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CHAPTER 1

Formal Proofs

The main subject of Mathematical Logic is mathematical proof. In this
introductory chapter we deal with the basics of formalizing such proofs and,
via normalization, analysing their structure. The system we pick for the
representation of proofs is Gentzen’s natural deduction from (1935). Our
reasons for this choice are twofold. First, as the name says this is a natural
notion of formal proof, which means that the way proofs are represented
corresponds very much to the way a careful mathematician writing out all
details of an argument would proceed anyway. Second, formal proofs in
natural deduction are closely related (via the so-called Curry-Howard cor-
respondence) to terms in typed lambda calculus. This provides us not only
with a compact notation for logical derivations (which otherwise tend to be-
come somewhat unmanagable tree-like structures), but also opens up a route
to applying the computational techniques which underpin lambda calculus.

An underlying theme of this chapter is to bring out the constructive
content of logic, particularly in regard to the relationship between minimal
and classical logic. For us the latter is most appropriately viewed as a
subsystem of the former. This approach will reveal some interesting aspects
of proofs, e.g., that it is possible and useful to distinguish beween existential
proofs that actually construct witnessing objects, and others that don’t.

As an example for a non-constructive existence proof, consider the fol-
lowing proposition.

There are irrational numbers a, b such that ab is rational.

This can be proved as follows, by cases.

Case
√

2
√
2

is rational. Choose a =
√

2 and b =
√

2. Then a, b are
irrational and by assumption ab is rational.

Case
√

2
√
2

is irrational. Choose a =
√

2
√
2

and b =
√

2. Then by
assumption a, b are irrational and

ab =
(√

2

√
2
)√2

=
(√

2
)2

= 2

is rational.
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As long as we have not decided whether
√

2
√
2

is rational, we do not
know which numbers a, b we must take. Hence we have an example of an
existence proof which does not provide an instance.

Weyl (1921) gave a somewhat drastic description of this situation:

Ein Existentialsatz – etwa “es gibt eine gerade Zahl” –
ist überhaupt kein Urteil im eigentlichen Sinne, das einen
Sachverhalt behauptet; Existentialsachverhalte sind eine
leere Erfindung der Logiker. “2 ist eine gerade Zahl”, das
ist ein wirkliches, einem Sachverhalt Ausdruck gebendes
Urteil; “es gibt eine gerade Zahl” ist nur ein aus diesem
Urteil gewonnenes Urteilsabstrakt. Bezeichne ich Erkennt-
nis als einen wertvollen Schatz, so ist das Urteilsabstrakt
ein Papier, welches das Vorhandensein eines Schatzes an-
zeigt, ohne jedoch zu verraten, an welchem Ort. Sein
einziger Wert kann darin liegen, daß es mich antreibt, nach
dem Schatze zu suchen.

1.1. Natural deduction

The rules of natural deduction come in pairs: we have an introduc-
tion and an elimination rule for each of the logical connectives. The re-
sulting system is called minimal logic; it was introduced by Kolmogorov
(1932), Gentzen (1935) and Johansson (1937). Notice that no negation
is yet present. If we go on and require ex-falso-quodlibet for the nullary
propositional symbol ⊥ (“falsum”) we can embed intuitionistic logic with
negation as A → ⊥. To embed classical logic, we need to go further and
add as an axiom schema the principle of indirect proof, also called stabil-
ity (∀~x(¬¬R~x→ R~x ) for relation symbols R), but then it is appropriate to
restrict to the language based on→, ∀, ⊥ and ∧. The reason for this restric-
tion is that we can neither prove ¬¬∃xA→ ∃xA nor ¬¬(A∨B)→ A∨B, for
there are countermodels to both (the former is Markov’s scheme). However,
we can prove them for the classical existential quantifier and disjunction
defined by ¬∀x¬A and ¬A → ¬B → ⊥. Thus we need to make a distinc-
tion between two kinds of “exists” and two kinds of “or”: the classical ones
are “weak” and the non-classical ones “strong” since they have constructive
content. In situations where both kinds occur together we must mark the
distinction, and we shall do this by writing a tilde above the weak disjunction
and existence symbols thus ∨̃, ∃̃.

1.1.1. Terms and formulas. Let a countably infinite set { vi | i ∈ N }
of variables be given; they will be denoted by x, y, z. A first-order language
L then is determined by its signature, which is to mean the following.
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(i) For every natural number n ≥ 0 a (possible empty) set of n-ary rela-
tion symbols (or predicate symbols). 0-ary relation symbols are called
propositional symbols. ⊥ (read “falsum”) is required as a fixed proposi-
tional symbol. The language will not, unless stated otherwise, contain
= as a primitive. Binary relation symbols can be marked as infix.

(ii) For every natural number n ≥ 0 a (possible empty) set of n-ary function
symbols. 0-ary function symbols are called constants. Binary function
symbols can again be marked as infix.

We assume that all these sets of variables, relation and function symbols are
disjoint. L is kept fixed and will only be mentioned when necessary.

Terms are inductively defined as follows.

(i) Every variable is a term.
(ii) Every constant is a term.
(iii) If t1, . . . , tn are terms and f is an n-ary function symbol with n ≥ 1,

then f(t1, . . . , tn) is a term. (If t, s are terms and ◦ is a binary function
symbol, then (t ◦ s) is a term.)

From terms one constructs prime formulas, also called atomic formulas
or just atoms: If t1, . . . , tn are terms and R is an n-ary relation symbol, then
R(t1, . . . , tn) is a prime formula. (If t, s are terms and ∼ is a binary relation
symbol, then (t ∼ s) is a prime formula.)

Formulas are inductively defined from prime formulas by

(i) Every prime formula is a formula.
(ii) If A and B are formulas, then so are (A→ B) (“if A then B”), (A∧B)

(“A and B”) and (A ∨B) (“A or B”).
(iii) If A is a formula and x is a variable, then ∀xA (“A holds for all x”)

and ∃xA (“there is an x such that A”) are formulas.

Negation is defined by
¬A := (A→ ⊥).

We shall often need to do induction on the height, denoted |A|, of
formulas A. This is defined as follows: |P | = 0 for atoms P , |A ◦ B| =
max(|A|, |B|) + 1 for binary operators ◦ (i.e., →,∧,∨) and | ◦ A| = |A| + 1
for unary operators ◦ (i.e., ∀x, ∃x).

1.1.2. Substitution, free and bound variables. Expressions E , E ′
which differ only in the names of bound (occurrences of) variables will be
regarded as identical. This is sometimes expressed by saying that E and E ′
are α-equal. In other words, we are only interested in expressions “modulo
renaming of bound variables”. There are methods of finding unique repre-
sentatives for such expressions, e.g., the name-free terms of de Bruijn (1972).
For the human reader such representations are less convenient, so we shall
stick to the use of bound variables.
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In the definition of “substitution of expression E ′ for variable x in ex-
pression E”, either one requires that no variable free in E ′ becomes bound
by a variable-binding operator in E , when the free occurrences of x are re-
placed by E ′ (also expressed by saying that there must be no “clashes of
variables”), “E ′ is free for x in E”, or the substitution operation is taken to
involve a systematic renaming operation for the bound variables, avoiding
clashes. Having stated that we are only interested in expressions modulo
renaming bound variables, we can without loss of generality assume that
substitution is always possible.

Also, it is never a real restriction to assume that distinct quantifier
occurrences are followed by distinct variables, and that the sets of bound
and free variables of a formula are disjoint.

Notation. “FV” is used for the (set of) free variables of an expression;
so FV(t) is the set of variables free in the term t, FV(A) the set of variables
free in formula A etc. A formula A is said to be closed if FV(A) = ∅.
E [x := t] denotes the result of substituting the term t for the variable

x in the expression E . Similarly, E [~x := ~t ] is the result of simultaneously
substituting the terms ~t = t1, . . . , tn for the variables ~x = x1, . . . , xn, respec-
tively.

In a given context we shall adopt the following convention. Once a
formula has been introduced as A(x), i.e., A with a designated variable x,
we write A(t) for A[x := t], and similarly with more variables.

1.1.3. Subformulas. Unless stated otherwise, the notion of subfor-
mula will be that defined by Gentzen.

Definition. (Gentzen) subformulas of A are defined by

(a) A is a subformula of A;
(b) if B ◦ C is a subformula of A then so are B, C, for ◦ = →,∧,∨;
(c) if ∀xB(x) or ∃xB(x) is a subformula of A, then so is B(t).

Definition. The notions of positive, negative, strictly positive subfor-
mula are defined in a similar style:

(a) A is a positive and a strictly positive subformula of itself;
(b) if B ∧ C or B ∨ C is a positive (negative, strictly positive) subformula

of A, then so are B, C;
(c) if ∀xB(x) or ∃xB(x) is a positive (negative, strictly positive) subformula

of A, then so is B(t);
(d) if B → C is a positive (negative) subformula of A, then B is a negative

(positive) subformula of A, and C is a positive (negative) subformula of
A;

(e) if B → C is a strictly positive subformula of A, then so is C.
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A strictly positive subformula of A is also called a strictly positive part
(s.p.p.) of A. Note that the set of subformulas of A is the union of the
positive and negative subformulas of A.

Example. (P → Q) → R ∧ ∀xS(x) has as s.p.p.’s the whole formula,
R ∧ ∀xS(x), R, ∀xS(x), S(t). The positive subformulas are the s.p.p.’s and
in addition P ; the negative subformulas are P → Q, Q.

1.1.4. Examples of derivations. To motivate the rules for natural
deduction, let us start with informal proofs of some simple logical facts.

(A→ B → C)→ (A→ B)→ A→ C.

Informal proof. Assume A → B → C. To show: (A → B) → A → C.
So assume A → B. To show: A → C. So finally assume A. To show: C.
Using the third assumption twice we have B → C by the first assumption,
and B by the second assumption. From B → C and B we then obtain
C. Then A → C, cancelling the assumption on A; (A → B) → A → C
cancelling the second assumption; and the result follows by cancelling the
first assumption. �

∀x(A→ B)→ A→ ∀xB, if x /∈ FV(A).

Informal proof. Assume ∀x(A→ B). To show: A→ ∀xB. So assume A. To
show: ∀xB. Let x be arbitrary; note that we have not made any assumptions
on x. To show: B. We have A → B by the first assumption. Hence also
B by the second assumption. Hence ∀xB. Hence A → ∀xB, cancelling the
second assumption. Hence the result, cancelling the first assumption. �

A characteristic feature of these proofs is that assumptions are intro-
duced and eliminated again. At any point in time during the proof the free
or “open” assumptions are known, but as the proof progresses, free assump-
tions may become cancelled or “closed” because of the implies-introduction
rule.

We reserve the word proof for the informal level; a formal representation
of a proof will be called a derivation.

An intuitive way to communicate derivations is to view them as labelled
trees each node of which denotes a rule application. The labels of the inner
nodes are the formulas derived as conclusions at those points, and the labels
of the leaves are formulas or terms. The labels of the nodes immediately
above a node k are the premises of the rule application. At the root of
the tree we have the conclusion (or end formula) of the whole derivation.
In natural deduction systems one works with assumptions at leaves of the
tree; they can be either open or closed (cancelled). Any of these assump-
tions carries a marker . As markers we use assumption variables denoted
u, v, w, u0, u1, . . . . The variables of the language previously introduced will
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now often be called object variables, to distinguish them from assumption
variables. If at a node below an assumption the dependency on this as-
sumption is removed (it becomes closed) we record this by writing down the
assumption variable. Since the same assumption may be used more than
once (this was the case in the first example above), the assumption marked
with u (written u : A) may appear many times. Of course we insist that
distinct assumption formulas must have distinct markers. An inner node of
the tree is understood as the result of passing from premises to the conclu-
sion of a given rule. The label of the node then contains, in addition to the
conclusion, also the name of the rule. In some cases the rule binds or closes
or cancels an assumption variable u (and hence removes the dependency of
all assumptions u : A thus marked). An application of the ∀-introduction
rule similarly binds an object variable x (and hence removes the dependency
on x). In both cases the bound assumption or object variable is added to
the label of the node.

Definition. A formula A is called derivable (in minimal logic), writ-
ten ` A, if there is a derivation of A (without free assumptions) using
the natural deduction rules. A formula B is called derivable from assump-
tions A1, . . . , An, if there is a derivation of B with free assumptions among
A1, . . . , An. Let Γ be a (finite or infinite) set of formulas. We write Γ ` B if
the formula B is derivable from finitely many assumptions A1, . . . , An ∈ Γ.

We now formulate the rules of natural deduction.

1.1.5. Introduction and elimination rules for → and ∀. First we
have an assumption rule, allowing to write down an arbitrary formula A
together with a marker u:

u : A assumption.

The other rules of natural deduction split into introduction rules (I-rules for
short) and elimination rules (E-rules) for the logical connectives which, for
the time being, are just→ and ∀. For implication→ there is an introduction
rule →+ and an elimination rule →− also called modus ponens. The left
premise A→ B in →− is called the major (or main) premise, and the right
premise A the minor (or side) premise. Note that with an application of the
→+-rule all assumptions above it marked with u : A are cancelled (which
is denoted by putting square brackets around these assumptions), and the
u then gets written alongside. There may of course be other uncancelled
assumptions v : A of the same formula A, which may get cancelled at a later
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stage.
[u : A]

|M
B →+uA→ B

|M
A→ B

| N
A →−B

For the universal quantifier ∀ there is an introduction rule ∀+ (again marked,
but now with the bound variable x) and an elimination rule ∀− whose right
premise is the term t to be substituted. The rule ∀+x with conclusion ∀xA
is subject to the following (eigen-)variable condition: the derivation M of
the premise A must not contain any open assumption having x as a free
variable.

|M
A ∀+x∀xA

|M
∀xA(x) t

∀−
A(t)

We now give derivations of the two example formulas treated informally
above. Since in many cases the rule used is determined by the conclusion,
we suppress in such cases the name of the rule.

u : A→ B → C w : A
B → C

v : A→ B w : A
B

C →+wA→ C →+v
(A→ B)→ A→ C

→+u
(A→ B → C)→ (A→ B)→ A→ C

u : ∀x(A→ B) x

A→ B v : A
B ∀+x∀xB →+vA→ ∀xB →+u∀x(A→ B)→ A→ ∀xB

Note that the variable condition is satisfied: x is not free in A (and also not
free in ∀x(A→ B)).

1.1.6. Properties of negation. Recall that negation is defined by
¬A := (A→ ⊥). The following can easily be derived.

A→ ¬¬A,
¬¬¬A→ ¬A.

However, ¬¬A → A is in general not derivable (without stability – we will
come back to this later on).
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Lemma. The following are derivable.

(A→ B)→ ¬B → ¬A,
¬(A→ B)→ ¬B,

¬¬(A→ B)→ ¬¬A→ ¬¬B,
(⊥ → B)→ (¬¬A→ ¬¬B)→ ¬¬(A→ B),

¬¬∀xA→ ∀x¬¬A.

Derivations are left as an exercise.

1.1.7. Introduction and elimination rules for disjunction ∨, con-
junction ∧ and existence ∃. For disjunction the introduction and elimi-
nation rules are

|M
A ∨+0

A ∨B

|M
B ∨+1

A ∨B

|M
A ∨B

[u : A]

| N
C

[v : B]

| K
C ∨−u, v

C

For conjunction we have

|M
A

| N
B ∧+A ∧B

|M
A ∧B

[u : A] [v : B]

| N
C ∧− u, v

C

and for the existential quantifier

t

|M
A(t)

∃+∃xA(x)

|M
∃xA

[u : A]

| N
B ∃−x, u (var.cond.)

B

Similar to ∀+x the rule ∃−x, u is subject to an (eigen-)variable condition:
in the derivation N the variable x (i) should not occur free in the formula
of any open assumption other than u : A, and (ii) should not occur free in
B.

Again, in each of the elimination rules ∨−, ∧− and ∃− the left premise
is called major (or main) premise, and the right premise is called the minor
(or side) premise.

It is easy to see that for each of the connectives ∨, ∧, ∃ the rules and the
following axioms are equivalent over minimal logic; this is left as an exercise.
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For disjunction the introduction and elimination axioms are

∨+0 : A→ A ∨B,
∨+1 : B → A ∨B,
∨− : A ∨B → (A→ C)→ (B → C)→ C.

For conjunction we have

∧+ : A→ B → A ∧B, ∧− : A ∧B → (A→ B → C)→ C

and for the existential quantifier

∃+ : A→ ∃xA, ∃− : ∃xA→ ∀x(A→ B)→ B (x /∈ FV(B)).

Remark. All these axioms can be seen as special cases of a general
schema, that of an inductively defined predicate, which is defined by some
introduction rules and one elimination rule.

We collect some easy facts about derivability; B ← A means A→ B.

Lemma. The following are derivable.

(A ∧B → C)↔ (A→ B → C),

(A→ B ∧ C)↔ (A→ B) ∧ (A→ C),

(A ∨B → C)↔ (A→ C) ∧ (B → C),

(A→ B ∨ C)← (A→ B) ∨ (A→ C),

(∀xA→ B)← ∃x(A→ B) if x /∈ FV(B),

(A→ ∀xB)↔ ∀x(A→ B) if x /∈ FV(A),

(∃xA→ B)↔ ∀x(A→ B) if x /∈ FV(B),

(A→ ∃xB)← ∃x(A→ B) if x /∈ FV(A).

Proof. A derivation of the final formula is

u : ∃x(A→ B)
x

w : A→ B v : A
B

∃xB ∃−x,w
∃xB →+vA→ ∃xB →+u∃x(A→ B)→ A→ ∃xB

The variable condition for ∃− is satisfied since the variable x (i) is not free
in the formula A of the open assumption v : A, and (ii) is not free in ∃xB.
The rest of the proof is left as an exercise. �
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As already mentioned, we distinguish between two kinds of “exists” and
two kinds of “or”: the “weak” or classical ones and the “strong” or non-
classical ones, with constructive content. In the present context both kinds
occur together and hence we must mark the distinction; we shall do this by
writing a tilde above the weak disjunction and existence symbols thus

A ∨̃ B := ¬A→ ¬B → ⊥, ∃̃xA := ¬∀x¬A.
These weak variants of disjunction and the existential quantifier are no
stronger than the proper ones (in fact, they are weaker):

A ∨B → A ∨̃ B, ∃xA→ ∃̃xA.
This can be seen easily by putting C := ⊥ in ∨− and B := ⊥ in ∃−.

