CHAPTER 1

Formal Proofs

The main subject of Mathematical Logic is mathematical proof. In this
introductory chapter we deal with the basics of formalizing such proofs and,
via normalization, analysing their structure. The system we pick for the
representation of proofs is Gentzen’s natural deduction from (1935). Our
reasons for this choice are twofold. First, as the name says this is a natural
notion of formal proof, which means that the way proofs are represented
corresponds very much to the way a careful mathematician writing out all
details of an argument would proceed anyway. Second, formal proofs in
natural deduction are closely related (via the so-called Curry-Howard cor-
respondence) to terms in typed lambda calculus. This provides us not only
with a compact notation for logical derivations (which otherwise tend to be-
come somewhat unmanagable tree-like structures), but also opens up a route
to applying the computational techniques which underpin lambda calculus.

An underlying theme of this chapter is to bring out the constructive
content of logic, particularly in regard to the relationship between minimal
and classical logic. For us the latter is most appropriately viewed as a
subsystem of the former. This approach will reveal some interesting aspects
of proofs, e.g., that it is possible and useful to distinguish beween existential
proofs that actually construct witnessing objects, and others that don’t.

As an example for a non-constructive existence proof, consider the fol-
lowing proposition.

There are irrational numbers a, b such that a’ is rational.

This can be proved as follows, by cases.
Case \/5\/i is rational. Choose a = /2 and b = /2. Then a,b are

irrational and by assumption a’ is rational.

Case \@ﬂ is irrational. Choose a = \@\/i and b = /2. Then by
assumption a, b are irrational and

= (v2?)" = (va)’ =2

is rational.
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As long as we have not decided whether \/5\/§ is rational, we do not
know which numbers a,b we must take. Hence we have an example of an
existence proof which does not provide an instance.

Weyl (1921) gave a somewhat drastic description of this situation:

Ein Existentialsatz — etwa “es gibt eine gerade Zahl” —
ist iiberhaupt kein Urteil im eigentlichen Sinne, das einen
Sachverhalt behauptet; Existentialsachverhalte sind eine
leere Erfindung der Logiker. “2 ist eine gerade Zahl”, das
ist ein wirkliches, einem Sachverhalt Ausdruck gebendes
Urteil; “es gibt eine gerade Zahl” ist nur ein aus diesem
Urteil gewonnenes Urteilsabstrakt. Bezeichne ich Erkennt-
nis als einen wertvollen Schatz, so ist das Urteilsabstrakt
ein Papier, welches das Vorhandensein eines Schatzes an-
zeigt, ohne jedoch zu verraten, an welchem Ort. Sein
einziger Wert kann darin liegen, dafi es mich antreibt, nach
dem Schatze zu suchen.

1.1. Natural deduction

The rules of natural deduction come in pairs: we have an introduc-
tion and an elimination rule for each of the logical connectives. The re-
sulting system is called minimal logic; it was introduced by Kolmogorov
(1932), Gentzen (1935) and Johansson (1937). Notice that no negation
is yet present. If we go on and require ex-falso-quodlibet for the nullary
propositional symbol L (“falsum”) we can embed intuitionistic logic with
negation as A — L. To embed classical logic, we need to go further and
add as an axiom schema the principle of indirect proof, also called stabil-
ity (Vz(—-—RZ — RZ) for relation symbols R), but then it is appropriate to
restrict to the language based on —, V, L and A. The reason for this restric-
tion is that we can neither prove =—3, A — 3;A nor ~—(AV B) — AV B, for
there are countermodels to both (the former is Markov’s scheme). However,
we can prove them for the classical existential quantifier and disjunction
defined by —V,—A and A — =B — 1. Thus we need to make a distinc-
tion between two kinds of “exists” and two kinds of “or”: the classical ones
are “weak” and the non-classical ones “strong” since they have constructive
content. In situations where both kinds occur together we must mark the
distinction, and we shall do this by writing a tilde above the weak disjunction
and existence symbols thus Vv, 3.

1.1.1. Terms and formulas. Let a countably infinite set {v; | i € N }
of variables be given; they will be denoted by x,y, z. A first-order language
L then is determined by its signature, which is to mean the following.
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(i) For every natural number n > 0 a (possible empty) set of n-ary rela-
tion symbols (or predicate symbols). 0-ary relation symbols are called
propositional symbols. L (read “falsum”) is required as a fixed proposi-
tional symbol. The language will not, unless stated otherwise, contain
= as a primitive. Binary relation symbols can be marked as infix.

(ii) For every natural number n > 0 a (possible empty) set of n-ary function
symbols. 0-ary function symbols are called constants. Binary function
symbols can again be marked as infix.

We assume that all these sets of variables, relation and function symbols are
disjoint. L is kept fixed and will only be mentioned when necessary.
Terms are inductively defined as follows.

(i) Every variable is a term.
(ii) Every constant is a term.
(iii) If ¢1,...,t, are terms and f is an n-ary function symbol with n > 1,
then f(t1,...,t,) is a term. (If ¢, s are terms and o is a binary function
symbol, then (¢ o s) is a term.)

From terms one constructs prime formulas, also called atomic formulas
or just atoms: If t1,...,t, are terms and R is an n-ary relation symbol, then
R(t1,...,ty) is a prime formula. (If ¢, s are terms and ~ is a binary relation
symbol, then (¢ ~ s) is a prime formula.)

Formulas are inductively defined from prime formulas by

(i) Every prime formula is a formula.
(ii) If A and B are formulas, then so are (A — B) (“if A then B”), (AAB)
(“Aand B”) and (AV B) (“A or B”).
(iii) If A is a formula and z is a variable, then V;A (“A holds for all z”)
and 3, A (“there is an x such that A”) are formulas.

Negation is defined by
—A:=(A— 1)

We shall often need to do induction on the height, denoted |A|, of
formulas A. This is defined as follows: |P| = 0 for atoms P, |[Ao B| =
max(|A|,|B]|) + 1 for binary operators o (i.e., —,A,V) and |0 A| = |A] + 1
for unary operators o (i.e., ¥, 3;).

1.1.2. Substitution, free and bound variables. Expressions &£, &’
which differ only in the names of bound (occurrences of) variables will be
regarded as identical. This is sometimes expressed by saying that £ and &’
are a-equal. In other words, we are only interested in expressions “modulo
renaming of bound variables”. There are methods of finding unique repre-
sentatives for such expressions, e.g., the name-free terms of de Bruijn (1972).
For the human reader such representations are less convenient, so we shall
stick to the use of bound variables.
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In the definition of “substitution of expression £ for variable x in ex-
pression £”, either one requires that no variable free in £ becomes bound
by a variable-binding operator in £, when the free occurrences of = are re-
placed by &£’ (also expressed by saying that there must be no “clashes of
variables”), “€’ is free for x in £, or the substitution operation is taken to
involve a systematic renaming operation for the bound variables, avoiding
clashes. Having stated that we are only interested in expressions modulo
renaming bound variables, we can without loss of generality assume that
substitution is always possible.

