Übungen zur Vorlesung "Mathematische Logik"

Aufgabe 13. (4 Punkte). Zeigen Sie jeweils durch Angabe einer Herleitung

- (a) $(A \tilde{\vee} B \to C) \to A \to C$,
- (b) $(A \tilde{\vee} B \to C) \to B \to C$,
- (c) $(\neg \neg C \to C) \to (A \to C) \tilde{\lor} (B \to C) \to A \to B \to C.$

Aufgabe 14. (2 Punkte).

Eine Herleitung von $(\neg \neg B \to B) \to \neg \neg (A \to B) \to A \to B$ ist

Eine Herleitung von
$$(\neg \neg B \to B) \to \neg \neg (A \to B) \to A \to B$$
 ist
$$\underbrace{\frac{u_1 \colon \neg B}{\underbrace{u_1 \colon \neg B}} \frac{u_2 \colon A \to B \quad w \colon A}{B}}_{\underbrace{v \colon \neg \neg (A \to B)}} \xrightarrow{\underbrace{\neg \neg (A \to B)}} \underbrace{\neg (A \to B)}_{\underbrace{\neg \neg (A \to B)}} \to + u_2}$$

$$\underbrace{u \colon \neg \neg B \to B}_{\underbrace{B}}$$
wobei die Anwendungen von \to^+ am Ende weggelassen sind. Geben Sie de

wobei die Anwendungen von \rightarrow^+ am Ende weggelassen sind. Geben Sie den zugehörigen Herleitungsterm an.

Aufgabe 15. (6 Punkte). Die Relation \succ_1 heißt konfluent (oder Church-Rosser, CR) wenn aus $M \succ_1 M'$ und $M \succ_1 M''$ die Existenz eines N mit $M' \succ_1 N$ und $M'' \succ_1 N$ folgt. \succ_1 heißt schwach konfluent (oder weak Church-Rosser, WCR) wenn aus $M \succ_1 M'$ und $M \succ_1 M''$ die Existenz eines N mit $M' \succeq N$ und $M'' \succeq N$ folgt. Zeigen Sie

- (a) Die Normalform eines stark normalisierenden M ist eindeutig bestimmt.
- (b) Wenn alle M stark normalisierend sind, so ist \succeq konfluent.

Hinweis. M heiße gut wenn aus $M \succ_1 K$ und $M \succ_1 L$ die Existenz eines Nfolgt mit $K \succ_1 N$ und $L \succ_1 N$. Beweisen Sie, daß jedes stark normalisierende M gut ist. Verwenden Sie dazu transfinite Induktion über die fundierte partielle Ordnung ≺, also das Schema

$$\forall_{M \in \mathcal{T}} (\forall_{M' \prec M} P(M') \to P(M)) \to \forall_{M \in \mathcal{T}} P(M).$$

Aufgabe 16. (4 Punkte).

- (a) Formalisieren Sie die Herleitungen aus Aufgabe 13 in Minlog.
- (b) Formalisieren Sie die Herleitung aus Aufgabe 14 in Minlog. Berechnen Sie den zugehörigen Herleitungsterm durch Ausführen von

nach Abschluß des Beweises.

(siehe ueb04.scm).

Abgabe. Mittwoch, 12. November 2025 um 8:00 über Uni2work.