Homework for the lecture course "Mathematical Logic"

Problem 37. (4 points). Prove informally that for all natural numbers m, n there are natural numbers q, r such that

$$n = (m+1)q + r$$
 and $r \le m$.

Problem 38. (4 points). Prove informally that for all natural numbers a, n_0, \ldots, n_{k-1} with $a = \langle n_0, \ldots, n_{k-1} \rangle$ we have

- (a) lh(a) = k,
- (b) $(a)_i = n_i$ for all i < k.

Problem 39. (4 points). Prove informally that the graph of the function $n \mapsto 2_n(1)$ is elementary. Hint. Coding of finite lists, and closure of elementary relations under bounded quantifiers.

Problem 40. (4 points). Formalize the proof from Problem 37 in Minlog (see ueb10.scm).

Due. Wednesday, 7. January 2026, 8:00.