subformula of A, then B is a negative

[positive] subformula of A, and C is a positive [negative] subformula of
A;

(e) if B → C is a strictly positive subformula of A, then so is C.
A strictly positive subformula of A is also called a strictly positive part
(s.p.p.) of A. Note that the set of subformulas of A is the union of the



1.2. NATURAL DEDUCTION 7

positive and negative subformulas of A. Literal positive, negative, strictly
positive subformulas may be defined in the obvious way by restricting the
clause for quantifiers.

Example. (P → Q) → R ∧ ∀xR′(x) has as s.p.p.’s the whole formula,
R ∧ ∀xR′(x), R, ∀xR′(x), R′(t). The positive subformulas are the s.p.p.’s
and in addition P ; the negative subformulas are P → Q, Q.

Definition. Harrop formulas (in the literature also called Rasiowa-
Harrop formulas) are formulas for which no s.p.p. is a disjunction or an
existential formula.

These formulas will play an important role later on.

1.2. Natural Deduction

We introduce Gentzen’s system of natural deduction. To allow a direct
correspondence with the lambda calculus, we restrict the rules used to those
for the logical connective → and the universal quantifier ∀. The rules come
in pairs: we have an introduction and an elimination rule for each of these.
The other logical connectives are introduced by means of axiom schemes:
this is done for conjunction ∧, disjunction ∨ and the existential quantifier
∃. The resulting system is called minimal logic; it has been introduced by
Johansson (1937). Notice that no negation is present.

If we then go on and require the ex-falso-quodlibet scheme for the nullary
propositional symbol ⊥ (“falsum”), we can embed intuitionistic logic . To
obtain classical logic, we add as an axiom scheme the principle of indirect
proof, also called stability. However, to obtain classical logic it suffices to
restrict to the language based on →, ∀, ⊥ and ∧; we can introduce classical
disjunction ∨̃ and the classical existential quantifier ∃̃ via their (classical)
definitions above. For these the usual introduction and elimination proper-
ties can then be derived.

1.2.1. Examples of derivations. Let us start with some examples for
natural proofs. Assume that a first order language L is given. For simplicity
we only consider here proofs in pure logic, i.e., without assumptions (axioms)
on the functions and relations used.

(1.1) (A→ B → C)→ (A→ B)→ A→ C.

Assume A → B → C. To show: (A → B) → A → C. So assume A → B.
To show: A→ C. So finally assume A. To show: C. We have A, by the last
assumption. Hence also B → C, by the first assumption, and B, using the
next to last assumption. From B → C and B we obtain C, as required. �

(1.2) ∀x(A→ B)→ A→ ∀xB, if x /∈ FV(A).
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Assume ∀x(A → B). To show: A → ∀xB. So assume A. To show: ∀xB.
Let x be arbitrary; note that we have not made any assumptions on x. To
show: B. We have A → B, by the first assumption. Hence also B, by the
second assumption. �

(1.3) (A→ ∀xB)→ ∀x(A→ B), if x /∈ FV(A).

Assume A → ∀xB. To show: ∀x(A → B). Let x be arbitrary; note that
we have not made any assumptions on x. To show: A → B. So assume A.
To show: B. We have ∀xB, by the first and second assumption. Hence also
B. �

A characteristic feature of these proofs is that assumptions are intro-
duced and eliminated again. At any point in time during the proof the free
or “open” assumptions are known, but as the proof progresses, free assump-
tions may become cancelled or “closed” because of the implies-introduction
rule.

We now reserve the word proof for the informal level; a formal represen-
tation of a proof will be called a derivation.

An intuitive way to communicate derivations is to view them as labelled
trees. The labels of the inner nodes are the formulas derived at those points,
and the labels of the leaves are formulas or terms. The labels of the nodes
immediately above a node ν are the premises of the rule application, the
formula at node ν is its conclusion. At the root of the tree we have the
conclusion of the whole derivation. In natural deduction systems one works
with assumptions affixed to some leaves of the tree; they can be open or else
closed .

Any of these assumptions carries a marker . As markers we use as-
sumption variables �0,�1, . . . , denoted by u, v, w, u0, u1, . . . . The (previ-
ous) variables will now often be called object variables, to distinguish them
from assumption variables. If at a later stage (i.e., at a node below an as-
sumption) the dependency on this assumption is removed, we record this by
writing down the assumption variable. Since the same assumption can be
used many times (this was the case in example (1.1)), the assumption marked
with u (and communicated by u : A) may appear many times. However, we
insist that distinct assumption formulas must have distinct markers.

An inner node of the tree is understood as the result of passing form
premises to a conclusion, as described by a given rule. The label of the node
then contains in addition to the conclusion also the name of the rule. In some
cases the rule binds or closes an assumption variable u (and hence removes
the dependency of all assumptions u : A marked with that u). An application
of the ∀-introduction rule similarly binds an object variable x (and hence
removes the dependency on x). In both cases the bound assumption or
object variable is added to the label of the node.
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1.2.2. Introduction and elimination rules for → and ∀. We now
formulate the rules of natural deduction. First we have an assumption rule,
that allows an arbitrary formula A to be put down, together with a marker
u:

u : A Assumption
The other rules of natural deduction split into introduction rules (I-rules
for short) and elimination rules (E-rules) for the logical connectives → and
∀. For implication → there is an introduction rule →+u and an elimination
rule →−, also called modus ponens. The left premise A → B in →− is
called major premise (or main premise), and the right premise A minor
premise (or side premise). Note that with an application of the →+u-rule
all assumptions above it marked with u : A are cancelled.

[u : A]
|M
B →+uA→ B

|M
A→ B

| N
A →−

B

For the universal quantifier ∀ there is an introduction rule ∀+x and an
elimination rule ∀−, whose right premise is the term r to be substituted.
The rule ∀+x is subject to the following (Eigen-) variable condition: The
derivation M of the premise A should not contain any open assumption with
x as a free variable.

|M
A ∀+x∀xA

|M
∀xA r

∀−
A[x := r]

We now give derivations for the example formulas (1.1) – (1.3). Since
in many cases the rule used is determined by the formula on the node, we
suppress in such cases the name of the rule,

u : A→ B → C w : A
B → C

v : A→ B w : A
B

C →+wA→ C →+v(A→ B)→ A→ C
→+u(A→ B → C)→ (A→ B)→ A→ C

(1.1)

u : ∀x(A→ B) x

A→ B v : A
B ∀+x∀xB

→+vA→ ∀xB
→+u∀x(A→ B)→ A→ ∀xB

(1.2)
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Note here that the variable condition is satisfied: x is not free in A (and
also not free in ∀x(A→ B)).

u : A→ ∀xB v : A
∀xB x

B →+vA→ B ∀+x∀x(A→ B)
→+u(A→ ∀xB)→ ∀x(A→ B)

(1.3)

Here too the variable condition is satisfied: x is not free in A.

1.2.3. Axiom schemes for disjunction, conjunction, existence
and falsity. We follow the usual practice of considering all free variables
in an axiom as universally quantified outside.

Disjunction. The introduction axioms are

∨+
0 : A→ A ∨B

∨+
1 : B → A ∨B

and the elimination axiom is

∨− : (A→ C)→ (B → C)→ A ∨B → C.

Conjunction. The introduction axiom is

∧+ : A→ B → A ∧B

and the elimination axiom is

∧− : (A→ B → C)→ A ∧B → C.

Existential Quantifier. The introduction axiom is

∃+ : A→ ∃xA

and the elimination axiom is

∃− : ∀x(A→ B)→ ∃xA→ B (x not free in B).

Falsity. This example is somewhat extreme, since there is no introduc-
tion axiom; the elimination axiom is

⊥− : ⊥ → A.

In the literature this axiom is frequently called “ex-falso-quodlibet”, written
Efq. It clearly is derivable from its instances ⊥ → R~x, for every relation
symbol R.
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Equality. The introduction axiom is

Eq+ : Eq(x, x)

and the elimination axiom is

Eq− : ∀xR(x, x)→ Eq(x, y)→ R(x, y).

It is an easy exercise to show that the usual equality axioms can be derived.
All these axioms can be seen as special cases of a general scheme, that

of an inductively defined predicate, which is defined by some introduction
rules and one elimination rule. Later we will study this kind of definition in
full generality. Eq(x, y) is a binary such predicate, ⊥ is a nullary one, and
A ∨ B another nullary one which however depends on the two parameter
predicates A and B.

The desire to follow this general pattern is also the reason that we have
chosen our rather strange ∧−-axiom, instead of the more obvious A∧B → A
and A ∧B → B (which clearly are equivalent).

1.2.4. Minimal, intuitionistic and classical logic.

Definition (`, `i). Consider →∀⊥∨∧∃-formulas.
(a) A is called derivable (in minimal logic), written ` A, if there is a deriva-

tion of A without free assumptions, from the axioms of Sec.1.2.3 using
the rules from Sec.1.2.2, but without using the ex-falso-quodlibet axiom,
i.e., the elimination axiom ⊥− for ⊥. A formula B is called derivable
from assumptions A1, . . . , An, if there is a derivation (without ⊥−) of B
with free assumptions among A1, . . . , An. Let Γ be a (finite or infinite)
set of formulas. We write Γ ` B if the formula B is derivable from
finitely many assumptions A1, . . . , An ∈ Γ.

(b) Let Efq := { ∀~x(⊥ → R~x) | R relation symbol distinct from ⊥}. A is
called derivable in intuitionistic logic, written `i A, if in addition axioms
from Efq are allowed. Γ `i B is defined similarly.

We obtain classical logic by adding, for every relation symbol R distinct
from ⊥, the principle of indirect proof expressed as the so-called “stability
axiom” (StabR): ¬¬R~x→ R~x. Let

Stab := { ∀~x(¬¬R~x→ R~x) | R relation symbol distinct from ⊥}.

For classical logic there is no need to use the full set of logical connectives:
classical disjunction as well as the classical existential quantifier are defined,
by A ∨̃ B := ¬A→ ¬B → ⊥ and ∃̃xA := ¬∀x¬A. Moreover, when dealing
with derivability we can even get rid of conjunction; this can be seen from
the following lemma:
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Lemma (Elimination of ∧). For each formula A built with the connec-
tives →,∧,∀ there are formulas A1, . . . , An without ∧ such that ` A ↔∧∧n

i=1 Ai.

Proof. Induction on A. Case R~t. Take n = 1 and A1 := R~t. Case
A ∧ B. By IH (induction hypothesis), we have A1, . . . , An and B1, . . . , Bm.
Take A1, . . . , An, B1, . . . , Bm. Case A→ B. By IH, we have A1, . . . , An and
B1, . . . , Bm. For the sake of notational simplicity assume n = 2 and m = 3.
Then

` (A1 ∧A2 → B1 ∧B2 ∧B3)

↔ (A1 → A2 → B1) ∧ (A1 → A2 → B2) ∧ (A1 → A2 → B3).

Case ∀xA. By IH for A, we have A1, . . . , An. Take ∀xA1, . . . ,∀xAn, for

` ∀x

n∧∧
i=1

Ai ↔
n∧∧

i=1
∀xAi. �

However, for the rest of this section we keep ∧ in the language. The
reason is that the notions introduced and the results obtained are slightly
more general this way.

Definition (`c). Consider →∀∧⊥-formulas. We call the formula A
classically derivable and write `c A if there is a derivation of A using ∧±-
axioms and stability axioms from Stab. Similarly we define classical deriv-
ability from Γ and write Γ `c A.

Theorem (Stability, or Principle of Indirect Proof). For every →∀∧⊥-
formula A,

`c ¬¬A→ A.

Proof. Induction on A. For simplicity, in the derivation to be con-
structed we leave out applications of →+ at the end. Case R~t with R
distinct from ⊥. Use StabR. Case ⊥. Observe that ¬¬⊥ → ⊥ = ((⊥ →
⊥)→ ⊥)→ ⊥. The desired derivation is

v : (⊥ → ⊥)→ ⊥
u : ⊥ →+u⊥ → ⊥

⊥
Case A→ B. Use ` (¬¬B → B)→ ¬¬(A→ B)→ A→ B; a derivation is

u : ¬¬B → B

v : ¬¬(A→ B)

u1 : ¬B
u2 : A→ B w : A

B
⊥ →+u2¬(A→ B)

⊥ →+u1¬¬B
B
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Case ∀xA. Clearly it suffices to show ` (¬¬A → A) → ¬¬∀xA → A; a
derivation is

u : ¬¬A→ A

v : ¬¬∀xA

u1 : ¬A
u2 : ∀xA x

A
⊥ →+u2¬∀xA

⊥ →+u1¬¬A
A

The case A ∧B is left to the reader. �

Remark. The argument given proves a more general proposition (cf.
Troelstra (1973, 1.10.8)): if A is a Harrop formula (defined in Sec.1.1.3) con-
structed from decidable or doubly negated prime formulas, then ` ¬¬A →
A.

Notice that `c ⊥ → A, for stability is stronger:
|MStab

¬¬A→ A
u : ⊥ →+v¬A
¬¬A

A →+u⊥ → A

where MStab is the (classical) derivation of stability.
Notice also that even for the → ⊥-fragment the inclusion of minimal

logic in intuitionistic logic, and of the latter in classical logic are proper.
Examples are

6` ⊥ → P, but `i ⊥ → P,

6`i ((P → Q)→ P )→ P, but `c ((P → Q)→ P )→ P.

Non-derivability can be proved by means of countermodels, using a semantic
characterization of derivability; this will be done later. `i ⊥ → P is obvious,
and the Peirce formula ((P → Q) → P ) → P can be derived in minimal
logic from ⊥ → Q and ¬¬P → P , hence is derivable in classical logic.

1.2.5. Negative translation. We embed classical logic into minimal
logic, via the so-called negative (or Gödel-Gentzen) translation. A formula
A is called negative, if every atomic formula of A distinct from ⊥ occurs
negated, and A does not contain ∨, ∃.

Lemma. For negative A, ` ¬¬A→ A.

Proof. This follows from the proof of the stability theorem, using `
¬¬¬R~t→ ¬R~t. �

Again we consider →∀∧⊥-formulas only.
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Definition (Negative translation g of Gödel-Gentzen).

(R~t )g := ¬¬R~t (R distinct from ⊥),
⊥g := ⊥,

(A ∧B)g := Ag ∧Bg,

(A→ B)g := Ag → Bg,

(∀xA)g := ∀xAg.

Theorem. For all →∀∧⊥-formulas A,
(a) `c A↔ Ag,
(b) Γ `c A if and only if Γg ` Ag, where Γg := {Bg | B ∈ Γ }.

Proof. (a). The claim follows from the fact that `c is compatible with
equivalence. (b). ⇐. Obvious ⇒. By induction on the classical deriva-
tion. For a stability assumption ¬¬R~t → R~t we have (¬¬R~t → R~t )g =
¬¬¬¬R~t→ ¬¬R~t, and this is easily derivable. Case →+. Assume

[u : A]
D
B →+uA→ B

Then we have by IH

u : Ag

Dg

Bg
hence

[u : Ag]
Dg

Bg

→+uAg → Bg

Case →−. Assume
D0

A→ B

D1

A
B

Then we have by IH

Dg
0

Ag → Bg

Dg
1

Ag
hence

Dg
0

Ag → Bg

Dg
1

Ag

Bg

The other cases are treated similarly. �

Corollary (Embedding of classical logic). For negative A, `c A if and
only if ` A.

Proof. By the theorem we have `c A if and only if ` Ag. Since A is
negative, every atom distinct from ⊥ in A must occur negated, and hence in
Ag it must appear in threefold negated form (as ¬¬¬R~t). The claim follows
from ` ¬¬¬R~t↔ ¬R~t. �
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Since every formula is classically equivalent to a negative formula, we
have achieved an embedding of classical logic into minimal logic.

Note that 6` ¬¬P → P (as we shall show later). The corollary therefore
does not hold for all formulas A.

1.2.6. Formulas implying their negative translation. We intro-
duce a further observation (due to Leivant; see Troelstra and van Dalen
(1988, Ch.2, Sec.3)) which will be useful for program extraction from classi-
cal proofs. There it will be necessary to actually transform a given classical
derivation `c A into a minimal logic derivation ` Ag. In particular, for every
assumption constant C used in the given derivation we have to provide a
derivation of Cg. Now for some formulas S – the so-called spreading formu-
las – this is immediate, for we can derive S → Sg, and hence can use the
original assumption constant.

First notice that our formulas may contain predicate variables denoted
by X, which are place holders for comprehension terms, i.e., formulas with
distinguished variables. We use the obvious notation A[X := { ~x | B }] or
shortly A[{ ~x | B }] or even A[B] for substitution for predicate variables.
Clearly the Gödel-Gentzen translation of X~t is ¬¬X~t.

Notice also that an assumption constant may be viewed as consisting of
an uninstantiated formula (e.g., X0 → ∀n(Xn → X(n + 1)) → ∀nXn for
induction) together with a substitution of comprehension terms for predicate
variables (e.g., X 7→ {n | n < n + 1 }). Then in order to immediately
obtain a derivation of Cg for C an assumption constant it suffices to know
that its uninstantiated formula S is spreading, for then we generally have
` S[ ~Ag] → S[ ~A]g (see the theorem below) and hence can use the same
assumption constant with a different substitution.

We define spreading formulas S, wiping formulas W and isolating for-
mulas I inductively.

S ::= ⊥ | R~t | X~t | S ∧ S | I → S | ∀xS,

W ::= ⊥ | X~t |W ∧W | S →W | ∀xW,

I ::= R~t |W | I ∧ I.

Let S (W, I) be the class of spreading (wiping, isolating) formulas.

Theorem.

` S[ ~Ag]→ S[ ~A ]g for every spreading formula S,

`W [ ~A ]g →W [ ~Ag] for every wiping formula W ,

` I[ ~A ]g → ¬¬I[ ~Ag] for every isolating formula I.

We assume here that all occurrences of predicate variables are substituted.
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Proof. By induction on the simultaneous generation of S, W and I.
We write Sg for S[ ~A ]g and S for S[ ~Ag], and similarly for W and I.

Case ⊥ ∈ S. We must show ` ⊥ → ⊥g. Take λu⊥u.
Case R~t ∈ S. We must show ` R~t→ ¬¬R~t. Take λuR~tλv¬R~t.vu.
Case X~t ∈ S, with X substituted by { ~x | A }. We must show ` Ag[~t ]→

Ag[~t ], which is trivial.
Case S1 ∧ S2 ∈ S. We must show ` S1 ∧ S2 → Sg

1 ∧ Sg
2 . Take

IH
S1 → Sg

1

u : S1 ∧ S2

S1

Sg
1

IH
S2 → Sg

2

u : S1 ∧ S2

S2

Sg
2

Sg
1 ∧ Sg

2

Case I → S ∈ S. We must show ` (I → S) → Ig → Sg. Recall that
` ¬¬Sg → Sg by the Stability Lemma, because Sg is negative. Take

Stab
¬¬Sg → Sg

IH
Ig → ¬¬I v : Ig

¬¬I

w1 : ¬Sg

IH
S → Sg

u : I → S w2 : I
S

Sg

⊥ →+w2¬I
⊥ →+w1¬¬Sg

Sg

Case ∀xS ∈ S. We must show ` ∀xS → ∀xSg. Take

IH
S → Sg

u : ∀xS x
S

Sg

Case ⊥ ∈ W. We must show ` ⊥g → ⊥. Take λu⊥u.
Case X~t ∈ W, with X substituted by { ~x | A }. We must show ` Ag[~t ]→

Ag[~t ], which is trivial.
Case W1 ∧W2 ∈ W. We must show `W g

1 ∧W g
2 →W1 ∧W2. Take

IH
W g

1 →W1

u : W g
1 ∧W g

2

W g
1

W1

IH
W g

2 →W2

u : W g
1 ∧W g

2

W g
2

W2

W1 ∧W2

Case S →W ∈ W. We must show ` (Sg →W g)→ S →W . Take

IH
W g →W

u : Sg →W g

IH
S → Sg v : S

Sg

W g

W
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Case ∀xW ∈ W. We must show ` ∀xW g → ∀xW . Take

IH
W g →W

u : ∀xW g x
W g

W

Case R~t ∈ I. We must show ` ¬¬R~t→ ¬¬R~t, which is trivial.
Case W ∈ I. We must show ` W g → ¬¬W , which trivially follows

from the IH `W g →W . Take

v : ¬W

IH
W g →W u : W g

W
⊥

Case I1 ∧ I2 ∈ I. We must show ` Ig
1 ∧ Ig

2 → ¬¬(I1 ∧ I2). Take

IH
Ig
2 → ¬¬I2

Ig
1∧Ig

2

Ig
2

¬¬I2

IH
Ig
1 → ¬¬I1

Ig
1∧Ig

2

Ig
1

¬¬I1

¬(I1 ∧ I2)
I1 I2

I1 ∧ I2

⊥
¬I1

⊥
¬I2

⊥
�

1.3. Normalization

We show that every derivation can be brought into a normal form. A
derivation in normal form does not make “detours”, or more precisely, it
cannot occur that an elimination rule immediately follows an introduction
rule. The shape of derivations in normal form will be analyzed. In parti-
cular, we will prove the subformula property, which says that every formula
in a normal derivation is a subformula of the goal formula or else of an
assumption. Moreover, we also consider “long” normal forms.

1.3.1. Conversion. A conversion eliminates a detour in a derivation,
i.e., an elimination immediately following an introduction. We consider the
following conversions:
→-conversion.

[u : A]
|M
B →+uA→ B

| N
A →−

B

7→

| N
A
|M
B
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∀-conversion.
|M
A ∀+x∀xA r

∀−
A[x := r]

7→ |M ′

A[x := r]

1.3.2. Derivations as terms. It will be convenient to write deriva-
tions as terms, where the derived formula is viewed as the type of the term.
This representation is known under the name Curry-Howard correspondence.

We give an inductive definition of derivation terms in Table 1 on page
19, where for clarity we have written the corresponding derivations to the
left. For the universal quantifier ∀ there is an introduction rule ∀+x and
an elimination rule ∀−, whose right premise is the term r to be substituted.
The rule ∀+x is subject to the following (Eigen-) variable condition: The
derivation term M of the premise A should not contain any open assumption
with x as a free variable.

1.3.3. Reduction, normal form. Every derivation term carries a for-
mula as its type. However, we shall usually leave these formulas implicit and
write derivation terms without them.

Notice that every derivation term can be written uniquely in one of the
forms

u ~M | λvM | (λvM)N~L,

where u is an assumption variable or assumption constant, v is an assump-
tion variable or object variable, and M , N , L are derivation terms or object
terms.

Here the final form is not normal: (λvM)N~L is called β-redex (for “re-
ducible expression”). The conversion rule is

(λvM)N 7→β M [v := N ].

Notice that in a substitution M [v := N ] with M a derivation term and
v an object variable, one also needs to substitute in the formulas of M .

The closure of the conversion relation 7→β is defined by
• If M 7→β M ′, then M →M ′.
• If M →M ′, then also MN →M ′N , NM → NM ′, λvM → λvM ′

(inner reductions).
So M → N means that M reduces in one step to N , i.e., N is obtained

from M by replacement of (an occurrence of) a redex M ′ of M by a con-
versum M ′′ of M ′, i.e., by a single conversion. The relation →+ (“properly
reduces to”) is the transitive closure of → and →∗ (“reduces to”) is the re-
flexive and transitive closure of→. The relation→∗ is said to be the notion
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derivation term

u : A uA

[u : A]
|M
B →+uA→ B

(λuAMB)A→B

|M
A→ B

| N
A →−

B

(MA→BNA)B

|M
A ∀+x (with var.cond.)
∀xA

(λxMA)∀xA (with var.cond.)

|M
∀xA r

∀−
A[x := r]

(M∀xAr)A[x:=r]

Table 1. Derivation terms for → and ∀

of reduction generated by 7→. ←, ←+, ←∗ are the relations converse to
→,→+,→∗, respectively.

A term M is in normal form, or M is normal , if M does not contain a
redex. M has a normal form if there is a normal N such that M →∗ N .

A reduction sequence is a (finite or infinite) sequence M0 → M1 →
M2 . . . such that Mi →Mi+1, for all i.

Finite reduction sequences are partially ordered under the initial part
relation; the collection of finite reduction sequences starting from a term
M forms a tree, the reduction tree of M . The branches of this tree may
be identified with the collection of all infinite and all terminating finite
reduction sequences.
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A term is strongly normalizing if its reduction tree is finite.

Example.

(λxλyλz.xz(yz))(λuλv u)(λu′λv′ u′)→
(λyλz.(λuλv u)z(yz))(λu′λv′ u′) →
(λyλz.(λv z)(yz))(λu′λv′ u′) →
(λyλz z)(λu′λv′ u′) → λz z.

Lemma (Substitutivity of →). (a) If M → M ′, then M [v := N ] →
M ′[v := N ].

(b) If N → N ′, then M [v := N ]→∗ M [v := N ′].

Proof. (a) is proved by induction on M → M ′; (b) by induction on
M . Notice that the reason for →∗ in (b) is the fact that v may have many
occurrences in M . �

1.3.4. Strong normalization. We show that every term is strongly
normalizing.

To this end, define by recursion on k a relation sn(M,k) between terms
M and natural numbers k with the intention that k is an upper bound on
the number of reduction steps up to normal form.

sn(M, 0) :⇐⇒ M is in normal form,

sn(M,k + 1) :⇐⇒ sn(M ′, k) for all M ′ such that M →M ′.

Clearly a term is strongly normalizing if there is a k such that sn(M,k).
We first prove some closure properties of the relation sn.

Lemma (Properties of sn). (a) If sn(M,k), then sn(M,k + 1).
(b) If sn(MN, k), then sn(M,k).
(c) If sn(Mi, ki) for i = 1 . . . n, then sn(uM1 . . .Mn, k1 + · · ·+ kn).
(d) If sn(M,k), then sn(λvM, k).
(e) If sn(M [v := N ]~L, k) and sn(N, l), then sn((λvM)N~L, k + l + 1).

Proof. (a). Induction on k. Assume sn(M,k). We show sn(M,k + 1).
So let M ′ with M →M ′ be given; because of sn(M,k) we must have k > 0.
We have to show sn(M ′, k). Because of sn(M,k) we have sn(M ′, k − 1),
hence by IH sn(M ′, k).

(b). Induction on k. Assume sn(MN, k). We show sn(M,k). In case k =
0 the term MN is normal, hence also M is normal and therefore sn(M, 0).
So let k > 0 and M → M ′; we have to show sn(M ′, k − 1). From M →
M ′ we have MN → M ′N . Because of sn(MN, k) we have by definition
sn(M ′N, k − 1), hence sn(M ′, k − 1) by IH.
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(c). Assume sn(Mi, ki) for i = 1 . . . n. We show sn(uM1 . . .Mn, k) with
k := k1 + · · · + kn. Again we employ induction on k. In case k = 0 all
Mi are normal, hence also uM1 . . .Mn. So let k > 0 and uM1 . . .Mn →
M ′. Then M ′ = uM1 . . .M ′

i . . .Mn with Mi → M ′
i ; We have to show

sn(uM1 . . .M ′
i . . .Mn, k − 1). Because of Mi → M ′

i and sn(Mi, ki) we have
ki > 0 and sn(M ′

i , ki − 1), hence sn(uM1 . . .M ′
i . . .Mn, k − 1) by IH.

(d). Assume sn(M,k). We have to show sn(λvM, k). Use induction on
k. In case k = 0 M is normal, hence λvM is normal, hence sn(λvM, 0). So
let k > 0 and λvM → L. Then L has the form λvM ′ with M → M ′. So
sn(M ′, k − 1) by definition, hence sn(λvM ′, k) by IH.

(e). Assume sn(M [v := N ]~L, k) and sn(N, l). We need to show that
sn((λvM)N~L, k + l + 1). We use induction on k + l. In case k + l = 0 the
term N and M [v := N ]~L are normal, hence also M and all Li. So there is
exactly one term K such that (λvM)N~L → K, namely M [v := N ]~L, and
this K is normal. Now let k + l > 0 and (λvM)N~L→ K. We have to show
sn(K, k + l).

Case K = M [v := N ]~L, i.e., we have a head conversion. From sn(M [v :=
N ]~L, k) we obtain sn(M [v := N ]~L, k + l) by (a).

Case K = (λvM ′)N~L with M → M ′. Then we have M [v := N ]~L →
M ′[v := N ]~L. Now sn(M [v := N ]~L, k) implies k > 0 and sn(M ′[v :=
N ]~L, k − 1). The IH yields sn((λvM ′)N~L, k − 1 + l + 1).

Case K = (λvM)N ′~L with N → N ′. Now sn(N, l) implies l > 0 and
sn(N ′, l − 1). The IH yields sn((λvM)N ′~L, k + l − 1 + 1), since sn(M [v :=
N ′]~L, k) by (a),

Case K = (λvM)N~L′ with Li → L′i for some i and Lj = L′j for j 6= i.
Then we have M [v := N ]~L → M [v := N ]~L′. Now sn(M [v := N ]~L, k)
implies k > 0 and sn(M [v := N ]~L′, k− 1). The IH yields sn((λvM)N~L′, k−
1 + l + 1). �

The essential idea of the strong normalization proof is to view the last
three closure properties of sn from the preceding lemma without the infor-
mation on the bounds as an inductive definition of a new set SN:

~M ∈ SN (Var)
u ~M ∈ SN

M ∈ SN (λ)
λvM ∈ SN

M [v := N ]~L ∈ SN N ∈ SN
(β)

(λvM)N~L ∈ SN

Corollary. For every term M ∈ SN there is a k ∈ N such that
sn(M,k). Hence every term M ∈ SN is strongly normalizing

Proof. By induction on M ∈ SN, using the previous lemma. �
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In what follows we shall show that every term is in SN and hence is
strongly normalizing. Given the definition of SN we only have to show
that SN is closed under application. In order to prove this we must prove
simultaneously the closure of SN under substitution.

Theorem (Properties of SN). For all formulas A, derivation terms M ∈
SN and NA ∈ SN the following holds.

(a) M [v := N ] ∈ SN.
(a’) M [x := r] ∈ SN.
(b) Suppose M derives A→ B. Then MN ∈ SN.
(b’) Suppose M derives ∀xA. Then Mr ∈ SN.

Proof. By course-of-values induction on dp(A), with a side induction
on M ∈ SN. Let NA ∈ SN. We distinguish cases on the form of M .

Case u ~M by (Var) from ~M ∈ SN. (a). The SIH(a) (SIH means side
induction hypothesis) yields Mi[v := N ] ∈ SN for all Mi from ~M . In case
u 6= v we immediately have (u ~M)[v := N ] ∈ SN. Otherwise we need
N ~M [v := N ] ∈ SN. But this follows by multiple applications of IH(b),
since every Mi[v := N ] derives a subformula of A with smaller depth. (a’).
Similar, and simpler. (b), (b’). Use (Var) again.

Case λvM by (λ) from M ∈ SN. (a), (a’). Use (λ) again. (b). Our goal
is (λvM)N ∈ SN. By (β) it suffices to show M [v := N ] ∈ SN and N ∈ SN.
The latter holds by assumption, and the former by SIH(a). (b’). Similar,
and simpler.

Case (λwM)K~L by (β) from M [w := K]~L ∈ SN and K ∈ SN. (a). The
SIH(a) yields M [v := N ][w := K[v := N ]]~L[v := N ] ∈ SN and K[v := N ] ∈
SN, hence (λwM [v := N ])K[v := N ]~L[v := N ] ∈ SN by (β). (a’). Similar,
and simpler. (b), (b’). Use (β) again. �

Remark (Arithmetical comprehension). The theorem continues to hold
if we allow quantification over predicate variables, but restrict the rule ∀−
to comprehension terms with quantification over object variables only. This
restriction is known under the name arithmetical comprehension. The proof
above then is by a main induction on the depth of nesting of predicate quanti-
fiers, a first side induction on dp(A) (which disregards predicate quantifiers),
and a second side induction on M ∈ SN.

Corollary. For every term we have M ∈ SN; in particular every term
M is strongly normalizing.

Proof. Induction on the (first) inductive definition of derivation terms
M . In cases u and λvM the claim follows from the definition of SN, and in
case MN it follows from the preceding theorem. �
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1.3.5. The structure of normal derivations. To analyze normal
derivations, it will be useful to introduce the notion of a track in a proof
tree, which makes sense for non-normal derivations as well.

Definition. A track of a derivation M is a sequence of f.o.’s A0, . . . , An

such that
(a) A0 is a top f.o. in M (possible discharged by an application of an →−-

rule);
(b) Ai for i < n is not the minor premise of an instance of →−, and Ai+1 is

directly below Ai;
(c) An is either the minor premise of an instance of →−, or the conclusion

of M .
The track of order 0, or main track , in a derivation is the (unique) track
ending in the conclusion of the whole derivation. A track of order n + 1
is a track ending in the minor premise of an →−-application, with major
premise belonging to a track of order n.

Lemma. In a derivation each formula occurrence belongs to some track.

Proof. By induction on derivations. �

Now consider a normal derivation M . Since by normality an E-rule
cannot have the conclusion of an I-rule as its major premise, the E-rules
have to precede the I-rules in a track, so the following is obvious: a track
may be divided into an E-part, say A0, . . . , Ai−1, a minimal formula Ai, and
an I-part Ai+1, . . . , An. In the E-part all rules are E-rules; in the I-part all
rules are I-rules; Ai is the conclusion of an E-rule and, if i < n, a premise
of an I-rule. Tracks are pieces of branches of the tree with successive f.o.’s
in the subformula relationship: either Ai+1 is a subformula of Ai or vice
versa. As a result, all formulas in a track A0, . . . , An are subformulas of A0

or of An; and from this, by induction on the order of tracks, we see that
every formula in M is a subformula either of an open assumption or of the
conclusion. To summarize:

Theorem. In a normal derivation each formula is a subformula of either
the end formula or else an assumption formula.

Proof. We prove this for tracks of order n, by induction on n. �

Remark (Conservativeness of predicate quantifiers). Again the theorem
continues to hold if we allow quantification over predicate variables, but
restrict the rule ∀− to comprehension terms with quantification over object
variables only. But notice that every formula with quantification over object
variables only is a subformula of ∀P P , so the notion of a subformula is of
limited use here. However, we can conclude that the extension of the logic
to predicate quantifiers is conservative over the original one.
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1.3.6. Long normal forms. η-conversion is defined by

λx.Mx 7→η M if x /∈ FV(M) and M is non-introduced.