Also, it is never a real restriction to assume that distinct quantifier
occurrences are followed by distinct variables, and that the sets of bound
and free variables of a formula are disjoint.

NOTATION. “FV7” is used for the (set of) free variables of an expression;
so FV(t) is the set of variables free in the term ¢, FV(A) the set of variables
free in formula A etc. A formula A is said to be closed if FV(A) = 0.

E[x := t] denotes the result of substituting the term ¢ for the variable
z in the expression £. Similarly, £[# := ] is the result of simultaneously
substituting the terms t'=1t1,...,ty, for the variables ¥ = x1, ..., Zn, respec-
tively.

In a given context we shall adopt the following convention. Omnce a
formula has been introduced as A(z), i.e., A with a designated variable x,
we write A(t) for A[x := t], and similarly with more variables.

1.1.3. Subformulas. Unless stated otherwise, the notion of subfor-
mula will be that defined by Gentzen.

DEFINITION. (Gentzen) subformulas of A are defined by

(a) A is a subformula of A;
(b) if B o C is a subformula of A then so are B, C, for o = — A, V;
(c) if ¥, B(x) or 3, B(x) is a subformula of A, then so is B(t).

DEFINITION. The notions of positive, negative, strictly positive subfor-
mula are defined in a similar style:

(a) A is a positive and a strictly positive subformula of itself;

(b) if BAC or BV C is a positive (negative, strictly positive) subformula
of A, then so are B, C}

(c) if V. B(z) or 3, B(x) is a positive (negative, strictly positive) subformula
of A, then so is B(t);

(d) if B — C'is a positive (negative) subformula of A, then B is a negative
(positive) subformula of A, and C' is a positive (negative) subformula of
A;

(e) if B — C is a strictly positive subformula of A, then so is C'.
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A strictly positive subformula of A is also called a strictly positive part
(s.p.p.) of A. Note that the set of subformulas of A is the union of the
positive and negative subformulas of A.

EXAMPLE. (P — Q) — R AV;S(x) has as s.p.p.’s the whole formula,
R AVzS(x), R, V3S(x), S(t). The positive subformulas are the s.p.p.’s and
in addition P; the negative subformulas are P — @, Q.

1.1.4. Examples of derivations. To motivate the rules for natural
deduction, let us start with informal proofs of some simple logical facts.

(A-B—-C)—(A—B)—-A—=C.

Informal proof. Assume A — B — C. To show: (A — B) - A — C.
So assume A — B. To show: A — C. So finally assume A. To show: C.
Using the third assumption twice we have B — C by the first assumption,
and B by the second assumption. From B — C and B we then obtain
C. Then A — C, cancelling the assumption on 4; (A — B) - A — C
cancelling the second assumption; and the result follows by cancelling the
first assumption. O

V(A — B) > A—=V,B, ifz¢FV(A).

Informal proof. Assume V(A — B). To show: A — V,B. So assume A. To
show: V. B. Let z be arbitrary; note that we have not made any assumptions
on z. To show: B. We have A — B by the first assumption. Hence also
B Dby the second assumption. Hence V,B. Hence A — V. B, cancelling the
second assumption. Hence the result, cancelling the first assumption. O

A characteristic feature of these proofs is that assumptions are intro-
duced and eliminated again. At any point in time during the proof the free
or “open” assumptions are known, but as the proof progresses, free assump-
tions may become cancelled or “closed” because of the implies-introduction
rule.

We reserve the word proof for the informal level; a formal representation
of a proof will be called a derivation.

An intuitive way to communicate derivations is to view them as labelled
trees each node of which denotes a rule application. The labels of the inner
nodes are the formulas derived as conclusions at those points, and the labels
of the leaves are formulas or terms. The labels of the nodes immediately
above a node k are the premises of the rule application. At the root of
the tree we have the conclusion (or end formula) of the whole derivation.
In natural deduction systems one works with assumptions at leaves of the
tree; they can be either open or closed (cancelled). Any of these assump-
tions carries a marker. As markers we use assumption variables denoted
u, v, W, Ug, U1, - ... The variables of the language previously introduced will
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now often be called object variables, to distinguish them from assumption
variables. If at a node below an assumption the dependency on this as-
sumption is removed (it becomes closed) we record this by writing down the
assumption variable. Since the same assumption may be used more than
once (this was the case in the first example above), the assumption marked
with u (written uw: A) may appear many times. Of course we insist that
distinct assumption formulas must have distinct markers. An inner node of
the tree is understood as the result of passing from premises to the conclu-
sion of a given rule. The label of the node then contains, in addition to the
conclusion, also the name of the rule. In some cases the rule binds or closes
or cancels an assumption variable u (and hence removes the dependency of
all assumptions u: A thus marked). An application of the V-introduction
rule similarly binds an object variable = (and hence removes the dependency
on x). In both cases the bound assumption or object variable is added to
the label of the node.

DEFINITION. A formula A is called derivable (in minimal logic), writ-
ten - A, if there is a derivation of A (without free assumptions) using
the natural deduction rules. A formula B is called derivable from assump-
tions Aj, ..., Ay, if there is a derivation of B with free assumptions among
Aq,..., A, Let T be a (finite or infinite) set of formulas. We write I' - B if
the formula B is derivable from finitely many assumptions Ay,..., A, € I.

‘We now formulate the rules of natural deduction.

1.1.5. Introduction and elimination rules for — and V. First we
have an assumption rule, allowing to write down an arbitrary formula A
together with a marker u:

u: A assumption.

The other rules of natural deduction split into introduction rules (I-rules for
short) and elimination rules (E-rules) for the logical connectives which, for
the time being, are just — and V. For implication — there is an introduction
rule —T and an elimination rule —~ also called modus ponens. The left
premise A — B in —~ is called the major (or main) premise, and the right
premise A the minor (or side) premise. Note that with an application of the
—*-rule all assumptions above it marked with u: A are cancelled (which
is denoted by putting square brackets around these assumptions), and the
u then gets written alongside. There may of course be other uncancelled
assumptions v: A of the same formula A, which may get cancelled at a later
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stage.

