
CHAPTER 2

Recursion Theory

In this chapter we develop the basics of recursive function theory, or as
it is more generally known, computability theory. Its history goes back to
the seminal works of Turing, Kleene and others in the 1930’s.

A computable function is one defined by a program whose operational
semantics tell an idealized computer what to do to its storage locations as
it proceeds deterministically from input to output, without any prior re-
strictions on storage space or computation time. We shall be concerned
with various program-styles and the relationships between them, but the
emphasis throughout will be on one underlying data-type, namely the natu-
ral numbers, since it is there that the most basic foundational connections
between proof theory and computation are to be seen in their clearest light.

The two best-known models of machine computation are the Turing
Machine and the (Unlimited) Register Machine of Shepherdson and Sturgis
(1963). We base our development on the latter since it affords the quickest
route to the results we want to establish.

2.1. Register machines

2.1.1. Programs. A register machine stores natural numbers in regis-
ters denoted u, v, w, x, y, z possibly with subscripts, and it responds step
by step to a program consisting of an ordered list of basic instructions:

I0
I1
...
Ik−1

Each instruction has one of the following three forms whose meanings are
obvious:

Zero: x := 0,
Succ: x := x+ 1,
Jump: [if x = y then In else Im].

The instructions are obeyed in order starting with I0 except when a condi-
tional jump instruction is encountered, in which case the next instruction

33



34 2. RECURSION THEORY

will be either In or Im according as the numerical contents of registers x
and y are equal or not at that stage. The computation terminates when it
runs out of instructions, that is when the next instruction called for is Ik.
Thus if a program of length k contains a jump instruction as above then it
must satisfy the condition n,m ≤ k and Ik means “halt”. Notice of course
that some programs do not terminate, for example the following one-liner:

[if x = x then I0 else I1]

2.1.2. Program constructs. We develop some shorthand for building
up standard sorts of programs.

Transfer. “x := y” is the program

x := 0
[if x = y then I4 else I2]
x := x+ 1
[if x = x then I1 else I1],

which copies the contents of register y into register x.
Predecessor. The program “x := y−· 1” copies the modified predecessor

of y into x, and simultaneously copies y into z:

x := 0
z := 0
[if x = y then I8 else I3]
z := z + 1
[if z = y then I8 else I5]
z := z + 1
x := x+ 1
[if z = y then I8 else I5].

Composition. “P ; Q” is the program obtained by concatenating pro-
gram P with program Q. However in order to ensure that jump instructions
in Q of the form “[if x = y then In else Im]” still operate properly within Q
they need to be re-numbered by changing the addresses n,m to k+n, k+m
respectively where k is the length of program P . Thus the effect of this
program is to do P until it halts (if ever) and then do Q.

Conditional. “if x = y then P else Q fi” is the program

[if x = y then I1 else Ik+2]
...P
[if x = x then Ik+2+l else I2]
...Q



2.1. REGISTER MACHINES 35

where k, l are the lengths of the programs P,Q respectively, and again their
jump instructions must be appropriately renumbered by adding 1 to the
addresses in P and k + 2 to the addresses in Q. Clearly if x = y then
program P is obeyed and the next jump instruction automatically bypasses
Q and halts. If x ̸= y then program Q is performed.

For Loop. “for i = 1 . . . x do P od” is the program

i := 0
[if x = i then Ik+4 else I2]
i := i+ 1
...P
[if x = i then Ik+4 else I2]

where again, k is the length of program P and the jump instructions in
P must be appropriately re-addressed by adding 3. The intention of this
new program is that it should iterate the program P x times (do nothing
if x = 0). This requires the restriction that the register x and the “local”
counting-register i are not re-assigned new values inside P .

While Loop. “while x ̸= 0 do P od” is the program

y := 0
[if x = y then Ik+3 else I2]
...P
[if x = y then Ik+3 else I2]

where again, k is the length of program P and the jump instructions in P
must be re-addressed by adding 2. This program keeps on doing P until (if
ever) the register x becomes 0; it requires the restriction that the auxiliary
register y is not re-assigned new values inside P .

2.1.3. Register machine computable functions. A register ma-
chine program P may have certain distinguished “input registers” and “out-
put registers”. It may also use other “working registers” for scratchwork and
these will initially be set to zero. We write P (x1, . . . , xk; y) to signify that
program P has input registers x1, . . . , xk and one output register y, which
are distinct.

Definition. The program P (x1, . . . , xk; y) is said to compute the k-ary
partial function φ : Nk → N if, starting with any numerical values n1, . . . , nk
in the input registers, the program terminates with the number m in the
output register if and only if φ(n1, . . . , nk) is defined with value m. In this
case, the input registers hold their original values.

A function is register machine computable if there is some program which
computes it.



36 2. RECURSION THEORY

Here are some examples.
Addition. “Add(x, y; z)” is the program

z := x ; for i = 1, . . . , y do z := z + 1 od

which adds the contents of registers x and y into register z.
Subtraction. “Subt(x, y; z)” is the program

z := x ; for i = 1, . . . , y do w := z −· 1 ; z := w od

which computes the modified subtraction function x−· y.
Bounded Sum. If P (x1, . . . , xk, w; y) computes the k + 1-ary function φ

then the program Q(x1, . . . , xk, z;x):

x := 0 ;
for i = 1, . . . , z do w := i−· 1 ; P (x⃗, w; y) ; v := x ; Add(v, y;x) od

computes the function

ψ(x1, . . . , xk, z) =
∑
w<z

φ(x1, . . . , xk, w)

which will be undefined if for some w < z, φ(x1, . . . , xk, w) is undefined.
Multiplication. Deleting “w := i−· 1 ; P” from the last example gives a

program Mult(z, y;x) which places the product of y and z into x.
Bounded Product. If in the bounded sum example, the instruction x :=

x+1 is inserted immediately after x := 0, and if Add(v, y;x) is replaced by
Mult(v, y;x), then the resulting program computes the function

ψ(x1, . . . , xk, z) =
∏
w<z

φ(x1, . . . , xk, w).