It can easily be analyzed. η-expansion is supposed to reverse η-conversion.
Unfortunately this can lead to reduction loops when combined with β-
reduction:

MN →η↑ (λx.Mx)N →β MN or λxM →η↑ λy.(λxM)y →β λxM.

Thus we have to prevent terms in applicative positions and abstractions
from being expanded. This is achieved if we define→η↑ from the conversion
rule

Mρ⇒σ 7→η↑ λxρ.Mx if M is non-introduced
by means of term closure for non-applicative positions, i.e.,

• If M 7→η↑ M ′, then M →η↑ M ′.
• If M →η↑ M ′, then also NM →η↑ NM ′, λvM →η↑ λvM ′.

The following can be seen easily:
(a) η↑-reduction does not create any new β-redexes.
(b) Normal forms with respect to→η↑ can be characterized by the grammar

M ::= (x ~M)ι | λxM | ((λxM)N ~N)ι.

(c) βη↑-normal forms (also called long normal forms) are obtained if we
omit the last rule.
Define ηρ(Mρ) (outer η-expansion) and its expansion height µρ ∈ N by

ηι(M) := M, µι := 0,

ηρ⇒σ(M) := λxρησ(Mηρ(x)). µρ⇒σ := 1 + µρ + µσ.

Lemma.

M →β M ′ ⇒ η(M)→β η(M ′).(1.4)

Mρ →µρ

η↑ ηρ(M) if M is non-introduced.(1.5)

If ~M, M, N are η↑-normal, then also η(x ~M) and η((λxM)N ~M).(1.6)

η(M) ~N →∗
β η(Mη( ~N)).(1.7)

η(η(M))→∗
β η(M).(1.8)

Proof. (1.4) is clear. (1.5)-(1.8) are proved by induction on the type ρ
of ηρ. For (1.5) we have

Mρ⇒σ →η↑ λxρ.(Mx)σ

→µρ

η↑ λx.Mηρ(x) by IH

→µσ

η↑ λx η(Mη(x)) by IH.
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For (1.6), e.g. ηρ⇒σ(x ~M) = λyρησ(x ~Mηρ(y)) ∈ Nfη↑ by IHρ and IHσ. For
(1.7) we have

ηρ⇒σ(M)N ~N = (λx η(Mη(x)))N ~N

→β η(Mη(N)) ~N

→∗
β η(Mη(N)η( ~N)) by IH,

and for (1.8)

η(η(Mρ⇒σ)) = λx η(η(M)η(x))

= λx η([λy η(Mη(y))]η(x))

→β λx ηη(Mηη(x))

→∗
β λx η(Mη(x)) by IH.

This concludes the proof. �

Define the η-expansion exp(M) of M by

exp(x ~M) := η(x exp( ~M)),

exp(λxM) := λx exp(M),

exp((λxM)N ~N) := η((λx exp(M)) exp(N) exp( ~N))

and its expansion height #η(Mρ) ∈ N by

#η(x ~M) := µρ + #η( ~M),

#η(λxM) := #η(M),

#η((λxM)N ~N) := µρ + #η(M,N, ~N).

Here #η( ~M) means
∑

i #η(Mi).

Lemma.

M →#η(M)
η↑ exp(M) ∈ Nfη↑.(1.9)

M ∈ Nfη↑ ⇐⇒ exp(M) = M ⇐⇒ #η(M) = 0.(1.10)

η(exp(M))→∗
β exp(M).(1.11)

exp(M)[x := η(x)]→∗
β exp(M).(1.12)

η(exp(M) exp( ~N))→∗
β exp(M ~N).(1.13)

exp(M)[x := exp(N)]→∗
β exp(M [x := N ]).(1.14)

M →η↑ M ′ ⇒ exp(M) = exp(M ′), #η(M) = #η(M ′) + 1.(1.15)



26 1. LOGIC

Proof. (1.9). First show exp(M) ∈ Nfη↑ by induction on M , using
(1.6). Then prove M →#η(M)

η↑ exp(M) also by induction on M , using (1.5).
(1.10). Use (1.6) and the above characterization of Nfη↑. (1.11) and (1.12)
are proven by simultaneous induction on M . (1.11). For non-introduced
terms use (1.8). For an abstraction we have

η(exp(λxM)) = η(λx exp(M))

= λy η((λx exp(M))η(y))

→β λx η(exp(M)[x := η(x)])

→∗
β λx η(exp(M)) by IH(1.12)

→∗
β λx exp(M) by IH(1.11).

The only interesting case for (1.12) is M ≡ x ~M , where we have

exp(x ~M)[x := η(x)] = η(x exp( ~M))[x := η(x)]

= η(η(x) exp( ~M)[x := η(x)])

→∗
β η(η(x) exp( ~M)) by IH(1.12)

→∗
β ηη(x η(exp( ~M))) by (1.7)

→∗
β η(x η(exp( ~M))) by (1.8)

→∗
β η(x exp( ~M)) by IH(1.11)

= exp(x ~M).

(1.13) is shown by induction on M . By (1.11) we can assume that ~N is not
empty.

η(exp(x ~M) exp( ~N)) = η(η(x exp( ~M)) exp( ~N))

→∗
β ηη(x exp( ~M) η(exp( ~N))) by (1.7)

→∗
β ηη(x exp( ~M) exp( ~N)) by (1.11)

→∗
β η(x exp( ~M) exp( ~N)) by (1.8)

= exp(x ~M ~N).

and

η(exp(λxM) exp( ~N)) = η((λx exp(M)) exp( ~N))

= exp((λxM) ~N).
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The case (λxM)K ~K is similar. (1.14) is an easy induction on M . We only
treat the case x ~M , where one needs (1.13).

exp(x ~M)[x := exp(N)] = η(exp(N) exp( ~M)[x := exp(N)])

→∗
β η(exp(N) exp( ~M [x := N ])) by IH

→∗
β exp(N ~M [x := N ]) by (1.13).

(1.15). For an η↑-conversion M 7→η↑ λx.Mx, M non-introduced, we treat
the case M ≡ x ~M .

exp(x ~M) = ηρ⇒σ(x exp( ~M))

= λyρησ(x exp( ~M)ηρ(y))

= exp(λy.x ~My).

and

#η((x ~M)ρ⇒σ) = µρ⇒σ + #η( ~M)

= 1 + µσ + #η( ~M) + µρ

= 1 + µσ + #η( ~M, yρ)

= 1 + #η(λyρ.x ~My).

The case M ≡ (λxN)K ~K is analogous. �

Lemma. β-reduction is simulated on expanded terms:

M →β M ′ =⇒ exp(M)→+
β exp(M ′).

Conclude that →βη↑ is strongly normalizing.

Proof. The first part is proved by induction on M . We only handle
the interesting case of a β-conversion.

exp((λxM)N ~N) = η((λx exp(M)) exp(N) exp( ~N))

→β η(exp(M)[x := exp(N)] exp( ~N))

→∗
β η(exp(M [x := N ]) exp( ~N)) by (1.14)

→∗
β exp(M [x := N ] ~N) by (1.13).

All other cases follow directly from the IH.
To prove strong normalization of →βη↑, note that we can simulate any

β-reduction on a term M by a positive number of β-reductions on exp(M),
while η-expansions leave exp(M) unchanged by (1.15). Strong normaliza-
bility of M now follows by induction on the height of the β-reduction tree
of exp(M) and side induction on #η(M). �
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1.4. Normalization with Permutative Conversions

We now consider→∀⊥∨∧∃-formulas. The normalization result in Sec.1.3
and in particular the subformula property does not say much in this case,
since in our derivations we allow arbitrary ∧±, ∨± and ∃±-axioms. The
cure consists in the following. (1) In derivations in long normal form we can
replace every use of an ∧±,∨±,∃±-axiom by a corresponding rule; in fact,
there is almost no difference between these derivations. (2) After this re-
placement the need for permutative conversions becomes visible, if we want
to keep the subformula property for normal derivations. We shall prove
strong normalization, and analyse again the shape of normal derivations.

1.4.1. Rules for ∨, ∧ and ∃. Notice that we have not given rules for
the connectives ∨, ∧ and ∃. There are two reasons for this omission:

• They can be covered by means of appropriate axioms as constant
derivation terms, as given in Sec.1.2.3;
• For simplicity we want our derivation terms to be pure lambda

terms formed just by lambda abstraction and application. This
would be violated by the rules for ∨, ∧ and ∃, which require addi-
tional constructs.

However – as just noted – in order to have a normalization theorem with a
useful subformula property as a consequence we do need to consider rules
for these connectives. So here they are:

Disjunction. The introduction rules are

|M
A ∨+

0
A ∨B

|M
B ∨+

1
A ∨B

and the elimination rule is

|M
A ∨B

[u : A]
| N
C

[v : B]
| K
C ∨−u, v

C

Conjunction. The introduction rule is

|M
A

| N
B ∧+

A ∧B
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and the elimination rule is

|M
A ∧B

[u : A] [v : B]
| N
C ∧− u, v

C

Existential Quantifier. The introduction rule is

r

|M
A[x := r]

∃+∃xA

and the elimination rule is

|M
∃xA

[u : A]
| N
B ∃−x, u (var.cond.)

B

The rule ∃−x, u is subject to the following (Eigen-) variable condition: The
derivation N should not contain any open assumptions apart from u : A
whose assumption formula contains x free, and moreover B should not con-
tain the variable x free.

It is easy to see that for each of the connectives ∨, ∧, ∃ the rules and the
axioms are equivalent, in the sense that from the axioms and the premises
of a rule we can derive its conclusion (of course without any ∨,∧,∃-rules),
and conversely that we can derive the axioms by means of the ∨,∧,∃-rules.
This is left as an exercise.

The left premise in each of the elimination rules ∨−, ∧− and ∃− is called
major premise (or main premise), and each of the right premises minor
premise (or side premise).

1.4.2. Conversion. In addition to the →,∀-conversions in Sec.1.3.1,
we consider the following conversions:
∨-conversion.

|M
A ∨+

0
A ∨B

[u : A]
| N
C

[v : B]
| K
C ∨−u, v

C

7→

|M
A
| N
C

and
|M
B ∨+

1
A ∨B

[u : A]
| N
C

[v : B]
| K
C ∨−u, v

C

7→

|M
B
| K
C
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∧-conversion.

|M
A

| N
B ∧+

A ∧B

[u : A] [v : B]
| K
C ∧− u, v

C

7→

|M
A

| N
B

| K
C

∃-conversion.

r

|M
A[x := r]

∃+∃xA

[u : A]
| N
B ∃−x, u

B

7→

|M
A[x := r]
| N ′

B

1.4.3. Permutative conversion. In a permutative conversion we per-
mute an E-rule upwards over the minor premises of ∨−, ∧− or ∃−.
∨-perm conversion.

|M
A ∨B

| N
C

| K
C

C

| L
C ′

E-rule
D

7→

|M
A ∨B

| N
C

| L
C ′

E-rule
D

| K
C

| L
C ′

E-rule
D

D

∧-perm conversion.

|M
A ∧B

| N
C

C

| K
C ′

E-rule
D

7→

|M
A ∧B

| N
C

| K
C ′

E-rule
D

D
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∃-perm conversion.

|M
∃xA

| N
B

B

| K
C E-rule

D

7→

|M
∃xA

| N
B

| K
C E-rule

D
D

1.4.4. Derivations as terms. The term representation of derivations
has to be extended. The rules for ∨, ∧ and ∃ with the corresponding terms
are given in Table 2 on page 32.

The introduction rule ∃+ has as its left premise the witnessing term r to
be substituted. The elimination rule ∃−u is subject to an (Eigen-) variable
condition: The derivation term N should not contain any open assumptions
apart from u : A whose assumption formula contains x free, and moreover
B should not contain the variable x free.

1.4.5. Reduction for permutative conversions. In this section we
shall write derivation terms without formula superscripts. We usually leave
implicit the extra (formula) parts of derivation constants and for instance
write ∃+, ∃− instead of ∃+x,A, ∃−x,A,B. So we consider derivation terms
M,N,K of the forms

u | λvM | λyM | ∨+
0 M | ∨+

1 M | 〈M,N〉 | ∃+rM |
MN |Mr |M(v0.N0, v1.N1) |M(v, w.N) |M(v.N);

in these expressions the variables y, v, v0, v1, w get bound.
To simplify the technicalities, we restrict our treatment to the rules for

→ and ∃. It can easily be extended to the full set of rules; some details for
disjunction are given in Sec.1.4.6. So we consider

u | λvM | ∃+rM |MN |M(v.N);

in these expressions the variable v gets bound.
We reserve the letters E,F, G for eliminations, i.e., expressions of the

form (v.N), and R,S, T for both terms and eliminations. Using this notation
we obtain a second (and clearly equivalent) inductive definition of terms:

u ~M | u ~ME | λvM | ∃+rM |

(λvM)N ~R | ∃+rM(v.N)~R | u ~MER~S.
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derivation term

|M
A ∨+

0
A ∨B

|M
B ∨+

1
A ∨B

(
∨+

0,BMA
)A∨B (

∨+
1,AMB

)A∨B

|M
A ∨B

[u : A]
| N
C

[v : B]
| K
C ∨−u, v

C

(
MA∨B(uA.NC , vB.KC)

)C

|M
A

| N
B ∧+

A ∧B

〈MA, NB〉A∧B

|M
A ∧B

[u : A] [v : B]
| N
C ∧− u, v

C

(
MA∧B(uA, vB.NC)

)C

r

|M
A[x := r]

∃+∃xA

(
∃+x,ArMA[x:=r]

)∃xA

|M
∃xA

[u : A]
| N
B ∃−x, u (var.cond.)

B

(
M∃xA(uA.NB)

)B (var.cond.)

Table 2. Derivation terms for ∨, ∧ and ∃
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Here the final three forms are not normal: (λvM)N ~R and ∃+rM(v.N)~R

both are β-redexes, and u ~MER~S is a permutative redex . The conversion
rules are

(λvM)N 7→β M [v := N ] β→-conversion,

∃+x,ArM(v.N) 7→β N [x := r][v := M ] β∃-conversion,

M(v.N)R 7→π M(v.NR) permutative conversion.

The closure of these conversions is defined by
• If M 7→β M ′ or M 7→π M ′, then M →M ′.
• If M → M ′, then also MR → M ′R, NM → NM ′, N(v.M) →

N(v.M ′), λvM → λvM ′, ∃+rM → ∃+rM ′ (inner reductions).
We now give the rules to inductively generate a set SN:

~M ∈ SN (Var0)
u ~M ∈ SN

M ∈ SN (λ)
λvM ∈ SN

M ∈ SN (∃)
∃+rM ∈ SN

~M, N ∈ SN
(Var)

u ~M(v.N) ∈ SN

u ~M(v.NR)~S ∈ SN
(Varπ)

u ~M(v.N)R~S ∈ SN

M [v := N ]~R ∈ SN N ∈ SN
(β→)

(λvM)N ~R ∈ SN

N [x := r][v := M ]~R ∈ SN M ∈ SN
(β∃)

∃+x,ArM(v.N)~R ∈ SN

where in (Varπ) we require that v is not free in R.
Write M↓ to mean that M is strongly normalizing, i.e., that every re-

duction sequence starting from M terminates. By analyzing the possible
reduction steps we now show that the set Wf := {M |M↓ } has the closure
properties of the definition of SN above, and hence SN ⊆Wf.

Lemma. Every term in SN is strongly normalizing.

Proof. We distinguish cases according to the generation rule of SN
applied last. The following rules deserve special attention.

Case (Varπ). We prove, as an auxiliary lemma, that

u ~M(v.NR)~S↓ implies u ~M(v.N)R~S↓,

by induction on u ~M(v.NR)~S↓ (i.e., on the reduction tree of this term). We
consider the possible reducts of u ~M(v.N)R~S. The only interesting case is
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u ~M(v.N)(v′.N ′)T ~T , and we have a permutative conversion of (v′.N ′) with
T , leading to the term M = u ~M(v.N)(v′.N ′T )~T . Now M↓ follows, since

u ~M(v.N(v′.N ′))T ~T

leads in two permutative steps to M , hence by assumption M↓.
Case (β→). We show that M [v := N ]~R↓ and N↓ imply (λvM)N ~R↓.

This is done by a induction on N↓, with a side induction on M [v := N ]~R↓.
We need to consider all possible reducts of (λvM)N ~R. In case of an outer
β-reduction use the assumption. If N is reduced, use the IH. Reductions in
M and in ~R as well as permutative reductions within ~R are taken care of
by the side IH.

Case (β∃). We show that N [x := r][v := M ]~R↓ and M↓ together imply
∃+rM(v.N)~R↓. This is done by a threefold induction: first on M↓, second
on N [x := r][v := M ]~R↓ and third on the length of ~R. We need to consider
all possible reducts of ∃+rM(v.N)~R. In case of an outer β-reduction use the
assumption. If M is reduced, use the first IH. Reductions in N and in ~R as
well as permutative reductions within ~R are taken care of by the second IH.
The only remaining case is when ~R = S~S and (v.N) is permuted with S, to
yield ∃+rM(v.NS)~S. Apply the third IH, since (NS)[x := r][v := M ]~S =
N [x := r][v := M ]S~S. �

For later use we prove a slightly generalized form of the rule (Varπ):

Proposition. If M(v.NR)~S ∈ SN, then M(v.N)R~S ∈ SN.

Proof. Induction on the generation of M(v.NR)~S ∈ SN. We distin-
guish cases according to the form of M .

Case u~T (v.NR)~S ∈ SN. If ~T = ~M , use (Varπ). Otherwise we have
u ~M(v′.N ′)~R(v.NR)~S ∈ SN. This must be generated by repeated appli-
cations of (Varπ) from u ~M(v′.N ′ ~R(v.NR)~S) ∈ SN, and finally by (Var)
from ~M ∈ SN and N ′ ~R(v.NR)~S ∈ SN. The IH for the latter yields
N ′ ~R(v.N)R~S ∈ SN, hence u ~M(v.N ′ ~R(v.N)R~S) ∈ SN by (Var) and finally
u ~M(v.N ′)~R(v.N)R~S ∈ SN by (Varπ).

Case ∃+rM ~T (v.NR)~S ∈ SN. Similarly, with (β∃) instead of (Varπ). In
detail: If ~T is empty, by (β∃) this came from (NR)[x := r][v := M ]~S =
N [x := r][v := M ]R~S ∈ SN and M ∈ SN, hence ∃+rM(v.N)R~S ∈ SN again
by (β∃). Otherwise we have ∃+rM(v′.N ′)~T (v.NR)~S ∈ SN. This must be
generated by (β∃) from N ′[x := r][v′ := M ]~T (v.NR)~S ∈ SN. The IH yields
N ′[x := r][v′ := M ]~T (v.N)R~S ∈ SN, hence ∃+rM(v′.N ′)~T (v.N)R~S ∈ SN
by (β∃).
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Case (λvM)N ′ ~R(w.NR)~S ∈ SN. By (β→) this came from N ′ ∈ SN and
M [v := N ′]~R(w.NR)~S ∈ SN. The IH yields M [v := N ′]~R(w.N)R~S ∈ SN,
hence (λvM)N ′ ~R(w.N)R~S ∈ SN by (β→). �

In what follows we shall show that every term is in SN and hence is
strongly normalizing. Given the definition of SN we only have to show
that SN is closed under →− and ∃−. In order to prove this we must prove
simultaneously the closure of SN under substitution.

Theorem (Properties of SN). For all formulas A,
(a) for all M ∈ SN, if M proves A = A0 → A1 and N ∈ SN, then MN ∈

SN,
(b) for all M ∈ SN, if M proves A = ∃xB and N ∈ SN, then M(v.N) ∈ SN,
(c) for all M ∈ SN, if NA ∈ SN, then M [v := N ] ∈ SN.

Proof. Induction on dp(A). We prove (a) and (b) before (c), and hence
have (a) and (b) available for the proof of (c). More formally, by induction
on A we simultaneously prove that (a) holds, that (b) holds and that (a),
(b) together imply (c).

(a). By induction on M ∈ SN. Let M ∈ SN and assume that M proves
A = A0 → A1 and N ∈ SN. We distinguish cases according to how M ∈ SN
was generated. For (Var0), (Varπ), (β→) and (β∃) use the same rule again.

Case u ~M(v.N ′) ∈ SN by (Var) from ~M, N ′ ∈ SN. Then N ′N ∈ SN by
side IH for N ′, hence u ~M(v.N ′N) ∈ SN by (Var), hence u ~M(v.N ′)N ∈ SN
by (Varπ).

Case (λvM)A0→A1 ∈ SN by (λ) from M ∈ SN. Use (β→); for this we
need to know M [v := N ] ∈ SN. But this follows from IH(c) for M , since N
derives A0.

(b). By induction on M ∈ SN. Let M ∈ SN and assume that M proves
A = ∃xB and N ∈ SN. The goal is M(v.N) ∈ SN. We distinguish cases
according to how M ∈ SN was generated. For (Varπ), (β→) and (β∃) use
the same rule again.

Case u ~M ∈ SN by (Var0) from ~M ∈ SN. Use (Var).
Case (∃+rM)∃xA ∈ SN by (∃) from M ∈ SN. Use (β∃); for this we need

to know N [x := r][v := M ] ∈ SN. But this follows from IH(c) for N [x := r],
since M derives A[x := r].

Case u ~M(v′.N ′) ∈ SN by (Var) from ~M, N ′ ∈ SN. Then N ′(v.N) ∈
SN by side IH for N ′, hence u ~M(v.N ′(v.N)) ∈ SN by (Var) and therefore
u ~M(v.N ′)(v.N) ∈ SN by (Varπ).

(c). By induction on M ∈ SN. Let NA ∈ SN; the goal is M [v := N ] ∈
SN. We distinguish cases according to how M ∈ SN was generated. For (λ),
(∃), (β→) and (β∃) use the same rule again.
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Case u ~M ∈ SN by (Var0) from ~M ∈ SN. Then ~M [v := N ] ∈ SN by
SIH(c). If u 6= v, use (Var0) again. If u = v, we must show N ~M [v := N ] ∈
SN. Note that N proves A; hence the claim follows from (a) and the IH.

Case u ~M(v′.N ′) ∈ SN by (Var) from ~M, N ′ ∈ SN. If u 6= v, use (Var)
again. If u = v, we must show N ~M [v := N ](v′.N ′[v := N ]) ∈ SN. Note
that N proves A; hence in case ~M empty the claim follows from (b), and
otherwise from (a) and the IH.

Case u ~M(v′.N ′)R~S ∈ SN by (Varπ) from u ~M(v′.N ′R)~S ∈ SN. If u 6= v,
use (Varπ) again. If u = v, from the IH we obtain

N ~M [v := N ](v′.N ′[v := N ]R[v := N ])~S[v := N ] ∈ SN

Now use the proposition above. �

Corollary. Every term is strongly normalizing.

Proof. Induction on the (first) inductive definition of terms M . In
cases u, λvM and ∃+rM the claim follows from the definition of SN, and in
cases MN and M(v.N) from parts (a), (b) of the previous theorem. �

1.4.6. Disjunction. We describe the changes necessary to extend the
result above to the language with disjunction ∨.

We have additional β- and permutative conversions

∨+
i M(v0.N0, v1.N1) 7→β Ni[vi := M ] β∨i-conversion,

M(v0.N0, v1.N1)R 7→π M(v0.N0R, v1.N1R) permutative conversion.

The definition of SN needs to be extended by
M ∈ SN (∨i)
∨+

i M ∈ SN

~M, N0, N1 ∈ SN
(Var∨)

u ~M(v0.N0, v1.N1) ∈ SN

u ~M(v0.N0R, v1.N1R)~S ∈ SN
(Var∨,π)

u ~M(v0.N0, v1.N1)R~S ∈ SN

Ni[vi := M ]~R ∈ SN N1−i
~R ∈ SN M ∈ SN

(β∨i)
∨+

i M(v0.N0, v1.N1)~R ∈ SN

The former rules (Var), (Varπ) should then be renamed into (Var∃), (Var∃,π).
The lemma above stating that every term in SN is strongly normalizing

needs to be extended by an additional clause:
Case (β∨i). We show that Ni[vi := M ]~R↓, N1−i

~R↓ and M↓ together im-
ply ∨+

i M(v0.N0, v1.N1)~R↓. This is done by a fourfold induction: first on M↓,
second on Ni[vi := M ]~R↓, N1−i

~R↓, third on N1−i
~R↓ and fourth on the length
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of ~R. We need to consider all possible reducts of ∨+
i M(v0.N0, v1.N1)~R. In

case of an outer β-reduction use the assumption. If M is reduced, use the
first IH. Reductions in Ni and in ~R as well as permutative reductions within
~R are taken care of by the second IH. Reductions in N1−i are taken care of
by the third IH. The only remaining case is when ~R = S~S and (v0.N0, v1.N1)
is permuted with S, to yield (v0.N0S, v1.N1S). Apply the fourth IH, since
(NiS)[v := M ]~S = Ni[v := M ]S~S.

Finally the theorem above stating properties of SN needs an additional
clause:

• for all M ∈ SN, if M proves A = A0 ∨ A1 and N0, N1 ∈ SN, then
M(v0.N0, v1.N1) ∈ SN.

Proof. The new clause is proved by induction on M ∈ SN. Let M ∈ SN
and assume that M proves A = A0 ∨ A1 and N0, N1 ∈ SN. The goal is
M(v0.N0, v1.N1) ∈ SN. We distinguish cases according to how M ∈ SN was
generated. For (Var∃,π), (Var∨,π), (β→), (β∃) and (β∨i) use the same rule
again.

Case u ~M ∈ SN by (Var0) from ~M ∈ SN. Use (Var∨).
Case (∨+

i M)A0∨A1 ∈ SN by (∨i) from M ∈ SN. Use (β∨i); for this we
need to know Ni[vi := M ] ∈ SN and N1−i ∈ SN. The latter is assumed, and
the former follows from main IH (with Ni) for the substitution clause of the
theorem, since M derives Ai.

Case u ~M(v′.N ′) ∈ SN by (Var∃) from ~M, N ′ ∈ SN. For brevity let
E := (v0.N0, v1.N1). Then N ′E ∈ SN by SIH for N ′, so u ~M(v′.N ′E) ∈ SN
by (Var∃) and therefore u ~M(v′.N ′)E ∈ SN by (Var∃,π).

Case u ~M(v′0.N
′
0, v

′
1.N

′
1) ∈ SN by (Var∨) from ~M, N ′

0, N
′
1 ∈ SN. Let E :=

(v0.N0, v1.N1). Then N ′
iE ∈ SN by SIH for N ′

i , so u ~M(v′0.N
′
0E, v′1.N

′
1E) ∈

SN by (Var∨) and therefore u ~M(v′0.N
′
0, v

′
1.N

′
1)E ∈ SN by (Var∨,π).

Clause (c) now needs additional cases, e.g.,
Case u ~M(v0.N0, v1.N1) ∈ SN by (Var∨) from ~M, N0, N1 ∈ SN. If u 6= v,

use (Var∨). If u = v, we show N ~M [v := N ](v0.N0[v := N ], v1.N1[v := N ]) ∈
SN. Note that N proves A; hence in case ~M empty the claim follows from
(b), and otherwise from (a) and the IH. �

1.4.7. The structure of normal derivations. As mentioned already,
normalization aims at removing local maxima of complexity, i.e., formula oc-
currences which are first introduced and immediately afterwards eliminated.
However, an introduced formula may be used as a minor premise of an ap-
plication of ∨−, ∧− or ∃−, then stay the same throughout a sequence of
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applications of these rules, being eliminated at the end. This also consti-
tutes a local maximum, which we should like to eliminate; this is what the
permutative conversions are designed for.

Definition. A segment of (length n) in a derivation M is a sequence
A1, . . . , An of occurrences of a formula A such that
(a) for 1 ≤ i < n, Ai is a minor premise of an application of ∨−, ∧− or ∃−,

with conclusion Ai+1;
(b) An is not a minor premise of ∨−, ∧− or ∃−.
(c) A1 is not the conclusion of ∨−, ∧− or ∃−.
(Note: An f.o. which is neither a minor premise nor the conclusion of an
application of ∨−, ∧− or ∃− always belongs to a segment of length 1.) A
segment is maximal or a cut (segment) if An is the major premise of an
E-rule, and either n > 1, or n = 1 and A1 = An is the conclusion of an
I-rule.

We shall use σ, σ′ for segments. We shall say that σ is a subformula of
σ′ if the formula A in σ is a subformula of B in σ′. Clearly a derivation is
normal if and only if it does not contain a maximal segment.

The argument in Sec.1.3.5 needs to be refined to also cover the rules
for ∨,∧,∃. The reason for the difficulty is that in the E-rules ∨−,∧−,∃−
the subformulas of a major premise A ∨ B, A ∧ B or ∃xA of an E-rule
application do not appear in the conclusion, but among the assumptions
being discharged by the application. This suggests the definition of track
below.

The general notion of a track is designed to retain the subformula prop-
erty in case one passes through the major premise of an application of a
∨−,∧−,∃−-rule. In a track, when arriving at an Ai which is the major
premise of an application of such a rule, we take for Ai+1 a hypothesis
discharged by this rule.

Definition. A track of a derivation M is a sequence of f.o.’s A0, . . . , An

such that
(a) A0 is a top f.o. in M not discharged by an application of an ∨−,∧−,∃−-

rule;
(b) Ai for i < n is not the minor premise of an instance of →−, and either

(i) Ai is not the major premise of an instance of a ∨−,∧−,∃−-rule and
Ai+1 is directly below Ai, or

(ii) Ai is the major premise of an instance of a ∨−,∧−,∃−-rule and
Ai+1 is an assumption discharged by this instance;

(c) An is either
(i) the minor premise of an instance of →−, or
(ii) the conclusion of M , or
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(iii) the major premise of an instance of a ∨−,∧−,∃−-rule in case there
are no assumptions discharged by this instance.

Lemma. In a derivation each formula occurrence belongs to some track.

Proof. By induction on derivations. For example, suppose a derivation
K ends with an ∃−-application:

|M
∃xA

[u : A]
| N
B ∃−x, u

B

B in N belongs to a track π (IH); either this does not start in u : A, and
then π,B is a track in K which ends in the conclusion; or π starts in u : A,
and then there is a track π′ in M (IH) such that π′, π, C is a track in K
ending in the conclusion. The other cases are left to the reader. �

Definition. A track of order 0, or main track , in a derivation is a
track ending either in the conclusion of the whole derivation or in the major
premise of an application of a ∨−, ∧− or ∃−-rule, provided there are no
assumption variables discharged by the application. A track of order n + 1
is a track ending in the minor premise of an →−-application, with major
premise belonging to a track of order n.

A main branch of a derivation is a branch π in the proof tree such that π
passes only through premises of I-rules and major premises of E-rules, and
π begins at a top node and ends in the conclusion.

Remark. By an obvious simplification conversion we may remove every
application of an ∨−, ∧− or ∃−-rule that discharges no assumption variables.
If such simplification conversion are performed, each track of order 0 in a
normal derivation is a track ending in the conclusion of the whole derivation.

If we search for a main branch going upwards from the conclusion, the
branch to be followed is unique as long as we do not encounter an ∧+-
application.

Now let us consider normal derivations.

Proposition. Let M be a normal derivation, and let π = σ0, . . . , σn be
a track in M . Then there is a segment σi in π, the minimum segment or
minimum part of the track, which separates two (possibly empty) parts of π,
called the E-part ( elimination part) and the I-part ( introduction part) of π
such that
(a) for each σj in the E-part one has j < i, σj is a major premise of an

E-rule, and σj+1 is a strictly positive part of σj, and therefore each σj

is a s.p.p. of σ0;
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(b) for each σj which is the minimum segment or is in the I-part one has
i ≤ j, and if j 6= n, then σj is a premise of an I-rule and a s.p.p. of
σj+1, so each σj is a s.p.p. of σn.

Theorem (Subformula property). Let M be a normal derivation where
every application of an ∨−, ∧− or ∃−-rule discharges at least one assumption
variable. Then each formula occurring in the derivation is a subformula of
either the end formula or else an assumption formula.

Proof. As note above, each track of order 0 in M is a track ending in
the conclusion of M . We can now prove the theorem for tracks of order n,
by induction on n. �

Theorem (Disjunction property). If Γ does not contain a disjunction
as s.p.p. (= strictly positive part, defined in Sec.1.1.3), then, if Γ ` A ∨B,
it follows that Γ ` A or Γ ` B.

Proof. Consider a normal derivation M of A ∨B from assumptions Γ
not containing a disjunction as s.p.p. The conclusion A ∨B is the final for-
mula of a (main) track, whose top formula A0 in M must be an assumption
in Γ. Since Γ does not contain a disjunction as s.p.p., the segment σ with
the conclusion A∨B is in the I-part. Skip the final ∨+

i -rule and replace the
formulas in σ by A if i = 0, and by B if i = 1. �

There is a similar theorem for the existential quantifier:

Theorem (Explicit definability under hypotheses). Let Γ ` ∃xA.

(a) If Γ does not contain an existential s.p.p., then there are terms r1, r2,
. . . , rn such that Γ ` A[x := r1] ∨ . . . ∨A[x := rn].

(b) If Γ neither contains a disjunctive s.p.p., nor an existential s.p.p., then
there is a term r such that Γ ` A[x := r].

Proof. Consider a normal derivation M of ∃xA from assumptions Γ
not containing an existential s.p.p. We use induction on the derivation, and
distinguish cases on the last rule.

(a). By assumption the last rule cannot be ∃−. We only consider the
case ∨− and leave the others to the reader.

|M
B ∨ C

[u : B]
| N0

∃xA

[v : C]
| N1

∃xA ∨−u, v
∃xA
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By assumption again neither B nor C can have an existential s.p.p. Applying
the IH to N0 and N1 we obtain

|M
B ∨ C

[u : B]
| N0∨∨n

i=1 A[x := ri]
∨+∨∨n+m

i=1 A[x := ri]

[v : C]
| N1∨∨n+m

i=n+1 A[x := ri]
∨+∨∨n+m

i=1 A[x := ri] ∨−u, v∨∨n+m
i=1 A[x := ri]

(b). Similarly; by assumption the last rule can be neither ∨− nor ∃−. �

Remark. For Γ consisting of Harrop formulas both theorems above
hold.