[u: A]
M M N
| A—> B A -

A i B u b
For the universal quantifier V there is an introduction rule V* (again marked,
but now with the bound variable z) and an elimination rule V~ whose right
premise is the term ¢ to be substituted. The rule V' with conclusion V,A
is subject to the following (eigen-)variable condition: the derivation M of
the premise A must not contain any open assumption having x as a free
variable.

| M | M
A Vo A(z) t
v,A e A Y

We now give derivations of the two example formulas treated informally
above. Since in many cases the rule used is determined by the conclusion,
we suppress in such cases the name of the rule.

u:A— B—C w: A v: A— B w: A
B—C B

_C 4

AsCc v

(A= B)—>A—-C

(A-B—-C)—»(A—-B)—-A—-C

—to

—Tu

u: Vi (A — B) x

V.(A— B) > A—V,B
Note that the variable condition is satisfied: z is not free in A (and also not
free in V,(A — B)).
1.1.6. Properties of negation. Recall that negation is defined by
—A:= (A — 1). The following can easily be derived.
A — ——A,
-——A = -A.

However, =—A — A is in general not derivable (without stability — we will
come back to this later on).
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LEMMA. The following are derivable.

(A— B) —» B — A,
-(A — B) — —B,

—-—(A — B) » ——A — ——B,
(L—-B)— (—A— --B)— -—=(A— B),

=V, A — VA
Derivations are left as an exercise.
1.1.7. Introduction and elimination rules for disjunction Vv, con-

junction A and existence d. For disjunction the introduction and elimi-
nation rules are

M M [u: A [v: B]
| i M N K
o5 Vo o7 Vi AV B C c
A vV B 0 A vV B 1 v C \/7u7 v
For conjunction we have
M N [u: A] [v: B]
| M | N
A B At AANB C
ANB c AT u,v
and for the existential quantifier
M [u: A
LA | M | N
—— 3t 3;A B

3, A(x)

5 37z, u (var.cond.)
Similar to V*x the rule 37z, u is subject to an (eigen-)variable condition:
in the derivation N the variable z (i) should not occur free in the formula
of any open assumption other than u: A, and (ii) should not occur free in
B.

Again, in each of the elimination rules V~—, A~ and 3~ the left premise
is called major (or main) premise, and the right premise is called the minor
(or side) premise.

It is easy to see that for each of the connectives V, A, 3 the rules and the
following axioms are equivalent over minimal logic; this is left as an exercise.
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For disjunction the introduction and elimination axioms are
Vgt A— AV B,
Vi:B— AV B,
VT:AVB—-(A—-C)— (B—C)—C.

For conjunction we have

At A— B— ANB, AN:AANB— (A= B—C)—=C
and for the existential quantifier
It A = 3,4, 37:3,A—=V.(A— B)— B (x¢FV(B)).

REMARK. All these axioms can be seen as special cases of a general
schema, that of an inductively defined predicate, which is defined by some
introduction rules and one elimination rule.

We collect some easy facts about derivability; B < A means A — B.
LEMMA. The following are derivable.

(ANB—=C)+ (A—B—C),
A—BAC A—=B)AN(A—=C),

) < (
AVB—C)«< (A= C)N(B—O),
) (

(

(

(A= BVC A—B)V(A—C),
(VzA — B) «+ 3,(A— B) ifx ¢ FV(B),
(A—=V,B) < V. (A— B) ifz ¢ FV(A),
(32A = B) ¢ Vo(A — B) ifz ¢ FV(B),
(A— 3;B) «+ 3,(A— B) ifx ¢ FV(A).

PRroOOF. A derivation of the final formula is

w: A— B v: A
x B
3.(A — B) 3. B
=B d z,w
—— =7 —tv
A—3d.B
—Tu

3,(A—B)—~A— 3,B

The variable condition for 3 is satisfied since the variable x (i) is not free
in the formula A of the open assumption v: A, and (ii) is not free in 3, B.
The rest of the proof is left as an exercise. O
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As already mentioned, we distinguish between two kinds of “exists” and
two kinds of “or”: the “weak” or classical ones and the “strong” or non-
classical ones, with constructive content. In the present context both kinds
occur together and hence we must mark the distinction; we shall do this by
writing a tilde above the weak disjunction and existence symbols thus

AVB:=-A—-B— 1, JpA := V- A.

These weak variants of disjunction and the existential quantifier are no
stronger than the proper ones (in fact, they are weaker):

AV B — AV B, 3,4 — 3, A.
This can be seen easily by putting C':= L in V™ and B := 1 in 3.

REMARK. Since élxélyA unfolds into a rather awkward formula we extend
the J-terminology to lists of variables:

éth,mnA =V (A— 1) — L.

Moreover let

ﬁzl,.,_,mn(Al Ao ANAR) =V g (A1 — - = Ay — L) — L.
This allows to stay in the —,V part of the language. Notice that A only
makes sense in this context, i.e., in connection with 3.

1.1.8. Intuitionistic and classical derivability. In the definition of
derivability in Section 1.1.4 falsity L plays no role. We may change this and
require ex-falso-quodlibet axioms, of the form

Vf(J_ — Rf)

with R a relation symbol distinct from 1. Let Efq denote the set of all such
axioms. A formula A is called intuitionistically derivable, written ; A, if
Efq - A. We write I' -; B for ' U Efq - B.

We may even go further and require stability axioms, of the form
Vz(——RZ — RZT)

with R again a relation symbol distinct from 1. Let Stab denote the set of
all these axioms. A formula A is called classically derivable, written F. A,
if Stabk A. We write I' -, B for I' U Stab I B.

It is easy to see that intuitionistically (i.e., from Efq) we can derive
1L — A for an arbitrary formula A, using the introduction rules for the
connectives. A similar generalization of the stability axioms is only possible
for formulas in the language not involving V, 3. However, it is still possible
to use the substitutes V and 3.

THEOREM (Stability, or principle of indirect proof).
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) F(——A—A) - (-——B— B) - —~(AAB) - AAB.
) F(=——B—B)— -+—(A— B)— A— B.

) F (A= A) —» 2V, A — Al

) Fe == A — A for every formula A without V, 3.

P

ROOF. (a) is left as an exercise.
(b) For simplicity, in the derivation to be constructed we leave out ap-
plications of —T at the end.

us: A— B w: A

Ul : -B B
B S g
v: ==(A — B) -(A— B)
L +
u: —B — B —-—B —wm
B
(©)
ug: Vi A x
up: A A
Lty
v: VA -V, A 2
+
u: ——A— A ——A "

A

(d) Induction on A. The case Rf with R distinct from L is given by Stab.
In the case L the desired derivation is
u: L
vi(L—1)—1 1 -1
1
In the cases AN B, A — B and V,A use (a), (b) and (c), respectively. [

-ty

Using stability we can prove some well-known facts about the interaction
of weak disjunction and the weak existential quantifier with implication. We
first prove a more refined claim, stating to what extent we need to go beyond
minimal logic.

