Winter semester 2025/26 hwk05

Homework for the lecture course "Mathematical Logic"

Problem 17. (4 points). Give derivations for

(a)
$$(\bot \to B) \to (A \to B \tilde{\lor} C) \to (A \to B) \tilde{\lor} (A \to C)$$
,

(b)
$$(A \to B) \tilde{\vee} (A \to C) \to A \to B \tilde{\vee} C$$
.

Problem 18. (4 points). Prove that for all formulas A without \vee , \exists we have

- (a) $\vdash_c A \to A^g$,
- (b) $\vdash_c A^g \to A$.

Hint. Prove (a) and (b) by (simultaneous) induction on A.

Problem 19. (4 points). Let $\mathcal{T} = (D, I_0, I_1)$ be a tree model on a finitely branching tree T. With k, k' we denote nodes, i.e., finite sequences $\langle a_0, a_1, \ldots, a_{n-1} \rangle$ of elements of a given finite set S. We write $k \leq k'$ if k is an initial sequent of k'. Let η be an assignment in D, i.e., a map assigning to each variable $x \in \text{dom}(\eta)$ a value $\eta(x) \in D$. Prove that for all formulas A

$$k \Vdash A[\eta]$$
 and $k \leq k'$ implies $k' \Vdash A[\eta]$.

Problem 20. (4 points). Formalize the derivations from Problem 17 in Minlog. Compute the corresponding derivation term by evaluating

after finishing the proof (see ueb05.scm).

Due. Wednesday, 19. November 2025, 8:00.