1.5. Soundness and Completeness for Beth Models

It is an obvious question to ask whether the logical rules we have been
considering suffice, i.e., whether we have forgotten some necessary rules.
To answer this question we first have to fix the meaning of a formula, i.e.,
provide a semantics. This will be done by means of Beth models. Using
this concept of a model we will prove soundness and completeness for both,
minimal and intuitionistic logic.

1.5.1. Beth models. Consider a finitely branching tree of “possible
worlds”. The worlds are represented as nodes in this tree. They may be
thought of as possible states such that all nodes “above” a node k are the
ways in which k may develop in the future. The worlds are increasing, that
is, if an atomic formula R~s true is in a world k, then R~s is true in all future
worlds k.

More formally, each Beth model is based on a finitely branching tree T .
A node k over a set S is a finite sequence k = 〈a0, a1, . . . , an−1〉 of elements
of S; lh(k) is the length of k. We write k � k′ if k is an initial segment of
k′. A tree on S is a set of nodes closed under initial segments. A tree T is
finitely branching if every node in T has finitely many immediate successors.

A tree T is infinite if for every n ∈ N there is a node k ∈ T such that
lh(k) = n. A branch of T is a linearly ordered subtree of T . A leaf is a node
without successors in T .

For the proof of the completeness theorem, a Beth model based on a
complete binary tree (i.e., the complete tree over {0, 1}) will suffice. The
nodes will be all the finite sequences of 0’s and 1’s, and the ordering is as
above. The root is the empty sequence and k0 is the sequence k with the
element 0 added at the end; similarly for k1.
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Definition. Let (T,�) be a finitely branching tree. B = (D, I0, I1) is a
L-Beth model on T , where D is a nonempty set, and for every n-ary function
symbol in L, I0 assigns f a map I0(f) : Dn → D. For every n-ary relation
symbol R in L and every node k ∈ T , I1(R, k) ⊆ Dn is assigned in such a
way that monotonicity is preserved, that is,

k � k′ ⇒ I1(R, k) ⊆ I1(R, k′).

If n = 0, then I1(R, k) is either true or false, and it follows by the mono-
tonicity that if k � k′ and I1(R, k) then I1(R, k′). We write RB(~a, k) for
~a ∈ I1(R, k).

There is no special requirement set on I1(⊥, k). In minimal logic, falsum
⊥ plays a role of an ordinary propositional variable.

It is obvious from the definition that any T can be extended to a com-
plete tree T̄ without leaves, in which for every leaf k ∈ T all sequences
k0, k00, k000, . . . are added to T . For every node k0 . . . 0, we then add
I1(R, k0 . . . 0) := I1(R, k).

For an assignment η, tB[η] is understood in the canonical sense. The
usual satisfaction relation M |= A[η] is replaced by the forcing relation in
Beth models.

Definition. B, k 
 A[η] (B forces A at node k for an assignment η)
is defined inductively as follows. We write k 
 A[η] when it is clear from
the context what the underlying model B is, and ∀k′�nk A for ∀k′�k.lh(k′) =
lh(k) + n→ A.

k 
 (R~s )[η] :⇐⇒ ∃n∀k′�nk RB(~sB[η], k′).

k 
 (A ∨B)[η] :⇐⇒ ∃n∀k′�nk.k
′ 
 A[η] or k′ 
 B[η].

k 
 (∃xA)[η] :⇐⇒ ∃n∀k′�nk∃a∈|B| k
′ 
 A[ηa

x].

k 
 (A→ B)[η] :⇐⇒ ∀k′�k.k
′ 
 A[η]⇒ k′ 
 B[η].

k 
 (A ∧B)[η] :⇐⇒ k 
 A[η] and k 
 B[η].

k 
 (∀xA)[η] :⇐⇒ ∀a∈|B| k 
 A[ηa
x].

Notice that the clauses for atoms, disjunction and existential quantifier
include a concept of a “bar”, in T̄ .

1.5.2. Covering lemma. It is easily seen (using the definition and
monotonicity) that from k 
 A[η] and k � k′ we can conclude k′ 
 A[η].
The converse is also true:

Lemma (Covering Lemma).

∀k′�nk k′ 
 A[η]⇒ k 
 A[η].
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Proof. Induction on A. We write k 
 A for k 
 A[η].
Case R~s. Assume

∃n∀k′�nk k′ 
 R~s,

hence by definition

∃n∀k′�nk∃m∀k′′�mk′R
B(~sB[η], k′′)

Since T is a finitely branching tree,

∃m∀k′�mk RB(~sB[η], k′).

Hence k 
 R~s.
The cases A ∨B and ∃xA are handled similarly.
Case A → B. Let k′ 
 A → B for all k′ � k with lh(k′) = lh(k) + n.

We show
∀l�k.l 
 A⇒ l 
 B.

Let l � k and l 
 A. We show that l 
 B. We apply the IH to B
and m := max(lh(k) + n, lh(l)). So assume l′ � l and lh(l′) = m. It is
sufficient to show l′ 
 B. If lh(l′) = lh(l), then l′ = l and we are done. If
lh(l′) = lh(k) + n > lh(l), then l′ is an extension of l as well as of k and has
length lh(k) + n, and hence l′ 
 A → B by assumption. Moreover, l′ 
 A,
since l′ � l and l 
 A. It follows that l′ 
 B.

The cases A ∧B and ∀xA are obvious. �

1.5.3. Soundness.

Lemma (Coincidence). Let B be a Beth model, t a term, A a formula
and η, ξ assignments in |B|.
(a) If η(x) = ξ(x) for all x ∈ vars(t), then η(t) = ξ(t).
(b) If η(x) = ξ(x) for all x ∈ FV(A), then B, k 
 A[η] ⇐⇒ B, k 
 A[ξ].

Proof. Induction on terms and formulas. �

Lemma (Substitution). Let B be a Beth model, t, r terms, A a formula
and η an assignment in |B|. Then

(a) η(r[x := t]) = η
η(t)
x (r).

(b) B, k 
 A[x := t][η] ⇐⇒ B, k 
 A[ηη(t)
x ].

Proof. Induction on terms and formulas. �

Theorem (Soundness). Let Γ∪{A} be a set of formulas such that Γ ` A.
Then, if B is a Beth model, k a node and η an assignment in |B|, it follows
that B, k 
 Γ[η] entails B, k 
 A[η].
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Proof. Induction on derivations.
We begin with the axiom schemes ∨+

0 , ∨+
1 , ∨−, ∃+ and ∃−. k 
 C[η] is

abbreviated k 
 C, when η is known from the context.
Case ∨+

0 : A→ A∨B. We show k 
 A→ A∨B. Assume for k′ � k that
k′ 
 A. Show: k′ 
 A ∨ B. This follows from the definition, since k′ 
 A.
The case ∨+

1 : B → A ∨B is symmetric.
Case ∨− : (A → C) → (B → C) → A ∨ B → C. We show that

k 
 (A → C) → (B → C) → A ∨ B → C. Assume for k′ � k that
k′ 
 A → C, k′ 
 B → C and k′ 
 A ∨ B (we can safely assume that k′ is
the same for all three premises ). Show that k′ 
 C. By definition, there
is an n s.t. for all k′′ �n k′, k′′ 
 A or k′′ 
 B. In both cases it follows
that k′′ 
 C, since k′ 
 A→ C and k′ 
 B → C. By the Covering Lemma,
k′ 
 C.

Case ∃+ : A→ ∃xA. Show that k 
 (A→ ∃xA)[η]. Assume that k′ � k

and k′ 
 A[η]. Show that k′ 
 (∃xA)[η]. Since η = η
η(x)
x there is an a ∈ |B|

(namely a := η(x)) such that k′ 
 A[ηa
x]. Hence, k′ 
 (∃xA)[η].

Case ∃− : ∀x(A → B) → ∃xA → B and x /∈ FV(B). We show that k 

(∀x(A → B) → ∃xA → B)[η]. Assume that k′ � k and k′ 
 ∀x(A → B)[η]
and k′ 
 (∃xA)[η]. We show k′ 
 B[η]. By definition, there is an n such that
for all k′′ �n k′ we have a ∈ |B| and k′′ 
 A[ηa

x]. From k′ 
 ∀x(A → B)[η]
it follows that k′′ 
 B[ηa

x], and since x /∈ FV(B), from the Coincidence
Lemma, k′′ 
 B[η]. Then, finally, by the Covering Lemma k′ 
 B[η].

Case →+. Assume k 
 Γ. We show k 
 A → B. Assume k′ � k and
k′ 
 A. Our goal is k′ 
 B. We have k′ 
 Γ ∪ {A}. Thus, k′ 
 B by IH.

Case →−. Assume k 
 Γ. The IH gives us k 
 A → B and k 
 A.
Hence k 
 B.

Case ∀+. Assume k 
 Γ[η] and x /∈ FV(Γ). We show k 
 (∀xA)[η], i.e.,
k 
 A[ηa

x] for an arbitrary a ∈ |B|. We have

k 
 Γ[ηa
x] by the Coincidence Lemma, since x /∈ FV(Γ)

k 
 A[ηa
x] by IH.

Case ∀−. Let k 
 Γ[η]. We show that k 
 A[x := t][η]. We have

k 
 (∀xA)[η] by IH

k 
 A[ηη(t)
x ] by definition

k 
 A[x := t][η] by the Substitution Lemma.

This concludes the proof. �

1.5.4. Counter models. With soundness at hand, it is easy to build
counter models for derivations not valid in minimal or intuitionistic logic.
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A Beth model B = (D, I0, I1) for intuitionistic logic is a Beth-structure
in which ⊥ is never forced, i.e., I1(⊥, k) = 0 for all k. Then

k 
 ¬A ⇐⇒ ∀k′�k k′ 6
 A,

k 
 ¬¬A ⇐⇒ ∀k′�k k′ 6
 ¬A

⇐⇒ ∀k′�k∃̃k′′�k′ k
′′ 
 A.

As an example, we show that 6`i ¬¬P → P . We describe the desired
Beth model by means of a diagram below. Next to every node, we write the
propositions forced on that node.

•@
@

�
�

•P •@
@

�
�

•P •@
@

�
�

•P •..
.

Clearly this is an intuitionistic Beth model. Using the remark above, it is
easily seen that

〈〉 6
 P, 〈〉 
 ¬¬P.

Thus 〈〉 6
 ¬¬P → P and hence 6` ¬¬P → P . Since for every R and all k,
k 
 EfqR, it also follows that 6`i ¬¬P → P . The model also shows that the
Peirce formula ((P → Q)→ P )→ P is invalid in intuitionistic logic.

1.5.5. Completeness.

Theorem (Completeness). Let Γ ∪ {A} be a set of formulas. Then the
following propositions are equivalent.
(a) Γ ` A.
(b) Γ 
 A, i.e., for all Beth models B, nodes k and assignments η

B, k 
 Γ[η]⇒ B, k 
 A[η].

Proof. Soundness is one direction. For the other direction we employ
a technique developed by Harvey Friedman and construct a Beth model B
(over the set T01 of all finite 0-1-sequences k ordered by the initial segment
relation k � k′) with the property that Γ ` B is equivalent to B, 〈〉 
 B[id].
We can assume here that Γ and also A are closed.

In order to define B, we will need an enumeration A0, A1, A2, . . . of L-
formulas, in which every formula occurs infinitely often. We also fix an
enumeration x0, x1, . . . of distinct variables. Write Γ =

⋃
n Γn with finite

sets Γn such that Γn ⊆ Γn+1. With every node k ∈ T01, we associate a finite
set ∆k of formulas and a set Vk of variables, by induction on the length of
k.



46 1. LOGIC

Let ∆〈〉 := ∅ and V〈〉 := ∅. Take a node k such that lh(k) = n and
suppose that ∆k, Vk are already defined. Write ∆ `n B to mean that there
is a derivation of length ≤ n of B from ∆. We define ∆k0, Vk0 and ∆k1, Vk1

as follows:
Case 0. FV(An) 6⊆ Vk. Then let

∆k0 := ∆k1 := ∆k and Vk0 := Vk1 := Vk.

Case 1. FV(An) ⊆ Vk and Γn,∆k 6`n An. Then let

∆k0 := ∆k and ∆k1 := ∆k ∪ {An},
Vk0 := Vk1 := Vk.

Case 2. FV(An) ⊆ Vk and Γn,∆k `n An = A′
n ∨A′′

n. Then let

∆k0 := ∆k ∪ {An, A′
n} and ∆k1 := ∆k ∪ {An, A′′

n},
Vk0 := Vk1 := Vk.

Case 3. FV(An) ⊆ Vk and Γn,∆k `n An = ∃xA′
n(x). Then let

∆k0 := ∆k1 := ∆k ∪ {An, A′
n(xi)} and Vk0 := Vk1 := Vk ∪ {xi},

where xi is the first variable /∈ Vk.
Case 4. FV(An) ⊆ Vk and Γn,∆k `n An, with An neither a disjunction

nor an existentially quantified formula. Then let

∆k0 := ∆k1 := ∆k ∪ {An} and Vk0 := Vk1 := Vk.

Remark. (1) Because of ` ∃x> and this formula is repeated infi-
nitely often in the given enumeration, for every variable xi there is
an m such that xi ∈ Vk for all k with lh(k) = m.

(2) Obviously FV(∆k) ⊆ Vk, and k � k′ implies that ∆k ⊆ ∆k′ .

We note that

(1.16) ∀k′�nk (Γ,∆k′ ` B)⇒ Γ,∆k ` B, provided FV(B) ⊆ Vk.

It is sufficient to show that, for FV(B) ⊆ Vk,

Γ,∆k0 ` B and Γ,∆k1 ` B imply Γ,∆k ` B.

In cases 0, 1 and 4, this is obvious. For case 2, the claim follows imme-
diately from the axiom scheme ∨−. In case 3, we have FV(An) ⊆ Vk and
Γn,∆k `n An = ∃xA′

n(x). Assume Γ,∆k ∪ {An, A′
n(xi)} ` B with xi /∈ Vk,

and FV(B) ⊆ Vk. Then xi /∈ FV(∆k ∪ {An, B}), hence Γ,∆k ∪ {An} ` B
by ∃− and therefore Γ,∆k ` B.

Next, we show

(1.17) Γ,∆k ` B ⇒ ∃n∀k′�nk (B ∈ ∆k′), provided FV(B) ⊆ Vk.

Choose n ≥ lh(k) such that B = An and Γn,∆k `n An. For all k′ � k, if
lh(k′) = n + 1 then An ∈ ∆k′ (cf. the cases 2-4).
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Using the sets ∆k we can define an L-Beth model B as (TerL, I0, I1)
(where TerL denotes the set of terms of L) and the canonical I0(f)~s := f~s
and

RB(~s, k) :⇐⇒ R~s ∈ ∆k.

Obviously, tB[id] = t for all L-terms t.
Write k 
 B for B, k 
 B[id]. We show that

(1.18) Γ,∆k ` B ⇐⇒ k 
 B, provided FV(B) ⊆ Vk.

The proof is by induction on B. Case R~s. Assume FV(R~s ) ⊆ Vk. ⇒.

Γ,∆k ` R~s

∃n∀k′�nk (R~s ∈ ∆k′) by (1.17)

∃n∀k′�nk RB(~s, k′) by definition of B
k 
 R~s by definition of 
, since tB[id] = t.

⇐.

k 
 R~s

∃n∀k′�nk RB(~s, k′) by definition of 
, since tB[id] = t.

∃n∀k′�nk (R~s ∈ ∆k′) by definition of B
Γ,∆k ` R~s by (1.16).

Case B ∨ C. Assume FV(B ∨ C) ⊆ Vk. ⇒. Let Γ,∆k ` B ∨ C. Choose
an n ≥ lh(k) such that Γn,∆k `n An = B ∨ C. Then, for all k′ � k s.t.
lh(k′) = n it follows that

∆k′0 = ∆k′ ∪ {B ∨ C,B} and ∆k′1 = ∆k′ ∪ {B ∨ C,C},
and by IH

k′0 
 B and k′1 
 C.

By definition, we have k 
 B ∨ C. ⇐.

k 
 B ∨ C

∃n∀k′�nk (k′ 
 B or k′ 
 C)

∃n∀k′�nk (Γ,∆k′ ` B or Γ,∆k′ ` C) by IH

∃n∀k′�nk (Γ,∆k′ ` B ∨ C)

Γ,∆k ` B ∨ C by (1.16).

The case B ∧ C is evident.
Case B → C. Assume FV(B → C) ⊆ Vk. ⇒. Let Γ,∆k ` B → C. We

must show k 
 B → C, i.e.,

∀k′�k(k′ 
 B ⇒ k′ 
 C).



48 1. LOGIC

Let k′ � k be such that k′ 
 B. By IH, it follows that Γ,∆k′ ` B, and
Γ,∆k′ ` C follows by assumption. Then again by IH k′ 
 C.
⇐. Let k 
 B → C, i.e., ∀k′�k(k′ 
 B ⇒ k′ 
 C). We show that

Γ,∆k ` B → C. At this point, we apply (1.16). Choose an n ≥ lh(k) such
that B = An. Let k′ �m k be such that m := n − lh(k). We show that
Γ,∆k′ ` B → C.

If Γ,∆k′ `n An, then k′ 
 B by IH, and k′ 
 C by assumption, hence
Γ,∆k′ ` C again by IH and thus Γ,∆k′ ` B → C.

If Γ,∆k′ 6`n An, then by definition ∆k′1 = ∆k′ ∪{B}, hence Γ,∆k′1 ` B,
and k′1 
 B by IH. Now k′1 
 C by assumption, and finally Γ,∆k′1 ` C by
IH. From ∆k′1 = ∆k′ ∪ {B}, it follows that Γ,∆k′ ` B → C.

Case ∀xB(x). Assume FV(∀xB(x)) ⊆ Vk. ⇒. Let Γ,∆k ` ∀xB(x).
Fix a term t. Then Γ,∆k ` B(t). Choose n such that FV(B(t)) ⊆ Vk′ for
all k′ �n k. Then ∀k′�nk (Γ,∆k′ ` B(t)), hence ∀k′�nk (k′ 
 B(t)) by IH,
hence k 
 B(t) by the Covering Lemma. This holds for every term t, hence
k 
 ∀xB(x).
⇐. Assume k 
 ∀xB(x). Pick k′ �n k such that Am = ∃x>, for

m := lh(k) + n. Then at height m we put some xi into the variable sets:
for k′ �n k we have xi /∈ Vk′ but xi ∈ Vk′j . Clearly k′j 
 B(xi), hence
Γ,∆k′j ` B(xi) by IH, hence (since at this height we consider the trivial
formula ∃x>) also Γ,∆k′ ` B(xi). Since xi /∈ Vk′ we obtain Γ,∆k′ ` ∀xB(x).
This holds for all k′ �n k, hence Γ,∆k ` ∀xB(x) by (1.16).

Case ∃xB(x). Assume FV(∃xB(x)) ⊆ Vk.
⇒. Let Γ,∆k ` ∃xB(x). Choose an n ≥ lh(k) such that Γn,∆k `n An =

∃xB(x). Then, for all k′ � k such that lh(k′) = n it follows that

∆k′0 = ∆k′1 = ∆k ∪ {∃xB(x), B(xi)}
with xi /∈ Vk′ . Hence by IH for B(xi) (applicable since FV(B(xi)) ⊆ Vk′j for
j = 0, 1)

k′0 
 B(xi) and k′1 
 B(xi).
It follows by definition that k 
 ∃xB(x).
⇐. Assume k 
 ∃xB(x). Then ∀k′�nk∃t∈Ter (k′ 
 B(x)[idt

x]) for some n,
hence ∀k′�nk∃t∈Ter (k′ 
 B(t)). For each of the finitely many k′ �n k pick
an m such that ∀k′′�mk′ (FV(B(tk′)) ⊆ Vk′′). Let m0 be the maximum of all
these m. Then

∀k′′�m0+nk∃t∈Ter (k′′ 
 B(t) and FV(B(t)) ⊆ Vk′′).

The IH for B(t) yields

∀k′′�m0+nk∃t∈Ter (Γ,∆k′′ ` B(t))

∀k′′�m0+nk (Γ,∆k′′ ` ∃xB(x))

Γ,∆k ` ∃xB(x) by (1.16).
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Now, we can finish the proof of the Completeness Theorem. We apply
(b) to the Beth model B constructed above from Γ, the empty node 〈〉 and
the assignment η = id. Then B, 〈〉 
 Γ[id] by (1.18), hence B, 〈〉 
 A[id] by
assumption and therefore Γ ` A by (1.18) again. �

Completeness of intuitionistic logic follows as a corollary.

Corollary. Let Γ ∪ {A} be a set of formulas. The following proposi-
tions are equivalent.
(a) Γ `i A.
(b) Γ,Efq 
 A, i.e., for all Beth models B for the intuitionistic logic, nodes

k and assignments η

B, k 
 Γ[η]⇒ B, k 
 A[η]. �

1.6. Soundness and Completeness of the Classical Fragment

We will prove completeness by means of a technique due to Beth, Hin-
tikka and Schütte (BHS-technique for short); it consists in simultaneously
searching for a derivation and a counterexample. This proof is non-construc-
tive: it makes use of the principle of omniscience (Bishop and Bridges, 1985,
p.11) for the property of being a bound for the height of a binary tree; we
call this principle the infinity test for binary trees. Using DC (dependent
choice), this principle also suffices to prove König’s Lemma, which is a cru-
cial ingredient of completeness proofs with the BHS-technique.

1.6.1. Models. We define the notion of a model (or more accurately,
L-model), and what the value of a term and the meaning of a formula in
such a model should be. The latter definition is by induction on formulas,
where in the quantifier case we need a quantifier in the definition.

For the rest of this section, fix a countable formal language L; we do not
mention the dependence on L in the notation. Recall that by Lemma 1.2.4
it is not necessary to consider ∧. So let us assume that L is based on →, ∀
and ⊥.

Definition. M = (D, I) is a pre-model , if D a non-empty set (the
carrier set or the domain of M) and I is a map (interpretation) assigning
to every n-ary function symbol f of L a function I(f) : Dn → D. In case
n = 0, I(f) is an element of D. M = (D, I0, I1) is a model , if (D, I0) is
a pre-model and I1 a map assigning to every n-ary relation symbol R of L
an n-ary relation on Dn. In case n = 0, I1(R) is either true or false; in
particular we require that I1(⊥) is false.

If M = (D, I) or (D, I0, I1), then we often write |M| for the carrier set
D of M and fM, RM for the interpretations I0(f), I1(R) of the function
and relation symbols.
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An assignment (or variable assignment) in D is a map η assigning to
every variable x ∈ dom(η) a value η(x) ∈ D. Finite assignments will be
written as [x1 := a1, . . . , xn := an] (or else as [a1/x1, . . . , an/xn]), with
distinct x1, . . . , xn. If η is an assignment in D and a ∈ D, let ηa

x be the
assignment in D mapping x to a and coinciding with η elsewhere, so

ηa
x(y) :=

{
η(y), if y 6= x

a, if y = x.

Let a pre-model M and an assignment η in |M| be given. We define a
homomorphic extension of η (denoted by η as well) to the set Ter of terms
t such that vars(t) ⊆ dom(η) by

η(c) := cM,

η(f(t1, . . . , tn)) := fM(η(t1), . . . , η(tn)).

Observe that the extension of η depends on M; we sometimes write tM[η]
for η(t).

Definition (Validity). For every model M, assignment η in |M| and
formula A such that FV(A) ⊆ dom(η) we defineM |= A[η] (read: A is valid
inM under the assignment η) by induction on A, with the following clauses.

M |= R(t1, . . . , tn)[η] :⇐⇒ RM(tM1 [η], . . . , tMn [η]),

M |= (A→ B)[η] :⇐⇒
(
(M |= A[η])→ (M |= B[η])

)
,

M |= (∀xA)[η] :⇐⇒ ∀a∈|M|M |= A[ηa
x].

Since I1(⊥) is false, we have in particular M 6|= ⊥[η].
If Γ is a set of formulas, we writeM |= Γ[η], ifM |= A[η] for all A ∈ Γ.

IfM |= A[η] for all assignments η in |M|, we write M |= A.

Lemma (Coincidence). Let M be a model, t a term, A a formula and
η, ξ assignments in |M|.
(a) If η(x) = ξ(x) for all x ∈ vars(t), then η(t) = ξ(t).
(b) If η(x) = ξ(x) for all x ∈ FV(A), then M |= A[η] if and only if M |=

A[ξ].

Proof. Induction on terms and formulas. �

Lemma (Substitution). Let M be a model, t, r terms, A a formula and
η an assignment in |M|. Then

(a) η(r[x := t]) = η
η(t)
x (r).

(b) M |= A[x := t][η] ⇐⇒ M |= A[ηη(t)
x ].

Proof. Induction on terms and formulas. �
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A model M is called stable if ¬¬RM(~a)→ RM(~a) for all relation sym-
bols R and all ~a ∈ |M|.

1.6.2. Soundness. We prove that every formula derivable in classical
logic is valid in an arbitrary stable model.

Theorem (Soundness). Let Γ `c B,M a stable model and η an assign-
ment in |M|. Then M |= Γ[η] entails M |= B[η].

Proof. Induction on derivations. The given derivation of B from Γ
can only have finitely many free assumptions; hence we may assume Γ =
{A1, . . . , An}.

Case u : B. Then B ∈ Γ and the claim is obvious.
Case StabR : ∀~x(¬¬R~x→ R~x). The claim follows from our assumption

that M is stable, i.e., ¬¬RM(~a) → RM(~a) for all ~a ∈ |M|. The other
axioms are clearly valid.

Case →−. Assume M |= Γ[η]. We must show M |= B[η]. By IH,
M |= (A → B)[η] and M |= A[η]. The claim follows from the definition of
|=.

Case →+. Assume M |= Γ[η]. We must show M |= (A → B)[η]. So
assume in addition M |= A[η]. We must show M |= B[η]. By IH (with
Γ ∪ {A} instead of Γ) this clearly holds.

Case ∀+. Assume M |= Γ[η]. We must show M |= A[ηa
x]. We may

assume that all assumptions A1, . . . , An actually appear in the given deriva-
tion. Since because of the variable condition for ∀+ the variable x does not
appear free in any of the formulas A1, . . . , An, we have by the Coincidence
Lemma M |= Γ[ηa

x]. The IH (with ηa
x instead of η) yields M |= A[ηa

x].
Case ∀−. Assume M |= Γ[η]. We must show M |= A[x := t][η], i.e., by

the Substitution Lemma M |= A[ηb
x] with b := η(t). By IH, M |= (∀xA)[η],

i.e.,M |= A[ηa
x] for all a ∈ |M|. With η(t) for a the claim follows. �

1.6.3. Completeness. Let us first introduce some relevant notions. A
node is a finite sequence κ = 〈k0, k1, . . . , kn−1〉 of natural numbers; n is
called the length lh(κ) of κ. We write κ1 � κ2, if κ1 is an initial segment κ2.
A tree is a set of nodes closed under the formation of initial segments. A tree
T is finitely branching , if every node κ ∈ T has only finitely many immediate
continuations in T . A tree T is infinite, if for every n there is a node κ ∈ T
with lh(κ) = n. A branch in a tree T is a linearly ordered subset of T closed
under the formation of initial segments. Every infinite branch is determined
by a sequence (kn)n∈N of natural numbers, whose initial segments are the
nodes of the branch.

Lemma (König). Every finitely branching infinite tree has an infinite
branch.
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Proof. We make use of the principle of the availability of an infinity
test for binary trees, and moreover DC (dependent choice). Let T be a
finitely branching infinite tree. We define recursively natural numbers kn by
requiring that kn is the least k such that 〈k0, k1, . . . , kn−1, k〉 has arbitrarily
large continuations in T . �

Remark. Without the assumption that T is finitely branching, König’s
Lemma is false. To see this, consider the set T of all nodes 〈n, 0, . . . , 0〉 with
n occurrences of 0. Clearly T is infinite, but it has no infinite branch.

Theorem (Completeness). Let Γ ∪ {A} be a set of formulas. Then

Γ |= A⇒ Γ `c A.

Proof. We use the BHS-technique and construct a universal search tree
(i.e., a tree independent of Γ and A). Using this universal search tree we
obtain for a given Γ and A either a derivation of A from Γ in classical logic
or else a counterexample, i.e., a model of Γ ∪ {¬A}.

In order to define this universal search tree we need at certain points new
variables. Clearly we can assume that there is a countably infinite set V of
variables that occur neither in Γ nor in A. Let AllFor be the set of universal
formulas and Ter the set of terms of L. Since L is assumed to be countable,
we can assume that we have a fixed enumeration of AllFor × Ter; we write
(∀yC, s) @ (∀xB, t) if (∀yC, s) comes before (∀xB, t) in this enumeration.
Then we can define recursively an injective map new: AllFor × Ter → V
such that new(∀xB, t) does not occur in any (∀yC, s) such that (∀yC, s) v
(∀xB, t).

Recall that we may assume that neither Γ nor A contains the connec-
tive ∧. Let AtomFor be the set of atomic formulas and ImpFor the set of
implication formulas of L. Consider

I := AtomFor ∪ (ImpFor× {0, 1}) ∪ (AllFor× Ter)

as an index set. For every F ∈ I and every k ∈ {0, 1} we define a finite set
∆k(F ) of formulas by

∆k(R~t ) :=

{
{¬R~t }, if k = 0,

{R~t }, if k = 1,

∆k(B → C, i) :=


{¬(B → C), B,¬C}, if k = 0,
{B → C,¬B}, if k = 1 and i = 0,
{B → C,C}, if k = 1 and i = 1,

∆k(∀xB(x), t) :=

{
{¬∀xB(x),¬B(y)}, if k = 0 and y = new(∀xB(x), t),
{∀xB(x), B(t)}, if k = 1.
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A partial map α from I into {0, 1} will be called a search path or shortly
path. For every search path α we define a set Γα of formulas by

Γα :=
⋃

F∈dom(α)

∆α(F )(F ).

α is called Γ, A-blocked or shortly blocked if
• A ∈ Γα or ¬B ∈ Γα for some B ∈ Γ, or
• B,¬B ∈ Γα for some B, or
• ⊥ ∈ Γα.

Positive main case. There is an I0 ⊆fin I such that all search paths α
through I0 (i.e., with dom(α) = I0) are blocked.

We show that in this case Γ `c A. To this end let us assume that I0 is
ordered in such a way that behind all elements of AllFor×Ter ordered by @
we list all formulas from AtomFor and (ImpFor× {0, 1}). Let J range over
all subsets of I0 forming initial segments w.r.t. this ordering. We show that
for every such J and all α through J we have Γα ∪ Γ `c A, by induction on
the number of elements in I0 \ J . With J = ∅ we obtain the claim Γ `c A.

In the base case we have J = I0. Then by assumption α is blocked;
hence Γα ∪ Γ `c A. In the step we distinguish three cases.

Case {R~t } ∪̇ J . Let α be a search path through J . By IH we have
Γα[k/R~t ] ∪ Γ `c A for every k ∈ {0, 1}, hence

{¬R~t } ∪ Γα ∪ Γ `c A and {R~t } ∪ Γα ∪ Γ `c A.

Using `c (R~t → A)→ (¬R~t → A)→ A we obtain Γα ∪ Γ `c A.
Case {(B → C, i)} ∪̇ J . Let α be a search path through J . By IH we

have Γα[k/(B→C,i)] ∪ Γ `c A for every k, i ∈ {0, 1}, hence

{¬(B → C), B,¬C} ∪ Γα ∪ Γ `c A,(1.19)

{B → C,¬B} ∪ Γα ∪ Γ `c A,(1.20)

{B → C,C} ∪ Γα ∪ Γ `c A.(1.21)

Because of `c ¬(B → C) → B and `c ¬(B → C) → ¬C we obtain from
(1.19)

(1.22) {¬(B → C)} ∪ Γα ∪ Γ `c A.

Since `c (¬B → A) → (C → A) → (B → C) → A, from (1.20) and (1.21)
we get

(1.23) {B → C} ∪ Γα ∪ Γ `c A.

From (1.22) and (1.23) we now obtain Γα ∪ Γ `c A, using case distiction
again.
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Case {(∀xB(x), t)} ∪̇ J with J ⊆ AllFor × Ter and (∀xB(x), t) A
(∀yC(y), s) for all (∀yC(y), s) ∈ J . Let α be a search path through J .
By IH we have Γα[k/(∀xB(x),t)] ∪ Γ `c A for every k ∈ {0, 1}, hence

{¬∀xB(x),¬B(y)} ∪ Γα ∪ Γ `c A,

{∀xB(x), B(t)} ∪ Γα ∪ Γ `c A,

where y does not occur in ∀xB(x), Γα, Γ and A. Using

`c (∀xB(x)→ A)→ ∀y(¬∀xB(x)→ ¬B(y)→ A)→ A

for y /∈ FV(∀xB(x), A) we obtain Γα ∪ Γ `c A, again using case distiction.
Negative main case. For every I0 ⊆fin I there is a non-blocked search

path α through I0.
We show that in this case there is a non-blocked search path α through

all of I. From α we will construct a counterexample to the hypothesis of
the Completeness Theorem.

Since L was assumed to be countable, I is countable as well and can be
assumed to be given in the form {Fn | n ∈ N } with Fn 6= Fm for n 6= m.
Let

T := {κ | ∃α non-blocked∀n<lh(κ).Fn ∈ dom(α) ∧ κ(n) = α(Fn) }.

Clearly T is a tree, i.e., closed against the formation of initial segments
Moreover, T is finitely branching, since we always have α(F ) ∈ {0, 1}. T
is infinite because of the assumption in the negative main case. By König’s
Lemma there is an infinite branch in T , determined say by (kn)n∈N. Let
α(Fn) := kn. Then α is a non-blocked search path through all of I.

Using this non-blocked search path α and the set of formulas

Γα =
⋃
F∈I

∆α(F )(F )

determined by it, we can now construct the required counterexample. First
we collect some properties of Γα that follow immediately from its definition.