Remark. Since ∃̃x∃̃yA unfolds into a rather awkward formula we extend

the ∃̃-terminology to lists of variables:

∃̃x1,...,xnA := ∀x1,...,xn(A→ ⊥)→ ⊥.
Moreover let

∃̃x1,...,xn(A1 ∧̃ . . . ∧̃Am) := ∀x1,...,xn(A1 → · · · → Am → ⊥)→ ⊥.
This allows to stay in the →,∀ part of the language. Notice that ∧̃ only
makes sense in this context, i.e., in connection with ∃̃.

1.1.8. Intuitionistic and classical derivability. In the definition of
derivability in Section 1.1.4 falsity ⊥ plays no role. We may change this and
require ex-falso-quodlibet axioms, of the form

∀~x(⊥ → R~x )

with R a relation symbol distinct from ⊥. Let Efq denote the set of all such
axioms. A formula A is called intuitionistically derivable, written `i A, if
Efq ` A. We write Γ `i B for Γ ∪ Efq ` B.

We may even go further and require stability axioms, of the form

∀~x(¬¬R~x→ R~x )

with R again a relation symbol distinct from ⊥. Let Stab denote the set of
all these axioms. A formula A is called classically derivable, written `c A,
if Stab ` A. We write Γ `c B for Γ ∪ Stab ` B.

It is easy to see that intuitionistically (i.e., from Efq) we can derive
⊥ → A for an arbitrary formula A, using the introduction rules for the
connectives. A similar generalization of the stability axioms is only possible
for formulas in the language not involving ∨,∃. However, it is still possible
to use the substitutes ∨̃ and ∃̃.

Theorem (Stability, or principle of indirect proof).
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(a) ` (¬¬A→ A)→ (¬¬B → B)→ ¬¬(A ∧B)→ A ∧B.
(b) ` (¬¬B → B)→ ¬¬(A→ B)→ A→ B.
(c) ` (¬¬A→ A)→ ¬¬∀xA→ A.
(d) `c ¬¬A→ A for every formula A without ∨, ∃.

Proof. (a) is left as an exercise.
(b) For simplicity, in the derivation to be constructed we leave out ap-

plications of →+ at the end.

u : ¬¬B → B

v : ¬¬(A→ B)

u1 : ¬B
u2 : A→ B w : A

B
⊥ →+u2¬(A→ B)

⊥ →+u1¬¬B
B

(c)

u : ¬¬A→ A

v : ¬¬∀xA

u1 : ¬A
u2 : ∀xA x

A
⊥ →+u2¬∀xA

⊥ →+u1¬¬A
A

(d) Induction on A. The case R~t with R distinct from ⊥ is given by Stab.
In the case ⊥ the desired derivation is

v : (⊥ → ⊥)→ ⊥
u : ⊥ →+u⊥ → ⊥

⊥
In the cases A ∧B, A→ B and ∀xA use (a), (b) and (c), respectively. �

Using stability we can prove some well-known facts about the interaction
of weak disjunction and the weak existential quantifier with implication. We
first prove a more refined claim, stating to what extent we need to go beyond
minimal logic.

Lemma. The following are derivable.

(∃̃xA→ B)→ ∀x(A→ B) if x /∈ FV(B),(1)

(¬¬B → B)→ ∀x(A→ B)→ ∃̃xA→ B if x /∈ FV(B),(2)

(⊥ → B[x:=c])→ (A→ ∃̃xB)→ ∃̃x(A→ B) if x /∈ FV(A),(3)

∃̃x(A→ B)→ A→ ∃̃xB if x /∈ FV(A).(4)
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The last two items can also be seen as simplifying a weakly existentially
quantified implication whose premise does not contain the quantified variable.
In case the conclusion does not contain the quantified variable we have

(¬¬B → B)→ ∃̃x(A→ B)→ ∀xA→ B if x /∈ FV(B),(5)

∀x(¬¬A→ A)→ (∀xA→ B)→ ∃̃x(A→ B) if x /∈ FV(B).(6)

Proof. (1)

∃̃xA→ B

u1 : ∀x¬A x
¬A A

⊥ →+u1¬∀x¬A
B

(2)

¬¬B → B

¬∀x¬A

u2 : ¬B

∀x(A→ B) x

A→ B u1 : A
B

⊥ →+u1¬A
∀x¬A

⊥ →+u2¬¬B
B

(3) Writing B0 for B[x:=c] we have

∀x¬(A→ B) c

¬(A→ B0)

⊥ → B0

A→ ∃̃xB u2 : A

∃̃xB

∀x¬(A→ B) x

¬(A→ B)
u1 : B
A→ B

⊥ →+u1¬B
∀x¬B

⊥
B0 →+u2

A→ B0

⊥
(4)

∃̃x(A→ B)

∀x¬B x
¬B

u1 : A→ B A
B

⊥ →+u1¬(A→ B)

∀x¬(A→ B)

⊥
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(5)

¬¬B → B

∃̃x(A→ B)

u2 : ¬B
u1 : A→ B

∀xA x
A

B
⊥ →+u1¬(A→ B)

∀x¬(A→ B)

⊥ →+u2¬¬B
B

(6) We derive ∀x(⊥ → A) → (∀xA → B) → ∀x¬(A → B) → ¬¬A. Writing
Ax,Ay for A(x), A(y) we have

∀x¬(Ax→ B) x

¬(Ax→ B)

∀xAx→ B

∀y(⊥ → Ay) y

⊥ → Ay
u1 : ¬Ax u2 : Ax

⊥
Ay

∀yAy
B →+u2

Ax→ B

⊥ →+u1¬¬Ax
Using this derivation M we obtain

∀x¬(Ax→ B) x

¬(Ax→ B)

∀xAx→ B

∀x(¬¬Ax→ Ax) x

¬¬Ax→ Ax

|M
¬¬Ax

Ax
∀xAx

B
Ax→ B

⊥
Since clearly ` (¬¬A→ A)→ ⊥→ A the claim follows. �

Remark. An immediate consequence of (6) is the classical derivability

of the “drinker formula” ∃̃x(Px → ∀xPx), to be read “in every non-empty
bar there is a person such that, if this person drinks, then everybody drinks”.
To see this let A := Px and B := ∀xPx in (6).

Corollary.

`c (∃̃xA→ B)↔ ∀x(A→ B) if x /∈ FV(B) and B without ∨, ∃,

`i (A→ ∃̃xB)↔ ∃̃x(A→ B) if x /∈ FV(A),

`c ∃̃x(A→ B)↔ (∀xA→ B) if x /∈ FV(B) and A,B without ∨,∃.
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There is a similar lemma on weak disjunction:

Lemma. The following are derivable.

(A ∨̃ B → C)→ (A→ C) ∧ (B → C),(7)

(¬¬C → C)→ (A→ C)→ (B → C)→ A ∨̃ B → C,(8)

(⊥ → B)→ (A→ B ∨̃ C)→ (A→ B) ∨̃ (A→ C),(9)

(A→ B) ∨̃ (A→ C)→ A→ B ∨̃ C,(10)

(¬¬C → C)→ (A→ C) ∨̃ (B → C)→ A→ B → C,(11)

(⊥ → C)→ (A→ B → C)→ (A→ C) ∨̃ (B → C).(12)

Proof. We only consider (8) and (12); the rest is left as an exercise.
(8)

¬¬C → C

¬A→ ¬B → ⊥

u1 : ¬C
A→ C u2 : A

C
⊥ →+u2¬A

¬B → ⊥

u1 : ¬C
B → C u3 : B

C
⊥ →+u3¬B

⊥ →+u1¬¬C
C

(12)

¬(B → C)

⊥ → C

¬(A→ C)

A→ B → C u1 : A
B → C u2 : B

C →+u1
A→ C

⊥
C →+u2

B → C

⊥
The general idea here is to view ∨̃ as a finitary version of ∃̃. �

Corollary.

`c (A ∨̃ B → C)↔ (A→ C) ∧ (B → C) for C without ∨,∃,
`i (A→ B ∨̃ C)↔ (A→ B) ∨̃ (A→ C),

`c (A→ C) ∨̃ (B → C)↔ (A→ B → C) for C without ∨, ∃.

The weak existential quantifier ∃̃ and weak disjunction ∨̃ satisfy the same
introduction axioms as the strong ones: this follows from the derivability
of ∃xA → ∃̃xA and A ∨ B → A ∨̃ B (see Section 1.1.7). They also satisfy
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the same elimination axioms, provided one restricts the conclusion to stable
formulas. For ∃̃ this has been proved in (2), and for ∨̃ in (8).

Therefore when proving a stable goal in minimal logic more proof tech-
niques are available than in the general case. For instance, case distinction
on an arbitrary formula A is possible by (8), since A ∨̃ ¬A is (easily) deriv-
able. Another important example is

Lemma. The following is derivable.

∀x¬A ∨̃ ∃̃xA.

Proof. Unfolding ∨̃ and ∃̃ gives

(∀x(A→ ⊥)→ ⊥)→ ((∀x(A→ ⊥)→ ⊥)︸ ︷︷ ︸
∃̃xA

→ ⊥)→ ⊥. �

It is often helpful to use this lemma in a slightly more general form, for
instancce

∀x,y(A→ B → ⊥) ∨̃ ∃̃x,y(A ∧̃B).

The proof is again immediate, since the right hand side ∃̃x,y(A ∧̃B) unfolds
into the negated left hand side.

1.1.9. Gentzen translation. Classical derivability Γ `c B was defined
in Section 1.1.8 by Γ ∪ Stab ` B. This embedding of classical logic into
minimal logic can be expressed in a somewhat different and very explicit
form, namely as a syntactic translation A 7→ Ag of formulas such that A
is derivable in classical logic if and only if its translation Ag is derivable in
minimal logic.

Definition (Gentzen translation Ag).

(R~t )g := ¬¬R~t for R distinct from ⊥,
⊥g := ⊥,
(A ∨B)g := Ag ∨̃ Bg,

(∃xA)g := ∃̃xAg,
(A ◦B)g := Ag ◦Bg for ◦ = →,∧,
(∀xA)g := ∀xAg.

Lemma (Stability of Ag). ` ¬¬Ag → Ag.

Proof. Induction on A.
Case R~t with R distinct from ⊥. We must show ¬¬¬¬R~t → ¬¬R~t,

which is a special case of ` ¬¬¬B → ¬B.
Case ⊥. Use ` ¬¬⊥ → ⊥.
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Case A ∨ B. We must show ` ¬¬(Ag ∨̃ Bg) → Ag ∨̃ Bg, which is a
special case of ` ¬¬(¬C → ¬D → ⊥)→ ¬C → ¬D → ⊥:

¬¬(¬C → ¬D → ⊥)

u1 : ¬C → ¬D → ⊥ ¬C
¬D → ⊥ ¬D

⊥ →+u1¬(¬C → ¬D → ⊥)

⊥
Case ∃xA. In this case we must show ` ¬¬∃̃xAg → ∃̃xAg, but this is a

special case of ` ¬¬¬B → ¬B, because ∃̃xAg is the negation ¬∀x¬Ag.
Case A ∧ B. We must show ` ¬¬(Ag ∧ Bg) → Ag ∧ Bg. By induction

hypothesis ` ¬¬Ag → Ag and ` ¬¬Bg → Bg. Now use part (a) of the
stability theorem in Section 1.1.8.

The cases A → B and ∀xA are similar, using parts (b) and (c) of the
stability theorem instead. �

Theorem. (a) Γ `c A implies Γg ` Ag.
(b) Γg ` Ag implies Γ `c A for Γ, A without ∨,∃.

Proof. (a) We use induction on Γ `c A. In case of a stability axiom
∀~x(¬¬R~x → R~x ) we must derive ∀~x(¬¬¬¬R~x → ¬¬R~x ), which is easy
(as above). For the rules →+, →−, ∀+, ∀−, ∧+ and ∧− the claim follows
immediately from the induction hypothesis, using the same rule again. This
works because the Gentzen translation acts as a homomorphism for these
connectives. For the rules ∨+i , ∨−, ∃+ and ∃− the claim follows from the

induction hypothesis and the remark on the elimination rules for ∨̃, ∃̃ in
Section 1.1.8. For example, in case ∃− the induction hypothesis gives

|M
∃̃xAg

and
u : Ag

| N
Bg

with x /∈ FV(Bg). Now use ` (¬¬Bg → Bg) → ∃̃xAg → ∀x(Ag → Bg) →
Bg. Its premise ¬¬Bg → Bg is derivable by the lemma above.

(b) First note that `c (B ↔ Bg) if B is without ∨,∃. Now assume that
Γ, A are without ∨,∃. From Γg ` Ag we obtain Γ `c A as follows. We argue
informally. Assume Γ. Then Γg by the note, hence Ag because of Γg ` Ag,
hence A again by the note. �

1.2. Normal derivations

A derivation in normal form does not make “detours”, or more precisely,
it cannot occur that an elimination rule immediately follows an introduction
rule. We use “conversions” to remove such “local maxima” of complexity,
thus reducing any given derivation to normal form. We also analyse the
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shape of derivations in normal form, and prove the subformula property,
which says that every formula in a normal derivation is a subformula of the
end-formula or else of an assumption. For simplicity we consider derivations
involving →, ∀-rules only.

1.2.1. The Curry-Howard correspondence. Since natural deduc-
tion derivations can be notationally cumbersome, it will be convenient to
represent them as typed “derivation terms”, where the derived formula is
the “type” of the term (and displayed as a superscript). This representa-
tion goes under the name of Curry-Howard correspondence. It dates back
to Curry (1930) and somewhat later Howard, published only in (1980), who
noted that the types of the combinators used in combinatory logic are ex-
actly the Hilbert style axioms for minimal propositional logic. Subsequently
Martin-Löf (1972) transferred these ideas to a natural deduction setting
where natural deduction proofs of formulas A now correspond exactly to
lambda terms with type A. This representation of natural deduction proofs
will henceforth be used consistently.

We give an inductive definition of such derivation terms for the →,∀-
rules in Table 1 where for clarity we have written the corresponding deriva-
tions to the left. This can be extended to the rules for ∨, ∧ and ∃, but we
will not do this here.

Every derivation term carries a formula as its type. However, we shall
usually leave these formulas implicit and write derivation terms without
them. Note that every derivation term can be written uniquely in one of
the forms

u ~M | λvM | (λvM)N~L,

where u is an assumption variable or assumption constant, v is an assump-
tion variable or object variable, and M , N , L are derivation terms or object

terms. Here the final form is not normal: (λvM)N~L is called a β-redex (for
“reducible expression”). It can be reduced by a “conversion”. A conversion
removes a detour in a derivation, i.e., an elimination immediately follow-
ing an introduction. We consider the following conversions, for derivations
written in tree notation and also as derivation terms.
→-conversion.

[u : A]

|M
B →+uA→ B

| N
A →−B

7→β

| N
A
|M
B

or written as derivation terms

(λuM(uA)B)A→BNA 7→β M(NA)B.
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Derivation Term

u : A uA

[u : A]

|M
B →+uA→ B

(λuAM
B)A→B

|M
A→ B

| N
A →−B

(MA→BNA)B

|M
A ∀+x (with var.cond.)
∀xA

(λxM
A)∀xA (with var.cond.)

|M
∀xA(x) t

∀−
A(t)

(M∀xA(x)t)A(t)

Table 1. Derivation terms for → and ∀

The reader familiar with λ-calculus should note that this is nothing other
than β-conversion.
∀-conversion.

|M
A(x)

∀+x∀xA(x) t
∀−

A(t)

7→β
|M ′

A(t)

or written as derivation terms

(λxM(x)A(x))∀xA(x)t 7→β M(t).
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The closure 7→ of the conversion relation 7→β is defined by

(a) If M 7→β M
′, then M 7→M ′.

(b) If M 7→ M ′, then also MN 7→ M ′N , NM 7→ NM ′, λvM 7→ λvM
′

(inner reductions).

Therefore M 7→ N means that M reduces in one step to N , i.e., N is
obtained from M by replacement of (an occurrence of) a redex M ′ of M by
a conversum M ′′ of M ′, i.e., by a single conversion.

Example. Consider assumption variables

x : A→ (B → A)→ A u : A u′ : A

y : A→ B → A v : B → A v′ : B

z : A

Then we have derivation terms

S := λxλyλz(xz(yz))
A : (A→ (B → A)→ A)→ (A→ B → A)→ A→ A

K := λuλvu : A→ (B → A)→ A

K ′ := λu′λv′u
′ : A→ B → A

By the one step reduction relation we obtain

SKK ′ 7→ (λxλyλz(xz(yz)))(λuλv u)(λu′λv′ u
′) 7→

(λyλz((λuλv u)z(yz)))(λu′λv′ u
′) 7→

(λyλz((λv z)(yz)))(λu′λv′ u
′) 7→

(λyλz z)(λu′λv′ u
′) 7→ λz z.

The relation 7→+ (“properly reduces to”) is the transitive closure of 7→,
and 7→∗ (“reduces to”) is the reflexive and transitive closure of 7→. The
relation 7→∗ is said to be the notion of reduction generated by 7→.

Lemma (Substitutivity of 7→).

(a) If M(v) 7→M ′(v), then M(N) 7→M ′(N).
(b) If N 7→ N ′, then M(N) 7→∗ M(N ′).

Proof. (a) is proved by induction on M(v) 7→M ′(v); (b) by induction
on M(v). Notice that the reason for 7→∗ in (b) is the fact that v may have
many occurrences in M(v). �

A term M is in normal form, or M is normal , if M does not contain a
redex. M has a normal form if there is a normal N such that M 7→∗ N .
A reduction sequence is a (finite or infinite) sequence M0 7→ M1 7→ M2 . . .
such that Mi 7→ Mi+1, for all i. Finite reduction sequences are partially
ordered under the initial part relation; the collection of finite reduction
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sequences starting from a term M forms a tree, the reduction tree of M . The
branches of this tree may be identified with the collection of all infinite and
all terminating finite reduction sequences. A term is strongly normalizing if
its reduction tree is finite.