Composition. If Pj(x1, . . . , xk; yj) computes φj for each j = 1, . . . , n and
if P0(y1, . . . , yn; y0) computes φ0, then the program Q(x1, . . . , xk; y0):

P1(x1, . . . , xk; y1) ; . . . ; Pn(x1, . . . , xk; yn) ; P0(y1, . . . , yn; y0)

computes the function

ψ(x1, . . . , xk) = φ0(φ1(x1, . . . , xk) , . . . , φn(x1, . . . , xk))

which will be undefined if any of the φ-subterms on the right hand side is
undefined.

Unbounded Minimization. If P (x1, . . . , xk, y; z) computes φ then the pro-
gram Q(x1, . . . , xk; z):

y := 0 ; z := 0 ; z := z + 1 ;
while z ̸= 0 do P (x1, . . . , xk, y; z) ; y := y + 1 od ;
z := y −· 1

computes the function

ψ(x1, . . . , xk) = µy(φ(x1, . . . , xk, y) = 0)



2.2. ELEMENTARY FUNCTIONS 37

that is, the least number y such that φ(x1, . . . , xk, y
′) is defined for every

y′ ≤ y and φ(x1, . . . , xk, y) = 0.

2.2. Elementary functions

2.2.1. Definition and simple properties. The elementary functions
of Kalmár (1943) are those number-theoretic functions which can be defined
explicitly by compositional terms built up from variables and the constants
0, 1 by repeated applications of addition +, modified subtraction−· , bounded
sums and bounded products.

By omitting bounded products, one obtains the subelementary functions.
The examples in the previous section show that all elementary functions

are computable and totally defined. Multiplication and exponentiation are
elementary since

m · n =
∑

i<nm and mn =
∏

i<nm

and hence by repeated composition, all exponential polynomials are elemen-
tary.

In addition the elementary functions are closed under
Definition by Cases.

f(n⃗ ) =

{
g0(n⃗ ) if h(n⃗ ) = 0

g1(n⃗ ) otherwise

since f can be defined from g0, g1 and h by

f(n⃗ ) = g0(n⃗ ) · (1−· h(n⃗ )) + g1(n⃗ ) · (1−· (1−· h(n⃗ ))).
Bounded Minimization.

f(n⃗,m) = µk<m(g(n⃗, k) = 0)

since f can be defined from g by

f(n⃗,m) =
∑
i<m

(
1−·

∑
k≤i

(1−· g(n⃗, k))
)
.

Note: this definition gives value m if there is no k < m such that g(n⃗, k) =
0. It shows that not only the elementary, but in fact the subelementary
functions are closed under bounded minimization. Furthermore, we define
µk≤m(g(n⃗, k) = 0) as µk<m+1(g(n⃗, k) = 0).

Lemma.

(a) For every elementary function f : Nr → N there is a number k such that
for all n⃗ = n1, . . . , nr,

f(n⃗ ) < 2k(max(n⃗ ))

where 20(m) := m and 2k+1(m) := 22k(m).



38 2. RECURSION THEORY

(b) The function n 7→ 2n(1) is not elementary.

Proof. (a). By induction on the build-up of the compositional term
defining f . The result clearly holds if f is any one of the base functions:

f(n⃗ ) = 0 or 1 or ni or ni + nj or ni −· nj .

If f is defined from g by application of bounded sum or product:

f(n⃗,m) =
∑
i<m

g(n⃗, i) or
∏
i<m

g(n⃗, i)

where g(n⃗, i) < 2k(max(n⃗, i)) then we have

f(n⃗,m) ≤ (2k(max(n⃗,m)))m < 2k+2(max(n⃗,m))

using nn < 22
n
(since nn < (2n−1)n ≤ 22

n
for n ≥ 3).

If f is defined from g0, g1, . . . , gl by composition:

f(n⃗ ) = g0(g1(n⃗ ), . . . , gl(n⃗ ))

where for each j ≤ l we have gj(−) < 2kj (max(−)), then with k = maxj kj ,

f(n⃗ ) < 2k(2k(max(n⃗ ))) = 22k(max(n⃗ ))

and this completes the first part.
(b). If 2n(1) were an elementary function of n then by (a) there would

be a positive k such that for all n,

2n(1) < 2k(n)

but then putting n = 2k(1) yields 22k(1)(1) < 22k(1), a contradiction. □

2.2.2. Elementary relations. A relation R on Nk is said to be ele-
mentary if its characteristic function

cR(n⃗ ) =

{
1 if R(n⃗ )

0 otherwise

is elementary. In particular, the “equality” and “less than” relations are
elementary since their characteristic functions can be defined as follows:

c<(n,m) = 1−· (1−· (m−· n)), c=(n,m) = 1−· (c<(n,m) + c<(m,n)).

Furthermore if R is elementary then so is the function

f(n⃗,m) = µk<mR(n⃗, k)

since R(n⃗, k) is equivalent to 1−· cR(n⃗, k) = 0.

Lemma. The elementary relations are closed under applications of propo-
sitional connectives and bounded quantifiers.