(a) For every formula B, either B ∈ Γα or ¬B ∈ Γα.
(b) ⊥ /∈ Γα.
(c) A /∈ Γα, and Γ ⊆ Γα.
(d) If ¬(B → C) ∈ Γα, then B ∈ Γα and ¬C ∈ Γα.
(e) If B → C ∈ Γα, then ¬B ∈ Γα or C ∈ Γα.
(f) If ¬∀xB(x) ∈ Γα, then ¬B(y) ∈ Γα for some y.
(g) If ∀xB(x) ∈ Γα, then B(t) ∈ Γα for all terms t.

Define aa modelM by
M := (Ter, I0, I1),



1.7. NOTES 55

where

I0(f)(t1, . . . , tn) := f(t1, . . . , tn),

RM := { (t1, . . . , tn) | R(t1, . . . , tn) ∈ Γα }.

Write M |= B forM |= B[id]. We show

(1.24) M |= B ⇐⇒ B ∈ Γα.

The proof is by induction on the number of logical connectives →,∀ in B.
Notice that for our canonical definition of I0(f) we have id(t) = t for all
terms t.

Case R~t. M |= R~t by definition means R~t ∈ Γα.
Case ⊥. By (b) we have ⊥ 6∈ Γα.
Case B → C. ⇒. Assume M |= B → C. We must show B → C ∈ Γα.

By (a) it suffices to know ¬(B → C) /∈ Γα. So assume ¬(B → C) ∈ Γα.
Then by (d) B ∈ Γα and ¬C ∈ Γα, hence by (a) C /∈ Γα. By IH it follows
that M |= B undM 6|= C, contradicting the assumptionM |= B → C.
⇐. Assume B → C ∈ Γα. We must showM |= B → C. So letM |= B.

We must show M |= C. By IH we have B ∈ Γα, hence by (e) and (a)
C ∈ Γα, hence by IH M |= C.

Case ∀xB(x). ⇒. Assume M |= ∀xB(x). We must show ∀xB(x) ∈ Γα.
By (a) it suffices to know ¬∀xB(x) /∈ Γα. So assume ¬∀xB(x) ∈ Γα. Then
by (f) ¬B(y) ∈ Γα for some y, hence by (a) and the IH M 6|= B(y), hence
by the Substitution Lemma M 6|= B(x)[idy

x], contradicting the assumption
M |= ∀xB(x).
⇐. Assume ∀xB(x) ∈ Γα. We must show M |= ∀xB(x). So let t be

an arbitrary term. We must show M |= B(x)[idt
x], hence M |= B(t) by the

Substitution Lemma. But from (g) we obtain B(t) ∈ Γα, hence by IH for
B(t) also M |= B(t).

Now we can finish the proof of the Completeness Theorem. Because of
(c) we have A /∈ Γα and Γ ⊆ Γα, hence M 6|= A and M |= B for all B ∈ Γ,
i.e., M and the assignment id form a counterexample to the hypothesis
Γ |= A of the Completeness Theorem. �

1.7. Notes

The proof of the existence of normal forms w.r.t permutative conversions
is originally due to Prawitz (1965). We have adapted a method developed by
Joachimski and Matthes (2003), which in turn is based on van Raamsdonk
and Severi (1995).

The remark in Sec.1.3.4 concerning arithmetical comprehension is essen-
tially due to Takeuti (1978); it has been extended by Troelstra (1973).
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The constructive completeness proof of minimal logic w.r.t. Beth models
in Sec. 1.5 is due to Friedman (1975). An exposition of (a version of) this
proof, together with an extensive discussion of the history of completeness
proofs for minimal and intuitionistic logic, can be found in (Troelstra and
van Dalen, 1988).

Loeb (2005) shows that the completeness theorem of classical proposi-
tional calculus is equivalent to the Fan Theorem.

Kolmogorov (1925) provided the first translation of classical proposi-
tional logic into minimal logic, by inserting double negations everywhere.
Gödel (1932) and Gentzen (independently, about the same time, but un-
published) rediscovered this translation, in a somewhat simplified form. For
implication, Gödel had (A → B)T := ¬(AT ∧ ¬BT ), whereas Gentzen had
(A → B)T := AT → BT . So Gödel translated into the ∧,¬-language,
whereas Gentzen had the →,¬-language instead. Both Gödel and Gentzen
extended the translation to first order logic. The fact that classical logic can
be embedded into intuitionistic logic came as a surprise at the time. Gödel
and Bernays (see Hilbert and Bernays (1968)) since distinguished between
“finitary” and “intuitionistic” reasoning.

Harrop formulas are called Rasiowa-Harrop formulas in Troelstra and
van Dalen (1988), for they were considered by Rasiowa before Harrop came
across this notion. However, we continue to use the more common name
here.



CHAPTER 2

Computation with Partial Continuous Functionals

The logic considered up to now is very general, and for instance does not
allow to speak of natural numbers. We therefore introduce inductive types
(or free algebras) as base domains; they are given by constructors. We also
allow function spaces, with the inductive types as base types. We specialize
our minimal logic to a simply typed one, where the variables are typed, and
the formation of terms is adapted. We add induction axioms, to express
the minimality of the inductive types. Every inductive type comes with a
recursion operator, which has certain conversion or definitional equality rules
associated with it. We prove that every term (possibly with free variables)
can be converted into normal (or canonical) form.

We describe a constructive theory of computable functionals, based on
the partial continuous functionals as their intendend domain. Such a task
had been started by Scott (1969), under the well-known abbreviation LCF.
However, the prime example of such a theory, the type theory of Martin-Löf
(1984), in its present form deals with total (structural recursive) functionals
only. An early attempt of Martin-Löf (1983) to give a domain theoretic
interpretation of his type theory has not even been published, probably
because it was felt that a more general approach – such as formal topology,
see Coquand et al. (2003) – would be more appropriate.

Here we try to make a fresh start, and do full justice to the fundamental
notion of computability in finite types, with the partial continuous function-
als as underlying domains. The total ones then appear as a dense subset
(Kreisel, 1959; Ershov, 1972; Berger, 1993b; Stoltenberg-Hansen et al., 1994;
Schwichtenberg, 1996; Kristiansen and Normann, 1997), and seem to be best
treated in this way.

Computable functionals and logic. Types are built from base types by
the formation of function types, ρ ⇒ σ. As domains for the base types
we choose non-flat (cf. Fig. 2 on page 66) and possibly infinitary free alge-
bras, given by their constructors. The main reason for taking non-flat base
domains is that we want the constructors to be injective and with disjoint
ranges.

The naive model of such a finitely typed theory is the full set theoretic
hierarchy of functionals of finite types. However, this immediately leads

57
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to higher cardinalities, and does not lend itself well for a theory of com-
putability. A more appropriate semantics for typed languages has its roots
in (Kreisel, 1959) (which used formal neighborhoods) and (Kleene, 1959).
This line of research was taken up and developed in a mathematically more
satisfactory way by Scott (1970) and Ershov (1974). Today this theory is
usually presented in the context of abstract domain theory (see Stoltenberg-
Hansen et al. (1994); Abramsky and Jung (1994)); it is based on classical
logic.

The present work can be seen as an attempt to develop a constructive
theory of formal neighborhoods for continuous functionals, in a direct and
intuitive style. The task is to replace abstract domain theory by a more
concrete and (in case of finitary free algebras) finitary theory of representa-
tions. As a framework we use Scott’s information systems (see Scott (1982);
Larsen and Winskel (1991); Stoltenberg-Hansen et al. (1994)). It turns out
that we only need to deal with “atomic” and “coherent” information sys-
tems (abbreviated acis), which simplifies matters considerably. In this setup
the basic notion is that of a “token”, or unit of information. The elements
of the domain appear as abstract or “ideal” entitites: possibly infinite sets
of tokens, which are “consistent” and “deductively closed”.

Total functionals. One reason to be interested in total functionals is
that for base types, that is free algebras, we can prove properties of total
objects by structural induction. This is also true for the more general class
of structure-total objects, where the arguments at parameter positions in
constructor terms need not be total. An example is a list whose length is
determined, but whose elements need not be total.

We show that the standard way to single out the total functionals from
the partial ones works with non-flat base domains as well, and that Berger’s
proof (1993b) of Kreisel’s (1959) density theorem can be adapted.

Terms and their denotational and operational semantics. Since we have
introduced domains via concrete representations, it is easy to define the
computable functionals, simply as recursively enumerable ideals (= sets of
tokens). However, this way to deal with computability is too general for
concrete applications. In practice, one wants to define computable functio-
nals by recursion equations. We show that and how computation rules (see
Berger et al. (2003); Berger (2005)) can be used to achieve this task. The
meaning [[λ~xM ]] of a term M (with free variables in ~x) involving constants
D defined by computation rules will be an inductively defined set of tokens
(~U, b), of the type of λ~x M .

So we extend the term language of Plotkin’s PCF (1977), by constants
defined via “computation rules”. One instance of such rules is the definition
of the fixed point operators Yρ of type (ρ ⇒ ρ) ⇒ ρ, by Yρf = f(Yρf).
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Another instance is the structural recursion operator Rτ
nat, defined by

Rτ
nat(f, g, 0) = f, Rτ

nat(f, g, Sn) = g(n,Rτ
nat(f, g, n)).

Operationally, the term language provides some natural conversion rules
to “simplify” terms: β, η, and – for every defined constant D – the defi-
ning equations D ~P 7→M with non-overlapping constructor patterns ~P ; the
equivalence generated by these conversions is called operational semantics.
We show that the (denotational) values are preserved under conversions,
including computation rules.

Computational adequacy. Clearly we want to know that the conversions
mentioned above give rise to a “computationally adequate” operational se-
mantics: If [[M ]] = k, then the conversion rules suffice to actually reduce M
to the numeral k. We show that this holds true in our somewhat extended
setting as well, with computation rules and non-flat base domains.

Structural recursion. An important example of computation rules are
those of the (Gödel) structural recursion operators. We prove their totality,
by showing that the rules are strongly normalizing. A predicative proof of
this fact has been given by Abel and Altenkirch (2000), based on Aczel’s
notion of a set-based relation. Our proof is predicative as well, but – being
based on an extension of Tait’s method of strong computability predicates –
more along the standard line of such proofs. Moreover, it extends the result
to the present setting.

Related work. The development of constructive theories of computable
functionals of finite type began with Gödel’s (1958). There the emphasis was
on particular computable functionals, the structural (or primitive) recursive
ones. In contrast to what was done later by Kreisel, Kleene, Scott and
Ershov, the domains for these functionals were not constructed explicitly,
but rather considered as described axiomatically by the theory.

Denotational semantics for PCF-like languages is well-developed, and
usually (as in Plotkin’s (1977)) done in a domain-theoretic setting. The
study of the semantics of non-overlapping higher type recursion equations
- called here computation rules - has been initiated in Berger et al. (2003),
again in a domain-theoretic setting. Recently Berger (2005) he has intro-
duced a “strict” variant of this domain-theoretic semantics, and used it to
prove strong normalization of extensions of Gödel’s T by different versions
of bar recursion. Information systems have been conceived by Scott (1982),
as an intuitive approach to domains for denotational semantics. The idea to
consider atomic information systems is due to Ulrich Berger (unpublished
work); coherent information systems have been introduced by Plotkin (1978,
p.210). Taking up Kreisel’s (1959) idea of neighborhood systems, Martin-
Löf developed in unpublished (but somewhat distributed) notes (1983) a
domain theoretic interpretation of his type theory. The intersection type
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discipline of Barendregt, Coppo, and Dezani-Ciancaglini (1983) can be seen
as a different style of presenting the idea of a neighborhood system. The
desire to have a more general framework for these ideas has lead Martin-
Löf, Sambin and others to develop a formal topology; cf. Coquand, Sambin,
Smith, and Valentini (2003).

It seems likely that the method in (Kristiansen and Normann, 1997,
Section 3.5) (which is based on an idea of Ulrich Berger) can be used to
prove density in the present case, but this would require some substantial
rewriting.

The first proof of an adequacy theorem (not under this name) is due to
Plotkin (1977, Theorem 3.1); Plotkin’s proof is by induction on the types,
and uses a computability predicate. A similar result in a type-theoretic
setting is in Martin-Löf’s notes (1983, Second Theorem). Adequacy the-
orems have been proved in many contexts, by Abramsky (1991); Amadio
and Curien (1998); Barendregt et al. (1983); Martin-Löf (1983). Coquand
and Spiwack (2005) – building on the work of Martin-Löf (1983) and Berger
(2005) – observed that the adequacy result even holds for untyped languages,
hence also for dependently typed ones.

The problem of proving strong normalization for extensions of typed λ-
calculi by higher order rewrite rules has been studied extensively in the lit-
erature: Tait (1971); Girard (1971); Troelstra (1973); Blanqui et al. (1999);
Abel and Altenkirch (2000); Berger (2005). Most of these proofs use im-
predicative methods (e.g., by reducing the problem to strong normalization
of second order propositional logic, called system F by Girard (1971)). Our
definition of the strong computability predicates and also the proof are re-
lated to Zucker’s (1973) proof of strong normalization of his term system for
recursion on the first three number or tree classes. However, Zucker uses a
combinatory term system and defines strong computability for closed terms
only. Following some ideas in an unpublished note of Berger, Benl (in his
diploma thesis (1998)) transferred this proof to terms in simply typed λ-
calculus, possibly involving free variables. Here it is adapted to the present
context.

Organization of the chapter. In Sec.2.1 atomic coherent information sys-
tems are defined, and used as a concrete representation of the relevant do-
mains, based on non-flat and possibly infinitary free algebras. Sec.2.5 deals
with total and structure-total ideals; it is shown that the density theorem
holds. Sec.2.3 introduces the term language, extending Plotkin’s PCF by
defined constants and computation rules. The denotational and operational
semantics is defined, the former by an inductive definition of a relation
(~U, b) ∈ [[λ~x M ]], the latter by conversions which include the computation
rules. We prove preservation of values under conversions. Sec.2.4 contains
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the proof of the adequacy theorem. The structural recursion operators are
taken up in Sec.1.3, as an example of computation rules defining total ob-
jects. The chapter concludes in Sec.2.6 with remarks on an implementation
of some of its ideas, in the Minlog proof assistant www.minlog-system.de
under development in Munich.

2.1. Partial Continuous Functionals

Information systems have been introduced by Scott (1982), as an intu-
itive approach to deal constructively with ideal, infinite objects in function
spaces, by means of their finite approximations. One works with atomic
units of information, called tokens, and a notion of consistency for finite
sets of tokens. Finally there is an entailment relation, between consistent
finite sets of tokens and single tokens. The ideals (or objects) of an infor-
mation system are defined to be the consistent and deductively closed sets
of tokens; we write |A| for the set of ideals of A. One shows easily that
|A| is a domain w.r.t. the inclusion relation. Conversely, every domain with
countable basis can be represented as the set of all ideals of an appropriate
information system (Larsen and Winskel, 1991).

Here we take Scott’s notion of an information system as a basis to intro-
duce the partial continuous functionals. Call an information system atomic
if the entailment relation U ` b is given by ∃a∈U{a} ` b and hence deter-
mined by a transitive relation on A (namely {a} ` b, written a ≥ b). Call
it coherent (Plotkin, 1978, p.210) when a finite set U of tokens is consistent
if and only if every two-element subset of it is. We will show below that if
B is atomic (coherent), then so is the “function space” A → B. Since our
algebras will be given by atomic coherent information systems, this is the
only kind of information systems we will have to deal with.

2.1.1. Types. A free algebra is given by its constructors, for instance
zero and successor for the natural numbers. We want to treat other data
types as well, like lists and binary trees. When dealing with inductively
defined sets, it will also be useful to explicitly refer to the generation tree.
Such trees are quite often infinitely branching, and hence we allow infinitary
free algebras.

The freeness of the constructors is expressed by requiring that their
ranges are disjoint and that they are injective. To allow for partiality –
which is mandatory when we want to deal with computable objects –, we
have to embed our algebras into domains. Both requirements together imply
that we need “lazy domains”.

Our type system is defined by two type forming operations: arrow types
ρ ⇒ σ and the formation of inductively generated types µ~α~κ, where ~α =
(αj)j=1,...,N is a list of distinct “type variables”, and ~κ = (κi)i=1,...,k is a list
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of “constructor types”, whose argument types contain α1, . . . , αN in strictly
positive positions only.

For instance, µα(α, α⇒ α) is the type of natural numbers; here the list
(α, α ⇒ α) stands for two generation principles: α for “there is a natural
number” (the 0), and α ⇒ α for “for every natural number there is a next
one” (its successor).

Definition. Let ~α = (αj)j=1,...,N be a list of distinct type variables.
Types ρ, σ, τ, µ ∈ Ty and constructor types κ ∈ KT(~α) are defined induc-
tively by

~ρ, ~σ1, . . . , ~σn ∈ Ty
~ρ⇒ (~σ1 ⇒ αj1)⇒ . . .⇒ (~σn ⇒ αjn)⇒ αj ∈ KT(~α)

(n ≥ 0)

κ1, . . . , κn ∈ KT(~α)
(µ~α (κ1, . . . , κn))j ∈ Ty

(n ≥ 1)
ρ, σ ∈ Ty

ρ⇒ σ ∈ Ty

Here ~ρ ⇒ σ means ρ1 ⇒ . . . ⇒ ρm ⇒ σ, associated to the right. We
reserve µ for types of the form (µ~α (κ1, . . . , κk))j . The parameter types of µ
are the members of all ~ρ appearing in its constructor types κ1, . . . , κk.

Examples.

unit := µα α, unit

boole := µα (α, α), booleans

nat := µα (α, α⇒ α), natural numbers

list(ρ) := µα (α, ρ⇒ α⇒ α), lists

ρ⊗ σ := µα (ρ⇒ σ ⇒ α), (tensor) product

ρ + σ := µα (ρ⇒ α, σ ⇒ α), sum

(tree, tlist) := µ(α, β) (nat⇒ α, β ⇒ α, β, α⇒ β ⇒ β),

bin := µα (α, α⇒ α⇒ α), binary trees

O := µα (α, α⇒ α, (nat⇒ α)⇒ α), ordinals
T0 := nat,

Tn+1 := µα (α, (Tn ⇒ α)⇒ α). trees

Notice that there are many equivalent ways to define these types. For
instance, we could take unit+unit to be the type of booleans, and list(unit)
to be the type of natural numbers.

A type is called finitary if it is a µ-type with all its parameter types ~ρ
finitary, and in all its constructor types

(2.1) ~ρ⇒ (~σ1 ⇒ αj1)⇒ . . .⇒ (~σn ⇒ αjn)⇒ αj
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the ~σ1, . . . , ~σn are all empty. In the examples above unit, boole, nat, tree,
tlist and bin are all finitary, whereas O and Tn+1 are not. list(ρ), ρ⊗ σ and
ρ+σ are finitary provided their parameter types are. An argument position
in a type is called finitary if it is occupied by a finitary type.

2.1.2. Atomic coherent information systems.

Definition. An atomic coherent information system (abbreviated acis)
is a triple (A,Con,≥) with A a countable set (the tokens, denoted a, b, . . . ),
Con a nonempty set of finite subsets of A (the consistent sets or formal
neighborhoods, denoted U, V, . . . ), and ≥ a transitive and reflexive relation
on A (the entailment relation) which satisfy
(a) ∅ ∈ Con, and {a} ∈ Con for every a ∈ A,
(b) U ∈ Con if and only if every two-element subset of U is in Con, and
(c) if {a, b} ∈ Con and b ≥ c, then {a, c} ∈ Con.

We write U ≥ a for ∃b∈Ub ≥ a, and U ≥ V for ∀a∈V U ≥ a. – Every acis
is an information system in the sense of Scott (1982); this follows from

Lemma. Let A = (A, Con,≥) be an acis. U ≥ V1, V2 implies V1 ∪ V2 ∈
Con.

Proof. Let b1 ∈ V1, b2 ∈ V2. Then we have a1, a2 ∈ U such that ai ≥ bi.
From {a1, a2} ∈ Con we obtain {a1, b2} ∈ Con by (c), hence {b1, b2} ∈ Con
again by (c). �

Definition. Let A = (A, ConA,≥A) and B = (B,ConB,≥B) be acis’s.
Define A→ B = (C,Con,≥) by
C := ConA ×B,

{(U1, b1), . . . (Un, bn)} ∈ Con :↔ ∀i,j

(
Ui ∪ Uj ∈ ConA → {bi, bj} ∈ ConB

)
,

(U, b) ≥ (V, c) :↔ V ≥A U ∧ b ≥B c.

Lemma. Let A = (A, ConA,≥A) and B = (B,ConB,≥B) be acis’s.
Then A→ B is an acis again.

Proof. Clearly ≥ is transitive and reflexive, and the conditions (a) and
(b) of an acis hold; it remains to check (c). So let {(U1, b1), (U2, b2)} ∈
Con and (U2, b2) ≥ (V, c), hence V ≥ U2 and b2 ≥ c. We must show
{(U1, b1), (V, c)} ∈ Con. So assume U1 ∪ V ∈ Con; we must show {b1, c} ∈
Con. Now U1∪V ∈ Con and V ≥ U2 by the previous lemma imply U1∪U2 ∈
Con. But then {b1, b2} ∈ Con, hence {b1, c} ∈ Con by (c). �

Scott (1982) introduced the notion of an approximable map from A to
B. Such a map is given by a relation r between ConA and B, where r(U, b)
intuitively means that whenever we are given the information U ∈ ConA on
the argument, then we know that at least the token b appears in the value.
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Definition (Approximable map). Let A and B be acis’s. A relation
r ⊆ ConA ×B is an approximable map from A to B (written r : A→ B) if
and only if

(a) if r(U, b1) and r(U, b2), then {b1, b2} ∈ ConB, and
(b) if r(U, b), V ≥A U and b ≥B c, then r(V, c).

Call a (possibly infinite) set x of tokens consistent if U ∈ Con for every
finite subset U ⊆ x, and deductively closed if ∀a∈x∀b≤ab ∈ x. The ideals
(or objects) of an information system are defined to be the consistent and
deductively closed sets of tokens; we write |A| for the set of ideals of A.

Theorem. Let A and B be acis’s. The ideals of A → B are exactly
the approximable maps from A to B.

Proof. We show that r ∈ |A → B| satisfies the axioms for approx-
imable maps. (a). Let r(U, b1) and r(U, b2). Then {b1, b2} ∈ ConB by the
consistency of r. (b). Let r(U, b), V ≥A U and b ≥B c. Then (U, b) ≥ (V, c)
by definition, hence r(V, c) by the deductive closure of r.

For the other direction suppose r : A→ B is an approximable map. We
must show that r ∈ |A→ B|. Consistency of r: Suppose r(U1, b1), r(U2, b2)
and U = U1 ∪ U2 ∈ ConA. We must show that {b1, b2} ∈ ConB. Now
by definition of approximable maps, from r(Ui, bi) and U ≥A Ui we obtain
r(U, bi), and hence {b1, b2} ∈ ConB. Deductive closure of r: Suppose r(U, b)
and (U, b) ≥ (V, c), i.e., V ≥A U ∧ b ≥B c. Then r(V, c) by definition of
approximable maps. �

The set |A| of ideals for A carries a natural topology (the Scott topo-
logy), which has the cones Ũ := { z | z ⊇ U } generated by the formal
neighborhoods U as basis. The continuous maps f : |A| → |B| and the ideals
r ∈ |A → B| are in a bijective correspondence. With any r ∈ |A → B| we
can associate a continuous |r| : |A| → |B|:

|r|(z) := { b ∈ B | r(U, b) for some U ⊆ z },

and with any continuous f : |A| → |B| we can associate f̂ ∈ |A→ B|:

f̂(U, b) :⇐⇒ b ∈ f(U).

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|. – We
will usually write r(z) for |r|(z), and similarly f(U, b) for f̂(U, b). It will be
clear from the context where the mods and hats should be inserted.

2.1.3. Algebras with approximations. We can now define the acis
Cµj of an algebra µj , given by constructors Ci.
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•∗@
@@
•0

�
��
• S∗@

@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

...

Figure 1. Tokens and entailment for nat

• The tokens are all type correct constructor expressions with an
outermost Ci, such that at any finitary argument position we have
either a special symbol – written ∗ –, which carries no information
or else a token, and at any other argument position we have a
formal neighborhood of the appropriate type. – By an extended
token a∗ we mean a token or ∗, and a∗ ≥ b∗ means that b∗ is ∗, or
both are tokens and the entailment relation holds.
• Two tokens are in the entailment relation ≥ if they start with the

same constructor, and for every argument position the arguments
located there are either extended tokens a∗, b∗ such that a∗ ≥ b∗,
or formal neighborhoods U , V such that U ≥ V , as defined above
(notice that this is an inductive definition).
• A finite set of tokens is consistent if every two-element subset is;

two tokens are consistent if both start with the same constructor
and have consistent extended tokens resp. formal neighborhoods at
corresponding argument positions.

For example, the (extended) tokens for the algebra nat are as shown in
Fig. 1 on page 65. A token a entails another one b if and only if there is a
path from a (up) to b (down). In this case (and similarly for every finitary
algebra) a finite set U of tokens is consistent if and only if it has an upper
bound. Every constructor C generates

rC := { (~U,C ~b∗) | ~U ≥ ~b∗ },
with b∗i extended tokens or formal neighborhoods. The continuous map |rC|
is defined by

|rC|(~z ) := { b | (~U, b) ∈ rC for some ~U ⊆ ~z }.
Hence the (continuous maps corresponding to) constructors are injective and
their ranges are disjoint, which is what we wanted to achieve.

The ideals x for µ are – as for any information system – the consistent
and deductively closed sets of tokens. Clearly all tokens in x begin with the
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•⊥@
@@
•0

�
��
• S⊥@

@@
•S0

�
��
• S(S⊥)@

@@
•S(S0)

�
��
• S(S(S⊥))@

@@
•S(S(S0))

�
��

...
• ∞

Figure 2. Ideals and inclusion for nat, i.e., its domain

same constructor. For instance, {S(S0), S(S∗), S∗}, {S(S∗), S∗}, {0} are
ideals for nat, but also the infinite set {Sn∗ | n > 0 }. The ideals for nat
and their inclusion relation are pictured in Fig. 2 on page 66. Here we have
denoted the ideals ∅, {0}, {Sn∗ | n > 0 } by ⊥, 0, ∞, respectively, and any
other ideal by applications of (the continuous map corresponding to) the
constructor S to 0 or ⊥. The ambiguous notation – S denotes a symbol in
constructor expressions and also the continuous map |rS | – should not lead
to confusion.

Let Cρ⇒σ := Cρ → Cσ. The ideals x ∈ |Cρ| are called partial continu-
ous functionals of type ρ.

2.2. Structural Recursion

The inductive structure of the types ~µ = µ~α~κ corresponds to two sorts
of constants: with the constructors C~µ

i : κi[~µ] we can construct elements of a
type µj , and with the recursion operators R~µ,~τ

µj we can construct mappings
from µj to τj by recursion on the structure of ~µ. In the present section we
take a syntactical point of view: the recursion operators are introduced as
constants, together with their conversion rules. It is proved (by a predicative
method) that every reduction sequence terminates.

2.2.1. Recursion operators. In order to define the type of the recur-
sion operators w.r.t. ~µ = µ~α~κ and result types ~τ , we first define for

κi = ~ρ⇒ (~σ1 ⇒ αj1)⇒ . . .⇒ (~σn ⇒ αjn)⇒ αj ∈ KT(~α)

the step type

δ~µ,~τ
i := ~ρ⇒ (~σ1 ⇒ µj1)⇒ . . .⇒ (~σn ⇒ µjn)⇒

(~σ1 ⇒ τj1)⇒ . . .⇒ (~σn ⇒ τjn)⇒ τj .
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Here ~ρ, (~σ1 ⇒ µj1), . . . , (~σn ⇒ µjn) correspond to the components of the
object of type µj under consideration, and (~σ1 ⇒ τj1), . . . , (~σn ⇒ τjn) to the
previously defined values. The recursion operator R~µ,~τ

µj has type

R~µ,~τ
µj

: δ~µ,~τ
1 ⇒ . . .⇒ δ~µ,~τ

k ⇒ µj ⇒ τj

(recall that k is the total number of constructors for all types µ1, . . . , µN ).
We will often write R~µ,~τ

j for R~µ,~τ
µj , and omit the upper indices ~µ, ~τ when

they are clear from the context. In case of a non-simultaneous free algebra,
i.e., of type µα κ, for Rµ,τ

µ we write Rτ
µ.

2.2.2. Examples.

ttboole := Cboole
1 , ffboole := Cboole

2 ,

Rτ
boole : τ ⇒ τ ⇒ boole⇒ τ,

0nat := Cnat
1 , Snat⇒nat := Cnat

2 ,

Rτ
nat : τ ⇒ (nat⇒ τ ⇒ τ)⇒ nat⇒ τ,

nillist(α) := Clist(α)
1 , consα⇒list(α)⇒list(α) := Clist(α)

2 ,

Rτ
list(α) : τ ⇒ (α⇒ list(α)⇒ τ ⇒ τ)⇒ list(α)⇒ τ,(

inlρσ

)ρ⇒ρ+σ := Cρ+σ
1 ,(

inrρσ

)σ⇒ρ+σ := Cρ+σ
2 ,

Rτ
ρ+σ : (ρ⇒ τ)⇒ (σ ⇒ τ)⇒ ρ + σ ⇒ τ,(
⊗+

ρσ

)ρ⇒σ⇒ρ⊗σ := Cρ⊗σ
1 ,

Rτ
ρ⊗σ : (ρ⇒ σ ⇒ τ)⇒ ρ⊗σ ⇒ τ.

Terms are inductively defined from typed variables xρ and the constants,
that is, constructors C~µ

i and recursion operatorsR~µ,~τ
µj , by abstraction λxρMσ

and application Mρ⇒σNρ. One can see easily that for instance the following
functions can be “expressed” by means of terms involving recursion oper-
ators: existence Enat : nat ⇒ boole and Elist(α) : nat ⇒ boole, and equality
=: nat⇒ nat⇒ boole.

Enat(0) := tt,

Enat(S(n)) := Enat(n);

Elist(α)(nil) := tt,

Elist(α)(cons(x, l)) := Elist(α)(l);

(0 = 0) := tt,

(0 = S(n)) := ff,

(S(m) = 0) := ff,

(S(m) = S(n)) := (n = m).
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2.2.3. Conversion. To define the conversion relation, it will be helpful
to use the following notation. Let ~µ = µ~α~κ and

κi = ρ1 ⇒ . . .⇒ ρm ⇒ (~σ1 ⇒ αj1)⇒ . . .⇒ (~σn ⇒ αjn)⇒ αj ∈ KT(~α),

and consider C~µ
i

~N . Then we write ~NP = NP
1 , . . . , NP

m for the parameter
arguments Nρ1

1 , . . . , Nρm
m and ~NR = NR

1 , . . . , NR
n for the recursive arguments

N
~σ1⇒µj1
m+1 , . . . , N

~σn⇒µjn
m+n ‘, and nR for the number n of recursive arguments.

We define a conversion relation 7→ρ between terms of type ρ by

(λxM)N 7→M [x := N ],(2.2)

λx.Mx 7→M if x /∈ FV(M) (M not an abstraction),(2.3)

(Rj
~M)µj⇒τj (C~µ

i
~N) 7→Mi

~N
(
(Rj1

~M) ◦NR
1

)
. . .

(
(Rjn

~M) ◦NR
n

)
.(2.4)

Here we have written Rj for R~µ,~τ
µj .

The one step reduction relation → can now be defined as follows. M →
N if N is obtained from M by replacing a subterm M ′ in M by N ′, where
M ′ 7→ N ′. The reduction relations →+ and →∗ are the transitive and the
reflexive transitive closure of →, respectively. For ~M = M1, . . . ,Mn we
write ~M → ~M ′ if Mi → M ′

i for some i ∈ {1, . . . , n} and Mj = M ′
j for all

i 6= j ∈ {1, . . . , n}. A term M is normal (or in normal form) if there is no
term N such that M → N .

Clearly normal closed terms are of the form C~µ
i

~N .

2.2.4. Strong normalization.

Definition. The set SN of strongly normalizing terms is inductively
defined by

∀N ;M→NN ∈ SN→M ∈ SN.

Note that with M clearly every subterm of M is strongly normalizing.

Definition. We define strong computability predicates SCρ by induction
on ρ.

Case µj = (µ~α~κ)j . Then M ∈ SCµj if

∀N ;M→NN ∈ SC, and(2.5)

M = C~µ
i

~N → ~NP ∈ SC ∧
nR∧∧
p=1
∀ ~K∈SC NR

p
~K ∈ SCµjp .(2.6)

Case ρ⇒ σ.

SCρ⇒σ := {M | ∀N∈SCρ MN ∈ SCσ }.
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The reference to ~NP ∈ SC and ~K ∈ SC in (2.6) is legal, because the
types ~ρ, ~σi of ~N, ~K must have been generated before µj . Note also that by
(2.6) C~µ

i
~N ∈ SC implies ~N ∈ SC.

We now set up a sequence of lemmata leading to a proof that every term
is strongly normalizing.

Lemma (Closure of SC under reduction). If M ∈ SCρ and M → M ′,
then M ′ ∈ SCρ.

Proof. Induction on ρ. Case µ. By (2.5). Case ρ ⇒ σ. Assume
M ∈ SCρ⇒σ and M → M ′; we must show M ′ ∈ SC. So let N ∈ SCρ; we
must show M ′N ∈ SCσ. But this follows from MN →M ′N and MN ∈ SCρ

by IH on σ. �

Lemma (Closure of SC under variable application).

∀ ~M∈SN( ~M ∈ SC→ (x ~M)µ ∈ SC).

Proof. Induction on ~M ∈ SN. Assume ~M ∈ SN and ~M ∈ SC; we must
show (x ~M)µ ∈ SC. So assume x ~M → N ; we must show N ∈ SC. Now by
the form of the conversion rules N must be of the form x ~M ′ with ~M → ~M ′.
But ~M ′ ∈ SC by closure of SC under reduction, hence x ~M ′ ∈ SC by IH for
~M ′. �

Lemma. (a) SCρ ⊆ SN,
(b) x ∈ SCρ.