One can show that every term is strongly normalizing, and that its
normal form is uniquely determined.

1.2.2. The structure of normal derivations. To analyze normal
derivations, it will be useful to introduce the notion of a track in a proof
tree, which makes sense for non-normal derivations as well.

Definition. A track of a derivation M is a sequence of formula occur-
rences (f.o.) A0, . . . , An such that

(a) A0 is a top f.o. in M ;
(b) Ai for i < n is not the minor premise of an instance of →−, and Ai+1 is

directly below Ai;
(c) An is either the minor premise of an instance of →−, or the conclusion

of M .

The track of order 0, or main track , in a derivation is the (unique) track
ending in the conclusion of the whole derivation. A track of order n + 1
is a track ending in the minor premise of an →−-application, with major
premise belonging to a track of order n.

Lemma. In a derivation each formula occurrence belongs to some track.

Proof. By induction on derivations. �

Now consider a normal derivation M . Since by normality an E-rule
cannot have the conclusion of an I-rule as its major premise, the E-rules
have to precede the I-rules in a track, so the following is obvious: a track
may be divided into an E-part, say A0, . . . , Ai−1, a minimal formula Ai, and
an I-part Ai+1, . . . , An. In the E-part all rules are E-rules; in the I-part all
rules are I-rules; Ai is the conclusion of an E-rule and, if i < n, a premise
of an I-rule. Tracks are pieces of branches of the tree with successive f.o.’s
in the subformula relationship: either Ai+1 is a subformula of Ai or vice
versa. As a result, all formulas in a track A0, . . . , An are subformulas of A0

or of An; and from this, by induction on the order of tracks, we see that
every formula in M is a subformula either of an open assumption or of the
conclusion. To summarize:

Theorem (Subformula property). In a normal derivation each formula
is a subformula of either the end formula or else an assumption formula.

Proof. One proves this for tracks of order n, by induction on n. �
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Remark (Long normal form). The minimal formula in a track can be
an implication A → B or a generalization ∀xA. However, we can apply an
“η-expansion” and replace the occurrence of A→ B or ∀xA by

A→ B u : A →−B →+uA→ B

∀xA x
∀−A ∀+x∀xA

Repeating this process we obtain a derivation in “long normal form”, all of
whose minimal formulas are neither implications nor generalizations.

1.3. Soundness and completeness for tree models

It is an obvious question to ask whether the logical rules we have been
considering suffice, i.e., whether we have forgotten some necessary rules. To
answer this question we first have to fix the meaning of a formula, i.e., pro-
vide a semantics. This will be done by means of the tree models introduced
by Beth (1956). Using this concept of a model we will prove soundness and
completeness.

1.3.1. Tree models. Consider a finitely branching tree of “possible
worlds”. The worlds are represented as nodes in this tree. They may be
thought of as possible states such that all nodes “above” a node k are the
ways in which k may develop in the future. The worlds are increasing; that
is, if an atomic formula R~t is true in a world k, then R~t is true in all future
worlds k′.

More formally, each tree model is based on a finitely branching tree T . A
node k over a set S is a finite sequence k = 〈a0, a1, . . . , an−1〉 of elements of
S; lh(k) is the length of k. We write k � k′ if k is an initial segment of k′. A
tree on S is a set of nodes closed under initial segments. A tree T is finitely
branching if every node in T has finitely many immediate successors. A tree
T is infinite if for every n ∈ N there is a node k ∈ T such that lh(k) = n.
A branch of a tree T is a linearly ordered subtree of T with the same root,
and a leaf of T is a node without successors in T . A tree T is complete if
every node in T has an immediate successor, i.e., T has no leaves.

For the proof of the completeness theorem, the full tree over {0, 1}
(whose branches constitute Cantor space) will suffice. The nodes will be
all the finite sequences of 0’s and 1’s, and the ordering is as above. The root
is the empty sequence and k0 is the sequence k with the element 0 added at
the end; similarly for k1.

For the rest of this section, fix a countable formal language L.

Definition. Let T be a finitely branching tree. A tree model on T is a
triple T = (D, I0, I1) such that

(a) D is a non-empty set;
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(b) for every n-ary function symbol f (in the underlying language L), I0
assigns to f a map I0(f) : Dn → D;

(c) for every n-ary relation symbol R and every node k ∈ T , I1(R, k) ⊆ Dn

is assigned in such a way that monotonicity is preserved:

k � k′ → I1(R, k) ⊆ I1(R, k′).
If n = 0, then I1(R, k) is either true or false. There is no special re-

quirement set on I1(⊥, k). (Recall that minimal logic places no particular
constraints on falsum ⊥.) We write RT (~a, k) for ~a ∈ I1(R, k), and |T | to
denote the domain D.

It is obvious from the definition that any tree T can be extended to
a complete tree T̄ (i.e., without leaves), in which for every leaf k ∈ T all
sequences k0, k00, k000, . . . are added to T . For every node k0 . . . 0, we
then add I1(R, k0 . . . 0) := I1(R, k). In the sequel we assume that all trees
T are complete.

An assignment (or variable assignment) in D is a map η assigning to
every variable x ∈ dom(η) a value η(x) ∈ D. Finite assignments will be
written as [x1 := a1, . . . , xn := an] or else as [a1/x1, . . . , an/xn], with distinct
x1, . . . , xn. If η is an assignment in D and a ∈ D, let ηax be the assignment
in D mapping x to a and coinciding with η elsewhere:

ηax(y) :=

{
η(y) if y 6= x,

a if y = x.

Let a tree model T = (D, I0, I1) and an assignment η in D be given. We
define a homomorphic extension of η (denoted by η as well) to terms t whose
variables lie in dom(η) by

η(c) := I0(c),

η(f(t1, . . . , tn)) := I0(f)(η(t1), . . . , η(tn)).

Observe that the extension of η depends on T ; we often write tT [η] for η(t).

Definition. T , k  A[η] (T forces A at node k for an assignment η) is
defined inductively. We write k  A[η] when it is clear from the context what
the underlying model T is, and ∀k′�nkA for ∀k′�k(lh(k′) = lh(k) + n→ A).

k  (R~t )[η] := ∃n∀k′�nkRT (~t T [η], k′),

k  (A ∨B)[η] := ∃n∀k′�nk(k′  A[η] ∨ k′  B[η]),

k  (∃xA)[η] := ∃n∀k′�nk∃a∈|T |(k′  A[ηax]),

k  (A→ B)[η] := ∀k′�k(k′  A[η]→ k′  B[η]),

k  (A ∧B)[η] := k  A[η] ∧ k  B[η],

k  (∀xA)[η] := ∀a∈|T |(k  A[ηax]).
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Thus in the atomic, disjunctive and existential cases, the set of k′ whose
length is lh(k) + n acts as a “bar” in the complete tree. Note that the im-
plicational case is treated differently, and refers to the “unbounded future”.

In this definition, the logical connectives →,∧,∨,∀,∃ on the left hand
side are part of the object language, whereas the same connectives on the
right hand side are to be understood in the usual sense: they belong to
the “metalanguage”. It should always be clear from the context whether a
formula is part of the object or the metalanguage.

1.3.2. Covering lemma. It is easily seen (using the definition and
monotonicity) that from k  A[η] and k � k′ we can conclude k′  A[η].
The converse is true as well:

Lemma (Covering).

∀k′�nk(k′  A[η])→ k  A[η].

Proof. Induction on A. We write k  A for k  A[η].
Case R~t. Assume

∀k′�nk(k′  R~t ),

hence by definition

∀k′�nk∃m∀k′′�mk′RT (~t T [η], k′′).

Since T is a finitely branching tree,

∃m∀k′�mkRT (~t T [η], k′).

Hence k  R~t.
The cases A ∨B and ∃xA are handled similarly.
Case A → B. Assume that for all k′ � k with lh(k′) = lh(k) + n we

have k′  A→ B . The goal is k  A→ B, i.e.,

∀l�k(l  A→ l  B).

Let l � k and l  A. We must show l  B. Case lh(l) ≤ lh(k′):

n

k′

l

k

Then k′  B for all these k′, hence l  B by IH for B. Case lh(k′) < lh(l):
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n

l

k′

k

Because of k′  A→ B and l  A we obtain l  B, by definition of .
The cases A ∧B and ∀xA are easy. �

1.3.3. Soundness.

Lemma (Coincidence). Let T be a tree model, t a term, A a formula
and η, ξ assignments in |T |.
(a) If η(x) = ξ(x) for all x ∈ vars(t), then η(t) = ξ(t).
(b) If η(x) = ξ(x) for all x ∈ FV(A), then T , k  A[η] if and only if
T , k  A[ξ].

Proof. Induction on terms and formulas. �

Lemma (Substitution). Let T be a tree model, t, r(x) terms, A(x) a
formula and η an assignment in |T |. Then

(a) η(r(t)) = η
η(t)
x (r(x)).

(b) T , k  A(t)[η] if and only if T , k  A(x)[η
η(t)
x ].

Proof. Induction on terms and formulas. �

Theorem (Soundness). Let Γ∪{A} be a set of formulas such that Γ ` A.
Then, if T is a tree model, k any node and η an assignment in |T |, it follows
that T , k  Γ[η] implies T , k  A[η].

Proof. Induction on derivations.
We begin with the axiom schemes ∨+0 , ∨+1 , ∨−, ∧+, ∧−, ∃+ and ∃−.

k  C[η] is abbreviated k  C, when η is known from the context.
Case ∨+0 : A→ A∨B. We show k  A→ A∨B. Assume for k′ � k that

k′  A. Show: k′  A ∨ B. This follows from the definition, since k′  A.
The case ∨+1 : B → A ∨B is symmetric.

Case ∨− : A ∨ B → (A → C) → (B → C) → C. We show that
k  A ∨ B → (A → C) → (B → C) → C. Assume for k′ � k that
k′  A ∨ B, k′  A → C and k′  B → C (we can safely assume that k′

is the same for all three premises). Show that k′  C. By definition, there
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is an n s.t. for all k′′ �n k′, k′′  A or k′′  B. In both cases it follows
that k′′  C, since k′  A → C and k′  B → C. By the covering lemma,
k′  C.

The cases ∧+, ∧− are easy.
Case ∃+ : A → ∃xA. We show k  (A → ∃xA)[η]. Assume k′ � k and

k′  A[η]. We show k′  (∃xA)[η]. Since η = η
η(x)
x there is an a ∈ |T |

(namely a := η(x)) such that k′  A[ηax]. Hence, k′  (∃xA)[η].
Case ∃− : ∃xA → ∀x(A → B) → B and x /∈ FV(B). We show that

k  (∃xA → ∀x(A → B) → B)[η]. Assume that k′ � k and k′  (∃xA)[η]
and k′  ∀x(A → B)[η]. We show k′  B[η]. By definition, there is
an n such that for all k′′ �n k′ we have a ∈ |T | and k′′  A[ηax]. From
k′  ∀x(A → B)[η] it follows that k′′  B[ηax], and since x /∈ FV(B), from
the coincidence lemma, k′′  B[η]. Then, finally, by the covering lemma
k′  B[η].

This concludes the treatment of the axioms. We now consider the rules.
In case of the assumption rule u : A we have A ∈ Γ and the claim is obvious.

Case →+. Assume k  Γ. We show k  A → B. Assume k′ � k and
k′  A. Our goal is k′  B. We have k′  Γ ∪ {A}. Thus, k′  B by
induction hypothesis.

Case →−. Assume k  Γ. The induction hypothesis gives us k  A→ B
and k  A. Hence k  B.

Case ∀+. Assume k  Γ[η] and x /∈ FV(Γ). We show k  (∀xA)[η], i.e.,
k  A[ηax] for an arbitrary a ∈ |T |. We have

k  Γ[ηax] by the coincidence lemma, since x /∈ FV(Γ),

k  A[ηax] by induction hypothesis.

Case ∀−. Let k  Γ[η]. We show that k  A(t)[η]. This follows from

k  (∀xA(x))[η] by induction hypothesis,

k  A(x)[ηη(t)x ] by definition,

k  A(t)[η] by the substitution lemma.

This concludes the proof. �

1.3.4. Counter models. With soundness at hand, it is easy to build
counter models proving that certain formulas are underivable in minimal
or intuitionistic logic. A tree model for intuitionistic logic is a tree model
T = (D, I0, I1) in which I1(⊥, k) is false for all k.

As an example we show that 6`i ¬¬P → P . Assume `i ¬¬P → P , i.e.,
Efq ` ¬¬P → P . We will obtain a contradiction from this assumption.
For simplicity we assume that from Efq we have only used ⊥ → P and
say ⊥ → Q for some Q. We can now substitute ⊥ for Q everywhere and
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obtain a derivation in minimal logic, since ⊥ → ⊥ is immediately derivable.
Hence we have ` (⊥ → P ) → ¬¬P → P . We can now obtain the desired
contradiction using a tree model determined by the figure below. Next to
every node we write all propositions forced at that node.

◦@
@
�
�

•P ◦@
@
�
�

•P ◦@
@
��

•P ..
.

This is a tree model because monotonicity clearly holds. Observe also that
I1(⊥, k) is false at all nodes k. Hence this is an intuitionistic tree model.
By the definition of forcing we have

(i) ⊥ → P is forced at every node.
(ii) P → ⊥ (i.e., ¬P ) is never forced.
(iii) ¬¬P is forced at every node.
(iv) The root node does not force P , since there are arbitrarily long ◦-nodes.

This is the desired contradiction to the Soundness Theorem.
The model also shows that the Peirce formula ((P → Q) → P ) → P is

not derivable in intuitionistic logic.

1.3.5. Completeness.

Theorem (Completeness). Let Γ ∪ {A} be a set of formulas. Then the
following propositions are equivalent.

(a) Γ ` A.
(b) Γ  A, i.e., for all tree models T , nodes k and assignments η

T , k  Γ[η]→ T , k  A[η].

Proof. Soundness already gives “(a) implies (b)”. For the other direc-
tion we employ a technique due to Harvey Friedman and construct a tree
model T (over the set T01 of all finite 0-1-sequences) whose domain D is the
set of all terms of the underlying language, with the property that Γ ` B is
equivalent to T , 〈〉  B[id]. T will depend on Γ. We can assume here that
Γ and A are closed.

In order to define T , we will need an enumeration A0, A1, A2, . . . of the
underlying language L (assumed countable), in which every formula occurs
infinitely often. We also fix an enumeration x0, x1, . . . of distinct variables.
Since Γ is countable it can we written Γ =

⋃
n Γn with finite sets Γn such

that Γn ⊆ Γn+1. With every node k ∈ T01, we associate a finite set ∆k of
formulas and a set Vk of variables, by induction on the length of k.

Let ∆〈〉 := ∅ and V〈〉 := ∅. Take a node k such that lh(k) = n and
suppose that ∆k, Vk are already defined. Write ∆ `n B to mean that there
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is a derivation of length ≤ n of B from ∆. We define ∆k0, Vk0 and ∆k1, Vk1
as follows:

Case 0. FV(An) 6⊆ Vk. Then let

∆k0 := ∆k1 := ∆k and Vk0 := Vk1 := Vk.

Case 1. FV(An) ⊆ Vk and Γn,∆k 6`n An. Let

∆k0 := ∆k and ∆k1 := ∆k ∪ {An},
Vk0 := Vk1 := Vk.

Case 2. FV(An) ⊆ Vk and Γn,∆k `n An = A′n ∨A′′n. Let

∆k0 := ∆k ∪ {An, A′n} and ∆k1 := ∆k ∪ {An, A′′n},
Vk0 := Vk1 := Vk.

Case 3. FV(An) ⊆ Vk and Γn,∆k `n An = ∃xA′n(x). Let

∆k0 := ∆k1 := ∆k ∪ {An, A′n(xi)} and Vk0 := Vk1 := Vk ∪ {xi},

where xi is the first variable /∈ Vk.
Case 4. FV(An) ⊆ Vk and Γn,∆k `n An, with An neither a disjunction

nor an existentially quantified formula. Let

∆k0 := ∆k1 := ∆k ∪ {An} and Vk0 := Vk1 := Vk.

Obviously FV(∆k) ⊆ Vk, and k � k′ implies that ∆k ⊆ ∆k′ . Notice
also that because of ` ∃x(⊥ → ⊥) and the fact that this formula is repeated
infinitely often in the given enumeration, for every variable xi there is an m
such that xi ∈ Vk for all k with lh(k) = m.

We note that

(13) ∀k′�nk (Γ,∆k′ ` B)→ Γ,∆k ` B, provided FV(B) ⊆ Vk.

It is sufficient to show that, for FV(B) ⊆ Vk,

(Γ,∆k0 ` B) ∧ (Γ,∆k1 ` B)→ (Γ,∆k ` B).

In cases 0, 1 and 4, this is obvious. For case 2, the claim follows imme-
diately from the axiom schema ∨−. In case 3, we have FV(An) ⊆ Vk and
Γn,∆k `n An = ∃xA′n(x). Assume Γ,∆k ∪ {An, A′n(xi)} ` B with xi /∈ Vk,
and FV(B) ⊆ Vk. Then xi /∈ FV(∆k ∪ {An, B}), hence Γ,∆k ∪ {An} ` B
by ∃− and therefore Γ,∆k ` B.

Next, we show

(14) Γ,∆k ` B → ∃n∀k′�nk (B ∈ ∆k′), provided FV(B) ⊆ Vk.

Choose n ≥ lh(k) such that B = An and Γn,∆k `n An. For all k′ � k, if
lh(k′) = n+ 1 then An ∈ ∆k′ (cf. the cases 2 - 4).
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Using the sets ∆k we can define a tree model T as (Ter, I0, I1) where
Ter denotes the set of terms of the underlying language, I0(f)(~t ) := f~t and

RT (~t, k) = I1(R, k)(~t ) := (R~t ∈ ∆k).

Obviously, tT [id] = t for all terms t.
Now write k  B for T , k  B[id]. We show:

Claim. Γ,∆k ` B ↔ k  B provided FV(B) ⊆ Vk.

