Homework for the lecture course "Mathematical Logic"

Problem 25. (4 points). Addition for natural numbers is defined by

$$n+0 := n, \qquad n+Sm := S(n+m).$$

Prove informally that + is commutative. Hint. Induction on m. Some auxiliary facts on + are needed, which have to be proved as well.

Problem 26. (4 points). (Logic for decidable predicates). Let p, q be variables of the base type \mathbb{B} of boolean objects, consisting of tt (true) and ff (false). Terms now have types, built from base types by \to_{Typ} (short: \to). The single predicate symbol is atom of arity (\mathbb{B}). Atomic formulas are atom(t) (short: t) with t a term of type \mathbb{B} . Apart from the constructors tt , ff we consider function symbols (program constants), here only $=_{\mathbb{B}}$ (short: =) of type $\mathbb{B} \to \mathbb{B} \to \mathbb{B}$ with the computation rules

$$(\mathtt{t}=\mathtt{t}):=\mathtt{t}, \qquad (\mathtt{t}=\mathtt{ff}):=\mathtt{ff}, \qquad (\mathtt{ff}=\mathtt{t}):=\mathtt{ff}, \qquad (\mathtt{ff}=\mathtt{ff}):=\mathtt{t}.$$

Computation rules are to be read as replacement rules (from left to right). Two terms are called equal if they have a common reduct. Let $\mathbf{F} := (\mathsf{ff} = \mathsf{tt})$. Prove that $\mathbf{F} \to \forall_{p,q} (p=q)$ is derivable from axioms

CaseDist:
$$A(\mathsf{tt}) \to A(\mathsf{ff}) \to \forall_p A(p)$$
.

Problem 27. (4 points). Find programs for

 $x = \min(y, z)$ writes the minimum of y, z in the register x,

 $x = y \mod 2$ write the remainder of division of y by 2 in x.

Use exclusively the base instructions

Zero: x := 0,

Succ: x := x + 1,

Jump: [if x = y then I_n else I_m].

Problem 28. (4 points). Formalize the derivation from Problem 25 (see ueb07.scm).

Due. Wednesday, 3. Dezember 2025, 8:00.