LEMMA. The following are derivable.
(1) (3.A = B) =+ V.(A— B) ifxz ¢ FV(B),
(2) (——B — B) — (A—>B)—>3 A— B ifzx ¢ FV(B),
(3) (L — Blz:=c]) — (A — 3,B) = 3,(A—= B) ifx ¢ FV(A),
(4) 3.(A— B) > A—3,B if © ¢ FV(A).
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The last two items can also be seen as simplifying a weakly existentially
quantified implication whose premise does not contain the quantified variable.
In case the conclusion does not contain the quantified variable we have

(5) (--B—=B)— 3, (A= B) =V, A= B ifz¢FV(B),
(6)  Vo(-—A—= A) = (VpA— B) = 3, (A— B) ifz¢FV(B).

ProOOF. (1)

uy: Vy—A T

-A A
i .
3,A— B -V, A !
B
(2)
Vz(A — B) x
A— B Uy A
u9 : -B B
A —>+U1
V- A V,—A

L 4y

—|—\B — B —|—|B 2
B
(3) Writing By for B[z:=c| we have
-(A — B) A— B
- L
A— 3B ug: A j—ﬁul
3,B V.- B
1 — By il
Vy,—(A— B) ¢ By
=Y —>+UQ
—|(A — Bo) A— BO
L

Yy B x up: A— B A

-B B
7J_ —>+U1
-(A— B)
3.(A = B) V,—(A — B)
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V. A
Ui : A— B A
ug: B B

L +

~A-B) "

3.(A — B) V,—(A — B)
+
—|—|B—)B —|—|B - u2
B

15

(6) We derive V(L — A) = (V,A — B) — V(A — B) — ——A. Writing

Az, Ay for A(x), A(y) we have

Vy(L = Ay) v wuy: —Ax  ug: Ax
1 — Ay L
Ay
V. Az — B v, Ay
Vyo—(Ax — B) B
—=— sty
-(Ax — B) Az — B
L +
—|—|A[L‘ — u1
Using this derivation M we obtain
Vo(——Az — Ax) =« | M
——Ar — Az ——Ax
Ax
V. Ar — B V. Az
Vyo—(Ax — B) ¢ B
—(Ac — B) Ac— B
1
Since clearly - (-——A — A) — L — A the claim follows. O

REMARK. An immediate consequence of (6) is the classical derivability
of the “drinker formula” 3,(Pxz — V,Pz), to be read “in every non-empty
bar there is a person such that, if this person drinks, then everybody drinks”.
To see this let A := Pz and B :=V,Px in (6). Note that we assumed that

the language contains a constant c.
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COROLLARY.

(3.A = B) & V(A — B) ifx ¢ FV(B) and B without V, 3,

(A— 3,B) & 3.(A—= B) ifz¢FV(A),

Fe
F;
Fe 32(A = B) < (VoA — B) ifz ¢ FV(B) and A, B without V, 3.

There is a similar lemma on weak disjunction:

LEMMA. The following are derivable.

11) (——-C—-C)—-A—-C)V(B—-C)—A— B—C,
A—-B—-C)—=(A—=C)V(B—().

(7) (AVB—C)— (A= C)N(B— (),
(8) (——C—-C)—»(A—-C)—=(B—C)— AV B—C,
9) (L-B)—» (A—-BVC)—»(A—=B)V(A—=0),
(10) (A-B)V(A—-C)— A— BVC,

( (

( (

12) (L—=0C)—

PrROOF. We only consider (8) and (12); the rest is left as an exercise.

(8)

A—C ug: A
uy: ~C C B—C u3: B
Lo up: ¢ c
-A—-B— 1 —|A—>u2 i +
B 1| -B "
Ly
—|—|C—)C —|—|C 1
C
(12)
A—-B—C wu:A
B—C us: B
—C iy
-(A—C) A—-C !
e L
c_ .
~(B — O) B—C "
il

The general idea here is to view V as a finitary version of 3. U
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COROLLARY.

Fe(AVB—=C)+ (A= C)AN(B—C) for C without V, 3,
FHi(A—-BVC)+ (A— B)V (A= (0),
Fe(A—=C)V(B—C)+ (A— B—C) for C without V,3.

The weak existential quantifier 3 and weak disjunction V satisfy the same
introduction axioms as the strong ones: this follows from the derivability
of 3,4 - 3,A and AV B — AV B (see Section 1.1.7). They also satisfy
the same elimination axioms, provided one restricts the conclusion to stable
formulas. For 3 this has been proved in (2), and for V in (8).

Therefore when proving a stable goal in minimal logic more proof tech-
niques are available than in the general case. For instance, case distinction
on an arbitrary formula A is possible by (8), since A V —A is (easily) deriv-
able. Another important example is

LEMMA. The following is derivable.
V,mA V3 A
Proor. Unfolding V and 3 gives

Vz(A=>1)—=1)=> (Vza(A—=1L)—>1)—1)— L. O

A

It is often helpful to use this lemma in a slightly more general form, for
instancce

Vey(A— B— 1)V 3, ,(AAB).

The proof is again immediate, since the right hand side glmvy(A A B) unfolds
into the negated left hand side.

1.1.9. Gentzen translation. Classical derivability I' -, B was defined
in Section 1.1.8 by I' U Stab = B. This embedding of classical logic into
minimal logic can be expressed in a somewhat different and very explicit
form, namely as a syntactic translation A — A9 of formulas such that A
is derivable in classical logic if and only if its translation AY is derivable in
minimal logic.
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DEFINITION (Gentzen translation AY).

(Rt)? :=-—-Rt for R distinct from L,
19 =1,

(AV B)Y := A9V BY,

(F,A) =3, A9,

(AoB)Y :=A90 B9 foro=— A,

(Vo A)Y =V, A,

LEMMA (Stability of A9). - ——A9 — A9.

PRrROOF. Induction on A.

Case Rt with R distinct from L. We must show ————Rt — ——Rt,
which is a special case of - -——B — —B.

Case 1. Use b —-—1 — 1.

Case AV B. We must show - ——(A49 V BY) — A9 V BY, which is a
special case of - =—(=-C - =D - 1) - -C — =D — L:

up: ~C —-D — L -C
-D— 1 -D
1L
—=(=C = =D — 1) =(=C - -D — 1)
1

*>+U1

Case 3, A. In this case we must show - =—3, 49 — 3, A9, but this is a
special case of - ———B — =B, because 3, A9 is the negation —V,—AY.

Case A AN B. We must show - ——(A9 A B9) — A9 A BY. By induction
hypothesis F =—=A49 — A9 and  =—BY — BY. Now use part (a) of the
stability theorem in Section 1.1.8.

The cases A — B and V;A are similar, using parts (b) and (c) of the
stability theorem instead. O

THEOREM. (a) I' . A implies T9 F A9.
(b) TY9 = A9 implies T' . A for T, A without V, 3.