The proof is by induction on B.
Case R~t. Assume FV(R~t ) ⊆ Vk. The following are equivalent:

Γ,∆k ` R~t,
∃n∀k′�nk (R~t ∈ ∆k′) by (14) and (13),

∃n∀k′�nk RT (~t, k′) by definition of T ,
k  R~t by definition of , since tT [id] = t.

Case B ∨ C. Assume FV(B ∨ C) ⊆ Vk. For the implication → let
Γ,∆k ` B ∨ C. Choose an n ≥ lh(k) such that Γn,∆k `n An = B ∨ C.
Then, for all k′ � k s.t. lh(k′) = n,

∆k′0 = ∆k′ ∪ {B ∨ C,B} and ∆k′1 = ∆k′ ∪ {B ∨ C,C},

and therefore by induction hypothesis

k′0  B and k′1  C.

Then by definition we have k  B ∨C. For the reverse implication ← argue
as follows.

k  B ∨ C,
∃n∀k′�nk(k′  B ∨ k′  C),

∃n∀k′�nk((Γ,∆k′ ` B) ∨ (Γ,∆k′ ` C)) by induction hypothesis,

∃n∀k′�nk (Γ,∆k′ ` B ∨ C),

Γ,∆k ` B ∨ C by (13).

Case B ∧ C. This is evident.
Case B → C. Assume FV(B → C) ⊆ Vk. For → let Γ,∆k ` B → C.

We must show k  B → C, i.e.,

∀k′�k(k′  B → k′  C).

Let k′ � k be such that k′  B. By induction hypothesis, it follows that
Γ,∆k′ ` B. Hence Γ,∆k′ ` C follows by assumption. Then again by
induction hypothesis k′  C.
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For ← let k  B → C, i.e., ∀k′�k(k′  B → k′  C). We show that
Γ,∆k ` B → C, using (13). Choose n ≥ lh(k) such that B = An. For all
k′ �m k with m := n− lh(k) we show that Γ,∆k′ ` B → C.

If Γn,∆k′ `n An, then k′  B by induction hypothesis, and k′  C
by assumption. Hence Γ,∆k′ ` C again by induction hypothesis and thus
Γ,∆k′ ` B → C.

If Γn,∆k′ 6`n An, then by definition ∆k′1 = ∆k′ ∪ {B}. Hence Γ,∆k′1 `
B, and thus k′1  B by induction hypothesis. Now k′1  C by assumption,
and finally Γ,∆k′1 ` C by induction hypothesis. From ∆k′1 = ∆k′ ∪ {B} it
follows that Γ,∆k′ ` B → C.

Case ∀xB(x). Assume FV(∀xB(x)) ⊆ Vk. For → let Γ,∆k ` ∀xB(x).
Fix a term t. Then Γ,∆k ` B(t). Choose n ≥ lh(k) such that FV(B(t)) ⊆
Vk′ for all k′ with lh(k′) = n. Then ∀k′�mk (Γ,∆k′ ` B(t)) with m :=
n− lh(k), hence ∀k′�mk (k′  B(t)) by induction hypothesis, hence k  B(t)
by the covering lemma. This holds for every term t, hence k  ∀xB(x).

For ← assume k  ∀xB(x). Pick k′ �n k such that Am = ∃x(⊥ → ⊥),
for m := lh(k) + n. Then at height m we put some xi into the variable
sets: for k′ �n k we have xi /∈ Vk′ but xi ∈ Vk′j . Clearly k′j  B(xi),
hence Γ,∆k′j ` B(xi) by induction hypothesis, hence (since at this height
we consider the trivial formula ∃x(⊥ → ⊥)) also Γ,∆k′ ` B(xi). Since
xi /∈ Vk′ we obtain Γ,∆k′ ` ∀xB(x). This holds for all k′ �n k, hence
Γ,∆k ` ∀xB(x) by (13).

Case ∃xB(x). Assume FV(∃xB(x)) ⊆ Vk. For → let Γ,∆k ` ∃xB(x).
Choose an n ≥ lh(k) such that Γn,∆k `n An = ∃xB(x). Then, for all k′ � k
with lh(k′) = n

∆k′0 = ∆k′1 = ∆k′ ∪ {∃xB(x), B(xi)}

where xi /∈ Vk′ . Hence by induction hypothesis for B(xi) (applicable since
FV(B(xi)) ⊆ Vk′j for j = 0, 1)

k′0  B(xi) and k′1  B(xi).

It follows by definition that k  ∃xB(x).
For ← assume k  ∃xB(x). Then ∀k′�nk∃t∈Ter (k′  B(x)[idtx]) for some

n, hence ∀k′�nk∃t∈Ter (k′  B(t)). For each of the finitely many k′ �n k pick
an m such that ∀k′′�mk′ (FV(B(tk′)) ⊆ Vk′′). Let m0 be the maximum of all
these m. Then

∀k′′�m0+nk
∃t∈Ter ((k′′  B(t)) ∧ FV(B(t)) ⊆ Vk′′).
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The induction hypothesis for B(t) yields

∀k′′�m0+nk
∃t∈Ter (Γ,∆k′′ ` B(t)),

∀k′′�m0+nk
(Γ,∆k′′ ` ∃xB(x)),

Γ,∆k ` ∃xB(x) by (13),

and this completes the proof of the claim.
Now we can finish the proof of the completeness theorem by showing

that (b) implies (a). We apply (b) to the tree model T constructed above
from Γ, the empty node 〈〉 and the assignment η = id. Then T , 〈〉  Γ[id] by
the claim (since each formula in Γ is derivable from Γ). Hence T , 〈〉  A[id]
by (b) and therefore Γ ` A by the claim again. �



CHAPTER 2

Recursion Theory

In this chapter we develop the basics of recursive function theory, or as
it is more generally known, computability theory. Its history goes back to
the seminal works of Turing, Kleene and others in the 1930’s.

A computable function is one defined by a program whose operational
semantics tell an idealized computer what to do to its storage locations as
it proceeds deterministically from input to output, without any prior re-
strictions on storage space or computation time. We shall be concerned
with various program-styles and the relationships between them, but the
emphasis throughout will be on one underlying data-type, namely the natu-
ral numbers, since it is there that the most basic foundational connections
between proof theory and computation are to be seen in their clearest light.

The two best-known models of machine computation are the Turing
Machine and the (Unlimited) Register Machine of Shepherdson and Sturgis
(1963). We base our development on the latter since it affords the quickest
route to the results we want to establish.

2.1. Register machines

2.1.1. Programs. A register machine stores natural numbers in regis-
ters denoted u, v, w, x, y, z possibly with subscripts, and it responds step
by step to a program consisting of an ordered list of basic instructions:

I0
I1
...
Ik−1

Each instruction has one of the following three forms whose meanings are
obvious:

Zero: x := 0,
Succ: x := x+ 1,

Jump: [if x = y then In else Im].

The instructions are obeyed in order starting with I0 except when a condi-
tional jump instruction is encountered, in which case the next instruction

33
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will be either In or Im according as the numerical contents of registers x
and y are equal or not at that stage. The computation terminates when it
runs out of instructions, that is when the next instruction called for is Ik.
Thus if a program of length k contains a jump instruction as above then it
must satisfy the condition n,m ≤ k and Ik means “halt”. Notice of course
that some programs do not terminate, for example the following one-liner:

[if x = x then I0 else I1]

2.1.2. Program constructs. We develop some shorthand for building
up standard sorts of programs.

Transfer. “x := y” is the program

x := 0
[if x = y then I4 else I2]
x := x+ 1
[if x = x then I1 else I1],

which copies the contents of register y into register x.
Predecessor. The program “x := y−· 1” copies the modified predecessor

of y into x, and simultaneously copies y into z:

x := 0
z := 0
[if x = y then I8 else I3]
z := z + 1
[if z = y then I8 else I5]
z := z + 1
x := x+ 1
[if z = y then I8 else I5].

Composition. “P ; Q” is the program obtained by concatenating pro-
gram P with program Q. However in order to ensure that jump instructions
in Q of the form “[if x = y then In else Im]” still operate properly within Q
they need to be re-numbered by changing the addresses n,m to k+n, k+m
respectively where k is the length of program P . Thus the effect of this
program is to do P until it halts (if ever) and then do Q.

Conditional. “if x = y then P else Q fi” is the program

[if x = y then I1 else Ik+2]
...P
[if x = x then Ik+2+l else I2]
...Q
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where k, l are the lengths of the programs P,Q respectively, and again their
jump instructions must be appropriately renumbered by adding 1 to the
addresses in P and k + 2 to the addresses in Q. Clearly if x = y then
program P is obeyed and the next jump instruction automatically bypasses
Q and halts. If x 6= y then program Q is performed.

For Loop. “for i = 1 . . . x do P od” is the program

i := 0
[if x = i then Ik+4 else I2]
i := i+ 1
...P
[if x = i then Ik+4 else I2]

where again, k is the length of program P and the jump instructions in
P must be appropriately re-addressed by adding 3. The intention of this
new program is that it should iterate the program P x times (do nothing
if x = 0). This requires the restriction that the register x and the “local”
counting-register i are not re-assigned new values inside P .

While Loop. “while x 6= 0 do P od” is the program

y := 0
[if x = y then Ik+3 else I2]
...P
[if x = y then Ik+3 else I2]

where again, k is the length of program P and the jump instructions in P
must be re-addressed by adding 2. This program keeps on doing P until (if
ever) the register x becomes 0; it requires the restriction that the auxiliary
register y is not re-assigned new values inside P .

2.1.3. Register machine computable functions. A register ma-
chine program P may have certain distinguished “input registers” and “out-
put registers”. It may also use other “working registers” for scratchwork and
these will initially be set to zero. We write P (x1, . . . , xk; y) to signify that
program P has input registers x1, . . . , xk and one output register y, which
are distinct.

Definition. The program P (x1, . . . , xk; y) is said to compute the k-ary
partial function ϕ : Nk → N if, starting with any numerical values n1, . . . , nk
in the input registers, the program terminates with the number m in the
output register if and only if ϕ(n1, . . . , nk) is defined with value m. In this
case, the input registers hold their original values.

A function is register machine computable if there is some program which
computes it.
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Here are some examples.
Addition. “Add(x, y; z)” is the program

z := x ; for i = 1, . . . , y do z := z + 1 od

which adds the contents of registers x and y into register z.
Subtraction. “Subt(x, y; z)” is the program

z := x ; for i = 1, . . . , y do w := z −· 1 ; z := w od

which computes the modified subtraction function x−· y.
Bounded Sum. If P (x1, . . . , xk, w; y) computes the k + 1-ary function ϕ

then the program Q(x1, . . . , xk, z;x):

x := 0 ;
for i = 1, . . . , z do w := i−· 1 ; P (~x,w; y) ; v := x ; Add(v, y;x) od

computes the function

ψ(x1, . . . , xk, z) =
∑
w<z

ϕ(x1, . . . , xk, w)

which will be undefined if for some w < z, ϕ(x1, . . . , xk, w) is undefined.
Multiplication. Deleting “w := i−· 1 ; P” from the last example gives a

program Mult(z, y;x) which places the product of y and z into x.
Bounded Product. If in the bounded sum example, the instruction x :=

x+ 1 is inserted immediately after x := 0, and if Add(v, y;x) is replaced by
Mult(v, y;x), then the resulting program computes the function

ψ(x1, . . . , xk, z) =
∏
w<z

ϕ(x1, . . . , xk, w).

Composition. If Pj(x1, . . . , xk; yj) computes ϕj for each j = 1, . . . , n and
if P0(y1, . . . , yn; y0) computes ϕ0, then the program Q(x1, . . . , xk; y0):

P1(x1, . . . , xk; y1) ; . . . ; Pn(x1, . . . , xk; yn) ; P0(y1, . . . , yn; y0)

computes the function

ψ(x1, . . . , xk) = ϕ0(ϕ1(x1, . . . , xk) , . . . , ϕn(x1, . . . , xk))

which will be undefined if any of the ϕ-subterms on the right hand side is
undefined.

Unbounded Minimization. If P (x1, . . . , xk, y; z) computes ϕ then the pro-
gram Q(x1, . . . , xk; z):

y := 0 ; z := 0 ; z := z + 1 ;
while z 6= 0 do P (x1, . . . , xk, y; z) ; y := y + 1 od ;
z := y −· 1

computes the function

ψ(x1, . . . , xk) = µy(ϕ(x1, . . . , xk, y) = 0)
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that is, the least number y such that ϕ(x1, . . . , xk, y
′) is defined for every

y′ ≤ y and ϕ(x1, . . . , xk, y) = 0.

2.2. Elementary functions

2.2.1. Definition and simple properties. The elementary functions
of Kalmár (1943) are those number-theoretic functions which can be defined
explicitly by compositional terms built up from variables and the constants
0, 1 by repeated applications of addition +, modified subtraction−· , bounded
sums and bounded products.

By omitting bounded products, one obtains the subelementary functions.
The examples in the previous section show that all elementary functions

are computable and totally defined. Multiplication and exponentiation are
elementary since

m · n =
∑

i<nm and mn =
∏
i<nm

and hence by repeated composition, all exponential polynomials are elemen-
tary.

In addition the elementary functions are closed under
Definition by Cases.

f(~n ) =

{
g0(~n ) if h(~n ) = 0

g1(~n ) otherwise

since f can be defined from g0, g1 and h by

f(~n ) = g0(~n ) · (1−· h(~n )) + g1(~n ) · (1−· (1−· h(~n ))).

Bounded Minimization.

f(~n,m) = µk<m(g(~n, k) = 0)

since f can be defined from g by

f(~n,m) =
∑
i<m

(
1−·

∑
k≤i

(1−· g(~n, k))
)
.

Note: this definition gives value m if there is no k < m such that g(~n, k) =
0. It shows that not only the elementary, but in fact the subelementary
functions are closed under bounded minimization. Furthermore, we define
µk≤m(g(~n, k) = 0) as µk<m+1(g(~n, k) = 0).

Lemma.

(a) For every elementary function f : Nr → N there is a number k such that
for all ~n = n1, . . . , nr,

f(~n ) < 2k(max(~n ))

where 20(m) := m and 2k+1(m) := 22k(m).
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(b) The function n 7→ 2n(1) is not elementary.

Proof. (a). By induction on the build-up of the compositional term
defining f . The result clearly holds if f is any one of the base functions:

f(~n ) = 0 or 1 or ni or ni + nj or ni −· nj .

If f is defined from g by application of bounded sum or product:

f(~n,m) =
∑
i<m

g(~n, i) or
∏
i<m

g(~n, i)

where g(~n, i) < 2k(max(~n, i)) then we have

f(~n,m) ≤ (2k(max(~n,m)))m < 2k+2(max(~n,m))

using nn < 22
n

(since nn < (2n−1)n ≤ 22
n

for n ≥ 3).
If f is defined from g0, g1, . . . , gl by composition:

f(~n ) = g0(g1(~n ), . . . , gl(~n ))

where for each j ≤ l we have gj(−) < 2kj (max(−)), then with k = maxj kj ,

f(~n ) < 2k(2k(max(~n ))) = 22k(max(~n ))

and this completes the first part.
(b). If 2n(1) were an elementary function of n then by (a) there would

be a positive k such that for all n,

2n(1) < 2k(n)

but then putting n = 2k(1) yields 22k(1)(1) < 22k(1), a contradiction. �

2.2.2. Elementary relations. A relation R on Nk is said to be ele-
mentary if its characteristic function

cR(~n ) =

{
1 if R(~n )

0 otherwise

is elementary. In particular, the “equality” and “less than” relations are
elementary since their characteristic functions can be defined as follows:

c<(n,m) = 1−· (1−· (m−· n)), c=(n,m) = 1−· (c<(n,m) + c<(m,n)).

Furthermore if R is elementary then so is the function

f(~n,m) = µk<mR(~n, k)

since R(~n, k) is equivalent to 1−· cR(~n, k) = 0.

Lemma. The elementary relations are closed under applications of propo-
sitional connectives and bounded quantifiers.
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Proof. For example, the characteristic function of ¬R is

1−· cR(~n ).

The characteristic function of R0 ∧R1 is

cR0(~n ) · cR1(~n ).

The characteristic function of ∀i<mR(~n, i) is

c=(m,µi<m(cR(~n, i) = 0)). �

Examples. The above closure properties enable us to show that many
“natural” functions and relations of number theory are elementary. For
instance, it is an easy exercise to show that b nmc is elementary, and then that
n mod m is elementary. Using this fact we can conclude that the following
are elementary as well:

Prime(n)↔ 1 < n ∧ ¬∃m<n(1 < m ∧ n mod m = 0),

pn = µm<22n (Prime(m) ∧ n =
∑
i<m

cPrime(i)),

so p0, p1, p2, . . . gives the enumeration of primes in increasing order. The
estimate pn ≤ 22

n
for the nth prime pn can be proved by induction on n:

For n = 0 this is clear, and for n ≥ 1 we obtain

pn ≤ p0p1 · · · pn−1 + 1 ≤ 22
0
22

1 · · · 22n−1
+ 1 = 22

n−1 + 1 < 22
n
.

2.2.3. The class E.

Definition. The class E consists of those number theoretic functions
which can be defined from the initial functions: constant 0, successor S,
projections (onto the ith coordinate), addition +, modified subtraction −· ,
multiplication · and exponentiation 2x, by applications of composition and
bounded minimization.

The remarks above show immediately that the characteristic functions
of the equality and less than relations lie in E , and that (by the proof of the
lemma) the relations in E are closed under propositional connectives and
bounded quantifiers.

Furthermore the above examples show that all the functions in the class
E are elementary. We now prove the converse, which will be useful later.

Lemma. There are “pairing functions” π, π1, π2 in E with the following
properties:

(a) π maps N× N bijectively onto N,
(b) π(a, b) + b+ 2 ≤ (a+ b+ 1)2 for a+ b ≥ 1, hence π(a, b) < (a+ b+ 1)2,
(c) π1(c), π2(c) ≤ c,
(d) π(π1(c), π2(c)) = c,
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(e) π1(π(a, b)) = a,
(f) π2(π(a, b)) = b.