Proof. By simultaneous induction on ρ. Case µj = (µ~α~κ)j . (a). We
show that M ∈ SCµj implies M ∈ SN by (side) induction on M ∈ SCµj . So
assume M ∈ SCµj ; we must show M ∈ SN. But for every N with M → N
we have N ∈ SC by (2.5), hence N ∈ SN by the SIH. (b). x ∈ SCµj holds
trivially.

Case ρ ⇒ σ. (a). Assume M ∈ SCρ⇒σ; we must show M ∈ SN. By
IH(b) for ρ we have x ∈ SCρ, hence Mx ∈ SCσ, hence Mx ∈ SN by IH(a)
for σ. But Mx ∈ SN clearly implies M ∈ SN. (b). Let ~M ∈ SC~ρ with
ρ1 = ρ; we must show x ~M ∈ SCµ. But this follows from the closure of SC
under variable application, using IH(a) for ~ρ. �

It follows that each constructor is strongly computable:

Corollary. ~N ∈ SC→ C~µ
i

~N ∈ SC, i.e., C~µ
i ∈ SC.

Proof. First show ∀ ~N∈SN( ~N ∈ SC → C~µ
i

~N ∈ SC) by induction on
~N ∈ SN as we proved closure of SC under variable application, and then use
SCρ ⊆ SN. �
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Lemma. ∀M,N, ~N∈SN(M [x := N ] ~N ∈ SCµ → (λxM)N ~N ∈ SCµ).

Proof. By induction on M,N, ~N ∈ SN. Let M,N, ~N ∈ SN and assume
M [x := N ] ~N ∈ SC; we must show (λxM)N ~N ∈ SC. Assume (λxM)N ~N →
K; we must show K ∈ SC. Case K = (λxM ′)N ′ ~N ′ with M,N, ~N →
M ′, N ′, ~N ′. Then M [x := N ] ~N →∗ M ′[x := N ′] ~N ′, hence by (2.5) from our
assumption M [x := N ] ~N ∈ SC we can infer M ′[x := N ′] ~N ′ ∈ SC, therefore
(λxM ′)N ′ ~N ′ ∈ SC by IH. Case K = M [x := N ] ~N . Then K ∈ SC by
assumption. �

By induction on ρ (using SCρ ⊆ SN) it follows that this property holds
for arbitrary types ρ as well:

(2.7) ∀M,N, ~N∈SN(M [x := N ] ~N ∈ SCρ → (λxM)N ~N ∈ SCρ).

Lemma. ∀N∈SCµj ∀ ~M,~L∈SN( ~M, ~L ∈ SC→ Rj
~MN~L ∈ SCµ).

Proof. By main induction on N ∈ SCµj , and side induction on ~M, ~L ∈
SN. Assume

Rj
~MN~L→ L.

We must show L ∈ SC.
Case 1. Rj

~M ′N ~L′ ∈ SC by the SIH.
Case 2. Rj

~MN ′~L ∈ SC by the main IH.
Case 3. N = C~µ

i
~N and

L = Mi
~N

(
(Rj

~M) ◦NR
1

)
. . .

(
(Rj

~M) ◦NR
n

)
~L.

~M, ~L ∈ SC by assumption. ~N ∈ SC follows from N = C~µ
i

~N ∈ SC by (2.6).
Note that for all recursive arguments NR

p of N and all strongly computable
~K by (2.6) we have the IH for NR

p
~K available. It remains to show (Rj

~M) ◦
NR

p = λ~xp.Rj
~M(NR

p ~xp) ∈ SC. So let ~K, ~Q ∈ SC be given. We must show
(λ~xp.Rj

~M(NR
p ~xp)) ~K ~Q ∈ SC. By IH for NR

p
~K we haveRj

~M(NR
p

~K) ~Q ∈ SC,
since ~K, ~Q ∈ SN because of SCρ ⊆ SN. Now (2.7) yields the claim. �

So in particular Rj ∈ SC.

Definition. A substitution ξ is strongly computable, if ξ(x) ∈ SC for all
variables x. A term M is strongly computable under substitution, if Mξ ∈ SC
for all strongly computable substitutions ξ.

Theorem. Every term is strongly computable under substitution.
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Proof. Induction on the term M . Case x. xξ ∈ SC, since ξ is strongly
computable. The cases C~µ

i and Rj have been treated above. Case MN . By
IH Mξ,Nξ ∈ SC, hence (MN)ξ = (Mξ)(Nξ) ∈ SC. Case λxM . Let ξ be a
strongly computable substitution; we must show (λxM)ξ = λxMξx

x ∈ SC.
So let N ∈ SC; we must show (λxMξx

x)N ∈ SC. By IH MξN
x ∈ SC, hence

(λxMξx
x)N ∈ SC by (2.7). �

It follows that every term is strongly normalizing.

2.3. Terms; Denotational and Operational Semantics

For every type ρ, we have defined what a partial continuous functional of
type ρ is: an ideal consisting of tokens at this type. These tokens or rather
the formal neighborhoods formed from them are syntactic in nature; they are
reminiscent to Kreisel’s “formal neighborhoods” (Kreisel, 1959; Martin-Löf,
1983; Coquand and Spiwack, 2005). However – in contrast to Martin-Löf
(1983) – we do not have to deal separately with a notion of consistency for
formal neighborhoods: this concept is built into information systems.

Let us now turn our attention to a formal (functional programming)
language, in the style of Plotkin’s PCF (1977), and see how we can provide a
denotational semantics (that is, a “meaning”) for the terms of this language.
A closed term M of type ρ will denote a partial continuous functional of this
type, that is, a consistent and deductively closed set of tokens of type ρ. We
will define this set inductively.

It will turn out that these sets are recursively enumerable. In this sense
every closed term M of type ρ denotes a computable partial continuous
functional of type ρ. However, it is not a good idea to define a computable
functional in this way, by providing a recursive enumeration of its tokens.
We rather want to be able to use recursion equations for such definitions.
Therefore we extend the term language by constants D defined by certain
“computation rules”, as in (Berger et al., 2003; Berger, 2005). Our semantics
will cover these as well.

There are some natural questions one can have for such a term language:

(1) Preservation of values under conversion (as in (Martin-Löf, 1983,
First Theorem)). Here we need to include applications of compu-
tation rules.

(2) An adequacy theorem (cf. (Plotkin, 1977, Theorem 3.1) or (Martin-
Löf, 1983, Second Theorem)), which in our setting says that when-
ever a closed term has a proper token in the ideal it denotes, then
it evaluates to a constructor term entailing this token.

Propertie (1) will be proved in the present section, and (2) in Sec.2.4.
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Coquand and Spiwack (2005) observed that the types play only a some-
what minor role in this setup. It suffices to know the arity (a natural
number) of the constants (constructors and defined constants), to guide the
definitions. An interesting consequence is that one can use this approach for
dependently typed languages as well, for instance, the terms of Martin-Löf’s
type theory.

2.3.1. Terms. Terms are built from (typed) variables and (typed) con-
stants (constructors C or defined constants D, see below) by (type-correct)
application and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρ Mσ)ρ⇒σ | (Mρ⇒σNρ)σ.

Every defined constant comes with a system of computation rules, consisting
of finitely many equations D ~Pi = Mi (i = 1, . . . , n) with constructor patterns
~Pi, such that ~Pi and ~Pj (i 6= j) are non-unifiable. Constructor patterns
are lists of applicative terms with distinct variables, defined inductively as
follows (we write ~P (~x ) to indicate all variables in ~P ; notice that x can
be a variable for a formal neighborhood, and that all expressions must be
type-correct):

• x(x) is a constructor pattern.
• If C is a constructor and ~P (~x ) a constructor pattern, then (C ~P )(~x )

is a constructor pattern.
• If ~P (~x ) and Q(~y ) are constructor patterns whose variables ~x and

~y are disjoint, then (~P ,Q)(~x, ~y ) is a constructor pattern.

2.3.2. Ideals as meaning of terms. How can we use computation
rules to define an ideal z in a function space? The general idea is to induc-
tively define the set of tokens (U, b) that make up z. However, since arbitrary
terms are allowed on the right, we need to define the value [[λ~xM ]], where
M is a term with free variables among ~x. Since this value is a token set, we
can define inductively the relation (~U, b) ∈ [[λ~x M ]].

We use the following notation. (~U, b) means (U1, . . . (Un, b) . . . ), and at
argument positions of constructors we use b∗ for extended tokens as well as
for formal neighborhoods. (~U, V ) ⊆ [[λ~xM ]] means (~U, b) ∈ [[λ~x M ]], for all
(finitely many) b ∈ V . For a constructor C, let

C(V ) :=

{
{C∗} if V = ∅,
{Ca | a ∈ V } otherwise.

Definition (Inductive, of (~U, b) ∈ [[λ~x M ]]).

Ui ≥ b

(~U, b) ∈ [[λ~x xi]]
(V ),

(~U, V ) ⊆ [[λ~x N ]] (~U, V, c) ∈ [[λ~x M ]]

(~U, c) ∈ [[λ~x.MN ]]
(A).
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For every constructor C and defined constant D we have

~V ≥ ~b∗

(~U, ~V ,C ~b∗ ) ∈ [[λ~xC]]
(C),

(~U, ~V , b) ∈ [[λ~x, ~y M ]]

(~U, ~P (~V ), b) ∈ [[λ~x D]]
(D),

with one such rule (D) for every computation rule D ~P (~y ) = M .

Here are some simple consequences of this definition. First we show a
useful property of constructors:

Lemma. (~U, b) ∈ [[λ~x.C ~N ]] if and only if there are ~c∗ ≥ ~b∗ such that
b = C ~b∗ and (~U, ci) ∈ [[λ~x Ni]] (i = 1, . . . , n) for the tokens ci among ~c∗.

Proof. We may assume that ~b∗, ~c∗ are tokens ~b,~c. Let (~U, ci) ∈ [[λ~x Ni]]
(ci ≥ bi, i = 1, . . . , n). For j = 0, . . . , n we show (~U, {cj+1}, . . . , {cn}, C~b) ∈
[[λ~x.CN1 . . . Nj ]]. In case j = 0 use (C):

{c1} ≥ b1 . . . {cn} ≥ bn

(~U, {c1}, . . . , {cn}, C~b ) ∈ [[λ~x C]]
.

In the step from j − 1 to j use (A):

(~U, cj) ∈ [[λ~x Nj ]] (~U, {cj}, . . . , {cn}, C~b ) ∈ [[λ~x.CN1 . . . Nj−1]]

(~U, {cj+1}, . . . , {cn}, C~b ) ∈ [[λ~x.CN1 . . . Nj ]]
.

For j = n the claim follows. – For the other direction, observe that only (A)
could have been applied. Hence the argument can be read backwards. �

Using the fact that the left hand sides of computation rules are non-
unifiable we can prove:

Lemma. [[λ~xM ]] is an ideal, i.e., consistent and deductively closed.

Proof. Induction on (~U, b) ∈ [[λ~x M ]].
(1) Consistency. Case (V ). Assume (~U1, b1), (~U2, b2) ∈ [[λ~x xi]], and that

~U1 and ~U2 are pairwise consistent. We must show {b1, b2} ∈ Con. By (V),
U1i ≥ b1 and U2i ≥ b2. Now {b1, b2} ∈ Con follows from U1i ∪ U2i ∈ Con.

Case (A). Let (~U1, c1), (~U2, c2) ∈ [[λ~x.MN ]], with ~U1 and ~U2 pairwise
consistent. We show {c1, c2} ∈ Con. By (A), (~U1, V1), (~U2, V2) ⊆ [[λ~x N ]],
so by IH V1 ∪ V2 ∈ Con. Similarly, again by (A), (~U1, V1, c1), (~U2, V2, c2) ∈
[[λ~x M ]], hence {c1, c2} ∈ Con by IH.

Case (C). Assume (~U1, ~V1, C ~b∗1), (~U2, ~V2, C ~b∗2) ∈ [[λ~x C]], and that
~U1, ~V1 and ~U2, ~V2 are pairwise consistent. We show {C ~b∗1, C ~b∗2} ∈ Con.
By (C), ~Vi ≥ ~b∗i (i = 1, 2). From the pairwise consistency of ~V1 and ~V2 we
obtain the pairwise consistency of ~b∗1 and ~b∗2. Hence {C ~b∗1, C ~b∗2} ∈ Con.
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Case (D). Let (~Ui, ~Pi(~Vi), bi) ∈ [[λ~x D]] (i = 1, 2), and assume that
~U1, ~P1(~V1) and ~U2, ~P2(~V2) are pairwise consistent. From the fact that the
left hand sides of computation rules are non-unifiable we can infer ~P1 = ~P2,
and that ~V1 and ~V2 are pairwise consistent. Then {b1, b2} ∈ Con by IH.

(2) Closure under ≥. Case (V ). Assume ~V ≥ ~U and b ≥ c. We must
show (~V , c) ∈ [[λ~x xi]]. By (V) it suffices to show Vi ≥ c. But this follows
from Vi ≥ Ui ≥ b ≥ c.

Case (A). The IH clearly suffices here.
Case (C). Assume ~U1 ≥ ~U , ~V1 ≥ ~V and C ~b∗ ≥ C ~c∗. We must show

(~U1, ~V1, C ~c∗) ∈ [[λ~x C]]. By (C) it suffices to show ~V1 ≥ ~c∗. But this follows
from ~V1 ≥ ~V ≥ ~b∗ ≥ ~c∗.

Case (D). Assume ~U1 ≥ ~U , ~Z ≥ ~P (~V ) and b ≥ b1. Notice that ~Z ≥
~P (~V ) implies ~Z = ~P (~V1) with ~V1 ≥ ~V , so we must show (~U1, ~P (~V1), b1) ∈
[[λ~x D]]. By IH we have (~U1, ~V1, b1) ∈ [[λ~x, ~y M ]]. Now use (D). �

2.3.3. Preservation of values. We now prove that our definition
above of the meaning of a term is reasonable in the sense that an appli-
cation of the standard (β- and η-) conversions and also of a computation
rule does not change the meaning of a term. For the β-conversion part of
this proof it is helpful to first introduce a more standard notation, which
involves variable environments.

Definition. Assume that all free variables in M are among ~x. Let
[[M ]]~U~x := { b | (~U, b) ∈ [[λ~x M ]] } and [[M ]]~u~x :=

⋃
~U⊆~u[[M ]]~U~x .

We have a useful monotonicity property, which follows from the deduc-
tive closure of [[λ~x M ]].

Lemma. (a) If ~V ≥ ~U , b ≥ c and b ∈ [[M ]]~U~x , then c ∈ [[M ]]~V~x .
(b) If ~v ⊇ ~u, b ≥ c and b ∈ [[M ]]~u~x, then c ∈ [[M ]]~v~x.

Proof. (a). By the deductive closure of [[λ~x M ]], ~V ≥ ~U , b ≥ c and
(~U, b) ∈ [[λ~x M ]] together imply (~V , c) ∈ [[λ~x M ]]. (b) follows from (a). �

Lemma. (a) [[xi]]~u~x = ui.
(b) [[λy M ]]~u~x = { (V, b) | b ∈ [[M ]]~u,V

~x,y }.
(c) [[MN ]]~u~x = [[M ]]~u~x[[N ]]~u~x.

Proof. (b). It suffices to prove this with ~U for ~u. But (V, b) ∈ [[λy M ]]~U~x
and b ∈ [[M ]]

~U,V
~x,y are both equivalent to (~U, V, b) ∈ [[λ~x, y M ]].

(c).

c ∈ [[M ]]~u~x[[N ]]~u~x
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↔ ∃V⊆[[N ]]~u
~x

(V, c) ∈ [[M ]]~u~x (application in acis’s)

↔ ∃V⊆[[N ]]~u
~x
∃~U⊆~u (V, c) ∈ [[M ]]~U~x

↔ ∃~U1⊆~u∃V⊆[[N ]]
~U1
~x

∃~U⊆~u (V, c) ∈ [[M ]]~U~x

↔(∗) ∃~U⊆~u∃V⊆[[N ]]
~U
~x

(V, c) ∈ [[M ]]~U~x

↔ ∃~U⊆~u∃V .(~U, V ) ⊆ [[λ~x N ]] ∧ (~U, V, c) ∈ [[λ~x M ]]

↔ ∃~U⊆~u (~U, c) ∈ [[λ~x.MN ]] (by (A))

↔ ∃~U⊆~u c ∈ [[MN ]]~U~x

↔ c ∈ [[MN ]]~u~x.

Here is the proof of the equivalence marked (∗). The upwards direction is
obvious. For the downwards direction we use monotonicity. Assume ~U1 ⊆ ~u,
V ⊆ [[N ]]

~U1
~x , ~U ⊆ ~u and (V, c) ∈ [[M ]]~U~x . Let ~U2 := ~U1 ∪ ~U ⊆ ~u. Then by

monotonicity V ⊆ [[N ]]
~U2
~x and (V, c) ∈ [[M ]]

~U2
~x . �

Corollary. [[λy M ]]~u~xv = [[M ]]~u,v
~x,y.

Proof.

b ∈ [[λy M ]]~u~xv ↔ ∃V⊆v (V, b) ∈ [[λy M ]]~u~x (application in acis’s)

↔ ∃V⊆v b ∈ [[M ]]~u,V
~x,y (by the lemma)

↔ b ∈ [[M ]]~u,v
~x,y. �

Lemma (Substitution). [[M ]]
~u,[[N ]]~u~x
~x,z = [[M [z := N ]]]~u~x.

Proof. Case λy M . For readability we leave out ~x and ~u.

[[λy M ]][[N ]]
z = { (V, b) | b ∈ [[M ]][[N ]],V

z,y }
= { (V, b) | b ∈ [[M [z := N ]]]Vy } (by IH)

= [[λy.M [z := N ]]] (by the lemma)

= [[(λy M)[z := N ]]].

The other cases are easy. �

Lemma. [[(λy M)N ]]~u~x = [[M [y := N ]]]~u~x.

Proof. For readability we leave out ~x and ~u. By the last two lemmata
and the corollary, [[(λy M)N ]] = [[λy M ]][[N ]] = [[M ]][[N ]]

y = [[M [y := N ]]]. �

Lemma. [[λy.My]]~u~x = [[M ]]~u~x, if y /∈ FV(M).
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Proof. For readability we leave out ~x and ~u.

(V, b) ∈ [[λy.My]]↔ b ∈ [[My]]Vy
↔ b ∈ [[M ]]V

↔ ∃U⊆V (U, b) ∈ [[M ]] (application in acis’s)

↔ (V, b) ∈ [[M ]],

where in the last step we have used monotonicity. �

To prove preservation of values under computation rules, the following
observation will be needed (it removes the need for “(generalized) predeces-
sor functions” of Berger et al. (2003); Berger (2005)):

Lemma.

(2.8) (~U, ~V , b) ∈ [[λ~x, ~y.M [z := C~y ]]]↔ (~U,C~V , b) ∈ [[λ~x, z M ]].

Proof. Induction on (~U, ~V , b) ∈ [[λ~x, ~y.M [z := C~y ]]], and cases on the
form of M . Case MN .

(~U, ~V , c) ∈ [[λ~x, ~y.M [z := C~y ]N [z := C~y ]]]

↔ ∃Z .(~U, ~V , Z) ⊆ [[λ~x, ~y N [z := C~y ]]] ∧ (~U, ~V , Z, c) ∈ [[λ~x, ~y M [z := C~y ]]]

↔ ∃Z .(~U,C~V , Z) ⊆ [[λ~x, z N ]] ∧ (~U,C~V , Z, c) ∈ [[λ~x, z M ]] (by IH)

↔ (~U,C~V , c) ∈ [[λ~x, z.MN ]] (by (A)).

Case z.

(~U, ~V , c) ∈ [[λ~x, ~y.C~y ]] = [[λ~x C]]↔ ∃~b∗ .
~V ≥ ~b∗ ∧ C~b∗ = c

↔ C~V ≥ c

↔ (~U,C~V , c) ∈ [[λ~x, z z]].

In all other cases both sides are clearly equivalent. �

We can now prove preservation of values under computation rules:

Lemma. For every computation rule D ~P (~y ) = M of a defined constant
D, [[λ~y.D ~P (~y )]] = [[λ~y M ]].

Proof. The following are equivalent:

(~V , b) ∈ [[λ~y.D ~P (~y )]]

(~P (~V ), b) ∈ [[D]] = [[λ~z.D~z ]] by (2.8)

(~V , b) ∈ [[λ~y M ]],

where the last step is by definition. �
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2.3.4. Examples. We consider the doubling function D : nat ⇒ nat,
addition +: nat ⇒ nat ⇒ nat and the fixed point operators Yρ. Structural
recursion could be treated as well.

Doubling. D : nat⇒ nat is defined by the computation rules

D0 = 0, D(Sn) = S(S(Dn)).

One can show easily that all tokens

({0}, 0), ({Sn+10}, S2n+20), ({Sn+1∗}, S2n+2∗)
are in [[D]], and that any token (V, c) ∈ [[D]] is entailed by one of these.

Addition. +: nat⇒ nat⇒ nat is defined by the computation rules

n + 0 = n, n + Sm = S(n + m).

As above one shows that all tokens

({0}, 0), ({Sn+10}, Sn+10), ({Sn+1∗}, Sn+1∗)
are in [[λm.0 + m]], and that any token (V, c) ∈ [[λm.0 + m]] is entailed by
one of these. So we can conclude that [[λm.0 + m]] = [[λm m]]. This is of
interest, because it allows us to replace 0 + M by M for an arbitrary (not
necessarily total) term M without affecting the values.

Fixed points. The computation rule Yρf = f(Yρf) defines the fixed
point operator Yρ of type (ρ⇒ ρ)⇒ ρ.

2.4. Adequacy

The adequacy theorem of Plotkin (1977, Theorem 3.1) says that when-
ever the value of a closed term M is a numeral, then M head-reduces to
this numeral. So in this sense the (denotational) semantics is (computation-
ally) “adequate”. Plotkin’s proof is by induction on the types, and uses a
computability predicate. We prove an adequacy theorem in our setting, for
arbitrary computation rules.

2.4.1. Operational semantics. Recall that a token of a base type µ is
a constructor expression (possibly involving ∗) whose outermost constructor
is for µ. We use B to denote both, constructors C and defined constants D.

Definition (M �1 N , M head-reduces to N).

(λx M)N �1 M [x := N ],
M �1 M ′

MN �1 M ′N
,

D ~P ( ~N ) �1 M [~y := ~N ] for D ~P (~y ) = M a computation rule,

M �1 M ′

Ba1 . . . anM �1 Ba1 . . . anM ′ for n < ar(B).

� denotes the reflexive transitive closure of �1.
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Clearly for every term M there is at most one M ′ such that M �1 M ′;
call M normal if there is no such M ′.

We define an “operational interpretation” (Martin-Löf, 1983) of formal
neighborhoods U . To this end we define a notion M ∈ [a], for M closed, by
induction on the type of the token a, and write M ∈ [U ] for ∀a∈U M ∈ [a].

Definition. (a) For a of base type µ, M ∈ [a] if and only if ∃N≥a M �
N .

(b) M ∈ [(U, b)] if and only if M � λx M ′ or M � B ~M with length of ~M
less than ar(B), and ∀N∈[U ] MN ∈ [b].

Lemma. If M � N , N ∈ [V ] and V ≥ U , then M ∈ [U ].

Proof. Let a ∈ U . We show M ∈ [a], i.e., ∃K≥a M � K. Because of
V ≥ U we have c ∈ V such that c ≥ a. Because of N ∈ [c] we have a term
K such that N � K ≥ c. Hence M � N � K ≥ c ≥ a. �

Theorem (Adequacy). If (~U, b) ∈ [[λ~xM ]], then λ~x M ∈ [(~U ′, b′)] for
some (~U ′, b′) ≥ (~U, b).

Proof. By induction on the rules defining (~U, b) ∈ [[λ~x M ]], and cases
on the form of M .

Case xi.
Ui ≥ b

(~U, b) ∈ [[λ~x xi]]
(V ).

We need (~U ′, b′) ≥ (~U, b) such that λ~x xi ∈ [(~U ′, b′)], i.e., ∀ ~K∈[~U ′] Ki ∈ [b′].

Take ~U ′ = ~U , b′ = b. Let Ki ∈ [Ui]. Then by definition Ki ∈ [b′].
Case MN .

(~U, V ) ⊆ [[λ~x N ]] (~U, V, c) ∈ [[λ~x M ]]

(~U, c) ∈ [[λ~x.MN ]]
(A).

We need to find some (~U ′, c′) ≥ (~U, c) such that λ~x.MN ∈ [(~U ′, c′)], i.e.,
∀ ~K∈[~U ′] (MN)[~x := ~K] ∈ [c′].

By IH, for all b ∈ V we have some (~U1, b
′) ≥ (~U, b) such that λ~x N ∈

[(~U1, b
′)], i.e., ∀ ~K∈[~U1] N [~x := ~K] ∈ [b′]. Recall that (~U1, b

′) ≥ (~U, b) means
~U ≥ ~U1 and b′ ≥ b. Hence we can pick the same U1 for all b ∈ V , and

∀ ~K∈[~U1] N [~x := ~K] ∈ [V ].

Also, by IH we have (~U2, V
′, c′) ≥ (~U, V, c) such that λ~x M ∈ [(~U2, V

′, c′)],
i.e.,

∀ ~K∈[~U2] M [~x := ~K] ∈ [(V ′, c′)].

Recall that (~U2, V
′, c′) ≥ (~U, V, c) means ~U ≥ ~U2, V ≥ V ′ and c′ ≥ c.
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Let ~U ′ := ~U1 ∪ ~U2 (component wise union), and fix ~K ∈ [~U ′]. Clearly
~K ∈ [~U1] and ~K ∈ [~U2]. From M [~x := ~K] ∈ (V ′, c′) we know that M [~x :=
~K] � λx M ′ or M � B ~M with length of ~M less than ar(B), and also
∀L∈[V ′].M [~x := ~K]L ∈ [c′].

Since N [~x := ~K] ∈ [V ] and hence ∈ [V ′] we obtain (MN)[~x := ~K] ∈ [c′],
as required.

Case D.
(~U, ~V , b) ∈ [[λ~x, ~y M ]]

(~U, ~P (~V ), b) ∈ [[λ~x D]]
(D),

with D ~P (~y ) = M be a computation rule. We need (~U ′, ~Z, b′) ≥ (~U, ~P (~V ), b)
such that λ~x D ∈ [(~U ′, ~Z, b′)]. Recall that (~U ′, ~Z, b′) ≥ (~U, ~P (~V ), b) means
~U ≥ ~U ′, ~P (~V ) ≥ ~Z and b′ ≥ b.

By IH we have (~U ′, ~V ′, b′) ≥ (~U, ~V , b) such that λ~x, ~y M ∈ [(~U ′, ~V ′, b′)],
i.e.,

∀ ~K∈[~U ′]∀ ~N∈[~V ′] M [~y := ~N ] ∈ [b′].

Recall that (~U ′, ~V ′, b′) ≥ (~U, ~V , b) means ~U ≥ ~U ′, ~V ≥ ~V ′ and b′ ≥ b.
Pick the required ~U ′, b′ as the ones provided by the IH, and ~Z := ~P (~V ′).

We must show λ~xD ∈ [(~U ′, ~P (~V ′), b′)], i.e.,

∀ ~K∈[~U ′]∀~L∈[~P (~V ′)] D
~L ∈ [b′].

Now fix ~K ∈ [~U ′] and ~L ∈ [~P (~V ′)]. Then ~L � ~P ( ~N) with ~N ∈ [~V ′]. From
D ~P ( ~N) �1 M [~y := ~N ] and M [~y := ~N ] ∈ [b′] the claim follows.

Case C.
~V ≥ ~b∗

(~U, ~V ,C ~b∗ ) ∈ [[λ~x C]]
(C).

We need (~U ′, ~V ′, b′) ≥ (~U, ~V ,C ~b∗ ) such that λ~x C ∈ [(~U ′, ~V ′, b′)]. Recall
that (~U ′, ~V ′, b′) ≥ (~U, ~V ,C ~b∗ ) means ~U ≥ ~U ′, ~V ≥ ~V ′ and b′ ≥ C ~b∗.

Pick ~U ′ := ~U , ~V ′ := ~V , b′ := C ~b∗. We must show λ~x C ∈ [(~U, ~V ,C ~b∗ )],
i.e.,

∀ ~K∈[~U ]∀~L∈[~V ] C
~L ∈ [C ~b∗ ].

This follows from ~V ≥ ~b∗. �

2.5. Total Functionals

Total ideals are important because one can prove their properties by
(structural) induction. We also introduce the concept of structure-total
ideals, first for a free algebra µ and then for arbitrary types. They are
more general, because ideals at parameter positions need not be total, but
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still allow to argue by induction. An example of the latter notion are lists
whose structure (number of cons’s) is known, but whose elements may be
partial. This is of interest, because for such “structure-total” objects an
obvious induction principle holds.

Kreisel (1959) states the important density theorem, which says that any
finite functional can be extended to a total one. Proofs of various versions
of the density theorem have been given by Ershov (1972), Berger (1993b),
Stoltenberg-Hansen et al. (1994), Schwichtenberg (1996) and Kristiansen
and Normann (1997). Here we give a proof for the practically important
case where the base domains are not just the flat domain of natural numbers,
but non-flat and possibly parametrized free algebras.

2.5.1. Total and structure-total ideals. It is well-known how one
can single out the total functionals from the partial ones.

Definition. The total ideals of type ρ are defined inductively.
• Case µ. For an algebra µ, the total ideals x are those of the form

C~z with C a constructor of µ and ~z total (C denotes the continuous
function |rC|).
• Case ρ⇒ σ. An ideal r of type ρ⇒ σ is total if and only if for all

total z of type ρ, the result |r|(z) of applying r to z is total.
The structure-total ideals are defined similarly; the difference is that in case
µ the ideals at parameter positions of C need not be total. – We write
x ∈ Gρ to mean that x is a total ideal of type ρ.

For instance, for nat the ideals 0, S0, S(S0) etc. in Fig. 2 on page 66
are total, but ⊥, S⊥, S(S⊥), . . . , ∞ are not. For list(ρ), precisely all ideals
of the form cons(x1, . . . cons(xn,nil) . . . ) are structure-total. The total ones
are those where in addition all list elements x1, . . . , xn are total.

For non-flat base domains it is easy to see that there are maximal but not
total ideals: ∞ is an example for nat. This is less easy for flat base domains;
a counterexample has been given by Ershov (1974); a more perspicious one
(at type (nat⇒ nat)⇒ nat) is in (Stoltenberg-Hansen et al., 1994).

Conversely, the total continuous functionals need not be maximal ideals
in Cρ: A counterexample is { (Sn0, 0) | n ∈ nat }, which clearly is a total
object of type nat ⇒ nat representing the constant function with value 0.
However, addition of the pair (∅, 0) yields a different total object of type
nat⇒ nat. However, it is easy to show both functionals are “equivalent” in
the sense that they have the same behaviour on total arguments.

2.5.2. Equality for total functionals.

Definition. An equivalence ∼ρ between total ideals x1, x2 ∈ Gρ is
defined inductively.
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• Case µ. For an algebra µ, two total ideals x1, x2 are equivalent if
both are of the form C~z1 with the same constructor C of µ, and
we have z1j ∼τ z2j for all j, where τ is a predecessor type (one of
~ρ, ~σ1, . . . , ~σn) from the inductive clause for µ.
• Case ρ⇒ σ. Two ideals r1, r2 of type ρ⇒ σ are equivalent if and

only if ∀x∈Gρ f(x) ∼σ g(x).
Clearly ∼ρ is an equivalence relation. Similarly, one can define an equiva-
lence relation ≈ρ between structure-total ideals x1, x2.

We obviously want to know that ∼ρ (and similarly ≈ρ) is compatible
with application; we only treat ∼ρ here. The nontrivial part of this argument
is to show that x ∼ρ y implies f(x) ∼σ f(y). First we need some lemmata.
Recall that our partial continuous functionals are ideals (i.e., certain sets of
tokens) in the information systems Cρ.

Lemma. If f ∈ Gρ, g ∈ |Cρ| and f ⊆ g, then g ∈ Gρ.

Proof. By induction on ρ. For base types µ the claim easily follows
from the IH. ρ⇒ σ: Assume f ∈ Gρ⇒σ and f ⊆ g. We must show g ∈ Gρ⇒σ.
So let x ∈ Gρ. We have to show g(x) ∈ Gσ. But g(x) ⊇ f(x) ∈ Gσ, so the
claim follows by IH. �

Lemma.

(2.9) (f1 ∩ f2)(x) = f1(x) ∩ f2(x), for f1, f2 ∈ |Cρ⇒σ| and x ∈ |Cρ|.

Proof. By the definition of |r|,
|f1 ∩ f2|(x)

= { b ∈ Cσ | ∃U⊆x (U, b) ∈ f1 ∩ f2 }
= { b ∈ Cσ | ∃U1⊆x (U1, b) ∈ f1 } ∩ { b ∈ Cσ | ∃U2⊆x (U2, b) ∈ f2 }
= |f1|(x) ∩ |f2|(x).

The part ⊆ of the middle equality is obvious. For ⊇, let Ui ⊆ x with
(Ui, b) ∈ fi be given. Choose U = U1 ∪ U2. Then clearly (U, b) ∈ fi (as
(Ui, b) ≥ (U, b) and fi is deductively closed). �

Lemma. f ∼ρ g if and only if f ∩ g ∈ Gρ, for f, g ∈ Gρ.

Proof. By induction on ρ. For base types µ the claim easily follows
from the IH. ρ⇒ σ:

f ∼ρ⇒σ g ⇐⇒ ∀x∈Gρ f(x) ∼σ g(x)

⇐⇒ ∀x∈Gρ f(x) ∩ g(x) ∈ Gσ by IH

⇐⇒ ∀x∈Gρ (f ∩ g)x ∈ Gσ by (2.9)
⇐⇒ f ∩ g ∈ Gρ⇒σ.



82 2. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS

This completes the proof. �

Theorem. x ∼ρ y implies f(x) ∼σ f(y), for x, y ∈ Gρ and f ∈ Gρ⇒σ.

Proof. Since x ∼ρ y we have x ∩ y ∈ Gρ by the last lemma. Now
f(x), f(y) ⊇ f(x∩ y) and hence f(x)∩ f(y) ∈ Gσ. But this implies f(x) ∼σ

f(y) again by the last lemma. �

2.5.3. Dense and separating sets. We now prove the density the-
orem, which says that any finitely generated functional (i.e., any U with
U ∈ Conρ) can be extended to a total functional.