PROOF. (a) We use induction on I' . A. In case of a stability axiom
Vz(——RZ — RZ) we must derive Vz(————-RZ¥ — ——RZ), which is easy
(as above). For the rules =%, —~ V¥ V= AT and A~ the claim follows
immediately from the induction hypothesis, using the same rule again. This
works because the Gentzen translation acts as a homomorphism for these
connectives. For the rules \/;r, v~, 3t and 3~ the claim follows from the

induction hypothesis and the remark on the elimination rules for V,3 in
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Section 1.1.8. For example, in case 3~ the induction hypothesis gives

. A9
M u
. | and | N

with = ¢ FV(BY). Now use - (-—BY — BY) — 3,49 — V(A9 — BI) —
BY. Tts premise =——BY9 — BY is derivable by the lemma above.

(b) First note that . (B «» BY) if B is without V, 3. Now assume that
T', A are without Vv, 3. From I'Y - A9 we obtain T" . A as follows. We argue
informally. Assume I'. Then I'Y by the note, hence AY because of T'Y - AY,
hence A again by the note. O

1.2. Normal derivations

A derivation in normal form does not make “detours”, or more precisely,
it cannot occur that an elimination rule immediately follows an introduction
rule. We use “conversions” to remove such “local maxima” of complexity,
thus reducing any given derivation to normal form. We also analyse the
shape of derivations in normal form, and prove the subformula property,
which says that every formula in a normal derivation is a subformula of the
end-formula or else of an assumption. For simplicity we consider derivations
involving —, V-rules only.

1.2.1. The Curry-Howard correspondence. Since natural deduc-
tion derivations can be notationally cumbersome, it will be convenient to
represent them as typed “derivation terms”, where the derived formula is
the “type” of the term (and displayed as a superscript). This representa-
tion goes under the name of Curry-Howard correspondence. It dates back
to Curry (1930) and somewhat later Howard, published only in (1980), who
noted that the types of the combinators used in combinatory logic are ex-
actly the Hilbert style axioms for minimal propositional logic. Subsequently
Martin-Lof (1972) transferred these ideas to a natural deduction setting
where natural deduction proofs of formulas A now correspond exactly to
lambda terms with type A. This representation of natural deduction proofs
will henceforth be used consistently.

We give an inductive definition of such derivation terms for the —, V-
rules in Table 1 where for clarity we have written the corresponding deriva-
tions to the left. This can be extended to the rules for vV, A and 3, but we
will not do this here.

Every derivation term carries a formula as its type. However, we shall
usually leave these formulas implicit and write derivation terms without
them. Note that every derivation term can be written uniquely in one of
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Derivation Term
u: A u?
[u: A
| M ()\uA MB)AHB
B

| M | N
A= B A (MA=BNA)B
B -
| M
Ae MA) =4 (with var.cond.
Ay (with var.cond.) ( )77 (with var.cond.)
VA
| M
A7
TABLE 1. Derivation terms for — and V
the forms

uM | \yM | A\yM)NL,

where u is an assumption variable or assumption constant, v is an assump-
tion variable or object variable, and M, N, L are derivation terms or object
terms. Here the final form is not normal: (A,M)NL is called a 3-redex (for
“reducible expression”). It can be reduced by a “conversion”. A conversion
removes a detour in a derivation, i.e., an elimination immediately follow-
ing an introduction. We consider the following conversions, for derivations
written in tree notation and also as derivation terms.
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—-CONVErsion.
[u: A
| M 4
B | N [B-converts to
+

A>pB U A

B —
or written as derivation terms

A M (uM)BYAZBENA Boconverts to M(N4)B.

V-conversion.

- B

| M
!/
M Vo (B-converts to | M
Vo A(x) t A(t)
aw

or written as derivation terms
(AxM (2)A@N) 7= A@) B converts to M ().

The relation M =1 N (M reduces in one step to N) means that N is
obtained from M by replacement of (an occurrence of) a redex M’ of M by
a conversum M" of M’, i.e., by a single conversion.

ExaMPLE. Consider assumption variables

A= (B—A) — A u: A u': A
y: A—->B—= A v:B— A v': B
z: A

Then we have derivation terms

S = A Az (22(y2)): (A= (B—-A) - A) - (A-B—-A) - A=A

K = A\ A= (B—A)— A

K' = Ayt cA—>B— A
By the one step reduction relation we obtain

SKK' := (A Az (22(y2))) Ao ) (Aw Ay ') =1

Ay Az ((Audo w)2(y2)) Aw A ) =1
Ay Az (A 2)(y2))) (Aw Awr 1) -1
(AyAz 2) A Ay ) 1 Az 2.

The relation > is the transitive and reflexive closure of =1. We list some
standard definitions in the setting.
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e A term M is in normal form, or M is normal, if M does not contain

a redex.
e M has a normal form if there is a normal N such that M > N.
e A reduction sequence is a sequence Mgy =1 M =1 M ... (finite or

infinite) such that M; =1 M;;1, for all 4.

Finite reduction sequences are partially ordered under the initial part re-
lation; the collection of finite reduction sequences starting from a term M
forms a tree, the reduction tree of M. The branches of this tree may be iden-
tified with the collection of all infinite and all terminating finite reduction
sequences. A term is strongly normalizing if its reduction tree is finite.

One can show that every term is strongly normalizing, and that its
normal form is uniquely determined.

1.2.2. The structure of normal derivations. To analyze normal
derivations, it will be useful to introduce the notion of a track in a proof
tree, which makes sense for non-normal derivations as well.

DEFINITION. A track of a derivation M is a sequence of formula occur-
rences (f.0.) Ao, ..., Ay such that
(a) Ag is a top f.o. in M;
(b) A; for i < n is not the minor premise of an instance of —~, and A;;1 is
directly below A;;
(c) A, is either the minor premise of an instance of —~, or the conclusion

of M.

The track of order 0, or main track, in a derivation is the (unique) track
ending in the conclusion of the whole derivation. A track of order n + 1
is a track ending in the minor premise of an —~-application, with major
premise belonging to a track of order n.

LEMMA. In a derivation each formula occurrence belongs to some track.
ProOF. By induction on derivations. U

Now consider a normal derivation M. Since by normality an E-rule
cannot have the conclusion of an I-rule as its major premise, the E-rules
have to precede the I-rules in a track, so the following is obvious: a track
may be divided into an E-part, say Ao, ..., A;_1, a minimal formula A;, and
an I-part A;11,...,A,. In the E-part all rules are E-rules; in the I-part all
rules are I-rules; A; is the conclusion of an E-rule and, if ¢ < n, a premise
of an I-rule. Tracks are pieces of branches of the tree with successive f.0.’s
in the subformula relationship: either A;y1 is a subformula of A; or vice
versa. As a result, all formulas in a track Ag,..., A, are subformulas of Ay
or of A,; and from this, by induction on the order of tracks, we see that
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every formula in M is a subformula either of an open assumption or of the
conclusion. To summarize:

THEOREM (Subformula property). In a normal derivation each formula
is a subformula of either the end formula or else an assumption formula.