Proof. Enumerate the pairs of natural numbers as follows:

...

6 . . .

3 7 . . .

1 4 8 . . .

0 2 5 9 . . .

At position (0, b) we clearly have the sum of the lengths of the preceding
diagonals, and on the next diagonal a + b remains constant. Let π(a, b) be
the number written at position (a, b). Then we have

π(a, b) =
( ∑
i≤a+b

i
)

+ a =
1

2
(a+ b)(a+ b+ 1) + a.

Clearly π : N × N → N is bijective. Moreover, a, b ≤ π(a, b) and in case
π(a, b) 6= 0 also a < π(a, b). Let

π1(c) := µx≤c∃y≤c(π(x, y) = c),

π2(c) := µy≤c∃x≤c(π(x, y) = c).

Then clearly πi(c) ≤ c for i ∈ {1, 2} and

π1(π(a, b)) = a, π2(π(a, b)) = b, π(π1(c), π2(c)) = c.

π, π1 and π2 are in E by definition. For π(a, b) we have the estimate

π(a, b) + b+ 2 ≤ (a+ b+ 1)2 for a+ b ≥ 1.

This follows with n := a+ b from

1

2
n(n+ 1) + n+ 2 ≤ (n+ 1)2 for n ≥ 1,

which is equivalent to n(n + 1) + 2(n + 1) ≤ 2((n + 1)2 − 1) and hence to
(n+ 2)(n+ 1) ≤ 2n(n+ 2), which holds for n ≥ 1. �

The proof shows that π, π1 and π2 are in fact subelementary.

Theorem (Gödel’s β-function). There is in E a function β with the
following property: For every sequence a0, . . . , an−1 < b of numbers less

than b we can find a number c ≤ 4 · 4n(b+n+1)4 such that β(c, i) = ai for all
i < n.
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Proof. Let

a := π(b, n) and d :=
∏
i<n

(
1 + π(ai, i)a!

)
.

From a! and d we can, for each given i < n, reconstruct the number ai as
the unique x < b such that

1 + π(x, i)a! | d.

For clearly ai is such an x, and if some x < b were to satisfy the same
condition, then because π(x, i) < a and the numbers 1 + ka! are relatively
prime for k ≤ a, we would have π(x, i) = π(aj , j) for some j < n. Hence
x = aj and i = j, thus x = ai. – Therefore

ai = µx<b∃z<d((1 + π(x, i)a!)z = d).

We can now define Gödel’s β-function as

β(c, i) := µx<π1(c)∃z<π2(c)((1 + π(x, i) · π1(c)) · z = π2(c)).

Clearly β is in E . Furthermore with c := π(a!, d) we see that β(c, i) = ai.
It is then not difficult to estimate the given bound on c, using π(b, n) <
(b+ n+ 1)2. �

The above definition of β shows that it is subelementary.

2.2.4. Closure properties of E.

Theorem. The class E is closed under limited recursion. Thus if g, h, k
are given functions in E and f is defined from them according to the schema

f(~m, 0) = g(~m),

f(~m, n+ 1) = h(n, f(~m, n), ~m),

f(~m, n) ≤ k(~m, n),

then f is in E also.

Proof. Let f be defined from g, h and k in E , by limited recursion
as above. Using Gödel’s β-function as in the last theorem we can find for
any given ~m, n a number c such that β(c, i) = f(~m, i) for all i ≤ n. Let
R(~m, n, c) be the relation

β(c, 0) = g(~m) ∧ ∀i<n(β(c, i+ 1) = h(i, β(c, i), ~m))

and note by the remarks above that its characteristic function is in E . It
is clear, by induction, that if R(~m, n, c) holds then β(c, i) = f(~m, i), for all
i ≤ n. Therefore we can define f explicitly by the equation

f(~m, n) = β(µcR(~m, n, c), n).



42 2. RECURSION THEORY

f will lie in E if µc can be bounded by an E function. However, the theorem

on Gödel’s β-function gives a bound 4 · 4(n+1)(b+n+2)4 , where in this case b
can be taken as the maximum of k(~m, i) for i ≤ n. But this can be defined
in E as k(~m, i0), where i0 = µi≤n∀j≤n(k(~m, j) ≤ k(~m, i)). Hence µc can be
bounded by an E function. �

Remark. Note that it is in this proof only that the exponential function
is required, in providing a bound for µ.

Corollary. E is the class of all elementary functions.

Proof. It is sufficient merely to show that E is closed under bounded
sums and bounded products. Suppose for instance, that f is defined from
g in E by bounded summation: f(~m, n) =

∑
i<n g(~m, i). Then f can be

defined by limited recursion, as follows

f(~m, 0) = 0

f(~m, n+ 1) = f(~m, n) + g(~m, n)

f(~m, n) ≤ n ·max
i<n

g(~m, i)

and the functions (including the bound) from which it is defined are in E .
Thus f is in E by the theorem. If instead, f is defined by bounded product,
then proceed similarly. �

2.2.5. Coding finite lists. Computation on lists is a practical neces-
sity, so because we are basing everything here on the single data type N
we must develop some means of “coding” finite lists or sequences of natural
numbers into N itself. There are various ways to do this and we shall adopt
one of the most traditional, based on the pairing functions π, π1, π2.

The empty sequence is coded by the number 0 and a sequence n0, n1,
. . . , nk−1 is coded by the “sequence number”

〈n0, n1, . . . , nk−1〉 = π′(. . . π′(π′(0, n0), n1), . . . , nk−1)

with π′(a, b) := π(a, b) + 1, thus recursively,

〈〉 := 0,

〈n0, n1, . . . , nk〉 := π′(〈n0, n1, . . . , nk−1〉, nk).

Because of the surjectivity of π, every number a can be decoded uniquely as
a sequence number a = 〈n0, n1, . . . , nk−1〉. If a is greater than zero, hd(a) :=
π2(a−· 1) is the “head” (i.e., rightmost element) and tl(a) := π1(a−· 1) is the

“tail” of the list. The kth iterate of tl is denoted tl(k) and since tl(a) is less

than or equal to a, tl(k)(a) is elementarily definable (by limited recursion).
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Thus we can define elementarily the “length” and “decoding” functions:

lh(a) := µk≤a(tl
(k)(a) = 0),

(a)i := hd(tl(lh(a)−
· (i+1))(a)).

Then if a = 〈n0, n1, . . . , nk−1〉 it is easy to check that

lh(a) = k and (a)i = ni for each i < k.

Furthermore (a)i = 0 when i ≥ lh(a). We shall write (a)i,j for ((a)i)j and
(a)i,j,k for (((a)i)j)k. This elementary coding machinery will be used at
various crucial points in the following.

Note that our previous remarks show that the functions lh(·) and (a)i
are subelementary, and so is 〈n0, n1, . . . , nk−1〉 for each fixed k.

Lemma (Estimate for sequence numbers).

(n+ 1)k ≤ 〈n, . . . , n︸ ︷︷ ︸
k

〉 < (n+ 1)2
k
.

Proof. We prove a slightly strengthened form of the second estimate:

〈n, . . . , n︸ ︷︷ ︸
k

〉+ n+ 1 ≤ (n+ 1)2
k
,

by induction on k. For k = 0 the claim is clear. In the step k 7→ k + 1 we
have

〈n, . . . , n︸ ︷︷ ︸
k+1

〉+ n+ 1 = π(〈n, . . . , n︸ ︷︷ ︸
k

〉, n) + n+ 2

≤ (〈n, . . . , n︸ ︷︷ ︸
k

〉+ n+ 1)2 by the lemma in Section 2.2.3

≤ (n+ 1)2
k+1

by induction hypothesis.

For the first estimate the base case k = 0 is clear, and in the step we have

〈n, . . . , n︸ ︷︷ ︸
k+1

〉 = π(〈n, . . . , n︸ ︷︷ ︸
k

〉, n) + 1

≥ 〈n, . . . , n︸ ︷︷ ︸
k

〉+ n+ 1

≥ (n+ 1)(k + 1) by induction hypothesis. �

Concatenation of sequence numbers b ∗ a is defined thus:

b ∗ 〈〉 := b,

b ∗ 〈n0, n1, . . . , nk〉 := π(b ∗ 〈n0, n1, . . . , nk−1〉, nk) + 1.
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To check that this operation is also elementary, define h(b, a, i) by recursion
on i as follows.

h(b, a, 0) = b,

h(b, a, i+ 1) = π(h(b, a, i), (a)i) + 1

and note that since

h(b, a, i) = 〈(b)0, . . . , (b)lh(b)−· 1, (a)0, . . . , (a)i−· 1〉 for i ≤ lh(a)

it follows from the estimate above that h(a, b, i) ≤ (b+ a)2
lh(b)+i

. Thus h is
definable by limited recursion from elementary functions and hence is itself
elementary. Finally

b ∗ a = h(b, a, lh(a)).

2.3. Kleene’s normal form theorem

2.3.1. Program numbers. The three types of register machine in-
structions I can be coded by “instruction numbers” ]I thus, where v0, v1,
v2, . . . is a list of all variables used to denote registers:

If I is “vj := 0” then ]I = 〈0, j〉.
If I is “vj := vj + 1” then ]I = 〈1, j〉.
If I is “if vj = vl then Im else In” then ]I = 〈2, j, l,m, n〉.

Clearly, using the sequence coding and decoding apparatus above, we can
check elementarily whether or not a given number is an instruction number.

Any register machine program P = I0, I1, . . . , Ik−1 can then be coded
by a “program number” or “index” ]P thus:

]P = 〈]I0, ]I1, . . . , ]Ik−1〉

and again (although it is tedious) we can elementarily check whether or not
a given number is indeed of the form ]P for some program P . Tradition has
it that e is normally reserved as a variable over putative program numbers.

Standard program constructs such as those in Section 2.1 have associ-
ated “index-constructors”, i.e., functions which, given indices of the subpro-
grams, produce an index for the constructed program. The point is that
for standard program constructs the associated index-constructor functions
are elementary. For example, there is an elementary index-constructor comp
such that, given programs P0, P1 with indices e0, e1, comp(e0, e1) is an index
of the program P0 ; P1. A moment’s thought should convince the reader
that the appropriate definition of comp is as follows:

comp(e0, e1) = e0 ∗ 〈r(e0, e1, 0), r(e0, e1, 1), . . . , r(e0, e1, lh(e1)−· 1)〉
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where r(e0, e1, i) ={
〈2, (e1)i,1, (e1)i,2, (e1)i,3 + lh(e0), (e1)i,4 + lh(e0)〉 if (e1)i,0 = 2

(e1)i otherwise

re-addresses the jump instructions in P1. Clearly r and hence comp are
elementary functions.

Definition. Henceforth, ϕ
(r)
e denotes the partial function computed by

the register machine program with program number e, operating on the
input registers v1, . . . , vr and with output register v0. There is no loss of
generality here, since the variables in any program can always be renamed
so that v1, . . . , vr become the input registers and v0 the output. If e is not a
program number, or it is but does not operate on the right variables, then

we adopt the convention that ϕ
(r)
e (n1, . . . , nr) is undefined for all inputs

n1, . . . , nr. Alternative notation for ϕ
(r)
e (n1, . . . , nr) is {e}(n1, . . . , nr).

2.3.2. Normal form.

Theorem (Kleene’s normal form). For each arity r there is an elemen-
tary function U and an elementary relation T such that, for all e and all
inputs n1, . . . , nr,

(a) ϕ
(r)
e (n1, . . . , nr) is defined if and only if ∃sT (e, n1, . . . , nr, s),

(b) ϕ
(r)
e (n1, . . . , nr) = U(e, n1, . . . , nr, µsT (e, n1, . . . , nr, s)).

Proof. A computation of a register machine program P (v1, . . . , vr; v0)
on numerical inputs ~n = n1, . . . , nr proceeds deterministically, step by step,
each step corresponding to the execution of one instruction. Let e be its
program number, and let v0, . . . , vl be all the registers used by P , including
the “working registers”, so r ≤ l.

The “state” of the computation at step s is defined to be the sequence
number

state(e, ~n, s) = 〈e, i,m0,m1, . . . ,ml〉
where m0,m1, . . . ,ml are the values stored in the registers v0, v1, . . . , vl after
step s is completed, and the next instruction to be performed is the i-th one,
thus (e)i is its instruction number.

The “state transition function” tr : N → N computes the “next state”.
So suppose that x = 〈e, i,m0,m1, . . . ,ml〉 is any putative state. Then in
what follows, e = (x)0, i = (x)1, and mj = (x)j+2 for each j ≤ l. The
definition of tr(x) is therefore as follows:

tr(x) = 〈e, i′,m′0,m′1, . . . ,m′l〉
where
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(i) If (e)i = 〈0, j〉 where j ≤ l then i′ = i + 1, m′j = 0, and all other

registers remain unchanged, i.e., m′k = mk for k 6= j.
(ii) If (e)i = 〈1, j〉 where j ≤ l then i′ = i+ 1, m′j = mj + 1, and all other

registers remain unchanged.
(iii) If (e)i = 〈2, j0, j1, i0, i1〉 where j0, j1 ≤ l and i0, i1 ≤ lh(e) then i′ = i0

or i′ = i1 according as mj0 = mj1 or not, and all registers remain
unchanged, i.e., m′j = mj for all j ≤ l.

(iv) Otherwise, if e is not a program number, or if it refers to a register vk
with l < k, or if lh(e) ≤ i, then tr(x) simply repeats the same state x
so i′ = i, and m′j = mj for every j ≤ l.

Clearly tr is an elementary function, since it is defined by elementarily de-
cidable cases, with (a great deal of) elementary decoding and re-coding
involved in each case.

Consequently, the “state function” state(e, ~n, s) is also elementary be-
cause it can be defined by iterating the transition function by limited recur-
sion on s as follows:

state(e, ~n, 0) = 〈e, 0, 0, n1, . . . , nr, 0, . . . , 0〉
state(e, ~n, s+ 1) = tr(state(e, ~n, s))

state(e, ~n, s) ≤ h(e, ~n, s)

where for the bounding function h we can take

h(e, ~n, s) = 〈e, e〉 ∗ 〈max(~n ) + s, . . . ,max(~n ) + s〉.
This is because the maximum value of any register at step s cannot be
greater than max(~n ) + s. Now this expression clearly is elementary, since
〈m, . . . ,m〉 with i occurrences of m is definable by a limited recursion with

bound (m+ 1)2
i
, by the estimate Lemma in Section 2.2.5.

Now recall that if program P has program number e then computation
terminates when instruction Ilh(e) is encountered. Thus we can define the
“termination relation” T (e, ~n, s), meaning “computation terminates at step
s”, by

T (e, ~n, s) := ((state(e, ~n, s))1 = lh(e)).

Clearly T is elementary and

ϕ(r)
e (~n ) is defined↔ ∃sT (e, ~n, s).

The output on termination is the value of register v0, so if we define the
“output function” U(e, ~n, s) by

U(e, ~n, s) := (state(e, ~n, s))2

then U is also elementary and

ϕ(r)
e (~n ) = U(e, ~n, µsT (e, ~n, s)). �
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2.3.3. Σ0
1-definable relations and µ-recursive functions. A rela-

tion R of arity r is said to be Σ0
1-definable if there is an elementary relation

E, say of arity r + l, such that for all ~n = n1, . . . , nr,

R(~n )↔ ∃k1,...klE(~n, k1, . . . , kl).

A partial function ϕ is said to be Σ0
1-definable if its graph

{ (~n,m) | ϕ(~n ) is defined and = m }
is Σ0

1-definable.
To say that a non-empty relation R is Σ0

1-definable is equivalent to saying
that the set of all sequences 〈~n〉 satisfying R can be enumerated (possibly
with repetitions) by some elementary function f : N→ N. Such relations are
called elementarily enumerable. For choose any fixed sequence 〈a1, . . . , ar〉
satisfying R and define

f(m) =

{
〈(m)1, . . . , (m)r〉 if E((m)1, . . . , (m)r+l)

〈a1, . . . , ar〉 otherwise.

Conversely if R is elementarily enumerated by f then

R(~n )↔ ∃m(f(m) = 〈~n〉)
is a Σ0

1-definition of R.
The µ-recursive functions are those (partial) functions which can be

defined from the initial functions: constant 0, successor S, projections (onto
the i-th coordinate), addition +, modified subtraction −· and multiplication
·, by applications of composition and unbounded minimization. Note that
it is through unbounded minimization that partial functions may arise.

Lemma. Every elementary function is µ-recursive.

Proof. By simply removing the bounds on µ in the lemmas in Sec-
tion 2.2.3 one obtains µ-recursive definitions of the pairing functions π, π1,
π2 and of Gödel’s β-function. Then by removing all mention of bounds
from the theorem in Section 2.2.4 one sees that the µ-recursive functions are
closed under (unlimited) primitive recursive definitions: f(~m, 0) = g(~m),
f(~m, n+ 1) = h(n, f(~m, n), ~m). Thus one can µ-recursively define bounded
sums and bounded products, and hence all elementary functions. �

2.3.4. Computable functions.

Definition. The while programs are those programs which can be built
up from assignment statements x := 0, x := y, x := y + 1, x := y −· 1, by
conditionals, composition, for-loops and while-loops as in Section 2.1 (on
program constructs).

Theorem. The following are equivalent:
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(a) ϕ is register machine computable,
(b) ϕ is Σ0

1-definable,
(c) ϕ is µ-recursive,
(d) ϕ is computable by a while program.

Proof. The normal form theorem shows immediately that every regi-

ster machine computable function ϕ
(r)
e is Σ0

1-definable since

ϕ(r)
e (~n ) = m↔ ∃s(T (e, ~n, s) ∧ U(e, ~n, s) = m)

and the relation T (e, ~n, s) ∧ U(e, ~n, s) = m is clearly elementary. If ϕ is
Σ0
1-definable, say

ϕ(~n ) = m↔ ∃k1,...klE(~n,m, k1, . . . , kl),

then ϕ can be defined µ-recursively by

ϕ(~n ) = (µmE(~n, (m)0, (m)1, . . . , (m)l) )0 ,

using the fact (above) that elementary functions are µ-recursive. The ex-
amples of computable functionals in Section 2.1 show how the definition of
any µ-recursive function translates automatically into a while program. Fi-
nally, Section 2.1 shows how to implement any while program on a register
machine. �

Henceforth computable means “register machine computable” or any of
its equivalents.