However, we need some assumptions on the base types for this theorem
to hold. Otherwise, density might fail for the trivial reason that there are
no total ideals at all (e.g., in µα (α → α)). A type µα1, . . . , αN (κ1, . . . , κn)
is said to have total ideals if for every j (1 ≤ j ≤ N) there is a constructor
type κij of form (2.1) with j1, . . . , jn < j. Then clearly for every j we have
a total ideal of type αj ; call it zj . Moreover, we assume that all base types
are finitary. Then their total ideals are finite and maximal, which will be
used in the proof.

Theorem (Density). Assume that all base types are finitary and have
total ideals. Then for any U ∈ Conρ we can find an x ∈ Gρ such that U ⊆ x.

Proof. Call a type ρ dense if ∀U∈Conρ∃x∈Gρ U ⊆ x, and separating if

∀U1,U2∈Conρ

(
U1 ∪ U2 /∈ Conρ ⇒ ∃~z∈G InCon(U1(~z) ∪ U2(~z))

)
.

Here ~z ∈ G means that ~z is a sequence of total zi such that Uj~z is of a base
type µ. We prove by simultaneous induction on ρ that any type ρ is dense
and separating. This extended claim is needed for the inductive argument.

For base types µ both claims are easy: the fact that µ is separating
is obvious, and density for µ can be inferred from the IH, as follows. For
simplicity of notation assume that µ is non-simultaneously defined. Let
U ∈ Conµ. Then (since µ is finitary) ∃b∀a∈U b ≥ a. In the token b, replace
every constructor symbol by its corresponding continuous function, every
token at a parameter argument position by a total ideal of its type (which
exists by IH), and every ∗ at a type-µ-position by the total ideal z of type
µ (which exists by assumption). The result is the required total ideal.

ρ ⇒ σ is separating: This will follow from the inductive hypotheses
that ρ is dense and σ is separating. So let W,W ′ ∈ Conρ⇒σ such that
W ∪W ′ /∈ Conρ⇒σ. Then there are (U, a) ∈W and (U ′, a′) ∈W ′ such that
U ∪ U ′ ∈ Conρ but {a, a′} /∈ Conσ. Since ρ is dense, we have a z ∈ Gρ such
that U ∪U ′ ⊆ z. Hence a ∈W (z) and a′ ∈W ′(z). Now since σ is separating
there are ~z ∈ G such that

InCon({a}(~z) ∪ {a′}(~z)),
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hence also
InCon(W (z, ~z) ∪W ′(z, ~z)).

This concludes the proof that ρ⇒ σ is separating.
ρ ⇒ σ is dense: This will follow from the inductive hypotheses that ρ

is separating and σ is dense. So fix W = { (Ui, ai) | i ∈ I } ∈ Conρ⇒σ.
Consider i, j such that {ai, aj} /∈ Conσ. Then Ui ∪ Uj /∈ Conρ. Since ρ is
separating, there are ~zij ∈ G and kij , lij ∈ Gµ such that with kij := Ui(~zij)
and lij := Uj(~zij)

InCon(kij ∪ lij).
We clearly may assume that ~zij = ~zji and (kij , lij) = (lji, kji).

Now define for any U ∈ Conρ a set IU of indices i ∈ I such that “U
behaves as Ui with respect to the ~zij”. More precisely, let

IU := { i ∈ I | ∀j({ai, aj} /∈ Conσ → U(~zij) = kij) }.
We first show that

(2.10) { ai | i ∈ IU } ∈ Conσ.

It suffices to show that {ai, aj} ∈ Conσ for all i, j ∈ IU . So let i, j ∈ IU and
assume {ai, aj} /∈ Conσ. Then U(~zij) = kij as i ∈ IU and U(~zji) = kji as
j ∈ IU , and because of ~zij = ~zji and InCon(kij ∪ kji) (recall lij = kji) we
could conclude that U(~zij) would be inconsistent. This contradiction proves
{ai, aj} ∈ Conσ and hence (2.10).

Since (2.10) holds and σ is dense by IH, we can find yIU
∈ Gσ such that

ai ∈ yIU
for all i ∈ IU . Define r ⊆ Conρ × Cσ by

r(U, a) ⇐⇒

{
a ∈ yIU

, if U(~zij) is finite and maximal for all ~zij ;
∃i∈IU

ai ≥σ a, otherwise.

We will show that r ∈ Gρ⇒σ and W ⊆ r.
For W ⊆ r we have to show r(Ui, ai) for all i ∈ I. But this holds, since

clearly i ∈ IUi and also ai ∈ yIUi
.

We now show that r is an approximable map, i.e., that r ∈ |Cρ⇒σ|. To
prove this we have to verify the defining properties of approximable maps.

(a). r(U, b1) and r(U, b2) implies {b1, b2} ∈ Conσ. If U(~zij) is finite and
maximal for all ~zij , the claim follows from the consistency of yIU

. If not, the
claim follows from the general properties of acis’s.

(b). r(U, b), V ≥A U and b ≥B c implies r(V, c). First assume that
U(~zij) is finite and maximal for all ~zij . Then also V (~zij) is maximal for all
~zij . From r(U, b) we get b ∈ yIU

. We have to show that c ∈ yIV
. But since

U(~zij) and V (~zij) are maximal for all ~zij and V ≥ρ U , they must have the
same values on the ~zij , hence IU = IV , so yIU

= yIV
and therefore c ∈ yIV

by deductive closure. Now assume the contrary. From r(U, b) we get ai ≥σ b



84 2. COMPUTATION WITH PARTIAL CONTINUOUS FUNCTIONALS

for some i ∈ IU . From V ≥ρ U we can conclude IU ⊆ IV , by the definition
of IU . Hence i ∈ IV , and also b ∈ yIV

(since ai ∈ yIU
for all i ∈ IU , and yIV

is deductively closed). Therefore r(V, b) and hence r(V, c).
This concludes the proof that r is an approximable map. It remains to

prove r ∈ Gρ⇒σ. So let x ∈ Gρ. We must show

|r|(x) = { a ∈ Cσ | ∃U⊆x r(U, a) } ∈ Gσ.

Now x(~zij) is total for all i, j, hence by our assumption on base types finite
and maximal. So there is some Uij ⊆ x such that Uij(~zij) = x(~zij). Let
U ⊆ x be the union of all the Uij . Then by definition r(U, a) for all a ∈ yIU

.
Therefore yIU

⊆ |r|(x) and hence |r|(x) ∈ Gσ. �

2.5.4. Applications of the density theorem. As an application of
the density theorem we prove a choice principle for total continuous func-
tionals.

Theorem (Choice principle for total functionals). There is an ideal
Γ ∈ |C(ρ⇒σ⇒boole)⇒ρ⇒σ| such that for any F ∈ Gρ⇒σ⇒boole satisfying

∀x∈Gρ∃y∈Gσ F (x, y) = tt

we have Γ(F ) ∈ Gρ⇒σ and

∀x∈Gρ F (x,Γ(F, x)) = tt.

Proof. Let V0, V1, V2, . . . be an enumeration of Conσ. By the density
theorem we can find yn ∈ Gσ such that Vn ⊆ yn. Define a relation r ⊆
Conρ⇒σ⇒boole × Cρ⇒σ by

r(W,U, a) ⇐⇒ ∃m∀i<m (W (U, yi) = ff ∧W (U, ym) = tt ∧ a ∈ ym).

We first show that Γ := r is an approximable map. To prove this we have
to verify the clauses of the definition of approximable maps.

(a). r(W,U1, a1) and r(W,U2, a2) imply {(U1, a1), (U2, a2)} ∈ Conρ⇒σ.
Assume the premise and U := U1 ∪ U2 ∈ Conρ. We show {a1, a2} ∈ Conσ.
The numbers mi in the definition of r(W,Ui, ai) are the same, = m say.
Hence a1, a2 ∈ ym, and the claim follows from the consistency of ym.

(b). r(W ′, U, a), W ≥ W ′ and (U, a) ≥ (V, b) implies r(W,V, b). Then
V ≥ U and a ≥ b. The claim follows from the definition of r, using the
deductive closure of ym. The m from r(W ′, U, a) can be used for r(W,U, a).

We finally show that for all F ∈ Gρ⇒σ⇒boole satisfying

∀x∈Gρ∃y∈Gσ F (x, y) = tt

and all x ∈ Gρ we have rFx ∈ Gσ and F (x,Γ(F, x)) = tt. So let F and x
with these properties be given. By assumption there is a y ∈ Gσ such that
F (x, y) = tt. Hence by the definition of application there is a Vn ∈ Conσ
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such that F (x, Vn) = tt. Since Vn ⊆ yn we also have F (x, yn) = tt. Clearly
we may assume here that n is minimal with this property, i.e., that

F (x, y0) = ff, . . . , F (x, yn−1) = ff.

We show that Γ(F, x) ⊇ yn; this suffices because the extension of a total
ideals is total. Recall that

Γ(F ) = { (U, a) ∈ Conρ × Cσ | ∃W⊆F r(W,U, a) }

and

Γ(F, x) = { a ∈ Cσ | ∃U⊆x (U, a) ∈ Γ(F ) }
= { a ∈ Cσ | ∃U⊆x∃W⊆F r(W,U, a) }.

Let a ∈ yn. By the choice of n we get U ⊆ x and W ⊆ F such that

∀i<n W (U, yi) = ff and W (U, yn) = tt.

Therefore r(W,U, a) and hence a ∈ Γ(F, x). �

From the proofs of both theorems it can be seen easily that the func-
tionals constructed are in fact computable. More precisely we have:

Theorem (Effective density theorem). For any U ∈ Conρ we can find
a computable x ∈ Gρ such that U ⊆ x.

Proof. By inspection of the proof of the density theorem. To see that r
(in the proof that ρ⇒ σ is dense) is Σ0

1-definable one needs that ∃i∈IU
ai ≥ a

implies a ∈ yIU
for all U and a, since by definition ai ∈ yIU

for all i ∈ IU .
Hence

r(U, a) ⇐⇒
∃i∈IU

ai ≥ a or (a ∈ yIU
and U(~zij) is finite and maximal for all ~zij).

Moreover, if U(~zij) is finite and maximal for all ~zij , one can actually compute
IU (and not only an enumeration procedure for IU ). �

Theorem (Effective choice principle). There is a computable Γ of type
(ρ⇒ σ ⇒ boole)⇒ ρ⇒ σ such that for any F ∈ Gρ⇒σ⇒boole satisfying

∀x∈Gρ∃y∈Gσ F (x, y) = tt

we have Γ(F ) ∈ Gρ⇒σ and

∀x∈Gρ F (x,Γ(F, x)) = tt.

Proof. Immediate from the proof of the choice principle for total con-
tinuous functionals. �
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The effective choice principle generalizes the simple fact that when-
ever we know the truth of ∀x∈N∃y∈N P (x, y) with P (x, y) decidable, then
given x we can just search for a y such that P (x, y) holds; the truth of
∀x∈N∃y∈N P (x, y) guarantees termination of the search.

2.6. Implementation

This “logic for computable functionals” is the basis for the Minlog proof
assistant www.minlog-system.de, under development in Munich. It treats
partial functionals as first class citizens: variables range over all partial
continuous functionals of a given type. Since these functionals are viewed
as sets of tokens, we in fact quantify over sets, so we have a second order
theory. However, the existence axioms – here in the form of which terms
are allowed in ∀-elimination – are weak in the sense that these terms involve
quantifiers over functionals, so our theory remains predicative.

In contrast to Martin-Löf (1984), formulas and types are kept separate.
This makes it possible to avoid dependent types, which simplifies the theory
considerably. More importantly, by separating the logic rules from type
theory one avoids the well-known difficulty: when propositions are viewed
as types and types as domains, then – as every domain is inhabited by its
bottom element – every proposition would have a proof.

Types are built from base types (non-flat and possibly infinitary free
algebras, with type parameters) by forming function spaces; this suffices
for our intended mathematical applications. For more metamathemati-
cal subjects one may also add universe formation processes, as in (Berger,
Berghofer, Letouzey, and Schwichtenberg, 2006). Decidable predicates are
viewed as boolean valued functions (and hence the rewrite mechanism de-
scribed above applies to them), and inductive definitions are the common
way to introduce undecidable predicates. In addition to free type variables
also free predicate variables are allowed. They are viewed as placeholders
for formulas (or more precisely, comprehension terms, that is formulas with
some variables abstracted). However, in comprehension terms quantifica-
tion over predicate variables is not allowed, since this would form a glaring
impredicativity: we then would define a predicate (by the comprehension
term) with reference to the totality of all predicates, to which the one to be
defined belongs. A central application domain for the Minlog proof assistant
is program extraction from constructive – and classical (Berger et al., 2002)
– proofs. This is done by means of a realizability interpretation, which re-
quires – when the formula to be realized is given by an inductively defined
predicate – a (possibly non-finitary) free algebra as domain of the realizers.

Computable functionals are defined by “computation rules”, as described
in (Berger et al., 2003; Berger, 2005); these rules are added to the standard
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conversion rules of typed λ-calculus. To simplify equational reasoning, the
system identifies terms with the same normal form. Then it clearly is desir-
able to use other equations as rewrite rules as well; for instance, we not only
want to rewrite M + 0 into M (which is an instance of a computation rule),
but also 0+M into M . To justify this we need to prove 0+m̂ = m̂, where m̂
ranges over all (possibly partial) objects of type nat. The standard way to
prove such equations is of course induction. However, induction is only valid
for total objects (or – for types with parameters – “structure-total” objects;
hence cannot be used for equations involving partial variables. Here the
approach developed in the present chapter helps: one can prove the equal-
ity of the values of the two terms, by showing that both contain the same
tokens, and then use reflection to conclude that the terms must be equal.
The present chapter aims at preparing the ground for such proofs.

2.7. Notes

The material in the present chapter is taken from (Schwichtenberg,
2006).





CHAPTER 3

Proof Interpretations

The Brouwer-Heyting-Kolmogorov interpretation (BHK-interpretation
for short) of intuitionistic (and minimal) logic explains what it means to
prove a logically compound statement in terms of what it means to prove its
components; the explanations use the notions of construction and construc-
tive proof as unexplained primitive notions. For prime formulas the notion
of proof is supposed to be given. The clauses of the BHK-interpretation are:

• p proves A ∧ B if and only if p is a pair 〈p0, p1〉 and p0 proves A,
p1 proves B;
• p proves A→ B if and only if p is a construction transforming any

proof q of A into a proof p(q) of B;
• ⊥ is a proposition without proof.
• p proves ∀x∈DA(x) if and only if p is a construction such that for

all d ∈ D, p(d) proves A(d),
• p proves ∃x∈DA(x) if and only if p is of the form 〈d, q〉 with d an

element of D, and q a proof of A(d).

The problem with the BHK-interpretation clearly is its reliance on the
unexplained notions of construction and constructive proof. Gödel has been
concerned with this problem for more than 30 years. In 1941, Gödel gave
a lecture at Yale university with the title “In what sense is intuitionistic
logic constructive?”. According to Kreisel, Gödel “wanted to establish that
intuitionistic proof of existential theorems provide explicit realizers” (Gödel,
1990, p.219). Gödel published his “Dialectica interpretation” in (1958), and
revised this work over and over again; its state in 1972 has been published
in (Gödel, 1990). Troelstra, in his introductory note to the latter two papers
writes in (Gödel, 1990, p.220/221):

Gödel argues that, since the finististic methods considered
are not sufficient to carry out Hilbert’s program, one has
to admit at least some abstract notions in a consistency
proof; . . . However, Gödel did not want to go as far as
admitting Heyting’s abstract notion of constructive proof;
hence he tried to replace the notion of constructive proof
by something more definite, less abstract (that is, more

89
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nearly finitistic), his principal candidate being a notion of
“computable functional of finite type” which is to be ac-
cepted as sufficiently well understood to justify the axioms
and rules of his system T, an essentially logic-free theory
of functionals of finite type.

We intend to explicate the notion of a computable functional of finite type
as an ideal in an acis, as explained in Ch.2. However, already Gödel noted
in (1990) that his proof interpretation is largely independent of a precise
definition of computable functionals; one only needs to know that certain
basis functionals are computable (including primitive recursion operators in
finite types), and that they are closed under composition.

Building on Gödel’s work (1958), we assign to every formula A a new
one ∃xA1(x) with A1(x) ∃-free. Then from a derivation M : A we want to
extract a “realizing” term r such that A1(r). The intention here is that
its meaning should in some sense be related to the meaning of the origi-
nal formula A. However, Gödel explicitely states in (1958, p.286) that his
Dialectica interpretation is not the one intended by BHK-interpretation.

Special to our treatment of proof interpretations is the following.

• It is based on natural deduction (not on a Hilbert-style calculus
preferred by Gödel (1958)), which is formulated as a system of
proof terms with assumption variables.
• Following Oliva (2006), we bring out some similarities between the

(modified) realizability interpretation mr and the Dialectica inter-
pretation.
• Apart from decidable prime formulas, we also allow inductively de-

fined ones, with quantifiers admitted in the clauses (examples are
Tait’s computability predicates and the levels of the hyperarith-
metic hierarchy).
• We will exploit the possibility to substitute for logical falsity in

minimal logic derivations. This idea is known under the label “A-
translation” (Dragalin, 1979; Friedman, 1975) and its refinements
(Berger, Buchholz, and Schwichtenberg, 2002).
• We notationally distinguish between the constructive existential

quantifier ∃ and the classical one ∃̃. Then there is no need for a
“negative” translation, and we can view “classical” arithmetic as
the ∃∨-free fragment of intuitionistic arithmetic.
• Practical considerations dictate that one should only extract real-

izers from formal proofs relative to some axioms or lemmata, which
may or may not have computational content. One can even go one
step further and give up the aim to produce exact realizers and look
for “majorants” instead (in the sense of Howard’s (1973)); this is
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often sufficient for applications. Then more axioms can be admit-
ted (since we only need majorants, not exact realizers). This line
of research has been initiated by Kohlenbach in the 1990s, under
the name of “monotone” Dialectica and realizability interpretation.
It has found many applications in approximation and fixed point
theory.
• We propose to treat the (clearly necessary) optimizations of the

extracted realizers on the proof level already, by allowing “non-
computational” quantifiers of Berger (1993a) and introducing a
“let-construct” (avoiding multiple computations of the same term)
by means of an “identity lemma”.
• An implementation of the realizability as well as the Dialectica

interpretation (in the Minlog proof assistant) makes it possible to
experiment with extraction of realizers. We discuss some case stud-
ies, including Tait’s proof of normalization for the simply typed
lambda-calculus, and a proof of Dickson’s lemma (based on the
minimum principle).

3.1. Arithmetic in Finite Types

We define Heyting arithmetic HA and its extension HAω to a finitely
typed language. Its terms have been introduced above, in Sec.2.2.

Recall that we have a decidable equality =µ : µ⇒ µ⇒ boole, for finitary
base types µ. Every every atomic formula has the form atom(rboole), i.e., is
built from a boolean term rboole. In particular, there is no need for (logical)
falsity ⊥, since we can take the atomic formula F := atom(ff) – called
arithmetical falsity – built from the boolean constant ff instead.

The formulas of HAω are built from atomic ones by the connectives →,
∀, ∧ and ∃. We define negation ¬A by A→ F .

3.1.1. Logic, induction. We use natural deduction rules: →+, →−,
∀+ and ∀−. The logical axioms are ∧+, ∧−, ∃+ and ∃−, and the truth axiom
Axtt : atom(tt).

The general form of induction over simultaneous free algebras ~µ = µ~α~κ,
with goal formulas ∀

x
µj
j

Aj(xj) is as follows. For the constructor type

κi = ~ρ⇒ (~σ1 ⇒ αj1)⇒ . . .⇒ (~σn ⇒ αjn)⇒ αj ∈ KT(~α)

we have the step formula

Di := ∀
y

ρ1
1 ,...,yρm

m ,y
~σ1⇒µj1
m+1 ,...,y

~σn⇒µjn
m+n(

∀~x~σ1 Aj1(ym+1~x)→ · · · → ∀~x~σn Ajn(ym+n~x)→ Aj(C
~µ
i (~y))

)
.

(3.1)
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Here ~y = yρ1
1 , . . . , yρm

m , y
~σ1⇒µj1
m+1 , . . . , y

~σn⇒µjn
m+n are the components of the ob-

ject C~µ
i (~y) of type µj under consideration, and

∀~x~σ1Aj1(ym+1~x), . . . ,∀~x~σn Ajn(ym+n~x)

are the hypotheses available when proving the induction step. The induction
axiom Ind~x, ~A

µj
or shortly Indj then proves the universal closure of the formula

D1 → · · · → Dk → ∀x
µj
j

Aj(xj).

We will often write Ind~x, ~A
j for Ind~x, ~A

µj
, and omit the upper indices ~x, ~A when

they are clear from the context. In case of a non-simultaneous free algebra,
i.e., of type µα κ, for Indx,A

µ we normally write Indx,A.

Examples.

Indp,A : A(tt)→ A(ff)→ ∀pboole A(p),

Indn,A : A(0)→ ∀n(A(n)→ A(Sn))→ ∀nnat A(n),

Indl,A : A(nil)→ ∀x,l(A(l)→ A(cons(x, l)))→ ∀llist(α) A(l),

Indx,A : ∀y1 A(inl(y1))→ ∀y2 A(inr(y2))→ ∀xρ1+ρ2 A(x).

To express that every object of a pair type is in fact a pair we require a
pair elimination axiom

∀yρ,zσA(〈y, z〉)→ ∀xρ×σA(x).

Let HAω be the theory based on the axioms above including the induction
axioms, and MLω be the (many-sorted) minimal logic, where the induction
axioms are left out.

3.1.2. Equality. Clearly we need the compatibility axioms

x1 =µ x2 → A(x1)→ A(x2).

We define pointwise equality =ρ, by induction on the type. x1 =µ x2 is
already defined, and

(x1 =ρ⇒σ x2) := ∀y(x1y =σ x2y),

(x1 =ρ×σ x2) := (x10 =ρ x20) ∧ (x11 =ρ x21).

Later we will consider some more equality notions: extensional equality
=e

ρ, hereditary extensional equality ≈ρ, and Leibniz equality , where the latter
is defined inductively, by the introduction axiom

Eq+ : ∀x Eq(x, x)

and the elimination axiom

Eq− : ∀x,y

(
∀xA(x, x)→ Eq(x, y)→ A(x, y)

)
.
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Notice that Leibniz equality introduces additional atomic formulas, which
are not any more given by boolean terms. For types of level ≤ 1, pointwise
and extensional equality will coincide.

3.1.3. Extensionality. The extensionality axioms are

y1 =ρ y2 → xy1 =σ xy2

(recall that =τ denotes pointwise equality). We write E-HAω when the
extensionality axioms are present.

In Troelstra (1973), Howard proved that already the first non trivial
instance of the extensionality scheme

y1 =1 y2 → xy1 =nat xy2

does not have a Dialectica realizer. In fact, he introduced the majorizing
relation as a tool to prove this result. This is in contrast to the realizability
interpretation, where extensionality axioms are unproblematic, since they
are ∃-free.

It is customary to try to alleviate the difficulty of not being able to use
extensionality when formalizing mathematical arguments (when an applica-
tion of the Dialectica interpretation is envisaged) by adding a so-called weak
extensionality rule

A0 → r =ρ s

A0 → t(r) =σ t(s)
(A0 quantifier-free)

to the formal system considered. This “rule” is special in the sense that
its premise must have been derived without open assumptions. – Since the
conclusion is (equivalent to) a purely universal formula, adding the weak
extensionality rule does not change the behaviour of the formal system w.r.t.
the Dialectica interpretation.

We write WE-HAω when the weak extensionality rule is present, but not
the extensionality axioms.

3.1.4. Axioms of choice and independence of premise. We will
also consider some more axiom schemes. The axiom of choice (ACρ,σ) is the
scheme

∀xρ∃yσA(x, y)→ ∃fρ⇒σ∀xρA(x, f(x)).

(AC) is the collection of all (ACρ,σ). By independence of premise (IPω
∃-free)

we mean the scheme

(A→ ∃xρB)→ ∃xρ(A→ B) with A ∃-free and x /∈ FV(A).
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3.2. Realizability Interpretation

3.2.1. The type of a realizer. We assign to every formula A an object
τ(A) (a type or the symbol ε). τ(A) is intended to be the type of the program
to be extracted from a proof of A. In case τ(A) = ε proofs of A have no
computational content; such formulas A are called Harrop formulas.

τ(P (~s )) := ε,

τ(∃xρA) :=

{
ρ if τ(A) = ε

ρ× τ(A) otherwise,

τ(∀xρA) :=

{
ε if τ(A) = ε

ρ⇒ τ(A) otherwise,

τ(A→ B) :=


τ(B) if τ(A) = ε

ε if τ(B) = ε

τ(A)⇒ τ(B) otherwise,

τ(A ∧B) :=


τ(B) if τ(A) = ε

τ(A) if τ(B) = ε

τ(A)× τ(B) otherwise.

3.2.2. Extracted terms. We now define the extracted term [[M ]], for
a derivation M using axioms ∃±, ∧±, induction axioms, (AC) and (IPω

∃-free)
and moreover some ∃-free axioms.

Assume first that M derives a formula A with τ(A) 6= ε. Then its
extracted term [[M ]] of type τ(A) is

[[uA]] := xτ(A)
u (xτ(A)

u uniquely associated with uA),

[[λuAM ]] :=

{
[[M ]] if τ(A) = ε

λx
τ(A)
u [[M ]] otherwise,

[[MA→BN ]] :=

{
[[M ]] if τ(A) = ε

[[M ]][[N ]] otherwise,

[[(λxρM)∀xA]] := λxρ[[M ]],

[[M∀xAt]] := [[M ]]t.

We also need extracted terms for the axioms mentioned above; these will
be defined below. For derivations MA where τ(A) = ε (i.e., A is a Harrop
formula) we define [[M ]] := ε (ε some new symbol).
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For the axioms

∃+x,A : ∀xρ(A→ ∃xρA)

∃−x,A,B : ∃xρA→ ∀xρ(A→ B)→ B (x /∈ FV(B))

we set

[[∃+xρ,A]] :=

{
λxρx if τ(A) = ε

λxρλyτ(A)〈x, y〉 otherwise,

[[∃−xρ,A,B]] :=

{
λxρλfρ⇒τ(B).fx if τ(A) = ε

λzρ×τ(A)λfρ⇒τ(A)⇒τ(B).f(z0)(z1) otherwise.

For the axioms

∧+ : A→ B → A ∧B

∧− : (A→ B → C)→ A ∧B → C

we set

[[∧+]] :=


λxτ(A)x if τ(B) = ε

λyτ(B)y if τ(A) = ε

λxτ(A)λyτ(B)〈x, y〉 otherwise,

[[∧−]] :=


λzτ(C)z if τ(A) = ε, τ(B) = ε

λf τ(A)⇒τ(C)λyτ(B).fy if τ(A) = ε, τ(B) 6= ε

λf τ(A)⇒τ(C)λxτ(A).fx if τ(A) 6= ε, τ(B) = ε

λf τ(A)⇒τ(B)⇒τ(C)λzτ(A)×τ(B).f(z0)(z1) if τ(A) 6= ε, τ(B) 6= ε.

The extracted term [[Indj ]] of an induction axiom is defined to be the recur-
sion operator R~µ,~τ

µj . Here ~µ, ~τ list only the types µj , τj with τj := τ(Aj) 6= ε,
i.e., the recursion operator is simplified accordingly.

Example. For the induction scheme

Indn,A : A(0)→ ∀n(A(n)→ A(n + 1))→ ∀nA(n)

we have

[[Indn,A]] := Rτ
nat : τ ⇒ (nat⇒ τ ⇒ τ)⇒ nat⇒ τ,

where τ := τ(A) 6= ε.

As extracted terms of (AC) and (IPω
∃-free) we can take identities of the

appropriate types.
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3.2.3. Realizability. We define the notion of (modified) realizability .
The term “modified” is used for historical reasons, to distinguish this form
of realizability from the (earlier) Kleene-style realizability. More precisely,
we define formulas r mr A, where A is a formula and r is either a term of
type τ(A) if the latter is a type, or the symbol ε if τ(A) = ε.

r mr P (~s ) := P (~s ),

r mr (∃xA(x)) :=

{
ε mr A(r) if τ(A) = ε

r1 mr A(r0) otherwise,

r mr (∀xA) :=

{
∀xε mr A if τ(A) = ε

∀xrx mr A otherwise,

r mr (A→ B) :=


ε mr A → r mr B if τ(A) = ε

∀x(x mr A → ε mr B) if τ(A) 6= ε = τ(B)
∀x(x mr A → rx mr B) otherwise,

r mr (A ∧B) :=


(ε mr A) ∧ (r mr B) if τ(A) = ε

(r mr A) ∧ (ε mr B) if τ(B) = ε

(r0 mr A) ∧ (r1 mr B) otherwise.

Formulas which do not contain the existence quantifier ∃ play a special role
in this context; we call them ∃-free (or invariant); in the literature such
formulas are also called “negative”. Their crucial property is that for an ∃-
free formula A we have ε mr A = A. Notice also that every formula r mr A
is ∃-free.

3.2.4. Soundness.

Theorem. Let M : A be a derivation in HAω + AC + IPω
∃-free + Ax∃-free

from assumptions ui : Ci (i = 1, . . . , n). Then we can find a derivation µ(M)
in HAω + Ax∃-free of [[M ]] mr A from assumptions ūi : xui mr Ci.

Proof. Induction on M .
Case u : A. Then ū : xu mr A. Let µ(u) := ū.
Case c : A, c an axiom. These cases can be treated easily.
Case λuAMB. We must find a derivation µ(λuM) of

[[λuM ]] mr (A→ B).

Subcase τ(A) = ε. Then [[λuM ]] = [[M ]], hence

[[λuM ]] mr (A→ B) = ε mr A → [[M ]] mr B.

By IH we can define µ(λuM) := λūµ(M) with ū : ε mr A.
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Subcase τ(A) 6= ε = τ(B). Then [[λuM ]] = ε and

[[λuM ]] mr (A→ B) = ∀x(x mr A → ε mr B),

and by IH we can define µ(λuM) := λxuλūµ(M) with ū : xu mr A.
Subcase τ(A) 6= ε 6= τ(B). Then

[[λuM ]] mr (A→ B) = ∀x(x mr A → [[λuM ]]x mr B).

Because of [[λuM ]] = λxu[[M ]] and since we identify terms with the same
β-normal form, again by IH we can define µ(λuM) := λxuλūµ(M).

Case MA→BNA. We must find a derivation µ(MN) of [[MN ]] mr B.
Subcase τ(A) = ε. Then [[MN ]] = [[M ]]. By IH we have derivations

µ(M) of
[[M ]] mr (A→ B) = ε mr A → [[M ]] mr B

and µ(N) of ε mr A; hence we can define µ(MN) := µ(M)µ(N).
Subcase τ(A) 6= ε = τ(B). Then [[MN ]] = ε. By IH we have derivations

µ(M) of
[[M ]] mr (A→ B) = ∀x(x mr A → ε mr B)

and µ(N) of [[N ]] mr A; hence we can define µ(MN) := µ(M)[[N ]]µ(N).
Subcase τ(A) 6= ε 6= τ(B). Then [[MN ]] = [[M ]][[N ]]. By IH we have

derivations µ(M) of

[[M ]] mr (A→ B) = ∀x(x mr A → [[M ]]x mr B)

and µ(N) of [[N ]] mr A; hence we can define µ(MN) := µ(M)[[N ]]µ(N).
Case λzMA. We must find a derivation µ(λzM) of [[λzM ]] mr ∀zA. By

definition [[λzM ]] = λz[[M ]].
Subcase τ(A) = ε. Then

λz[[M ]] mr ∀zA = ∀z(ε mr A)

and by IH we can define µ(λzM) := λzµ(M). The variable condition is
satisfied, since λzMA is a derivation term, and hence z does not occur free
in any assumption variable u : B free in MA, hence also does not occur free
in the free assumption ū : xu mr B.

Subcase τ(A) 6= ε. Then

λz[[M ]] mr ∀zA = ∀z(λz[[M ]])z mr A.

Since we identify terms with the same β-normal form, by IH we again can
define µ(λzM) := λzµ(M). As before one can see that the variable condition
is satisfied.

Case M∀zA(z)t. We must find a derivation µ(Mt) of [[Mt]] mr A(t). By
definition we have [[Mt]] = [[M ]]t.

Subcase τ(A) = ε. By IH we have a derivation of

[[M ]] mr ∀zA(z) = ∀z(ε mr A(z))
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hence we can define µ(Mt) := µ(M)t.
Subcase τ(A) 6= ε. By IH we have a derivation of

[[M ]] mr ∀zA(z) = ∀z([[M ]]z mr A(z)),

hence we again can define µ(Mt) := µ(M)t. �

Remark. If A is ∃-free, then ε mr A = A. Hence for ∀xρ∃yσA(x, y) with
∃-free A(x, y) we have τ(∀x∃yA(x, y)) = ρ⇒ σ and

t mr ∀x∃yA(x, y) = ∀xA(x, tx).

Since for every instance B of (AC) or (IPω
∃-free) one easily derives [[B]] mr B

in HAω, as a corollary to the Soundness Theorem we immediately obtain
the following. Let M : ∀x∃yA(x, y) be a closed derivation in HAω + AC +
IPω
∃-free + Ax∃-free, where A(x, y) is ∃-free. Then

HAω + Ax∃-free ` ∀xA(x, [[M ]](x)).

3.2.5. Characterization. We now consider the question under what
conditions a formula A and its modified realizability interpretation ∃xx mr A
are equivalent. It has been proven by Troelstra (1973, 3.4.8) that

Theorem (Characterization).

HAω + AC + IPω
∃-free ` A↔ ∃xx mr A.

The direction “←” can be proved in MLω alone, provided the formulas con-
sidered only have “outer-∃-premises”, that is, premises of the form ∃xA1

with A1 ∃-free.

Proof. Induction on A; we only treat the case A → B with τ(A) 6= ε
and τ(B) 6= ε.