PROOF. One proves this for tracks of order n, by induction on n. O

REMARK (Long normal form). The minimal formula in a track can be
an implication A — B or a generalization V,A. However, we can apply an
“np-expansion” and replace the occurrence of A — B or V,A by

A— B u: A _ V. A x
B — A .
57 —Tu Vo
A—B V. A
Repeating this process we obtain a derivation in “long normal form”, all of
whose minimal formulas are neither implications nor generalizations.

1.3. Soundness and completeness for tree models

It is an obvious question to ask whether the logical rules we have been
considering suffice, i.e., whether we have forgotten some necessary rules. To
answer this question we first have to fix the meaning of a formula, i.e., pro-
vide a semantics. This will be done by means of the tree models introduced
by Beth (1956). Using this concept of a model we will prove soundness and
completeness.

1.3.1. Tree models. Consider a finitely branching tree of “possible
worlds”. The worlds are represented as nodes in this tree. They may be
thought of as possible states such that all nodes “above” a node k are the
ways in which k£ may develop in the future. The worlds are increasing; that
is, if an atomic formula Rt is true in a world k, then Rf is true in all future
worlds £’.

More formally, each tree model is based on a finitely branching tree 7. A
node k over a set S is a finite sequence k = (ag, a1, ...,an—1) of elements of
S; Ih(k) is the length of k. We write k < k" if k is an initial segment of k’. A
tree on S is a set of nodes closed under initial segments. A tree T is finitely
branching if every node in T has finitely many immediate successors. A tree
T is infinite if for every n € N there is a node k € T such that lh(k) = n.
A branch of a tree T is a linearly ordered subtree of 1" with the same root,
and a leaf of T is a node without successors in T. A tree T is complete if
every node in T has an immediate successor, i.e., T' has no leaves.

For the proof of the completeness theorem, the full tree over {0,1}
(whose branches constitute Cantor space) will suffice. The nodes will be
all the finite sequences of 0’s and 1’s, and the ordering is as above. The root
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is the empty sequence and kO is the sequence k with the element 0 added at
the end; similarly for k1.
For the rest of this section, fix a countable formal language L.

DEFINITION. Let T be a finitely branching tree. A tree model on T is a
triple 7 = (D, Iy, I1) such that

(a) D is a non-empty set;

(b) for every n-ary function symbol f (in the underlying language L), I
assigns to f a map Iy(f): D" — D;

(c) for every n-ary relation symbol R and every node k € T, I (R, k) C D"
is assigned in such a way that monotonicity is preserved:

k=K — L(R k) C L(RK)

If n = 0, then I1(R, k) is either true or false. There is no special re-
quirement set on I1(L, k). (Recall that minimal logic places no particular
constraints on falsum 1.) We write R7 (@, k) for @ € I;(R, k), and |T| to
denote the domain D.

It is obvious from the definition that any tree T can be extended to
a complete tree T' (i.e., without leaves), in which for every leaf k € T all
sequences k0, k00, k000,... are added to T. For every node kO...0, we
then add I;(R,k0...0) := I;(R, k). In the sequel we assume that all trees
T are complete.

An assignment (or variable assignment) in D is a map 7 assigning to
every variable x € dom(n) a value n(x) € D. Finite assignments will be
written as [x1 := aq,..., Ty 1= ap] or else as [a1/z1, . .., an/zy], with distinct
Z1,...,%n. If nis an assignment in D and a € D, let ¢ be the assignment
in D mapping = to a and coinciding with 1 elsewhere:

ar . Jnly) ify#u,
a(y) = {a if y =x.

Let a tree model T = (D, Ip,I;) and an assignment 1 in D be given. We
define a homomorphic extension of 7 (denoted by 7 as well) to terms ¢ whose
variables lie in dom(n) by

n(c) = Iy(c
n(f (..o tn)) = Io(f)(n(t1), ..., n(tn))

Observe that the extension of 7 depends on T; we often write 7 [5)] for n(t).

~

)

DEFINITION. T,k IF Aln] (T forces A at node k for an assignment 7) is
defined inductively. We write k IF A[n] when it is clear from the context what
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the underlying model T is, and Vjr= A for Viwi(Ih(K") = Ih(k) +n — A).
kIE (RO =3 wRT (7 [0, ),
kIF(AV B)n] =3,V k(K I+ Al vV E I Bln),
klE(FA)M] = 3wk 3aem (K 1F AlnZ)),
k1 (A= B)n| == V=K' IF Aln] = k' I+ Bln)),
kElF(AAB)n =kl An Akl- B,
kIE (VoA = Vaer (k- Alnz]).

Thus in the atomic, disjunctive and existential cases, the set of &’ whose

length is lh(k) + n acts as a “bar” in the complete tree. Note that the im-
plicational case is treated differently, and refers to the “unbounded future”.

In this definition, the logical connectives —, A, V,V,3d on the left hand
side are part of the object language, whereas the same connectives on the
right hand side are to be understood in the usual sense: they belong to
the “metalanguage”. It should always be clear from the context whether a
formula is part of the object or the metalanguage.

1.3.2. Covering lemma. It is easily seen (using the definition and
monotonicity) that from k |- A[n] and & < k' we can conclude £’ I Aln].
The converse is true as well:

LEMMA (Covering).
Virs k(K IF Aln)) = k IF An).
PROOF. Induction on A. We write k I+ A for k I- A[n].

Case Rt. Assume
Vs k(K IF RE),

hence by definition
Vi ukImVkrse i BT (87 ], K").
Since T is a finitely branching tree,
3V, kR (E7T 0], k).

Hence k I RE.

The cases AV B and 3, A are handled similarly.

Case A — B. Assume that for all ¥ = k with Ih(k’") = 1h(k) + n we
have ¥’ I A — B . The goal is k IF A — B, i.e.,

Vltk(l FA—1IF B)

Let [ = k and I IF A. We must show [ I+ B. Case 1h(l) < 1h(k):
Then £’ IF B for all these k', hence [ I B by IH for B. Case Ih(k') < 1h(l):
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k,/
\l/
n
k
l
]{7/
n
k

Because of k' I A — B and [ |- A we obtain [ IF B, by definition of I+.
The cases A A B and V, A are easy. O

1.3.3. Soundness.

LEMMA (Coincidence). Let T be a tree model, t a term, A a formula
and n, & assignments in |T|.
(a) If n(z) = &(x) for all x € vars(t), then n(t) = £(t).
(b) If n(z) = &(x) for all x € FV(A), then T,k |- Aln] if and only if
T,k A[g].