Corollary. The function ϕ
(r)
e (n1, . . . , nr) is a computable partial func-

tion of the r + 1 variables e, n1, . . . , nr.

Proof. Immediate from the normal form. �

Lemma. Let R and R̄ be disjoint inhabited relations with ∀~n(R~n∨ R̄~n).
Then R is computable if and only if both R and R̄ are Σ0

1-definable.

Proof. We assume (for simplicity) that R and R̄ are unary.
“→”. By the theorem above every computable relation is Σ0

1-definable,
and with R clearly R̄ is computable.

“←”. Let f, g ∈ E enumerate R and R̄, respectively. Then

h(n) := µi(f(i) = n ∨ g(i) = n)

is a total µ-recursive function, and R(n)↔ f(h(n)) = n. �
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2.3.5. Undecidability of the halting problem. The above corollary
says that there is a single “universal” program which, given numbers e and

~n, computes ϕ
(r)
e (~n ) if it is defined. However, we cannot decide in advance

whether or not it will be defined. There is no program which, given e and
~n, computes the total function

h(e, ~n ) =

{
1 if ϕ

(r)
e (~n ) is defined

0 if ϕ
(r)
e (~n ) is undefined.

For suppose there were such a program. Then the function

ψ(~n ) = µm(h(n1, ~n ) = 0)

would be computable, say with fixed program number e0, and therefore

ϕ(r)
e0 (~n ) =

{
0 if h(n1, ~n ) = 0

undefined if h(n1, ~n ) = 1.

But then fixing n1 = e0 gives

ϕ
(r)
e0 (~n ) defined↔ h(e0, ~n ) = 0↔ ϕ

(r)
e0 (~n ) undefined,

a contradiction. Hence the relation R(e, ~n ), which holds if and only if

ϕ
(r)
e (~n ) is defined, is not recursive. It is however Σ0

1-definable.





CHAPTER 3

Gödel’s Theorems

We now bring proof and recursion together. A principal object of study
in this chapter are the elementary functions, which are adequate for the
arithmetization of syntax leading to Gödel’s two incompleteness theorems.

3.1. The notion of truth in formal theories

We consider the question whether there is a truth formula B(z) such
that in appropriate theories T we have T ` A ↔ B(pAq) for all sentences
A. Here pAq is the “Gödel number” of A, and a is the “numeral” denoting
a ∈ N; both notions are defined in Section 3.1.1 below. The result will be
that this is impossible, under rather weak assumptions on the theory T .
Technically, the issue will be to have a syntactic substitute of the notion
of definability by “representability” within a formal theory. This notion is
defined in Section 3.1.2.

3.1.1. Gödel numbers. We will assign numbers – so-called Gödel
numbers, GN for short – to the syntactical constructs developed in Chap-
ter 1: terms, formulas and derivations. Using the elementary sequence-
coding and decoding machinery developed earlier we will be able to con-
struct the code number of a composed object from its parts, and conversely
to disassemble the code number of a composed object into the code numbers
of its parts.

Let L be a countable first-order language. Assume that we have injec-
tively assigned to every n-ary relation symbol R a symbol number sn(R) of
the form 〈1, n, i〉 and to every n-ary function symbol f a symbol number
sn(f) of the form 〈2, n, j〉. Call L elementarily presented if the set SymbL
of all these symbol numbers is elementary. In what follows we shall al-
ways assume that the languages L considered are elementarily presented.
In particular this applies to every language with finitely many relation and
function symbols.

51
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Let sn(Var) := 〈0〉. For every L-term t we define recursively its Gödel
number ptq by

pxiq := 〈sn(Var), i〉,
pft1 . . . tnq := 〈sn(f), pt1q, . . . , ptnq〉.

Assign numbers to the logical symbols by sn(→) := 〈3, 0〉 and sn(∀) := 〈3, 1〉.
For simplicity we leave out the logical connective ∧ here; it could be treated
similarly. We define for every L-formula A its Gödel number pAq by

pRt1 . . . tnq := 〈sn(R), pt1q, . . . , ptnq〉,
pA→ Bq := 〈sn(→), pAq, pBq〉,
p∀xiAq := 〈sn(∀), i, pAq〉.

Assume that 0 is a constant and S is a unary function symbol in L. For
every a ∈ N the numeral a ∈ TerL is defined by 0 := 0 and n+ 1 := Sn. We
can define an elementary function s such that for every formula C = C(z)
with z := x0,

s(pCq, k) = pC(k)q;

the proof is an exercise.
We define symbol numbers for the names of the natural deduction rules:

sn(AssVar) := 〈4, 0〉, sn(→+) := 〈4, 1〉, sn(→−) := 〈4, 2〉, sn(∀+) := 〈4, 3〉,
sn(∀−) := 〈4, 4〉. For a derivation M we define its Gödel number pMq by

puAi q := 〈sn(AssVar), i, pAq〉,
pλuAi Mq := 〈sn(→+), i, pAq, pMq〉,

pMNq := 〈sn(→−), pMq, pNq〉,
pλxiMq := 〈sn(∀+), i, pMq〉,
pMtq := 〈sn(∀−), pMq, ptq〉.

Let T be an L-theory determined by an elementary axiom system AxT
(containing StabL) plus the equality axioms EqL:

x = x (Reflexivity),

x = y → y = x (Symmetry),

x = y → y = z → x = z (Transitivity),

x1 = y1 → · · · → xn = yn → f(x1, . . . , xn) = f(y1, . . . , yn),

x1 = y1 → · · · → xn = yn → R(x1, . . . , xn)→ R(y1, . . . , yn),

for all n-ary function symbols f and relation symbols R of the language L.
For such axiomatized theories we can define an elementary binary relation
PrfT such that PrfT (d, a) holds if and only if d is the GN of a derivation
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with a closed end formula with GN a from a context composed of equality
axioms and formulas from AxT .

3.1.2. Representable relations and functions. In this section we
assume that L is an elementarily presented language with 0, S and = in L,
and T an L-theory containing the equality axioms EqL.

Definition. A relation R ⊆ Nn is representable in T if there is a formula
A(x1, . . . , xn) such that

T ` A(a1, . . . , an) if (a1, . . . , an) ∈ R,
T ` ¬A(a1, . . . , an) if (a1, . . . , an) /∈ R.

A function f : Nn → N is called representable in T if there is a formula
A(x1, . . . , xn, y) representing the graph Gf ⊆ Nn+1 of f , i.e., such that

T ` A(a1, . . . , an, f(a1, . . . , an)),(15)

T ` ¬A(a1, . . . , an, c) if c 6= f(a1, . . . , an)(16)

and such that in addition

(17) T ` A(a1, . . . , an, y)→ A(a1, . . . , an, z)→ y=z for all a1, . . . , an ∈ N.

Note that in case T ` b 6= c for b < c condition (16) follows from (15)
and (17).

Lemma. If the characteristic function cR of a relation R ⊆ Nn is repre-
sentable in T , then so is the relation R itself.

Proof. For simplicity assume n = 1. Let A(x, y) be a formula repre-
senting cR. We show that A(x, 1) represents the relation R. Assume a ∈ R.
Then cR(a) = 1, hence (a, 1) ∈ GcR , hence T ` A(a, 1). Conversely, assume
a /∈ R. Then cR(a) = 0, hence (a, 1) /∈ GcR , hence T ` ¬A(a, 1). �

3.1.3. Undefinability of the notion of truth in formal theories.

Lemma (Fixed point lemma). Assume that all elementary functions are
representable in T . Then for every formula B(z) we can find a closed for-
mula A such that

T ` A↔ B(pAq).

Proof. Let s be the elementary function introduced in Section 3.1.1
and As(x1, x2, x3) a formula representing s in T . Let

C(z) := ∀x(As(z, z, x)→ B(x)), A := C(pCq),

and therefore

A = ∀x(As(pCq, pCq, x)→ B(x)).



54 3. GÖDEL’S THEOREMS

Because of s(pCq, pCq) = pC(pCq)q = pAq we can prove in T

As(pCq, pCq, x)↔ x = pAq,

hence by definition of A also

A↔ ∀x(x = pAq→ B(x))

and therefore
A↔ B(pAq). �

Theorem. Let T be a consistent theory such that all elementary func-
tions are representable in T . Then there cannot exist a formula B(z) defining
the notion of truth, i.e., such that for all closed formulas A

T ` A↔ B(pAq).

Proof. Assume we would have such a B(z). Consider the formula
¬B(z) and choose by the fixed point lemma a closed formula A such that

T ` A↔ ¬B(pAq).

For this A we obtain T ` A↔ ¬A, contradicting the consistency of T . �

3.2. Undecidability and incompleteness

Consider a consistent formal theory T with the property that all recur-
sive functions are representable in T . This is a very weak assumption, as we
shall show in the next section: it is always satisfied if the theory allows to
develop a certain minimum of arithmetic. We shall show that such a the-
ory necessarily is undecidable. Then we prove Gödel’s (first) incompleteness
theorem saying that every axiomatized such theory must be incomplete. In
fact, we prove a sharpened form of this theorem due to Gödel and then
Rosser, which explicitly provides a closed formula A such that neither A nor
¬A is provable in the theory T .

In this section let L be an elementarily presented language with 0, S,
= in L and T a theory containing the equality axioms EqL. Call a relation
recursive if its (total) characteristic function is recursive. A set S of formulas
is called recursive (elementarily enumerable), if pSq := { pAq | A ∈ S } is
recursive (elementarily enumerable).

Theorem (Undecidability). Assume that T is a consistent theory such
that all recursive functions are representable in T . Then T is not recursive.

Proof. Assume that T is recursive. By assumption there exists a for-
mula B(z) representing pTq in T . Choose by the fixed point lemma a closed
formula A such that

T ` A↔ ¬B(pAq).

We shall prove (∗) T 6` A and (∗∗) T ` A; this is the desired contradiction.
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Ad (∗). Assume T ` A. Then A ∈ T , hence pAq ∈ pTq, hence T `
B(pAq) (because B(z) represents in T the set pTq). By the choice of A it
follows that T ` ¬A, which contradicts the consistency of T .

Ad (∗∗). By (∗) we know T 6` A. Therefore A /∈ T , hence pAq /∈ pTq
and therefore T ` ¬B(pAq). By the choice of A it follows that T ` A. �

Theorem (Gödel-Rosser). Let T be axiomatized and consistent. As-
sume that there is a formula L(x, y) – written x < y – such that

T ` ∀x<n(x = 0 ∨̃ · · · ∨̃ x = n− 1),(18)

T ` ∀x(x = 0 ∨̃ · · · ∨̃ x = n ∨̃ n < x).(19)

Assume also that every elementary function is representable in T . Then we
can find a closed formula A such that neither A nor ¬A is provable in T .

Proof. We first define RefutT ⊆ N× N by

RefutT (d, a) := PrfT (d, ¬̇a)

with ¬̇a := 〈sn(→), a, sn(⊥)〉. Then RefutT is elementary and RefutT (d, a)
holds if and only if d is the GN of a derivation of the negation of a formula
with GN a from a context composed of equality axioms and formulas from
AxT . Let BPrfT (x1, x2) and BRefutT (x1, x2) be formulas representing PrfT
and RefutT , respectively. Choose by the fixed point lemma a closed formula
A such that

T ` A↔ ∀x(BPrfT (x, pAq)→ ∃̃y<xBRefutT (y, pAq)).

A expresses its own underivability, in the form (due to Rosser): “For every
proof of me there is a shorter proof of my negation”.

We shall show (∗) T 6` A and (∗∗) T 6` ¬A.
Ad (∗). Assume T ` A. Choose n such that

PrfT (n, pAq).

Then we also have

not RefutT (m, pAq) for all m,

since T is consistent. Hence

T ` BPrfT (n, pAq),

T ` ¬BRefutT (m, pAq) for all m.

By (18) we can conclude

T ` BPrfT (n, pAq) ∧ ∀y<n¬BRefutT (y, pAq).
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Hence

T ` ∃̃x(BPrfT (x, pAq) ∧ ∀y<x¬BRefutT (y, pAq)),

T ` ¬A.

This contradicts the assumed consistency of T .
Ad (∗∗). Assume T ` ¬A. Choose n such that

RefutT (n, pAq).

Then we also have

not PrfT (m, pAq) for all m,

since T is consistent. Hence

T ` BRefutT (n, pAq),

T ` ¬BPrfT (m, pAq) for all m.

This implies

T ` ∀x(BPrfT (x, pAq)→ ∃̃y<xBRefutT (y, pAq)),

as can be seen easily by cases on x, using (19). Hence T ` A. But this again
contradicts the assumed consistency of T . �

Finally we formulate a variant of this theorem which does not assume
that the theory T talks about numbers only. Call T a theory with defined
natural numbers if there is a formula N(x) – written Nx – such that T ` N0
and T ` ∀x∈NN(Sx) where ∀x∈NA is short for ∀x(Nx→ A). Representing
a function in such a theory of course means that the free variables in (17)
are relativized to N :

T ` ∀y,z∈N (A(a1, . . . , an, y)→ A(a1, . . . , an, z)→ y=z) for all ~a ∈ N.

Theorem (Gödel-Rosser). Assume that T is an axiomatized consistent
theory with defined natural numbers, and that there is a formula L(x, y) –
written x < y – such that

T ` ∀x∈N (x < n→ x = 0 ∨̃ · · · ∨̃ x = n− 1),

T ` ∀x∈N (x = 0 ∨̃ · · · ∨̃ x = n ∨̃ n < x).

Assume also that every elementary function is representable in T . Then one
can find a closed formula A such that neither A nor ¬A is provable in T .

Proof. As for the Gödel-Rosser theorem above; just relativize all quan-
tifiers to N . �
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3.3. Representability of recursive functions

We show in this section that already very simple theories have the pro-
perty that all recursive functions are representable in them; an example is
a finitely axiomatized arithmetical theory Q due to Robinson (1950). A
consequence will be the (even “essential”) undecidability of Q.

3.3.1. Weak arithmetical theories.

Theorem. Let L be an elementarily presented language with 0, S, =
in L and T a consistent theory with defined natural numbers containing the
equality axioms EqL. Assume that

T ` Sa 6= 0 for all a ∈ N,(20)

T ` Sa = Sb→ a = b for all a, b ∈ N,(21)

the functions + and · are representable in T(22)

and that there is a formula L(x, y) – written x < y – such that

T ` ∀x∈N (x 6< 0),(23)

T ` ∀x∈N (x < Sb→ x < b ∨̃ x = b) for all b ∈ N,(24)

T ` ∀x∈N (x < b ∨̃ x = b ∨̃ b < x) for all b ∈ N.(25)

Then every recursive function is representable in T .

Proof. First note that the formulas x = y and x < y actually do
represent in T the equality and the less-than relations, respectively. From
(20) and (21) we can see immediately that T ` a 6= b when a 6= b. Assume
a 6< b. We show T ` a 6< b by induction on b. T ` a 6< 0 follows from
(23). In the step we have a 6< Sb, hence a 6< b and a 6= b, hence by induction
hypothesis and the representability (above) of the equality relation, T ` a 6<
b and T ` a 6= b, hence by (24) T ` a 6< Sb. Now assume a < b. Then
T ` a 6= b and T ` b 6< a, hence by (25) T ` a < b.

We now show by induction on the definition of µ-recursive functions that
every recursive function is representable in T . Recall (from Section 3.1.2)
that the second condition (16) in the definition of representability of a func-
tion automatically follows from the other two (and hence need not be checked
further). This is because T ` a 6= b for a 6= b.

The initial functions constant 0, successor and projection (onto the i-
th coordinate) are trivially represented by the formulas 0 = y, Sx = y
and xi = y respectively. Addition and multiplication are represented in
T by assumption. Recall that the one remaining initial function of µ-
recursiveness is −· , but this is definable from the characteristic function
of < by a−· b = µi(b+ i ≥ a) = µi(c<(b+ i, a) = 0). We now show that the
characteristic function of < is representable in T . (It will then follow that
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−· is representable, once we have shown that the representable functions are
closed under µ.) We show that

A(x1, x2, y) := (x1 < x2 ∧ y = 1) ∨̃ (x1 6< x2 ∧ y = 0)

represents c<. First notice that ∀y,z∈N (A(a1, a2, y)→ A(a1, a2, z)→ y = z)
already follows logically from the equality axiom (by cases on the alternatives
of A). Assume a1 < a2. Then T ` a1 < a2, hence T ` A(a1, a2, 1). Now
assume a1 6< a2. Then T ` a1 6< a2, hence T ` A(a1, a2, 0).

For the composition case, suppose f is defined from h, g1, . . . , gm by

f(~a ) = h(g1(~a ), . . . , gm(~a )).

By induction hypothesis we already have representing formulas Agi(~x, yi)
and Ah(~y, z). As representing formula for f we take

Af := ∃̃~y∈N (Ag1(~x, y1) ∧̃ . . . ∧̃Agm(~x, ym) ∧̃Ah(~y, z)).

Assume f(~a ) = c. Then there are b1, . . . , bm such that T ` Agi(~a, bi) for each

i, and T ` Ah(~b, c) so by logic T ` Af (~a, c). It remains to show uniqueness
T ` ∀z1,z2∈N (Af (~a, z1) → Af (~a, z2) → z1 = z2). But this follows by logic
from the induction hypothesis for gi, which gives

T ` ∀y1i,y2i∈N (Agi(~a, y1i)→ Agi(~a, y2i)→ y1i = y2i = gi(~a ))

and the induction hypothesis for h, which gives

T ` ∀z1,z2∈N (Ah(~b, z1)→ Ah(~b, z2)→ z1 = z2) with bi = gi(~a ).