(A→ B)↔ (∃xx mr A→ ∃yy mr B) by IH

↔ ∀x(x mr A→ ∃yy mr B) by MLω

↔ ∀x∃y(x mr A→ y mr B) by (IPω
∃-free)

↔ ∃f∀x(x mr A→ f(x) mr B) by (AC)

↔ ∃ff mr (A→ B).

Now assume that A has only outer-∃-premises. First notice that for a for-
mula of the form ∃xA1 with A1 ∃-free we have ∃x(x mr ∃xA1) = ∃xA1. We
obtain

∃ff mr (A→ B)→ ∃f∀x(x mr A→ f(x) mr B)

→ ∀x∃y(x mr A→ y mr B)

→ ∀x(x mr A→ ∃yy mr B)

→ (∃xx mr A→ ∃yy mr B)



3.3. MAJORIZATION AND THE REALIZABILITY INTERPRETATION 99

→ (A→ B),

by the remark above and the IH. �

3.2.6. Extraction. Using the Characterization Theorem, we can ex-
tend the remark above to arbitrary formulas ∀x∃yA(x, y).

Theorem (Extraction). Assume

HAω + AC + IPω
∃-free + Ax∃-free ` ∀x∃yA(x, y)

with A(x, y) an arbitrary formula with at most the displayed variables free.
Then we can find a closed HAω-term t such that

HAω + AC + IPω
∃-free + Ax∃-free ` ∀xA(x, tx).

In fact,

t =

{
λx.[[M ]]x0 if τ(A(x, y)) 6= ε

[[M ]] otherwise.

Proof. We assume τ(A(x, y)) 6= ε; otherwise the proof is even easier.
HAω + Ax∃-free proves

[[M ]] mr ∀x∃yA(x, y) by the Soundness Theorem

∀x([[M ]]x mr ∃yA(x, y))

∀x([[M ]]x1 mr A(x, [[M ]]x0)).

Hence HAω + AC + IPω
∃-free + Ax∃-free ` ∀xA(x, [[M ]]x0) by the Characteriza-

tion Theorem. �

3.3. Majorization and the Realizability Interpretation

Clearly one should consider extraction of realizers from formal proofs
relative to some axioms or lemmata. One can even go one step further, give
up the aim to produce exact realizers and look for “majorants” instead (in
the sense of Howard’s (1973)); this is often sufficient for applications. This
line of research has been initiated by Kohlenbach in the 1990s, under the
name of “monotone” realizability interpretation. One can then conveniently
deal with additional assumptions Ax∀∃≤∃-free of the form

∀xρ∃y≤σrxA1(x, y) (A1 ∃-free),
with r a closed term of type ρ ⇒ σ. We need to consider strenghtened
versions Ax′∀∃≤∃-free of these assumptions as well:

∃Y≤ρ⇒σr∀xρA1(x, Y x).

Notice that with (AC) one can prove the strenghtened version from the
original one.
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3.3.1. Majorization. We assume here that all base types are finitary,
and that ≥µ is a given reflexive and transitive relation on the total ideals of
base type µ such that

• for every y ∈ Gµ there are only finitely many x ∈ Gµ with y ≥ x;
• there is a max-operation on Gµ such that

max(x, y) ≥ x, y,

z ≥ x→ z ≥ y → z ≥ max(x, y).

x is called hereditarily majorizable if there is an x∗ such that x∗ maj x.
We extend ≥µ to higher types, in a pointwise fashion (as we did for =µ

above)
(x1 ≥ρ⇒σ x2) := ∀y(x1y ≥σ x2y).

Following Howard (1973), we define a relation x∗ majρ x (x∗ hereditarily
majorizes x) for x∗, x ∈ Gρ, by induction on the type ρ:

(x∗ majµ x) := (x∗ ≥µ x),

(x∗ majρ⇒σ x) := ∀y∗,y(y∗ majρ y → x∗y∗ majσ xy).

Lemma.

(a) ` x∗ =ρ x̃∗ → x =ρ x̃→ x∗ majρ x→ x̃∗ majρ x̃.
(b) ` x∗ majρ x→ x ≥ρ x̃→ x∗ majρ x̃.

Proof. Induction on ρ. We argue informally, and only treat (b). Case
ρ⇒ σ. Assume y∗ majρ y. Then x∗y∗ majσ xy and xy ≥σ x̃y, hence by IH
x∗y∗ majσ x̃y. �

3.3.2. Majorization of closed HAω-terms. Let 1 denote the type
nat ⇒ nat. Clearly, for every monotone function D of type 1 we have
D maj D. Moreover, Rτ

µ is hereditarily majorizable:

Lemma (Majorization). (a) Define M : (µ ⇒ τ) ⇒ µ ⇒ τ with τ =
~ρ⇒ µ′ by

Mfn~x := max
i≤n

fi~x.

Then HAω ` ∀nf̄n maj fn→Mf̄ maj f .
(b) HAω ` f∗, g∗ maj f, g → Rµf∗g∗n maj Rµfgn.
(c) Define R∗µfg := M(Rµfg). Then HAω ` R∗µ maj Rµ.

Proof. We argue informally.
(a) Let n∗ ≥ n and ~x∗ maj ~x; we must show Mf̄n∗~x∗ ≥ fn~x.

Mf̄n∗~x∗ = max
i≤n∗

f̄ i~x∗ ≥ f̄n~x∗ ≥ fn~x.
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(b) Induction on n; for simplicity we assume µ = nat. For 0 the claim is
obvious, and in the step we have by IH Rf∗g∗(Sn) =def g∗n(Rf∗g∗n) maj
gn(Rfgn) =def Rfg(Sn), where =def is definitional equality.

(c) Let f∗, g∗ maj f, g. We must show M(Rf∗g∗) maj Rfg. By (a) it
suffices to prove ∀nRf∗g∗n maj Rfgn. But this holds by (b). �

Theorem. Let r(~x) be a HAω-term with free variables among ~x. Assume
that HAω ` c∗ maj c for all constants c in r. Let r∗ be r with all constants
c replaced by c∗. Then HAω ` ~x∗ maj ~x→ r∗(~x∗) maj r(~x).

Proof. Induction on r. Case λy r(y, ~x). We argue informally. Assume
~x∗ maj ~x. We must show y∗ maj y → (λy r∗(y, ~x∗))y∗ maj (λy r(y, ~x))y. So
assume y∗ maj y. Then by IH r∗(y∗, ~x∗) maj r(y, ~x), which is our claim. �

Hence every closed term r of HAω is hereditarily majorizable. In fact,
we have constructed a closed term r∗ of HAω such that r∗ maj r.

3.3.3. Strong majorization. Bezem’s (1985) strong majorizability re-
lation s-maj is a slight modification of Howard’s. It is a transitive relation,
which Howard’s is not.

(x∗ s-majµ x) := (x∗ ≥µ x),

(x∗ s-majρ⇒σ x) := ∀y∗,y(y∗ s-majρ y → x∗y∗ s-majσ xy, x∗y).

The following is easy to see:

Lemma. (a) ` x∗ s-maj x→ x∗ s-maj x∗,
(b) ` x∗∗ s-maj x∗ → x∗ s-maj x→ x∗∗ s-maj x.

Proof. We argue informally.
(a). For ρ = µ the claim follows from the reflexivity of ≥µ. For ρ ⇒ σ

the claim follows from the assumption.
(b). Induction on ρ. For ρ = µ the claim follows from the transitivity of

≥µ. For ρ⇒ σ assume x∗∗ s-maj x∗ and x∗ s-maj x, that is,

∀y∗,y(y∗ s-majρ y → x∗∗y∗ s-majσ x∗y, x∗∗y),

∀y∗,y(y∗ s-majρ y → x∗y∗ s-majσ xy, x∗y).

We show x∗∗ s-maj x. So assume y∗ s-majρ y. We must show x∗∗y∗ s-majσ
xy, x∗∗y. The latter is already given, and for the former we use that y∗ s-maj
y∗, by (a). Hence x∗∗y∗ s-majσ x∗y∗ s-majσ xy, so the claim follows by
IH. �

For a closed term r of HAω, the closed HAω-term r∗ above also satisfies
r∗ s-maj r.
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3.3.4. Soundness with majorants.

Theorem (Soundness with majorants). Let M be a derivation in

HAω + AC + IPω
∃-free + Ax∀∃≤∃-free of a formula A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ(Ci) be variables
for realizers of the assumptions. Let ~z of type ~ρ be the variables free in M .
Then we can find a closed term [[λ~z, ~u M ]] =: T ∗ of type τ(C1) ⇒ . . . ⇒
τ(Cn)⇒ ~ρ⇒ τ(A), and a derivation µ(M) in

HAω + Ax′∀∃≤∃-free

of the formula

∃T

(
T ∗ maj T ∧ ∀~x,~z(x1 mr C1 → · · · → xn mr Cn → T~x~z mr A)

)
.

Proof. Induction on M .
Case u : A. Let x of type τ(A) be a variable for a realizer of the assump-

tion u. We need T ∗ such that

∃T

(
T ∗ maj T ∧ ∀x,~z(x mr A→ Tx mr A)

)
.

We can take Tx~z := x, which majorizes itself.
Case c : A, c an axiom. Consider an axiom

∀xρ∃y≤σrxA1(x, y) (A1 ∃-free),
with r a closed term of type ρ⇒ σ. We have to find a majorant of some T
such that

T mr ∀xρ∃y≤σrxA1(x, y)

∀xρ

(
ε mr (Tx ≤σ rx) ∧ ε mr A1(x, Tx)

)
∀xρ

(
Tx ≤σ rx ∧A1(x, Tx)

)
,

where in the last step we have used that for an ∃-free formula B, ε mr B is
the same as B. We now use the corresponding axiom in Ax′∀∃≤∃-free:

∃Y≤ρ⇒σr∀xρA1(x, Y x).

Pick this Y as the desired T . Then as a majorant for Y we can take a closed
term r∗ majorizing r.

For the other axioms we have already constructed a realizer, and we can
take an arbitrary majorant of it.

Case λuAMB. By IH we have a derivation of

∃T

(
T ∗ maj T ∧
∀x1,...,xn,x(x1 mr C1 → · · · → xn mr Cn → x mr A→ T~xx mr B)

)
.

But ∀x(x mr A→ T~xx mr B) is the same as T~x mr (A→ B).
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Case MA→BNA. We argue informally. By IH we have

T~x mr (A→ B) = ∀x(x mr A→ T~xx mr B) from xi mr Ci

S~x mr A from xi mr Ci.

Instanciating x with S~x gives T~x(S~x) mr B from xi mr Ci. Let R~x :=
T~x(S~x); we look for a majorant R∗ of R. Let R∗~x := T ∗~x(S∗~x). Let ~x∗ maj
~x. Then S∗~x∗ maj S~x; hence R∗~x∗ = T ∗~x∗(S∗~x∗) maj T~x(S~x) = R~x.

Case λxMA(x). By IH we have a derivation of T~xx mr A(x) from
xi mr Ci. Since the open assumptions Ci do not have x free, we obtain a
derivation of ∀x(T~xx mr A(x)), that is to say of T~x mr ∀xA(x), again from
xi mr Ci.

Case M∀xA(x)s. By IH we have a derivation of T~x mr ∀xA(x) from
xi mr Ci, that is to say of ∀x(T~xx mr A(x)). Instanciating x with s gives
a derivation of T~xs mr A(s) from xi mr Ci. Assume for simplicity that s is
closed. Then we can take T̃ ∗~x := T ∗~xs∗. �

3.3.5. Extraction of uniform bounds.

Theorem. Let s be a closed HAω-term, A(x, y, z) a formula with at most
the displayed variables free, and τ a type of level ≤ 2. Assume that

HAω + AC + IPω
∃-free + Ax∀∃≤∃-free ` ∀x1∀y≤ρsx∃zτ A(x, y, z).

Then we can find a closed HAω-term t such that

HAω + AC + IPω
∃-free + Ax∀∃≤∃-free ` ∀x1∀y≤ρsx∃z≤τ tx A(x, y, z).

Proof. Let Hω := HAω + AC + IPω
∃-free. Using IPω

∃-free we obtain

Hω + Ax∀∃≤∃-free ` ∀x1,y∃zτ (y ≤ρ sx→ A(x, y, z)).

By Soundness with Majorants we have a closed term T ∗ such that in Hω +
Ax′∀∃≤∃-free we can derive the existence of some T with T ∗ maj T and

T mr ∀x1∀y≤ρsx∃zτ A(x, y, z).

Unfolding the definition of mr and using the fact that y ≤ρ sx is ∃-free we
obtain (assuming τ(A(x, y, z)) 6= ε)

Hω + Ax′∀∃≤∃-free ` ∀x1∀y≤ρsx Txy1 mr A(x, y, Txy0)

and hence by the Characterization Theorem in Sec.3.2.5

Hω + Ax′∀∃≤∃-free ` ∀x1∀y≤ρsx A(x, y, Txy0).

Notice that using (AC) we can replace Ax′∀∃≤∃-free by the original Ax∀∃≤∃-free.
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Let t1 := λxλy.Txy0. Pick majorizing terms s∗, t∗1 for s, t1. Writing
xM for Mx with M from the Majorization Lemma in Sec.3.3.2 we have
s∗xM majρ sx, hence

HAω ` ∀x1∀y≤ρsx s∗xM majρ y.

For simplicity assume τ = 2 := (nat⇒ nat)⇒ nat. Then

HAω ` ∀x1∀y≤ρsx∀f t∗1x
M (s∗xM )fM ≥nat t1xyf.

Hence we can take t := λxλf.t∗1x
M (s∗xM )fM , because tx ≥2 t1xy =def

Txy0. �

Corollary (Fan Rule). Let A(y, n) be a formula with at most the dis-
played variables free. Assume that

HAω + AC + IPω
∃-free + Ax∀∃≤∃-free ` ∀y1∃nnat A(y, n).

Then

HAω + AC + IPω
∃-free + Ax∀∃≤∃-free ` ∀x1∃mnat∀y≤1x∃n≤natm A(y, n).

Proof. Let s be the identity in the theorem above. Take m := tx. �

3.4. Dialectica Interpretation

In his original functional interpretation of (1958), Gödel assigned to
every formula A a new one ∃~x∀~yAD(~x, ~y) with AD(~x, ~y) quantifier-free. Here
~x, ~y are lists of variables of finite types; the use of higher types is necessary
even when the original formula A was first-order. He did this in such a way
that whenever a proof of A say in constructive arithmetic was given, one
could produce closed terms ~r such that the quantifier-free formula AD(~r, ~y)
is provable in T.

In (1958) Gödel referred to a Hilbert-style proof calculus. However, since
the realizers will be formed in a λ-calculus formulation of system T, Gödel’s
interpretation becomes a lot more perspicious when it is done for a natu-
ral deduction calculus. Such a natural deduction based treatment of the
Dialectica interpretation has been given by Jørgensen (2001) and (Hernest,
2006). However, both authors use a natural deduction system where open
assumptions are viewed as formulas. Then the well-known necessity of con-
tractions shows up when an application of the implication introduction rule
→+ discharges two (Jørgensen, 2001) or many (Hernest, 2006) assumption
formulas. Peculiar to the present appoach is that we view the natural de-
duction calculus as a system of proof terms with assumption variables. In
this form the Curry-Howard correspondence (formulas correspond to types,
and proofs to terms) is best visible, and the contractions are necessary in
the (only) logical rule with two premises: modus ponens (or implication
elimination →−).



3.4. DIALECTICA INTERPRETATION 105

3.4.1. Positive and negative types; cleaning. To determine the
types of x and y, we assign to every formula A types τ+(A), τ−(A). The type
τ+(A) is intended to be the type of a (Dialectica-)realizer to be extracted
from a proof of A, and τ−(A) the type of a challenge for the claim that this
term realizes A.

Rather than including amongst the types a special “nulltype” object ε
(indicating no computational content) and case distinctions – as we did in
our treatment of the realizability interpretation –, it is more convenient here
to use the unit type unit instead and so avoid case distinctions. Using some
obvious isomorphisms (like (ρ ⇒ unit) ∼= unit and (unit ⇒ ρ) ∼= ρ) we can
later “clean” such types. Define

τ+(P (~s )) := unit,

τ+(∀xρA) := ρ⇒ τ+(A),

τ+(∃xρA) := ρ× τ+(A),

τ−(P (~s )) := unit,

τ−(∀xρA) := ρ× τ−(A),

τ−(∃xρA) := τ−(A).

and for implication

τ+(A→ B) :=
(
τ+(A)⇒ τ+(B)

)
×

(
τ+(A)⇒ τ−(B)⇒ τ−(A)

)
,

τ−(A→ B) := τ+(A)× τ−(B).

In case τ+(A) (τ−(A)) is 6= unit we say that A has positive (negative) com-
putational content.

3.4.2. Gödel translation. For every formula A and terms r of type
τ+(A) and s of type τ−(A) we define a new quantifier-free formula |A|rs by
induction on A.

|P (~s )|rs := P (~s ),

|∀xA(x)|rs := |A(s0)|r(s0)s1 ,

|∃xA(x)|rs := |A(r0)|r1s ,

|A→ B|rs := |A|s0r1(s0)(s1) → |B|
r0(s0)
s1 .

The formula ∃x∀y|A|xy is called the Gödel translation of A and is often de-
noted by AD. Its quantifier-free kernel |A|xy might be called Gödel kernel ; it
is denoted by AD.

For readability we sometimes write terms of a pair type in pair form.
Then

|∀zA|xz,y := |A|xz
y ,

|∃zA|z,x
y := |A|xy ,

|A→ B|f,g
x,u := |A|xgxu → |B|fx

u .
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3.4.3. Soundness. We now prove the soundness of the Dialectica in-
terpretation, for our natural deduction formulation of the underlying logic.
The precise formulation will involve instances (IPω

∀ ) of the independence of
premise scheme:

(∀xA0 → ∃yρB)→ ∃yρ(∀xA0 → B) (y /∈ FV(∀xA0)).

with A0 quantifier-free. Moreover, we need to consider the (constructively
doubtful) Markov principle (Mω), for higher type variables and quantifier-
free formulas A0, B0:

(∀yA0 → B0)→ ∃y(A0 → B0) (y /∈ FV(B0)).

Theorem (Soundness). Let M be a derivation in

WE-HAω + AC + IPω
∀ + Mω + Ax∀ of a formula A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ+(Ci) be variables
for realizers of the assumptions, and y be a variable of type τ−(A) for a
challenge of the goal. Then we can find terms [[M ]]+ =: t of type τ+(A) with
y /∈ FV(t) and [[M ]]−i =: ri of type τ−(Ci), and a derivation µ(M) in

WE-HAω + Ax∀ of the formula |A|ty
from assumptions ūi : |Ci|xi

ri
.

Proof. Induction on M .
Case u : A. Let x of type τ+(A) be a variable for a realizer of the

assumption u. Define [[u]]+ := x and [[u]]− := y.
Case c : A, c an axiom. These cases need to be treated separately (see

below).
Case λuAMB. By IH we have a derivation of |B|tz from ū : |A|xr and

ūi : |Ci|xi
ri

, where ū : |A|xr may be absent. Substitute y0 for x and y1 for z. By

(→+) we obtain |A|y0
r[x,z:=y0,y1] → |B|

t[x:=y0]
y1 , which is (up to β-conversion)

|A→ B|λx t,λx,z r
y , from ū′i : |Ci|xi

ri[x,z:=y0,y1].

Here r is the canonical inhabitant of the type τ−(A) in case ū : |A|xr is absent.
So we can define the required terms by (assuming that uA is u1)

[[λu M ]]+ := (λx [[M ]]+, λx, z [[M ]]−1 ),

[[λu M ]]−i := [[M ]]−i+1[x, z := y0, y1].

Case MA→BNA. By IH we have a derivation of

|A→ B|tx = |A|x0
t1(x0)(x1) → |B|

t0(x0)
x1 from |Ci|xi

pi
, |Ck|xk

pk
, and of

|A|sz from |Cj |
xj
qj , |Ck|xk

qk
.
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Substituting 〈s, y〉 for x in the first derivation and of t1sy for z in the second
derivation gives

|A|st1sy → |B|t0s
y from |Ci|xi

p′i
, |Ck|xk

p′k
, and

|A|st1sy from |Cj |
xj

q′j
, |Ck|xk

q′k
.

Now we contract |Ck|xk

p′k
and |Ck|xk

q′k
: since |C|xw is quantifier-free, there is a

boolean-valued term rC such that

|C|xw ↔ rCw = tt.

Hence with rk := if(rCk
p′k, q

′
k, p

′
k) we can derive both |Ck|xk

p′k
and |Ck|xk

q′k
from

|Ck|xk
rk

. Using (→−) we obtain

|B|t0s
y from |Ci|xi

p′i
, |Cj |

xj

q′j
, |Ck|xk

rk
.

So [[MN ]]+ := t0s and [[MN ]]−i := p′i, [[MN ]]−j := q′j , [[MN ]]−k := rk.
Case λx MA(x). By IH we have a derivation of |A(x)|tz from ūi : |Ci|xi

ri
.

Substitute y0 for x and y1 for z. We obtain |A(y0)|t[x:=y0]
y1 , which is (up to

β-conversion)

|∀xA(x)|λx t
y , from ū′i : |Ci|xi

ri[x,z:=y0,y1].

So we can define the required terms by

[[λx M ]]+ := λx [[M ]]+,

[[λx M ]]−i := [[M ]]−i [x, z := y0, y1].

Case M∀xA(x)s. By IH we have a derivation of |∀xA(x)|tz = |A(z0)|t(z0)
z1

from |Ci|xi
ri

. Substituting 〈s, y〉 for z gives

|A(s)|tsy from |Ci|xi

ri[z:=〈s,y〉].

So [[Ms]]+ := ts and [[Ms]]−i := ri[z := 〈s, y〉].
We treat the axioms, and show that each of them has a “Dialectica

realizer”, that is, a term t such that HAω + Ax∀ proves ∀y|A|ty.
For the existence introduction and elimination axioms

∀z(A→ ∃zA),

∀z(A→ B)→ ∃zA→ B (z /∈ FV(B))

this is easy: In case of the introduction axiom, by definition

|∀z(A→ ∃zA)|f,g
z,x,w = |A→ ∃zA|fz,gz

x,w = |A|xgzxw → |∃zA|fzx
w .

Define fzx := 〈z, x〉 and gzxw := w. Then the premise and the conlusion
are identical, since by definition |A|xw is the same as |∃zA|z,x

w .
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For the elimination axiom, again by definition

|∀z(A→ B)|f,g
z,x,w = |A→ B|fz,gz

x,w = |A|xgzxw → |B|fzx
w ,

|∃zA→ B|f,g
z,x,w = |∃zA|z,x

gzxw → |B|fzx
w = |A|xgzxw → |B|fzx

w .

Now generally, if |C|uv = |D|uv , then by definition

|C → D|λuu,λu,v v
u,v = |C|uv → |D|uv .

Consider the algebra of the natural numbers, given by constructors 0
and S. The induction schema then reads

(3.2) A(0)→ ∀m(A(m)→ A(m + 1))→ ∀nA(n).

Let B(n) := A(0)→ ∀m(A(m)→ A(m+1))→ A(n). Clearly we can derive
B(0) and B(n) → B(n + 1). By those parts of the proof of the Soundness
Theorem that we have dealt with already, we obtain realizing terms s and
t, r and derivations of |B(0)|sy and of |B(n)→ B(n + 1)|t,rx,u, hence of

|B(n)|xrxu → |B(n + 1)|txu
∀y |B(n)|xy → |B(n + 1)|txu
∀y |B(n)|xy → ∀y |B(n + 1)|txy .

So if we define g(0) := s and g(n + 1) := t(g(n)), then we have proved by
induction that ∀y |B(n)|g(n)

y , hence that ∃g∀y |∀nB(n)|gy. But ∀nB(n) clearly
is equivalent to (3.2).

The axiom of choice (AC) and the Markov principle (Mω),

(∀yA0 → B0)→ ∃y(A0 → B0) (y /∈ FV(B0)).

(for quantifier-free formulas A0, B0) can be dealt with easily.
Now consider a purely universal formula B = ∀xA0, with A0 quantifier-

free. Then (modulo cleaning) τ+(B) = unit, and moreover |B|εy = A0.
Hence such axioms are interpreted by themselves. The weak extensionality
rule can be dealt with in the same way. �

3.4.4. Dialectica realizers and induction. For an instance of the
induction scheme with an existential formula ∃yA0(n, y) one can explicitely
construct Dialectica realizers.

(3.3) ∃yA0(0, y)→ ∀n

(
∃yA0(n, y)→ ∃yA0(n + 1, y)

)
→ ∀n∃yA0(n, y).

Its Gödel translation can be calculated as follows.

∃y0A0(0, y0)→ ∀n1

(
∃y1A0(n1, y1)→ ∃y2A0(n1+1, y2)

)
→ ∀n∃yA0(n, y)

∀y0

(
A0(0, y0)→ ∀n1,y1∃y2

(
A0(n1, y1)→ A0(n1+1, y2)

)
→ ∀n∃yA0(n, y)

)
∀y0

(
A0(0, y0)→ ∃f∀n1,y1

(
A0(n1, y1)→ A0(n1+1, fn1y1)

)
→ ∀n∃yA0(n, y)

)
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∀y0,f,n

(
A0(0, y0)→ ∀n1,y1

(
A0(n1, y1)→ A0(n1+1, fn1y1)

)
→ ∃yA0(n, y)

)
∀y0,f,n∃y,n1,y1

(
A0(0, y0)→

(
A0(n1, y1)→ A0(n1+1, fn1y1)

)
→ A0(n, y)

)
.

Define

Y (y0, f, 0) := y0, Y (y0, f, n + 1) := f(n, Y (y0, f, n)),

N1(y0, f, n) := min{ k < n | A0(k, Yk) ∧ ¬A0(k + 1, Yk+1) },
Y1(y0, f, n) := YN1(y0,f,n).

with Yl := Y (y0, f, l). We prove that Y , N1 and Y1 are the required Dialec-
tica realizers. Assume A0(0, Y0) and A0(N1, Y1)→ A0(N1+1, fN1Y1). Then
by construction there can be no k < n such that A0(k, Yk)∧¬A0(k+1, Yk+1),
that is to say, ∀k<n(A0(k, Yk)→ A0(k + 1, Yk+1)). This implies A(n, Yn).

The explicit construction of Y , N1 and Y1 is somewhat complex, mainly
because of the bounded minimum needed for N1. For the practical con-
struction of Dialectica realizers it is much easier to employ the induction
rule rather than the induction axiom. For our present example of an exis-
tential formula ∃yA0(n, y) this means that we start with closed derivations
of

∃y0A0(0, y0) and ∀n(∃y1A0(n, y1))→ ∃y2A0(n + 1, y2)).
The induction rule then allows to infer ∀n∃yA0(n, y). Let us see how we
can construct a Dialectica realizer for it. The Gödel translation of the step
formula is

∃g∀n,y1

(
A0(n, y1)→ A0(n + 1, g(n, y1))

)
.

Let r, s be Dialectica realizers of the base and the step formulas. Then
Rnat

natrs is a Dialectica realizer of the formula ∀n∃yA0(n, y) proved by induc-
tion. To see this, we need to prove ∀nA0(n,Rnat

natrsn), which is done easily
by induction on n.

Now if in an application the proof of a goal B needs an auxiliary inductive
proof of ∀n∃yA0(n, y) =: A, then a Dialectica realizer for B is obtained from
the (logical) derivation of A → B as follows. Let 〈f, g〉 be a Dialectica
realizer of A→ B, and recall that

|A→ B|f,g
x,u := |A|xgxu → |B|fx

u .

Then f(Rnat
natrs) is the required Dialectica realizer of B.

3.4.5. Characterization. We now consider the question under which
conditions the Gödel translation of a formula A is equivalent to the formula
itself.

Theorem (Characterization).

AC + IPω
∀ + Mω ` A↔ ∃x∀y |A|xy .



110 3. PROOF INTERPRETATIONS

The direction “←” can be proved in MLω alone, provided the formulas con-
sidered only have ∃∀-premises, that is, premises belonging to the class of
formulas built from prime formulas by ∀, ∃ and ∃x∀yA0 → B, with A0

quantifier-free.

Proof. Induction on A; we only treat one case.

(A→ B)↔ (∃x∀y |A|xy → ∃v∀u |B|vu) by IH

↔ ∀x(∀y |A|xy → ∃v∀u |B|vu) by MLω

↔ ∀x∃v(∀y |A|xy → ∀u |B|vu) by (IPω
∀ )

↔ ∀x∃v∀u(∀y |A|xy → |B|vu) by MLω

↔ ∀x∃v∀u∃y(|A|xy → |B|vu) by (Mω)

↔ ∃f∀x∀u∃y(|A|xy → |B|fx
u ) by (AC)

↔ ∃f,g∀x,u(|A|xgxu → |B|fx
u ) by (AC)

↔ ∃f,g∀x,u|A→ B|f,g
x,u by definition.

Now assume that A has only ∃∀-premises. First notice that for a formula of
the form ∃x∀yA0 with A0 quantifier-free we have |∃x∀yA0|xy = A0. Therefore,
we can replace “↔” by “←” in the argument above. �

As a consequence, we see that WE-HAω +AC+IPω
∀ +Mω is conservative

over WE-HAω for formulas with ∃∀-premises. This follows from the Sound-
ness Theorem together with the observation above, as follows. Let A be a
formula with ∃∀-premises only, and assume WE-HAω + AC + IPω

∀ + Mω `
A. Then by the Soundness Theorem WE-HAω ` ∃x∀y |A|xy , and hence
WE-HAω ` A.

3.4.6. A unified treatment of modified realizability and the Di-
alectica interpretation. Following Oliva (2006), we show that modified
realizability can be treated in such a way that similarities with the Dialec-
tica interpretation become visible. To this end, one needs to change the
definitions of τ+(A) and τ−(A) and also of the Gödel translation |A|xy in the
implicational case, as follows.

τ+(A→ B) := τ+(A)⇒ τ+(B),

τ−(A→ B) := τ+(A)× τ−(B),
|A→ B|fx,u := ∀y|A|xy → |B|fx

u .

Then the above definition of mr can be expressed in terms of the (new) |A|xy :

` r mr A↔ ∀y|A|ry.
This is proved by induction on A. For prime formulas the claim is obvious.
Case A→ B, with τ+(A) 6= ε, τ−(A) 6= ε.

r mr (A→ B)↔ ∀x(x mr A→ rx mr B) by definition
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↔ ∀x(∀y |A|xy → ∀u |B|rx
u ) by IH

↔ ∀x,u(∀y |A|xy → |B|rx
u ) by MLω

= ∀x,u |A→ B|rx,u by definition.

The other cases are similar (even easier).

3.4.7. Extraction. As a consequence of the Soundness and Character-
ization Theorems we obtain

Theorem (Extraction). Assume

WE-HAω + AC + IPω
∀ + Mω + Ax∀ ` ∀x

(
∀uA0(x, u)→ ∃yB(x, y)

)
with A0 quantifier-free, and all formulas have at most the displayed variables
free. Then we can find a closed HAω-term t such that

WE-HAω + AC + IPω
∀ + Mω + Ax∀ ` ∀x

(
∀uA0(x, u)→ B(x, tx)

)
.

Proof. Let C(x, y) := ∀uA0(x, u)→ ∃yB(x, y), and recall that

|∀x∃yC(x, y)|f,g
x,b = |∃yC(x, y)|fx,gx

b = |C(x, fx)|gx
b .

By the Soundness Theorem we obtain closed terms t, s such that

WE-HAω + Ax∀ ` ∀x,b|C(x, tx)|sxb
and hence

WE-HAω + Ax∀ ` ∀x∃a∀b|C(x, tx)|ab .
By the Characterization Theorem we have

AC + IPω
∀ + Mω ` C(x, tx)↔ ∃a∀b |C(x, tx)|ab .

Therefore

WE-HAω + AC + IPω
∀ + Mω + Ax∀ ` ∀xC(x, tx). �

3.5. Majorization and the Dialectica Interpretation

Generally, the Dialectica interpretation has a strong tendency to produce
complex extracted terms, as opposed to the realizability interpretation. This
is partially due to contraction (necessary in the →−-rule). Therefore it is
advisable (even more so than for the realizability interpretation) to

• consider derivations from lemmata (whose proofs are not analyzed),
and
• try to simplify extracted terms by only aiming at majorants.
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This has led Kohlenbach to develop his “monotone Dialectica interpreta-
tion”, where one only looks for bounds of realizers rather than exact real-
izers. Again a Soundness Theorem can be proved (Kohlenbach, 1996), and
the extraction of uniform bounds (Kohlenbach, 1998) can be achieved.

An essential point observed by Kohlenbach is that when one restricts
attention to bounds rather than exact realizers, then one can conveniently
deal with additional assumptions Ax∀∃≤∀ of the form

∀xρ∃y≤σrx∀zτ A0(x, y, z) (A0 quantifier-free),

with r a closed term of type ρ⇒ σ. We then need to consider strenghtened
versions Ax′∀∃≤∀ of these assumptions as well:

∃Y≤ρ⇒σr∀xρ,zτ A0(x, Y x, z).

Notice that with (AC) one can prove the strenghtened version from the
original one.

3.5.1. Soundness with majorants.

Theorem (Soundness with majorants). Let M be a derivation in

WE-HAω + AC + IPω
∀ + Mω + Ax∀∃≤∀ of a formula A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ+(Ci) be variables for
realizers of the assumptions, and y of type τ−(A) be a variable for a challenge
of the goal. Let ~z of type ~ρ be the variables free in M . Then we can find closed
terms [[λ~z, ~u M ]]∗+ =: T ∗ of type τ+(C1) ⇒ . . . ⇒ τ+(Cn) ⇒ ~ρ ⇒ τ+(A)
and [[λ~z, ~u M ]]∗−i =: R∗

i of type τ+(C1) ⇒ . . . ⇒ τ+(Cn) ⇒ ~ρ ⇒ τ−(A) ⇒
τ−(Ci), and a derivation µ(M) in

WE-HAω + Ax′∀∃≤∀

of the formula

∃T,R1,...,Rn

(
T ∗ maj T ∧R∗

1 maj R1 ∧ · · · ∧R∗
n maj Rn ∧

∀~x,~z,y(|C1|x1
R1~x~zy → · · · → |Cn|xn

Rn~x~zy → |A|
T~x~z
y )

)
.