PRrOOF. Induction on terms and formulas. O

LEMMA (Substitution). Let T be a tree model, t,r(z) terms, A(z) a
formula and n an assignment in |T|. Then

(a) n(r(t)) = " (r(x)).
(b) Tk I- A(t)[n] if and only if T,k I A(z)[!")].

Proor. Induction on terms and formulas. O

THEOREM (Soundness). Let TU{A} be a set of formulas such thatT + A.
Then, if T is a tree model, k any node and n an assignment in |T|, it follows
that T, k |k T[n] implies T,k I+ An].
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ProOF. Induction on derivations.

We begin with the axiom schemes Vd, Vi, V7, AT, A7, 3 and 3~.
kIF C[n] is abbreviated k |- C', when 7 is known from the context.

Case \/ar: A — AV B. Weshow k IF A — AV B. Assume for ¥ > k that
k' |- A. Show: k' I+ AV B. This follows from the definition, since k' I+ A.
The case \/f: B — AV B is symmetric.

Case V7: AVB - (A —- C) - (B - C) - C. We show that
kElFAvB - (A — C) - (B — C) — C. Assume for ¥ > k that
E'lFAVB, K IFA— Cand k' IF B — C (we can safely assume that &’
is the same for all three premises). Show that k' IF C. By definition, there
is an n s.t. for all ¥ =, K/, k" I+ A or k¥ I B. In both cases it follows
that k" I- C, since ¥’ I A — C and k¥’ I B — C. By the covering lemma,
K I+ C.

The cases AT, A~ are easy.

Case 3t: A — 3, A. We show k I- (A — 3,A4)[n]. Assume ¥’ = k and

k' IF A[n]. We show k' I+ (3,A)[n]. Since n = nz(x) there is an a € |T|
(namely a := n(x)) such that &' - A[n¢]. Hence, k' IF (3,A)[n].

Case 37: 3,4 — V4 (A — B) — B and = ¢ FV(B). We show that
klF (3;A = V4(A — B) — B)[n]. Assume that ¥’ = k and k' IF (3,4)[n]
and k¥ IF V(A — B)[n]. We show k' I B[n]. By definition, there is
an n such that for all ¥’ =, k¥’ we have a € |T| and k" I+ A[n%]. From
E'IF Vi (A — B)[n] it follows that k" |- B[n%], and since x ¢ FV(B), from
the coincidence lemma, k” |- B[n]. Then, finally, by the covering lemma
k' I+ Bin).

This concludes the treatment of the axioms. We now consider the rules.
In case of the assumption rule u: A we have A € I' and the claim is obvious.

Case —T. Assume k IF . We show k IF A — B. Assume k' > k and
K IF A. Our goal is k' IF B. We have k' | T'U {A}. Thus, ¥’ IF B by
induction hypothesis.

Case —~. Assume k IF I'. The induction hypothesis givesus k IF A — B
and k I+ A. Hence k IF B.

Case V. Assume k IF T'[n] and z ¢ FV(T'). We show k I (V,A)[n], i.e.,
kIF A[n%] for an arbitrary a € |7|. We have

k- T[n%] by the coincidence lemma, since x ¢ FV(T'),
k- A[n%] by induction hypothesis.
Case V™. Let k IF I'[n]. We show that k I- A(t)[n]. This follows from
kI (VzA(x))[n] by induction hypothesis,
k- A(z)[n7™] by definition,
k- A(t)[n] by the substitution lemma.
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This concludes the proof. O

1.3.4. Counter models. With soundness at hand, it is easy to build
counter models proving that certain formulas are underivable in minimal
or intuitionistic logic. A tree model for intuitionistic logic is a tree model
T = (D, Iy, I) in which I; (L, k) is false for all k.

As an example we show that t/; =——P — P. Assume ; =——P — P, i.e.,
Efq F =——P — P. We will obtain a contradiction from this assumption.
For simplicity we assume that from Efq we have only used 1 — P and
say L — @ for some Q. We can now substitute L for @) everywhere and
obtain a derivation in minimal logic, since 1 — L is immediately derivable.
Hence we have - (L — P) — =—=P — P. We can now obtain the desired
contradiction using a tree model determined by the figure below. Next to
every node we write all propositions forced at that node.

This is a tree model because monotonicity clearly holds. Observe also that
I(L,k) is false at all nodes k. Hence this is an intuitionistic tree model.
By the definition of forcing we have

(i) L — P is forced at every node.

(ii) P — L (i.e., =P) is never forced.

(iii) =P is forced at every node.

(iv) The root node does not force P, since there are arbitrarily long o-nodes.
This is the desired contradiction to the Soundness Theorem.

The model also shows that the Peirce formula (P — Q) — P) — P is

not derivable in intuitionistic logic.

1.3.5. Completeness.

THEOREM (Completeness). Let I'U {A} be a set of formulas. Then the
following propositions are equivalent.
(a) T'H A.
(b) T'IF A, i.e., for all tree models T, nodes k and assignments n

T,kI-Tn — T,k I Alnl.

PROOF. Soundness already gives “(a) implies (b)”. For the other direc-
tion we employ a technique due to Harvey Friedman and construct a tree
model T (over the set Tp; of all finite 0-1-sequences) whose domain D is the
set of all terms of the underlying language, with the property that I' - B is
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equivalent to 7, () IF B[id]. T will depend on I'. We can assume here that
I" and A are closed.

In order to define 7, we will need an enumeration Ay, A1, Ao, ... of the
underlying language £ (assumed countable), in which every formula occurs
infinitely often. We also fix an enumeration zg,x1,... of distinct variables.
Since I' is countable it can we written I' = (J,, I';, with finite sets I',, such
that I';, C I'y,11. With every node k € Ty, we associate a finite set Ay of
formulas and a set Vj of variables, by induction on the length of k.

Let Ay := 0 and V}y := (). Take a node k such that lh(k) = n and
suppose that Ay, Vj are already defined. Write A F,, B to mean that there
is a derivation of length < n of B from A. We define Ayg, Vio and Ay, Via
as follows:

Case 0. FV(A,,) € Vi. Then let

Ao =Ap1:= A, and Vi :i= Vi =V,
Case 1. FV(A,) C Vi and 'y, Ag 4 Ay Let
Apo:=Ar and Ag:=ApU {An},
VkO = Vkl = Vk
Case 2. FV(A,) C Vi and Ty, Ag b, Ay, = ALV Al Let
Apo = A U {An,A;} and App = Ap U {An, AZ},
Vk() = Vkl = Vk.
Case 3. FV(A,) C Vi and 'y, Ag b, Ay, = 3, A (2). Let
Akg = Akl = Ak U {An,A%(:cZ)} and VkO = Vkl = Vk U {HEZ},
where z; is the first variable ¢ V.