For the µ case, suppose f is defined from g (taken here to be binary for

notational convenience) by f(a) = µi(g(i, a) = 0), assuming ∀a∃̃i(g(i, a) =
0). By induction hypothesis we have a formula Ag(y, x, z) representing g.
In this case we represent f by the formula

Af (x, y) := Ny ∧Ag(y, x, 0) ∧ ∀v∈N (v < y → ∃̃u∈N ;u6=0Ag(v, x, u)).

We first show the representability condition (15), that is T ` Af (a, b) when
f(a) = b. Because of the form of Af this follows from the assumed repre-
sentability of g together with T ` ∀v∈N (v < b→ v = 0 ∨̃ · · · ∨̃ v = b− 1).

We now tackle the uniqueness condition (17). Given a, let b := f(a)
(thus g(b, a) = 0 and b is the least such). It suffices to show

T ` ∀y∈N (Af (a, y)→ y = b).

We prove T ` ∀y∈N (y < b→ ¬Af (a, y)) and T ` ∀y∈N (b < y → ¬Af (a, y)),
and then appeal to the trichotomy law.

We first show T ` ∀y∈N (y < b → ¬Af (a, y)). Now since, for any i < b,
T ` ¬Ag(i, a, 0) by the assumed representability of g, we obtain immediately
T ` ¬Af (a, i). Hence because of T ` ∀y∈N (y < b→ y = 0 ∨̃ · · · ∨̃ y = b− 1)
the claim follows.
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Secondly, T ` ∀y∈N (b < y → ¬Af (a, y)) follows almost immediately

from T ` ∀y∈N (b < y → Af (a, y)→ ∃̃u∈N ;u6=0Ag(b, a, u)) and the uniqueness
for g, T ` ∀u∈N (Ag(b, a, u)→ u = 0). �

3.3.2. Robinson’s theory Q. We conclude this section by conside-
ring a special and particularly simple arithmetical theory due originally to
Robinson (1950). Let L1 be the language given by 0, S, +, · and =, and let
Q be the theory determined by the axioms EqL1 and

Sx 6= 0,(26)

Sx = Sy → x = y,(27)

x+ 0 = x,(28)

x+ Sy = S(x+ y),(29)

x · 0 = 0,(30)

x · Sy = x · y + x,(31)

∃̃z(x+ Sz = y) ∨̃ x = y ∨̃ ∃̃z(y + Sz = x).(32)

Theorem (Robinson’s Q). Every consistent theory T ⊇ Q fulfills the

assumptions of the previous theorem w.r.t. the definition L(x, y) := ∃̃z(x +
Sz = y) of the <-relation. Hence every recursive function is representable
in T .

Proof. We show that T satisfies the conditions of the previous theorem.
For (20) and (21) this is clear. For (22) we can take x+ y = z and x · y = z

as representing formulas. For (23) we have to show ¬∃̃z(x + Sz = 0); this
follows from (29) and (26). For the proof of (24) we need the auxiliary
proposition

(33) x = 0 ∨̃ ∃̃y(x = 0 + Sy),

which will be attended to below. Assume x+Sz = Sb, hence also S(x+z) =

Sb and therefore x + z = b. We must show ∃̃y′(x + Sy′ = b) ∨̃ x = b. But
this follows from (33) for z. In case z = 0 we obtain x = b, and in case

∃̃y(z = 0 +Sy) we have ∃̃y′(x+Sy′ = b), since 0 +Sy = S(0 +y). Thus (24)
is proved. (25) follows immediately from (32). For the proof of (33) we use

(32) with y = 0. It clearly suffices to exclude the first case ∃̃z(x+ Sz = 0).
But this means S(x+ z) = 0, contradicting (26). �

Corollary (Essential undecidability of Q). Every consistent theory
T ⊇ Q in an elementarily presented language is non-recursive.

Proof. This follows from the theorem above and the undecidability
theorem in Section 3.2. �
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Corollary (Undecidability of logic). The set of formulas derivable in
minimal logic is non-recursive.

Proof. Otherwise Q would be recursive, because a formula A is deriv-
able in Q if and only if the implication B → A is derivable, where B is the
conjunction of the finitely many axioms and equality axioms of Q. �

Remark. Note that it suffices that the underlying language contains
one binary relation symbol (for =), one constant symbol (for 0), one unary
function symbol (for S) and two binary functions symbols (for + and ·). The
study of decidable fragments of first-order logic is one of the oldest research
areas of mathematical logic. For more information see Börger et al. (1997).

3.3.3. Σ1-formulas. Reading the above proof of representability, one
can see that the representing formulas used are of a restricted form, having
no unbounded universal quantifiers and therefore defining Σ0

1-relations. This
will be of crucial importance for our proof of Gödel’s second incompleteness
theorem to follow, but in addition we need to make a syntactically precise
definition of the class of formulas involved, more specific and apparently
more restrictive than the notion of Σ1-formula used earlier. However, as
proved in the corollary below, we can still represent all recursive functions
even in the weak theory Q by means of Σ1-formulas in this more restrictive
sense. Consequently provable Σ1-ness will be the same whichever definition
we take.

Definition. For the remainder of this chapter, the Σ1-formulas of the
language L1 will be those generated inductively by the following clauses:

(a) Only atomic formulas of the restricted forms x = y, x 6= y, 0 = x,
Sx = y, x+ y = z and x · y = z are allowed as Σ1-formulas.

(b) If A and B are Σ1-formulas, then so are A ∧B and A ∨̃ B.
(c) If A is a Σ1-formula, then so is ∀x<yA, which is an abbreviation for

∀x(∃̃z(x+ Sz = y)→ A).

(d) If A is a Σ1-formula, then so is ∃̃xA.

Corollary. Every recursive function is representable in Q by a Σ1-
formula in the language L1.

Proof. This can be seen immediately by inspecting the proof of the
theorem above on weak arithmetical theories. Only notice that because of
the equality axioms ∃̃z(x+Sz = y) is equivalent to ∃̃z∃̃w(Sz = w∧x+w = y)

and A(0) is equivalent to ∃̃x(0 = x ∧A(x)). �

3.4. Unprovability of consistency

We have seen in the theorem of Gödel-Rosser how, for every axiomatized
consistent theory T safisfying certain weak assumptions, we can construct
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an undecidable sentence A meaning “For every proof of me there is a shorter
proof of my negation”. Because A is unprovable, it is clearly true.

Gödel’s second incompleteness theorem provides a particularly interes-
ting alternative to A, namely a formula ConT expressing the consistency of
T . Again it turns out to be unprovable and therefore true. We shall prove
this theorem in a sharpened form due to Löb.

3.4.1. Σ1-completeness. We prove an auxiliary proposition, express-
ing the completeness of Q with respect to Σ1-formulas.

Lemma (Σ1-completeness). Let A(x1, . . . , xn) be a Σ1-formula of the
language L1. Assume that N1 |= A(a1, . . . , an) where N1 is the standard
model of L1. Then Q ` A(a1, . . . , an).

Proof. By induction on the Σ1-formulas of the language L1. For atomic
formulas, the cases have been dealt with either in the earlier parts of the
proof of the theorem above on weak arithmetical theories, or (for x+ y = z
and x · y = z) they follow from the recursion equations (28) - (31).

Cases A∧B, A ∨̃ B. The claim follows immediately from the induction
hypothesis.

Case ∀x<yA(x, y, z1, . . . , zn); for simplicity assume n = 1. Suppose
N1 |= (∀x<yA)(b, c). Then also N1 |= A(i, b, c) for each i < b and hence by
induction hypothesis Q ` A(i, b, c). Now by the theorem above on Robin-
son’s Q

Q ` ∀x<b(x = 0 ∨̃ · · · ∨̃ x = b− 1),

hence

Q ` (∀x<yA)(b, c).

Case ∃̃xA(x, y1, . . . , yn); for simplicity again take n = 1. Assume N1 |=
(∃̃xA)(b). Then N1 |= A(a, b) for some a ∈ N, hence by induction hypothesis

Q ` A(a, b) and therefore Q ` (∃̃xA)(b). �

3.4.2. Derivability conditions. Let T be an axiomatized consistent
theory with T ⊇ Q, and let PrfT (p, z) be a Σ1-formula of the language
L1 which represents in Robinson’s theory Q the recursive relation “a is the
Gödel number of a proof in T of the formula with Gödel number b”. Consider
the following L1-formulas:

ThmT (x) := ∃̃yPrfT (y, x),

ConT := ¬∃̃yPrfT (y, p⊥q).

Then ThmT (x) defines in N1 the set of formulas provable in T , and we have
N1 |= ConT if and only if T is consistent. We write �A for ThmT (pAq);
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hence ConT can be written ¬�⊥. Now suppose, in addition, that T satisfies
the following two derivability conditions, due to Hilbert and Bernays (1939):

T ` �A→ ��A,(34)

T ` �(A→ B)→ �A→ �B.(35)

(34) formalizes Σ1-completeness of the theory T for closed formulas, and
(35) is a formalization of its closure under modus ponens (i.e., →−). The
derivability conditions place further restrictions on the theory T and its
proof predicate PrfT . We check them under the assumption that PrfT is as
defined earlier. (There are non-standard ways of coding proofs which lead
to various “pathologies” - see, e.g., Feferman (1960)).

The formalized version of modus ponens is easy to see, assuming that T
can be conservatively extended to include a “proof-term” t(y, y′) such that
one may prove

PrfT (y, pA→ Bq)→ PrfT (y′, pAq)→ PrfT (t(y, y′), pBq)

for then (35) follows immediately by quantifier rules.
(34) is harder. A detailed proof requires a great deal of syntactic ma-

chinery to do with the construction of proof terms, as above, acting on Gödel
numbers so as to mimic the various rules inside T . We merely content our-
selves here with a short indication of why (34) holds; this should be sufficient
to convince the reader of its validity.

As we have seen at the beginning of this chapter, the elementary func-
tions are provably recursive and so we may take their definitions as having
been added conservatively. Working informally “inside” T one shows, by
induction on y, that

PrfT (y, pAq)→ PrfT (f(y), p�Aq)

where f is elementary. Then (34) follows by the quantifier rules.
If y is the Gödel number of a derivation (in T ) consisting of an axiom

A then there will be a term t, elementarily computable from y, such that
PrfT (t, pAq) and hence �A are derivable in T . This derivation may be
syntactically complex, but it will essentially consist of checking that t, as a
Gödel number, encodes the right thing. Thus the derivation of �A has a
fixed Gödel number (depending on t and hence y) and this is what we take
as the value of f(y).

If y is the Gödel number of a derivation of A in which one of the rules is
finally applied, say to premises A′ and A′′, then there will be y′, y′′ < y such
that PrfT (y′, pA′q) and PrfT (y′′, pA′′q). By the induction hypothesis, f(y′)
and f(y′′) will be the Gödel numbers of T -derivations of �A′ and �A′′, and
as in the modus-ponens case above, there will be a fixed derivation which
combines these two into a new derivation of �A. We take, as the value f(y),
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the Gödel number of this final derivation, computable from f(y′) and f(y′′)
by applying some additional (sub-elementary) coding corresponding to the
additional steps from �A′ and �A′′ to �A.

The function f will be definable from elementary functions by a course-
of-values recursion in which the recursion steps are in fact computed sub-
elementarily. Therefore it will be a limited course-of-values recursion and,
by a result in Chapter 2, f will therefore be elementary as required.

Theorem (Gödel’s second incompleteness theorem). Let T be an ax-
iomatized consistent extension of Q, satisfying the derivability conditions
(34) und (35). Then T 6` ConT .

Proof. Let C := ⊥ in Löb’s theorem below, which is a generalization
of Gödel’s original result. �

Theorem (Löb). Let T be an axiomatized consistent extension of Q
satisfying the derivability conditions (34) and (35). Then for any closed
L1-formula C, if T ` �C → C, then already T ` C.

Proof. Assume T ` �C → C. We must show T ` C. Choose A by the
fixed point lemma such that

(36) Q ` A↔ (�A→ C).

First we show T ` �A→ C. We obtain

T ` A→ �A→ C by (36)

T ` �(A→ �A→ C) by Σ1-completeness

T ` �A→ �(�A→ C) by (35)

T ` �A→ ��A→ �C again by (35)

T ` �A→ �C since T ` �A→ ��A by (34).

Therefore the assumption T ` �C → C implies T ` �A→ C. Hence T ` A
by (36), and then T ` �A by Σ1-completeness. But T ` �A → C as we
have just shown, therefore T ` C. �

Remark. It follows that if T is any axiomatized consistent extension
of Q satisfying the derivability conditions (34) und (35), then the reflection
schema

�C → C for closed L1-formulas C

is not derivable in T . For by Löb’s theorem, it cannot be derivable when C
is underivable.





CHAPTER 4

Initial Cases of Transfinite Induction

The goal here is to study the in a sense “most complex” proofs in first-
order arithmetic. The main tool for proving theorems in arithmetic is clearly
the induction schema

A(0)→ ∀x(A(x)→ A(Sx))→ ∀xA(x).

An equivalent form of this schema is “course-of-values” or cumulative in-
duction

∀x(∀y<xA(y)→ A(x))→ ∀xA(x).

Both schemes refer to the standard ordering of N. It is tempting to try
to strengthen arithmetic by allowing more general induction schemes, e.g.,
w.r.t. the lexicographical ordering of N× N. Even more generally, let ≺ be
a well-ordering of N and use transfinite induction:

∀x(∀y≺xA(y)→ A(x))→ ∀xA(x).

It can be understood as

Suppose the property A(x) is “progressive”, i.e., from the
validity of A(y) for all y ≺ x we can conclude that A(x)
holds. Then A(x) holds for all x.

For which well-orderings this schema is derivable in arithmetic? We will
discuss a classic result of Gentzen (1943) which in a sense answers this
question completely. However, to state the result we have to be more explicit
about the well-orderings used.

4.1. Ordinals below ε0

We need some knowledge and notations for ordinals. This can be done
without relying on set theory: we introduce an initial segment of the ordinals
(the ones < ε0) in a formal, combinatorial way, i.e., via ordinal notations
based on “Cantor normal form”. From now on “ordinal” means “ordinal
notation”.

Definition. We define

(a) α is an ordinal,
(b) α < β for ordinals α, β.
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simultaneously by induction, as follows.

(a) If αm, . . . , α0 are ordinals, m ≥ −1 and αm ≥ · · · ≥ α0 (where α ≥ β
means α > β or α = β), then

ωαm + · · ·+ ωα0

is an ordinal. The empty sum (denoted by 0) is allowed.
(b) If ωαm + · · ·+ ωα0 and ωβn + · · ·+ ωβ0 are ordinals, then

ωαm + · · ·+ ωα0 < ωβn + · · ·+ ωβ0

iff there is an i ≥ 0 such that αm−i < βn−i, αm−i+1 = βn−i+1, . . . ,
αm = βn, or else m < n and αm = βn, . . . , α0 = βn−m.

We shall use the notation:

1 := ω0,

k := ω0 + · · ·+ ω0 with k copies of ω0,

ωαk := ωα + · · ·+ ωα with k copies of ωα.

The level of an ordinal is defined by lev(0) := 0, lev(ωαm + · · · + ωα0) :=
lev(αm) + 1. For ordinals of level k + 1 we have ωk ≤ α < ωk+1, where
ω0 := 0, ω1 := ω1, ωk+1 := ωωk .

Lemma 4.1.1. < is a linear order with 0 the least element.

Proof. By induction on the levels. �

Example.

0 < 1 < 2 · · · < ω < ω + 1 · · · < ω2 < ω2 + 1 · · · < ω3 · · · < ω2

< ω2 + 1 · · · < ω2 + ω · · · < ω3 · · · < ωω = ω2 · · · < ω3 · · ·

Definition (Addition of ordinals).

(ωαm + · · ·+ ωα0) + (ωβn + · · ·+ ωβ0) := ωαm + · · ·+ ωαi + ωβn + · · ·+ ωβ0

where i is minimal such that αi ≥ βn.

Lemma 4.1.2. + is an associative operation which is strictly monotonic
in the second argument and weakly monotonic in the first argument.

Proof. Exercise. �

Remark. + is not commutative:

1 + ω = ω 6= ω + 1.
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There is also a commutative version on addition, the natural sum (or
Hessenberg sum). It is defined by

(ωαm + · · ·+ ωα0)#(ωβn + · · ·+ ωβ0) := ωγm+n+1 + · · ·+ ωγ0 ,

where γm+n+1, . . . , γ0 is a decreasing permutation of αm, . . . , α0, βn, . . . , β0.
It is easy to see that # is associative, commutative and strictly monotonic
in both arguments.

How ordinals of the form β+ωα can be approximated from below? First
note that

δ < α→ β + ωδk < β + ωα.

For any γ < β + ωα we can find a δ < α and a k such that

γ < β + ωδk.

It is easy to code ordinals < ε0 bijectively by natural numbers:

o(pαq) = α and po(x)q = x

such that relations and operations on ordinals transfer to elementary rela-
tions and operations on N. Abbreviations:

x ≺ y := o(x) < o(y),

ωx := pωo(x)q,

x⊕ y := po(x) + o(y)q,

xk := po(x)kq,

ωk := pωkq.

4.2. Provability of initial cases of transfinite induction

We will derive initial cases of transfinite induction in arithmetic:

∀x(∀y≺xPy → Px)→ ∀x≺aPx

for some number a and a predicate symbol P , where ≺ is the standard order
of order type ε0 defined before.

Remark. Gentzen (1943) proved that this result is optimal in the sense
that for the full system of ordinals < ε0 the principle

∀x(∀y≺xPy → Px)→ ∀xPx

of transfinite induction is underivable. However, we will not present a proof
in these notes.

By an arithmetical system Z we mean a theory based on minimal logic
in the ∀→-language (including equality axioms) such that
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(a) The language of Z consists of a fixed supply of function and relation
constants assumed to denote computable functions and relations on the
non-negative integers.

(b) Among the function constants there is a constant S for the successor
function and 0 for (the 0-place function) zero.

(c) Among the relation constants we have =, P and also ≺ for the ordering
of type ε0 of N, as introduced before.

(d) Terms are built up from object variables x, y, z by f(t1, . . . , tm), where
f is a function constant.

(e) We identify closed terms which have the same value; this expresses that
each function constant is computable.