Proof. Induction on M .
Case u : A. Let x of type τ+(A) be a variable for a realizer of the

assumption u. We need T ∗ and R∗ such that

∃T,R

(
T ∗ maj T ∧R∗ maj R ∧ ∀x,y(|A|xRxy → |A|Tx

y )
)
.

We can take Tx := x and Rxy := y, which both majorize themselves.
Case c : A, c an axiom. Consider an axiom

∀xρ∃y≤σrx∀zτ A0(x, y, z) (A0 quantifier-free),
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with r a closed term of type ρ⇒ σ. We have to find a majorant of some T
such that

∀x,z|∀xρ∃y≤σrx∀zτ A0(x, y, z)|Tx,z

∀x,z|∃y≤σrx∀zτ A0(x, y, z)|Tx
z

∀x,z(Tx ≤ rx ∧ |∀zτ A0(x, Tx, z)|z)
∀x,z(Tx ≤ rx ∧A0(x, Tx, z)).

We now use the corresponding axiom in Ax′∀∃≤∀:

∃Y≤ρ⇒σr∀xρ,zτ A0(x, Y x, z).

Pick this Y as the desired T . Then as a majorant for Y we can take a closed
term r∗ majorizing r.

For the other axioms we have already constructed a Dialectica realizer,
and we can take an arbitrary majorant of it. However, we can also directly
provide a majorant of some Dialectica realizer.

Case λuAMB. By IH we have a derivation of

∃T,R1,...,Rn,R

(
T ∗ maj T ∧R∗

1 maj R1 ∧ · · · ∧R∗
n maj Rn ∧R∗ maj R ∧

∀x1,...,xn,x,z(|C1|x1
R1x1...xnxz → · · · → |Cn|xn

Rnx1...xnxz →

|A|xRx1...xnxz → |B|Tx1...xnx
z )

)
.

We argue informally. Instanciating x with y0 and z with y1 gives

∀x1,...,xn,y(|C1|x1

R1x1...xn(y0)(y1) → · · · → |Cn|xn

Rnx1...xn(y0)(y1) →

|A|y0
Rx1...xn(y0)(y1) → |B|

Tx1...xn(y0)
z ),

which is
∀x1,...,xn,y(|C1|x1

R1x1...xn(y0)(y1) → · · · → |Cn|xn

Rnx1...xn(y0)(y1) →

|A→ B|Tx1...xn,Rx1...xn
y .

So we can define the required T̃ ∗, R̃∗
i by

T̃ ∗~x := 〈T ∗~x,R∗~x 〉, R̃∗
i ~xy := R∗

i ~x(y0)(y1).

Case MA→BNA. We argue informally. By IH we have

|A→B|T~xi~xk
x = |A|x0

T~xi~xk1(x0)(x1) → |B|
T~xi~xk0(x0)
x1 from |Ci|xi

Pi~xi~xkx, |Ck|xk
Pk~xi~xkx

|A|S~xj~xk
z from |Cj |

xj

Qj~xj~xkz, |Ck|xk
Qk~xj~xkz.

Instanciating x with 〈S~xj~xk, y〉 in the first and z with T~xi~xk1(S~xj~xk)y in
the second derivation gives

|A|S~xj~xk

T~xi~xk1(S~xj~xk)y → |B|
T~xi~xk0(S~xj~xk)
y from |Ci|xi

p′i
, |Ck|xk

p′k
, and
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|A|S~xj~xk

T~xi~xk1(S~xj~xk)y from |Cj |
xj

q′j
, |Ck|xk

q′k
,

with

p′i := Pi~xi~xk〈S~xj~xk, y〉, p′k := Pk~xi~xk〈S~xj~xk, y〉,
q′j := Qj~xj~xk(T~xi~xk1(S~xj~xk)y), q′k := Qk~xj~xk(T~xi~xk1(S~xj~xk)y).

So we can take

T̃ ∗~xi~xj~xk := T ∗~xi~xk0(S∗~xj~xk),

R∗
i ~xi~xj~xky := P ∗

i ~xi~xk〈S∗~xj~xk, y〉,
R∗

j~xi~xj~xky := Q∗
j~xj~xk(T ∗~xi~xk1(S∗~xj~xk)y),

R∗
k~xi~xj~xky := max(P ∗

k ~xi~xk〈S∗~xj~xk, y〉, Q∗
k~xj~xk(T ∗~xi~xk1(S∗~xj~xk)y)).

Case λx MA(x). By IH we have a derivation of |A(x)|Tx1...xnx
z from

|Ci|xi
Rix1...xnxz. Instanciating x with y0 and z with y1 gives |A(y0)|Tx1...xn(y0)

y1 ,
which is

|∀xA(x)|Tx1...xn
y , from |Ci|xi

Rix1...xn(y0)(y1).

So we can take

T̃ ∗x1 . . . xn := T ∗x1 . . . xn,

R̃∗
i x1 . . . xny := R∗

i x1 . . . xn(y0)(y1).

Case M∀xA(x)s. By IH we have a derivation of |∀xA(x)|Tx1...xn
z , which is

|A(z0)|Tx1...xn(z0)
z1 , from |Ci|xi

Rix1...xnz. Instanciating z with 〈s, y〉 gives

|A(s)|Tx1...xns
y from |Ci|xi

Rix1...xn〈s,y〉.

Assume for simplicity that s is closed. Then we can take

T̃ ∗x1 . . . xn := T ∗x1 . . . xns∗,

R̃∗
i x1 . . . xny := R∗

i x1 . . . xn〈s∗, y〉. �

3.5.2. Extraction of uniform bounds.

Theorem (Extraction of uniform bounds). Let s be a closed HAω-term,
A(x, y, z) a formula with at most the displayed variables free, and τ a type
of level ≤ 2. Assume that

WE-HAω + AC + IPω
∀ + Mω + Ax∀∃≤∀ ` ∀x1∀y≤ρsx∃zτ A(x, y, z).

Then we can find a closed HAω-term t such that

WE-HAω + AC + IPω
∀ + Mω + Ax∀∃≤∀ ` ∀x1∀y≤ρsx∃z≤τ tx A(x, y, z).

Moreover, if A contains ∀∃-premises only, then the conclusion can already
be derived in WE-HAω + Ax′∀∃≤∀.
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Proof. Let Pω := WE-HAω + AC + IPω
∀ + Mω. Using IPω

∀ we obtain

Pω + Ax∀∃≤∀ ` ∀x1,y∃zτ (y ≤ρ sx→ A(x, y, z)).

By Soundness with Majorants we have a closed term T ∗ such that in Pω +
Ax′∀∃≤∀ we can derive the existence of some T with T ∗ maj T and

∀x1,y,u|∃zτ (y ≤ρ sx→ A(x, y, z))|Txy
u

∀x1,y,u|y ≤ρ sx→ A(x, y, Txy0)|Txy1
u

∀x1,y∃z∀u|y ≤ρ sx→ A(x, y, Txy0)|zu
∀x1,y(y ≤ρ sx→ A(x, y, Txy0));

in the last step we have used the Characterization Theorem in Sec.3.4.5.
Notice that using (AC) we can replace Ax′∀∃≤∀ by the original Ax∀∃≤∀.

We now argue as in the corresponding theorem in Sec.3.3.5 (for real-
izability). Let t1 := λxλy.Txy0. Pick majorizing terms s∗, t∗1 for s, t1.
Writing xM for Mx with M from the Majorization Lemma in Sec.3.3.2 we
have s∗xM majρ sx, hence

HAω ` ∀x1∀y≤ρsx s∗xM majρ y.

For simplicity assume τ = 2 := (nat⇒ nat)⇒ nat. Then

HAω ` ∀x1∀y≤ρsx∀f t∗1x
M (s∗xM )fM ≥nat t1xyf.

Hence we can take t := λxλf.t∗1x
M (s∗xM )fM , for tx ≥2 t1xy =def Txy0.

We now show that if A contains ∀∃-premises only, then the conclusion
can be derived in WE-HAω + Ax′∀∃≤∀. To see this, notice that the used
direction of the Characterization Theorem in Sec.3.4.5 in this case needs
MLω only, and that (generally) the Soundness Theorem gives derivability in
WE-HAω + Ax′∀∃≤∀. �

3.5.3. The weak Lemma of König as a ∀∃≤∀-Axiom. We want
to show that the “weak” (that is, binary) Lemma of König WKL can be
brought into the form of an axiom in Ax∀∃≤∀. WKL says that every infinite
binary tree has an infinite path. When we try to directly formalize it in our
(functional) language, it does not quite have the required form, since the as-
sumption that the given tree is infinite needs an additional ∀ in the premise.
However, one can easily find an equivalent statement of the required form.
To this end, we define the “infinite extension” of a given tree, and let WKL′

say that for every t, the infinite extension I(t̂) of its “associated tree” t̂ has
an infinite path. It then is easy to see that WKL and WKL′ are equivalent.

Let us first introduce some basic definitions. Let nat be the type of
natural numbers, boole the type of booleans tt, ff and list(boole) the type
of lists of booleans. It is convenient to write lists in reverse order, that is,
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add elements at the end. We fix the types of some variables and state their
intended meaning:

a, b, c of type list(boole) for nodes,
r, s, t of type list(boole)⇒ boole for decidable sets of nodes,
f, g, h of type nat⇒ boole for paths,
n, m, k, i, j of type nat for natural numbers,
p, q of type boole for booleans.

Let lh(a) be the length of a. Let ā(n) denote the initial segment of a of
length n, if n ≤ lh(a), and a otherwise. Similarly let f̄(n) denote the initial
segment of f of length n, that is, the list :f(0) :: f(1) · · · :: f(n − 1). Let
(a)n denote the n-th element of a, if n < lh(a), and tt otherwise. f is a
path in t if all its initial segments f̄(n) are in t. Call t infinite if for every n
there is a node of length n in t. Call t a tree if it is downwards closed, i.e.,
∀a∀n≤lh(a)(a ∈ t→ ā(n) ∈ t). So WKL says that

∀t

(
∀a∀n≤lh(a)(a ∈ t→ ā(n) ∈ t)→ (t is a tree)

∀n∃a∈tlh(a) = n→ (t is infinite)

∃f∀nf̄(n) ∈ t
)

(t has an infinite path),

which – because of the two premises saying that t is an infinite tree – is not
of the required logical form.

To obtain an equivalent formulation in the required form, we introduce
some further notions.

t̂ := { a | ∀n<lh(a)ā(n) ∈ t } the associated tree t̂ for t,

b = a ∗ ttlh(b)−lh(a) b is the tt-extension of a,

∀c;lh(c)=lh(b)c /∈ t̂ b is t-big.

Let minlex denote the minimum of a set of nodes w.r.t. the lexicographical
ordering, and maxlen<n(t) be the maximal length of all nodes of t of length
< n. Then lln(t) is the leftmost largest node in t of length < n:

maxlen<n(t) := max{ lh(a) | a ∈ t ∧ lh(a) < n },
lln(t) := minlex{ c ∈ t | lh(c) = maxlen<n(t) }.

We can now define the infinite extension I(t) of a tree t:

I(t) := { b | b ∈ t ∨ (b is t-big ∧ b is the tt-extension of lllh(b)) }.

All these notions are definable in HAω. They clearly have the following
properties:

t̂ is a tree;

if t is a tree, then t̂ = t;
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if t is a tree, then I(t) is an infinite tree extending t;

if t is an infinite tree, then I(t) = t.

Then WKL is equivalent (provably in HAω) to

WKL′ := ∀t∃f∀nf̄(n) ∈ I(t̂).

To see this, assume WKL, and let t be arbitrary. Then I(t̂) is an infinite
tree extending t. By WKL applied to I(t̂), ∃f∀nf̄(n) ∈ I(t̂). Conversely, let
t be an infinite tree. Then I(t̂) = t and therefore ∃f∀nf̄(n) ∈ t.

Remark. From the results of Ishihara (1990) it is known WKL implies
Brouwer’s fan theorem. Moreover, a direct proof of this implication has
been given by Ishihara in 2002 and published in (2006). Berger and Ishi-
hara (2005) have shown that a weakened form WKL! of WKL, where as an
additional hypothesis it is required that in an effective sense infinite paths
are unique, is equivalent to Fan. One direction (WKL! implies Fan) is essen-
tially the proof of Ishihara (2006), enhanced by the additional requirement
that the tree extension to be constructed satisfies the effective uniqueness
condition (as in Berger and Ishihara (2005)). The main tool of this proof is
the construction of I(t̂) described above. The other direction (Fan implies
WKL!) is far less directly proved by Berger and Ishihara (2005), where the
emphasis rather was to provide a fair number of equivalents to Fan, and
to do the proof economically by giving a circle of implications. A direct
proof of the equivalence of Fan with WKL! is in (Schwichtenberg, 2005).
The latter paper also reports on a formalization in the Minlog proof assis-
tant, and gives rather short and perspicious realizing terms (w.r.t. modified
realizability) machine-extracted from each of the two directions of this proof.

3.5.4. Application: uniform moduli of continuity. As an applica-
tion, we show that every functional of type 2 definable in HAω has an (even
uniform) modulus of continuity definable in HAω as well, when applied to
arguments ≤1 y.

Consider hereditary extensional equality, defined as follows (cf. Troelstra
(1973)):

(x1 ≈µ x2) := (x1 =µ x2),

(x1 ≈ρ⇒σ x2) := ∀y1,y2(y1 ≈ρ y2 → x1y1 ≈σ x2y2).

Hereditary extensional equality is compatible with pointwise equality (as
defined in Sec.3.1.3):

Lemma. ` x1 =ρ x′1 → x2 =ρ x′2 → x1 ≈ρ x2 → x′1 ≈ρ x′2.

Proof. Induction on ρ. In the case ρ⇒ σ we can assume y1 ≈ρ y2 and
have to show x′1y1 ≈σ x′2y2. From the assumption x1 ≈ρ⇒σ x2 we obtain
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x1y1 ≈σ x2y2. Using x1y1 =σ x′1y1 and x2y2 =σ x′2y2 the IH gives us the
claim. �

Remark. By definition, x1 ≈1 x2 is the same as x1 =1 x2.

Lemma. For every HAω-term t,

HAω ` ~x1 ≈ ~x2 → t(~x1) ≈ρ t(~x2).

Proof. Induction on t. Case λy t. Assume ~x1 ≈ ~x2 and y1 ≈ρ⇒σ y2.
Then t(y1, ~x1) ≈σ t(y2, ~x2) by IH, hence

(λy t(y, ~x1))y1 =def t(y1, ~x1) ≈σ t(y2, ~x2) =def (λy t(y, ~x2))y2.

Case R. Assume f1, g1 ≈ f2, g2. We must show Rf1g1n ≈ Rf2g2n,
which can be done easily by induction on n. �

Corollary. For every closed HAω-term t, HAω ` t ≈ρ t.

Theorem. For every closed HAω-term t of type 2, we can find another
closed HAω-term t̄ of HAω also of type 2 such that

HAω ` ∀k,y∀x,x′≤1y

(
∀i<t̄kyxi = x′i→ ∀j<ktxj = tx′j

)
.

Proof. Because of the remark above, from HAω ` t ≈2 t we obtain

HAω ` ∀x,x′(∀ixi = x′i→ ∀k∀j<ktxj = tx′j),

HAω + Mω ` ∀k,x,x′∃i(xi = x′i→ ∀j<ktxj = tx′j),

HAω + Mω ` ∀k,y∀x,x′≤1y∃i(xi = x′i→ ∀j<ktxj = tx′j).

Now Sec.3.5.2 on extraction of uniform bounds gives us a closed HAω-term
t̄ such that

HAω ` ∀k,y∀x,x′≤1y∃i≤t̄ky(xi = x′i→ ∀j<ktxj = tx′j). �

3.6. The Negative Fragment: Classical Arithmetic

When we adopt the point of view of classical logic, we understand an
existential formula “there is an x such that A(x)” as an abbreviation for “it
is not true that for all x, A(x) is false”. We propose to make this distinction
explicit and use both ∃xA and ∃̃xA, where the latter is an abbreviation for
¬∀x¬A. Then in a classical context we only deal with ∃̃xA, and hence need
to work with →∀∧⊥-formulas only.

Recall that in arithmetic every atomic formula has the form atom(rboole),
i.e., is built from a boolean term rboole. In particular, there is no need for
(logical) falsity ⊥, since we can take the atomic formula F := atom(ff) –
called arithmetical falsity – built from the boolean constant ff instead. We
then view negation ¬A as defined by A→ F , and consider the arithmetical
classical existential quantifier ∃̃xA.
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In particular, stability ¬¬A → A holds for atomic formulas, and there-
fore every atomic formula is equivalent to a negated formula. Hence it suf-
fices in classical arithmetic PAω to work with →∀∧-formulas only. By what
we have seen in Sec.1.2.4 and Sec.1.2.5, this implies that we have stability
for all formulas.

Remark. Notice that by the elimination of ∧ in Sec.1.2.4, we can even
omit conjunction ∧.

3.6.1. IP, M and AC with classical existence. We now study what
happens to the Independence of Premise axiom (IPω) and Markov’s Principle
(Mω) – both of which involve ∃ – under the “negative interpretation” of the
existential quantifier, that is, replacement of ∃ by ∃̃. It turns out that both
become derivable.

Lemma. (a) (ĨP
ω
) is derivable from F → A:

` (F → A)→ (A→ ∃̃xρB)→ ∃̃xρ(A→ B) (x /∈ FV(A)),

and hence need not be assumed in PAω.
(b) (M̃ω) is derivable from ∀xρ(¬¬A→ A):

` ∀xρ(¬¬A→ A)→ (∀xρA→ B)→ ∃̃xρ(A→ B) (x /∈ FV(B)),

and hence need not be assumed in PAω.

Proof. Exercise. In fact, these proofs can easily be found by automated
proof search in minimal logic. �

However, for the axiom of choice the situation is different. We show that
the translation (QF-ÃC) of the quantifier-free axiom of choice is derivable
from the original (QF-AC) plus Markov’s Principle (Mω) for quantifier-free
formulas.

Lemma. (QF-ÃC) is derivable from (QF-AC) plus Markov’s Principle
(Mω) for quantifier-free formulas.

Proof. We argue informally. Assume (QF-AC)

∀xρ∃yσA0(x, y)→ ∃fρ⇒σ∀xρA0(x, f(x))

with A0 quantifier-free. Then

∀x∃̃yA0(x, y)

∀x(∀y¬A0(x, y)→ F )

∀x∃y(¬A0(x, y)→ F ) by (Mω)

∀x∃yA0(x, y) by stability ¬¬A0 → A0

∃f∀xA0(x, f(x)) by (QF-AC)



120 3. PROOF INTERPRETATIONS

∃̃f∀xA0(x, f(x)),

where the last step is a logical weakening. �

3.6.2. Extraction from classical proofs.

Theorem. Assume

WE-PAω + QF-ÃC + Ax∀ ` ∀x∃̃yA0(x, y),

A0(x, y) a quantifier-free formula with at most the displayed variables free.
Then we can find a closed HAω-term t such that

WE-HAω + Ax∀ ` ∀xA0(x, tx).

Proof. We make use of the fact proved in Sec.3.6.1 that (QF-ÃC) is
derivable from (QF-AC) plus Markov’s Principle (Mω) for quantifier-free
formulas. Hence

WE-PAω + QF-ÃC + Ax∀ ` ∀x∃̃yA0(x, y)

WE-HAω + QF-AC + Mω + Ax∀ ` ∀x∃̃yA0(x, y)

WE-HAω + QF-AC + Mω + Ax∀ ` ∀x∃yA0(x, y) by (Mω)

WE-HAω + Ax∀ ` |∀x∃yA0(x, y)|tx
for some closed HAω-term t, where in the last step we have used the Sound-
ness Theorem. But

|∀x∃yA0(x, y)|tx = |∃yA0(x, y)|txε = |A0(x, tx)|εε = A0(x, tx). �

3.6.3. Extraction of uniform bounds from classical proofs. As
in Sec.3.5, the restriction to only look for bounds rather than exact realizers
makes it possible to deal with additional assumptions Ax∀∃̃≤∀ of the form

∀xρ ∃̃y≤σrx∀zτ A0(x, y, z) (A0 quantifier-free),

with r a closed term of type ρ⇒ σ. We then need to consider strenghtened
versions Ax′∃≤∀ of these assumptions as well:

∃Y≤ρ⇒σr∀xρ,zτ A0(x, Y x, z).

Theorem (Extraction of uniform bounds from classical proofs). Let s
be a closed HAω-term, A0(x, y, z) a quantifier-free formula with at most the
displayed variables free, and τ a type of level ≤ 2. Assume that

WE-PAω + QF-ÃC + Ax∀∃̃≤∀ ` ∀x1∀y≤ρsx∃̃zτ A0(x, y, z).

Then we can find a closed HAω-term t such that

WE-HAω + Ax′∃≤∀ ` ∀x1∀y≤ρsx∃z≤τ tx A0(x, y, z).
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Proof. Assume

WE-HAω + QF-ÃC + Ax∀∃̃≤∀ ` ∀x1∀y≤ρsx∃̃zτ A0(x, y, z).

Then clearly

WE-HAω + QF-ÃC + Ax∀∃̃≤∀ ` ∀x1∀y∃̃~u,zτ (y~u ≤0 sx~u→ A0(x, y, z)).

We again make use of the fact proved in Sec.3.6.1 that (QF-ÃC) is derivable
from (QF-AC) plus Markov’s Principle (Mω) for quantifier-free formulas.
Hence

WE-HAω + QF-AC + Mω + Ax∀∃≤∀ ` ∀x1∀y∃̃~u,zτ (y~u ≤0 sx~u→ A0(x, y, z)),

and because of (Mω) we can replace the ∃̃ on the right hand side by ∃. Hence

WE-HAω + QF-AC + Mω + Ax∀∃≤∀ ` ∀x1∀y≤ρsx∃zτ A0(x, y, z).

The theorem on extraction of uniform bounds in Sec.3.5.2 gives us a closed
HAω-term t such that

WE-HAω + Ax′∃≤∀ ` ∀x1∀y≤ρsx∃z≤τ tx A(x, y, z). �

We now derive a corollary to this theorem, which involves the so-called
ε-weakening of the Skolem normal form of a formula

∀aδ∃b≤σra∀cγB0(a, b, c),

namely the formula

∀c∃B≤δ⇒σr∀aδ∀c′≤γcB0(a,Ba, c′).

Corollary. Let s be a closed HAω-term, A0(x, y, z) and B0(a, b, c)
quantifier-free formulas with at most the displayed variables free, and τ, γ
types of level ≤ 2. Assume that

WE-PAω + QF-ÃC ` ∀aδ ∃̃b≤σra∀cγB0(a, b, c)→ ∀x1∀y≤ρsx∃̃zτ A0(x, y, z).

Then we can find a closed HAω-term t such that

WE-HAω ` ∀c∃B≤δ⇒σr∀aδ∀c′≤γcB0(a,Ba, c′)→ ∀x1∀y≤ρsx∃z≤τ tx A0(x, y, z).

Proof. In WE-PAω + QF-ÃC we have

∀a∃̃b≤ra∀cγB0(a, b, c)→ ∀x1∀y≤sx∃̃zτ A0(x, y, z)

∃̃B≤r∀a∀cγB0(a,Ba, c)→ ∀x1∀y≤sx∃̃zτ A0(x, y, z)

∀x1∀y≤sx∀B≤r∃̃a,cγ ,zτ (B0(a,Ba, c)→ A0(x, y, z)).

The theorem above on extraction of uniform bounds (with Ax∀∃≤∀ empty)
provides us with closed terms t, t′ such that WE-HAω derives

∀x1∀y≤sx∀B≤r∃a∃cγ≤t′x∃zτ≤tx(B0(a,Ba, c)→ A0(x, y, z))
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∀x1

(
∃B≤r∀a∀cγ≤t′xB0(a,Ba, c)→ ∀y≤sx∃zτ≤txA0(x, y, z)

)
∀c∃B≤r∀a∀c′≤γcB0(a,Ba, c′)→ ∀x1∀y≤sx∃z≤τ tx A0(x, y, z),

where both steps are logical weakenings. �

One good reason to be interested in such results is that the ε-weakening
of the Skolem normal form of the ∀∃∀-form WKL′ of WKL is derivable:
Recall

WKL′ := ∀t∃fnat⇒boole∀nf̄(n) ∈ I(t̂).

The ε-weakening of its Skolem normal form is

∀n∃F∀t∀n′≤nFt(n′) ∈ I(t̂).

But this is easy to derive (in HAω): Given n, let Fnt pick from the infinite
tree I(t̂) a path of length n.

3.6.4. Elimination of extensionality. Define

Eµx := tt,

(x1 =e
µ x2) := (x1 =µ x2),

Eρ⇒σx := ∀y1,y2(y1 =e
ρ y2 → xy1 =e

σ xy2),

(x1 =e
ρ⇒σ x2) := Eρ⇒σx1 ∧ Eρ⇒σx2 ∧ ∀y(Eρy → x1y =e

σ x2y).

Notice that for a type ρ of level ≤ 1 we always have Eρx; this follows from the
compatibility axioms. This implies that x1 =e

ρ x2 is the same as pointwise
equality x1 =ρ x2.

We now collect some general properties of these notions; they are all
derivable in MLω. Clearly =e is symmetric and transitive. Moreover we
have

Lemma. (a) (Reflexivity of =e on E). Eρx→ x =e x.
(b) (Closure of E under application). Eρ⇒σx→ Eρy → Eσ(xy).
(c) (Compatibility of application with =e).

x1 =e
ρ⇒σ x2 ↔ ∀y1,y2(y1 =e

ρ y2 → x1y1 =e
σ x2y2).

Proof. (a) Induction on ρ. Base. By definition. Step. Assume Eρ⇒σx:

∀y1,y2(y1 =e
ρ y2 → xy1 =e

σ xy2).

We must show x =e
ρ⇒σ x. Eρ⇒σx is already given; it remains to show

∀y(Eρy → xy =e
σ xy). Let y be given and assume Eρy. We must show

xy =e
σ xy. The IHρ gives y =e

ρ y. But then Eρ⇒σx implies the claim.
(b) From Eρy we obtain y =e y by (a). Then Eρ⇒σx gives xy =e xy. Hence

Eσ(xy) by definition.
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(c) →. Assume x1 =e
ρ⇒σ x2. Then by definition Eρ⇒σxi and

∀y(Eρy → x1y =e
σ x2y).

Assume further y1 =e
ρ y2. We must show x1y1 =e

σ x2y2. From y1 =e
ρ y2

we get Eρy1; hence x1y1 =e
σ x2y1. But from Eρ⇒σx2 and y1 =e

ρ y2 we
obtain x2y1 =e

σ x2y2. Now transitivity of =e gives the claim.
←. Assume ∀y1,y2(y1 =e

ρ y2 → x1y1 =e
σ x2y2). We must show

x1 =e
ρ⇒σ x2. We first show Eρ⇒σx1; for x2 the argument is similar.

So we must prove ∀y1,y2(y1 =e
ρ y2 → x1y1 =e

σ x1y2). Let y1, y2 with
y1 =e

ρ y2 be given. Then Eρy2 by definition, hence y2 =e
ρ y2 by (a). Now

the assumption with y1 =e
ρ y2 gives x1y1 =e

ρ x2y2, and with y2 =e
ρ y2

gives x1y2 =e
ρ x2y2, Transitivity and symmetry of =e now implies the

claim x1y1 =e
σ x1y2. We finally show ∀y(Eρy → x1y =e

σ x2y). Let y
with Eρy be given. Then y =e

ρ y by (a) and hence x1y =e
σ x2y by our

assumption. �

We show that all closed HAω-terms are in E. This follows from

Lemma (Compatibility of HAω-terms with =e). Let a term r(~x) be given,
with at most the displayed variables free. Then

~x1 =e ~x2 → r(~x1) =e r(~x2).

Proof. Induction on r. Case rs. By IH r(~x1) =e r(~x2) and s(~x1) =e

s(~x2). Part (c) of the lemma above gives r(~x1)s(~x1) =e r(~x2)s(~x2).
Case λxr. Assume ~x1 =e ~x2. We must show λxr(x, ~x1) =e λxr(x, ~x2).

By part (c) of the lemma above it suffices to show ∀x1,x2(x1 =e x2 →
r(x1, ~x1) =e r(x2, ~x2)). So let x1, x2 with x1 =e x2 be given. The claim
then follows by the IH for r. �

Let AE be obtained from A by relativizing all quantifiers to E.

Lemma (Relativization of E and =e to E).

(Eρx)E ↔ Eρx and (x1 =e
ρ x2)E ↔ (x1 =e

ρ x2).

Proof. We prove both claims simultaneously, by induction on ρ. Base.
By definition. Step.

(Eρ⇒σx)E

↔ ∀y1,y2(Eρy1 → Eρy2 → (y1 =e
ρ y2)E → (xy1 =e

σ xy2)E)

↔ ∀y1,y2(Eρy1 → Eρy2 → y1 =e
ρ y2 → xy1 =e

σ xy2) by IHρ,σ

↔ ∀y1,y2(y1 =e
ρ y2 → xy1 =e

σ xy2) by definition
= Eρ⇒σx.
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and similarly

(x1 =e
ρ⇒σ x2)E

↔ (Ex1)E ∧ (Ex2)E ∧ ∀y(Eρy → (Eρy)E → (x1y =e
σ x2y)E)

↔ Ex1 ∧ Ex2 ∧ ∀y(Eρy → x1y =e
σ x2y)

= (x1 =e
ρ⇒σ x2).

Here we have used the argument above and the IHρ,σ. �

We now show that relativizing pointwise equality to E is the same as
extensional equality, provided the objects are in E.

Lemma. Eρx1 ∧ Eρx2 ∧ (x1 =ρ x2)E ↔ x1 =e
ρ x2.

Proof. Induction on ρ. Base. By definition. Step.

Eρ⇒σx1 ∧ Eρ⇒σx2 ∧ (x1 =ρ⇒σ x2)E

↔ Eρ⇒σx1 ∧ Eρ⇒σx2 ∧ ∀y(Eρy → (x1y =σ x2y)E)

↔ Eρ⇒σx1 ∧ Eρ⇒σx2 ∧ ∀y

(
Eρy → Eσ(x1y) ∧ Eσ(x1y) ∧ (x1y =σ x2y)E

)
↔ Eρ⇒σx1 ∧ Eρ⇒σx2 ∧ ∀y(Eρy → x1y =e

σ x2y)

= (x1 =e
ρ⇒σ x2),

where the next to last step uses the IH. �

Theorem. E-HAω ` A(~x) implies HAω ` E(~x)→ AE(~x).

Proof. Induction on derivations. For the extensionality axiom use the
lemma above, on relativizing pointwise equality to E. �

3.6.5. Extraction of uniform bounds from classical proofs with
extensionality.

Theorem. Let ∆ be a set of axioms from Ax∀∃≤∀, and ∆ε consist of
their ε-weakenings. Assume that the types of the existential variables are
all ≤ 1 and of the final ∀-variables are ≤ 2. Let s be a closed HAω-term,
A0(x, y, z) a quantifier-free formula with at most the displayed variables free,
and τ a type of level ≤ 2. Assume that

E-PAω + QF-ÃC
0,1

+ ∆̃ + ˜WKL ` ∀x1∀y≤1sx∃̃zτ A0(x, y, z).

Then we can find a closed HAω-term t such that

HAω + ∆ε ` ∀x1∀y≤1sx∃z≤τ tx A0(x, y, z).

Proof. Notice that we can view WKL as one of the axioms ∆, because
the ε-weakening of WKL is derivable in HAω.
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The first step is to apply elimination of extensionality. This gives

PAω + (QF-ÃC
0,1

)E + ∆̃E ` ∀x1∀y≤1sx∃̃zτ ;Ez A0(x, y, z).

For ∆̃ = ∀aδ ∃̃b≤σra∀cγB0(a, b, c) the restriction on the level of σ implies

∆̃E = ∀aδ ;Ea∃̃b≤σra∀cγ ;EcB0(a, b, c).

Hence ∆̃→ ∆̃E . Similarly, QF-ÃC
0,1 → (QF-ÃC

0,1
)E , and hence

PAω + QF-ÃC
0,1

+ ∆̃ ` ∀x1∀y≤1sx∃̃zτ A0(x, y, z).

By the proof of the corollary in Sec.3.6.3 (which goes through in exactly the
same way if “WE-” is left out throughout) we have the claim. �

This “metatheorem” has found many applications, particularly in work
of Kohlenbach. One such application – parameter independence of best
L1-approximation – can be found in Kohlenbach and Oliva (2003).

3.7. Notes

Much of the material in the present chapter is due to Troelstra (1973).
More information on the BHK-interpretation and its history may be found
in (Troelstra and van Dalen, 1988, 1.3, 1.5.3).

The results in Sec.3.3.2 are due to Howard (1973). The lemma in
Sec.3.3.1 relating Howard’s majorization relation with pointwise ≥ρ is due
to Kohlenbach (1992b). The result on the Fan Rule in Sec.3.3.5 has been
proved in Troelstra’s (1977); the short proof given here is due to Kohlenbach
(1992b). The two theorems on extraction of uniform bounds, for realizabil-
ity in Sec.3.3.5 and in the Dialectica interpretation in Sec.3.5.2 are from
Kohlenbach (1992b, 1998). The so-called monotone functional interpreta-
tion treated in Sec.3.5.1 and also the combination of the negative translation
and monotone functional interpretation have been introduced by Kohlen-
bach (1996).

The fact that the weak Lemma of König WKL can be written as a
∀∃≤∀-Axiom (Sec.3.5.3) has been observed by Kohlenbach (1992a). The
proof given uses ideas of Ishihara (2006).

The result in Sec.3.5.4 that every functional of type 2 definable in HAω

has an (even uniform) modulus of continuity definable in HAω as well (when
applied to arguments ≤1 y) is due to Kreisel; a proof can be found in
(Schwichtenberg, 1973). The present proof is from Kohlenbach (1992b).

The theorem on extraction of uniform bounds from classical proofs with
extensionality in Sec.3.6.5 is due to Kohlenbach (1993); the formulation
given is from (Kohlenbach, 2006).
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