Case 4. FV(A,) C Vi and Ty, A, Ay, with A, neither a disjunction

nor an existentially quantified formula. Let
Ao = Ap1 := Ap U {An} and Vi := Vi =V,

Obviously FV(Ag) C Vi, and k < k' implies that Ay C Ay. Notice
also that because of - 3,(L — L) and the fact that this formula is repeated
infinitely often in the given enumeration, for every variable x; there is an m
such that z; € V, for all k£ with lh(k) = m.

We note that
(13) Virsok (D, Ay B B) - T, A = B, provided FV(B) C V.

It is sufficient to show that, for FV(B) C Vi,
(F, Ago F B) N (F,Akl F B) — (F,Ak F B)

In cases 0, 1 and 4, this is obvious. For case 2, the claim follows imme-
diately from the axiom schema V™. In case 3, we have FV(A4,) C V; and
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Ty, Ag br Ay = 3, A0 (z). Assume T') Ap U{A,, Al (x;)} b B with z; ¢ Vj,
and FV(B) C Vj. Then z; ¢ FV(A, U {A,, B}), hence I', A, U{A,} - B
by 37 and therefore I', Ax - B.

Next, we show

(14) I'NAyFB— ank’tnk (B S Ak/), provided FV(B) C V.

Choose n > lh(k) such that B = A, and T'y,, Ay b, A,,. For all ¥’ = k, if
Ih(k') =n+1 then A, € Ag (cf. the cases 2 - 4).

Using the sets Ap we can define a tree model 7 as (Ter, Iy, I;) where
Ter denotes the set of terms of the underlying language, Iy(f)(f) := ft and

RT(t.k) = (R, k)(¥) := (Rt € Ay).

Obviously, ¢7 [id] = t for all terms ¢.
Now write k IF B for T,k I B[id]. We show:

Cramm. I',Ax F B < kI B provided FV(B) C V.

The proof is by induction on B.
Case Rt. Assume FV(Rt ) C Vj. The following are equivalent:

I',A, - Rt,

3V x (REE Ap) Dby (14) and (13),

3,V RT(6,K) by definition of T,

k|- Rt by definition of I, since ¢7 [id] = t.

Case BV C. Assume FV(BV C) C Vi. For the implication — let
A F BV C. Choose an n > lh(k) such that I'),, Ay F, A, = BV C.
Then, for all &' > k s.t. Ih(k') = n,

Ak/(]:Ak/U{B\/C,B} and Apn :Ak/U{B\/C,C},
and therefore by induction hypothesis
KOl-B and K'1IFC.

Then by definition we have k IF BV C'. For the reverse implication < argue
as follows.

k- BVC,
3V k(K I BVE |- C),
3V (I, A F B) vV (I, Ay F C)) by induction hypothesis,
3V (I, A =BV C),
Ay BV C by (13).
Case B A C. This is evident.
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Case B — C. Assume FV(B — C) C Vi. For — let I, Ay + B — C.
We must show k IF B — C, i.e.,

Vk/tk(k/ B — k'/ I+ C)

Let k¥’ = k be such that k¥’ IF B. By induction hypothesis, it follows that
I'’Ay + B. Hence I' Ay + C follows by assumption. Then again by
induction hypothesis & I+ C.

For «— let k IF B — C, ie., Vsi(K' F B — k' IF C'). We show that
')Ay = B — C, using (13). Choose n > lh(k) such that B = A,,. For all
k' = k with m := n — lh(k) we show that I',; Ay, - B — C.

If 'y, Ay b, A,, then k' I B by induction hypothesis, and ¥’ I C
by assumption. Hence I', Ay, F C again by induction hypothesis and thus
T, Ay B C.

If Ty, Ags i Ay, then by definition Apqy = A U{B}. Hence I', Aprq F
B, and thus ¥'1 IF B by induction hypothesis. Now k1 |- C' by assumption,
and finally I', Agq F C by induction hypothesis. From Apq = Ay U{B} it
follows that I', A H B — C.

Case Yy B(x). Assume FV(V,B(x)) C V. For — let I', Ay - Vo B(x).
Fix a term ¢t. Then I', Ay = B(t). Choose n > 1h(k) such that FV(B(t)) C
Vi for all k' with lh(k,) = n. Then Vi, i (T, Apr + B(t)) with m :=
n—1h(k), hence Vi~ 1 (K" I B(t)) by induction hypothesis, hence k |- B(t
by the covering lemma. This holds for every term ¢, hence k I- V,B(x).

For < assume k I+ V,B(z). Pick k¥’ =, k such that A,, = 3,(L — 1),
for m := lh(k) + n. Then at height m we put some z; into the variable
sets: for k' =, k we have x; ¢ Viy but x; € V. Clearly k'j IF B(z;),
hence I', Ayr; = B(x;) by induction hypothesis, hence (since at this height
we consider the trivial formula 3,(L — 1)) also I', Ay + B(x;). Since
x; € Vi we obtain T, Ay + V,B(z). This holds for all k' =, k, hence
T, Ay -V, B(z) by (13).

Case 3;B(x). Assume FV(3,B(x)) C Vi. For — let I', Ay - 3, B(x).
Choose an n > lh(k) such that Ty, Ay by, A, = 3, B(x). Then, for all &' = k
with 1h(k¥') =n

Ak/o = Akll = Ak’ U {Ele(x), B(I'z)}

where z; ¢ Vis. Hence by induction hypothesis for B(x;) (applicable since
FV(B(a:Z)) - Vk’j for j = 0, 1)
K0l B(x;) and K'1I- B(z;).

It follows by definition that k I 3, B(x).
For + assume k I~ 3, B(x). Then V=, xJieter (K" IF B(2)[id%]) for some
n, hence Vi~ kJteter (K IF B(t)). For each of the finitely many &' =, k pick
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an m such that Ve 1 (FV(B(ti)) C Vir). Let mg be the maximum of all
these m. Then
Vi et (K 1+ B() AFV(B()) C Vi),

The induction hypothesis for B(t) yields
k:EItETer (Fu Ak‘” F B(t))a
m0+nk (F7 Ak// l_ Ele(:L')),
and this completes the proof of the claim.

Now we can finish the proof of the completeness theorem by showing
that (b) implies (a). We apply (b) to the tree model 7 constructed above
from T, the empty node () and the assignment 7 = id. Then T, () I I'[id] by

the claim (since each formula in I' is derivable from I'). Hence T, () I- A[id]
by (b) and therefore I' = A by the claim again. O

vk”tmo +n

Vk”t