(f) Terms of the form S(S(. . . S0 . . . )) are called numerals. Notation: Sn0
or n or just n.

(g) Formulas are built up from atomic formulas R(t1, . . . , tm), with R a
relation constant, by A→ B and ∀xA.

The axioms of Z are

• Compatibility of equality

x = y → A(x)→ A(y),

• the Peano axioms, i.e., the universal closures of

Sx = Sy → x = y,(37)

Sx = 0→ A,(38)

A(0)→ ∀x(A(x)→ A(Sx))→ ∀xA(x),(39)

with A(x) an arbitrary formula.
• R~n whenever R~n is true (to express that R is computable).
• Irreflexivity and transitivity for ≺

x ≺ x→ A,

x ≺ y → y ≺ z → x ≺ z

Further axioms – following Schütte – are the universal closures of

x ≺ 0→ A,(40)

z ≺ y ⊕ ω0 → (z ≺ y → A)→ (z = y → A)→ A,(41)

x⊕ 0 = x,(42)

x⊕ (y ⊕ z) = (x⊕ y)⊕ z,(43)

0⊕ x = x,(44)

ωx0 = 0,(45)

ωx(Sy) = ωxy ⊕ ωx,(46)
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z ≺ y ⊕ ωSx → z ≺ y ⊕ ωe(x,y,z)m(x, y, z),(47)

z ≺ y ⊕ ωSx → e(x, y, z) ≺ Sx,(48)

where ⊕, λx,y(ω
xy), e and m denote function constants and A is any for-

mula. These axioms are formal counterparts to the properties of the ordinal
notations observed above.

Theorem 4.2.1 (Provable initial cases of transfinite induction in Z).
Transfinite induction up to ωn, i.e., for arbitrary A(x) the formula

∀x(∀y≺xA(y)→ A(x))→ ∀x≺ωn A(x),

is derivable in Z.

Proof. To every formula A(x) we assign a formula A+(x) (with respect
to a fixed variable x) by

A+(x) := ∀y(∀z≺y A(z)→ ∀z≺y⊕ωxA(z)).

We first show

If A(x) is progressive, then A+(x) is progressive,

where “B(x) is progressive” means ∀x(∀y≺xB(y) → B(x)). Assume that
A(x) is progressive and

(49) ∀y≺xA+(y).

Our goal is A+(x) := ∀y(∀z≺y A(z)→ ∀z≺y⊕ωxA(z)). Assume

(50) ∀z≺yA(z)

and z ≺ y ⊕ ωx. We have to show A(z).
Case x = 0. Then z ≺ y ⊕ ω0. By (41):

z ≺ y ⊕ ω0 → (z ≺ y → A)→ (z = y → A)→ A

it suffices to derive A(z) from z ≺ y as well as from z = y. If z ≺ y, then
A(z) follows from (50), and if z = y, then A(z) follows from (50) and the
progressiveness of A(x).

Case Sx. From z ≺ y⊕ωSx we obtain z ≺ y⊕ωe(x,y,z)m(x, y, z) by (47)
and e(x, y, z) ≺ Sx by (48). By (49) we have A+(e(x, y, z)), i.e.

∀u≺y⊕ωe(x,y,z)vA(u)→ ∀u≺(y⊕ωe(x,y,z)v)⊕ωe(x,y,z)A(u)

and hence, using (43) and (46)

∀u≺y⊕ωe(x,y,z)vA(u)→ ∀u≺y⊕ωe(x,y,z)(Sv)A(u).

Also from (50) and (45), (42) we obtain

∀u≺y⊕ωe(x,y,z)0A(u).
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By induction:

∀u≺y⊕ωe(x,y,z)m(x,y,z)A(u)

and hence A(z).
Next we show, by induction on n, how to derive

∀x(∀y≺xA(y)→ A(x))→ ∀x≺ωnA(x) for arbitrary A(x).

Assume the left hand side, i.e., that A(x) is progressive.
Case 0. Then x ≺ ω0 and hence x ≺ 0⊕ ω0 by (44). By (41) it suffices

to derive A(x) from x ≺ 0 as well as from x = 0. Now x ≺ 0→ A(x) holds
by (40), and A(0) then follows from the progressiveness of A(x).

Case n+1. Since A(x) is progressive, also A+(x) is. By IH: ∀x≺ωnA+(x),
hence A+(ωn) since A+(x) is progressive. By definition of A+(x) (with (40):
x ≺ 0→ A and (44): 0⊕ x = x) we obtain ∀z≺ωωnA(z). �

Remark. In the induction step we derived transfinite induction up to
ωn+1 for A(x) from transfinite induction up to ωn for A+(x). Define the
level of a formula by

lev(R~t ) := 0,

lev(A→ B) := max(lev(A) + 1, lev(B)),

lev(∀xA) := max(1, lev(A)).

Then lev(A+(x)) = lev(A(x)) + 1. Hence to prove transfinite induction up
to ωn, the induction scheme in Z is used for formulas of level n.

4.3. Iteration operators of higher types

We have just seen that the strength of the induction scheme increases
with the level of the formula proved by induction. A similar phenomenon
occurs when one considers types instead of formulas, and iteration (a special
case of recursion) instead of induction. Such operators have a similar relation
to ordinals <ε0.

Definition. An ordinal ωαn + · · ·+ωα0 is a successor if α0 = 0. It is a
limit if α0 it is neither 0 nor a successor. For every limit λ = ωαn + · · ·+ωα0

we define its fundamental sequence λ[x] by

λ[x] :=

{
ωαn + . . .+ ωα1 + ωα0−1 · x if α0 is a successor

ωαn + . . .+ ωα1 + ωα0[x] if α0 is a limit.
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Examples.

ω[x] = x,

(ω + ω)[x] = ω + x,

ω2[x] = ωx,

ω3[x] = ω2x,

ωω[x] = ωx.

Definition (Extended Grzegorczyk hierarchy (Fα)α<ε0).

F0(x) := 2x,

Fα+1(x) := F (x)
α (x) (F

(x)
α x-th iterate of Fα),

Fλ(x) := Fλ[x](x).

We also define Fε0(x) := Fωx(x).

Remark. Fω is a variant of the Ackermann function (1940), and the Fn
for n < ω were (essentially) defined and studied by Grzegorczyk (1953).

Lemma 4.3.1. The function F1 is not an elementary function, but its
graph is an elementary relation.

Proof. That F1 is not elementary was essentially proved as a lemma
in Section 2.2.1. The see that the graph of F1 is elementary observe that

F1(x) = y ↔ ∃z
(
(z)0 = 0 ∧ ∀i<x((z)i+1 = 2(z)i) ∧ (z)x = y

)
.

Now it suffices to prove that z can be bounded by an elementary function
in x and y. But since F0 is increasing we can bound z by 〈y, . . . , y〉 with x
occurrences of y, and by a lemma in Section 2.2.5 we have

〈y, . . . , y︸ ︷︷ ︸
x

〉 < (y + 1)2
x
. �

Using similar arguments one can prove that all functions Fα for α < ε0
have elementary graphs.

Let T be a theory in a language containing 0, S with the property that
every elementary relation is representable in T . We call a function f : N→ N
provably recursive in T if we have a formula Af representing the graph of f
such that

T ` ∀x∃yAf (x, y).

In standard arithmetical systems like Z one can prove that all functions
Fα for α < ε0 are provably recursive, with methods similar to what we used
in Section 4.2. Again ε0 is a sharp bound: Fε0 is not be provably recursive.

We can characterize (Fα)α<ε0 by higher type iteration. To this end we
extend the definition of the functions Fα into higher types.
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Types are generated from the base type N by the formation of function
types τ → σ. The level of a type is defined similar to the level of a formula
(in Section 4.2), by

lev(N) := 0,

lev(τ → σ) := max(lev(τ) + 1, lev(σ)).

It is convenient here to introduce integer types ρn:

ρ0 := N,

ρn+1 := ρn → ρn.

If x0, . . . , xn+1 are of integer types ρ0, . . . , ρn+1, then we can form xn+1(xn)
(of type ρn) and so on, finally xn+1(xn) . . . (x0), or shortly xn+1(xn, . . . , x0).
Note that lev(ρn) = n.

We define Fn+1
α of type ρn+1 for α < ε0:

Fn+1
0 (xn, . . . , x0) :=

{
2x0 if n = 0

x
(x0)
n (xn−1, . . . , x0) otherwise.

Fn+1
α+1 (xn, . . . , x0) := (Fn+1

α )(x0)(xn, . . . , x0),

Fn+1
λ (xn, . . . , x0) := Fn+1

λ[x0]
(xn, . . . , x0).

Here x
(y)
n (xn−1, . . . , x0) denotes I(y, xn, . . . , x0) with an iteration functional

I of type N→ ρn → ρn−1 → . . .→ ρ0 → ρ0 defined by

I(0, y, z) := z,

I(x+ 1, y, z) := y(I(x, y, z)).

Theorem 4.3.2. For n ≥ 1 we have

Fn+1
α (Fnβ ) = Fnβ+ωα

provided β + ωα = β # ωα, i.e., in the Cantor normal form of β the last
summand ωβ0 (if it exists) has an exponent β0 ≥ α.

Proof. By induction on α. Case α = 0.

Fn+1
0 (Fnβ , xn−1, . . . , x0) = (Fnβ )(x0)(xn−1, . . . , x0)

= Fnβ+1(xn−1, . . . , x0).

Case α successor.

Fn+1
α (Fnβ , xn−1, . . . , x0) = (Fn+1

α−1 )(x0)(Fnβ , xn−1, . . . , x0)

= Fnβ+ωα−1·x0(xn−1, . . . , x0) by IH

:= Fn(β+ωα)[x0](xn−1, . . . , x0)

:= Fnβ+ωα(xn−1, . . . , x0).
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Case α limit.

Fn+1
α (Fnβ , xn−1, . . . , x0) = Fn+1

α[x0]
(Fnβ , xn−1, . . . , x0)

= Fn
β+ωα[x0]

(xn−1, . . . , x0) by IH

= Fn(β+ωα)[x0](xn−1, . . . , x0)

= Fnβ+ωα(xn−1, . . . , x0). �

The result just proved indicates the computational complexity involved
in the use of finite types. The functionals (Fn+1

α )α<ε0 and in particular the
functions (F 1

α)α<ε0 can be built from iteration functionals (and F0(x) =
2x) by application alone. In the resulting representation of the functions
(Fα)α<ε0 we do not need the fundamental sequences λ[x]. The application
pattern for Fα corresponds to the Cantor normal form of α.





CHAPTER 5

Computational content of proofs

Mathematics differs from all other sciences by the fact that it provides
proofs for its claims. In this chapter we study what we can do with proofs
apart from assuring us of the truth of what they state.

Present technology makes it feasible to generate even large formal proofs
with “proof assistants”. These proof objects can be checked for logical
correctness, independently of the used proof assistant: one only needs to
check that the logical rules have been applied correctly.

Our underlying “minimal” logic is “constructive” in the sense that a
“computationally relevant” (c.r.) predicate (for instance an existential state-
ment ∃xA or a disjunction A∨B) can only be proved by providing an exam-
ple. Then from a proof of a c.r. statement we can extract a term which can
be seen as a program representing the computational content of the proof.
One can develop the theoretical concepts used to formulate and prove this
“Soundness theorem”.

Usage of a proof assistant makes it possible to automate this extraction
process, and also to automatically generate a formal proof that the extracted
term “realizes” the original statement.

5.1. Issues

We very briefly describe some of the issues involved when studying the
computational content of proofs. First of all, since the subject is in its in-
fancy it seems best to start with concrete rather than abstract mathematics.

5.1.1. Types. Mathematical objects have “types”. Examples are “base
types” N, Q of natural or rational numbers, and the “function type” N→ N
of unary functions f on N. The iteration operator I with I(f, n,m) :=

f (n)(m) has type (N→ N)→ N→ N→ N.

5.1.2. Approximations. Infinite objects are viewed as given by their
(finite) approximations. Examples are real numbers, or functions f : N→ N.

5.1.3. Model. Objects of type τ are the “partial continuous function-
als” of Scott (1982) and Ershov (1977). Continuity of a function f means

75
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that for every approximation V of the value f(x) there is an approximation
U of the argument x such that f [U ] has more information than V .

5.1.4. Constants and predicates. We will need constants for func-
tionals of possibly higher types, given by “computation rules”. Examples:
Double : N→ N is defined by

Double(0) = 0, Double(S(n)) = S(S(Double(n))),

and iteration I : (N→ N)→ N→ N→ N by

I(f, 0,m) = m, I(f, S(n),m) = f(I(f, n,m)).

Predicates of arity ~τ (a list of types) are either predicate variables or
predicate constants. A predicate variable is a place holder for a formula with
some object variables bound (for example {n,m | n ≤ m }). A predicate
constant is inductively or coinductively defined. This means that it is the
least or greatest fixed point of some “clauses”. An example of an inductive
predicate is Even, the least fixed point of the clauses

Even(0), ∀n(Even(n)→ Even(S(S(n)))).

An example of a coinductive predicate is coEven, the greatest fixed point of
the single clause

∀n(coEven(n)→ ∃m(n = S(S(m)) ∧ coEven(m))).

The logical connectives ∃, ∨ and ∧ are viewed as inductively defined predi-
cates with parameters.

5.1.5. Proof trees. To generate proofs we think of them as trees with
“holes” to be filled. Each hole carries a formula (called “goal”) and a “con-
text” consisting of object and assumption variables. The task then is to
“refine” the proof by filling a hole with a logical rule, which may bind one
of the object or assumption variables. This process is well supported by an
interactive proof assistant. Guidance by a previous proof idea is of course
essential here.

5.1.6. Formulas as problems. In constructive mathematics proofs
may have “computational content”. According to Kolmogorov (1932) a
formula can be seen as a problem, asking for a solution. A solution for a
problem posed by an implication A→ B is a computable functional mapping
solutions of A into solutions of B.

5.1.7. Decoration. Sometimes the solution of a problem does not need
all available input. We therefore mark (or “decorate”) the sources of such
computationally superfluous input – that is, some predicates – as “non-
computational” (n.c.), and the other ones as “computationally relevant”
(c.r.). More precisely, we mark predicates either as P c or as P nc.
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5.1.8. Non-computational parts of proofs. Proofs use the rules of
minimal logic for → and ∀, and some axioms. However, because of the
presence of decorations we have an extra degree of freedom. By an n.c. part
of a proof we mean a subproof with an n.c. end formula. Such n.c. parts will
not contribute to the computational content of the whole proof, and hence
we can ignore all decorations in those parts (i.e., use a modified notion of
equality of formulas there).

5.1.9. Weak and non-computational existence and disjunction.
We now have two forms of existential formulas without computational con-
tent: ∃ncx A and ∃̃xA, where the latter abbreviates ¬∀x¬A. It is easy to prove

∃ncx A→ ∃̃xA. However, for the other direction we need stability of ∃ncx A:

(51) ¬¬∃ncx A→ ∃ncx A.

Lemma 5.1.1 (WeakExToExNc). ∃̃xA→ ∃ncx A.

Proof. Because of (51) it suffices to prove ∃̃xA→ ¬¬∃ncx A. Since ∃̃xA
abbreviates ¬∀x¬A is also suffices to prove ¬∃ncx A → ∀x¬A. Assume the
premise. Let x be arbitrary and assume A. The goal is falsity F. Because
of the premise we only need to prove ∃ncx A. But this follows from A by the
introduction rule for ∃nc. �

It seems reasonable to accept (51) as an axiom. Since it is n.c. this axiom
does not affect the computational content of proofs using it. Its benefit is
that we then can freely exchange ∃nc and ∃̃, and use the one whose rules fit
best for the problem at hand.

The two disjunctions A ∨nc B and A ∨̃ B are treated similarly, using
stability of A ∨nc B as an axiom:

(52) ¬¬(A ∨nc B)→ A ∨nc B.

5.2. An application in constructive analysis

5.2.1. Real numbers. The first thing to do is to build up the number
systems: natural numbers in unary and binary notation, integers, rationals
and reals. The latter are viewed as given by a Cauchy sequence of rationals
together with a modulus. Equality of reals has to be defined accordingly.

5.2.2. Continuous functions. We only consider (uniformly) continu-
ous functions on closed real intervals, with a modulus. Such functions are
already determined by their values on rationals, and hence by data of type
level 1. As a consequence, application f(x) of a continuous function f to a
real x needs to be defined separately. This can be done, in such a way that
application is compatible with equality on reals, i.e.,

x =R y → f(x) =R f(y).
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Composition of continuous functions can be defined, and it has the expected
properties.

5.2.3. Intermediate value theorem.

Theorem 5.2.1. Let a < b be rationals. If f : [a, b] → R is continuous
with f(a) ≤ 0 ≤ f(b), and with a uniform modulus of increase

1

2p
< d− c→ 1

2p+q
< f(d)− f(c)

(i.e., a lower bound on its slope), then we can find x ∈ [a, b] such that
f(x) = 0.

Proof. (Scetch)

(1) Approximate Splitting Principle. Let x, y, z be given with x < y.
Then z ≤ y or x ≤ z.

(2) IVTAux. Assume a ≤ c < d ≤ b, say 1
2p < d − c, and f(c) ≤

0 ≤ f(d). Construct c1, d1 with d1 − c1 = 1
2(d − c), such that

a ≤ c ≤ c1 < d1 ≤ d ≤ b and f(c1) ≤ 0 ≤ f(d1).
(3) IVTcds. Iterate the step c, d 7→ c1, d1 in IVTAux.

Let x = (cn)n and y = (dn)n with the obvious modulus. As f is continuous,
f(x) = 0 = f(y) for the real number x = y. �

As an example consider the function x2 − 2 on the real interval [1, 2].
Applying the theorem to this continuous function gives us a constructive
proof the the existence of the square root of 2. This proof is implemented in
Minlog, and a program (i.e., a term in the term language of the underlying
theory) representing its computational content has been extracted. Eval-
uating this term up to a fixed precision gives us an approximation of the
square root of 2 of the required accuracy.

The file ivt2.scm contains a formalization of this proof, and also presents
its computational content.
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