CHAPTER 5
Computability in Higher Types

We view an infinite (“ideal”) object as determined by the set of its finite
approximations.

5.1. Binary trees

The algebra Y of binary trees is given by its two constructors, “—” for a
leaf and “Branch” for a binary branch.

By a token we mean an (applicative) term with some argument positions
occupied by * (meaning “no knowledge”). An eztended token is either a
token of else *.

Examples:
J— — * J—
The height of an extended token a* is defined by |—| := |%| := 0 and
[Branch(aj, a3)| := max{(|af . [a3]) + 1.

DEFINITION. We define consistency a 1 b of two tokens a, b inductively
by the clauses

( ) — (Branch(ay, az) T Branch(by, ba))
( ) — (Branch(ay, x) 1 Branch(by, b))
(a1 1 b1) — (Branch(by, b2) 1 Branch(ay, *))
( ) — (Branch(x, ag) 1 Branch(by, b))
( ) — (Branch(by, ba) T Branch(x, ag))
Branch(x, ) 1 Branch(a, )
Branch(a, *) T Branch(x, )
Branch(x, *) 1 Branch(x, b)
Branch(x, b) 1 Branch(x, )
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This definition can easily be extended to consistency of finite sets U of
tokens.
Examples for consistency:

Moreover
* * * *

p— pa— J— pa— * pa—
\/ j?/ \)/ but \/ \)/
DEFINITION. For any two consistent tokens a, b we inductively define a

new token a V b intended to be the least upper bound of the information
contained in @ and b. The clauses are

-V —=—
Branch(ay, az) V Branch(by, b2) := Branch(a; V b1, as V bs)
Here a V x and * V a both mean a, and * V % means x*.

Example:

\/ \V4 \/ = \/
DEFINITION. For any two tokens a,b we inductively define a relation

a > b (a entails b) intended to mean that a contains at least the information
contained in b. The clauses are

—_ >
a; > by — az > by — Branch(ay, ag) > Branch(by, bs)
ay > by — Branch(aq, ag) > Branch(by, *)
as > by — Branch(ay, a2) > Branch(x, ba)
Branch(aj, az) > Branch(x, )

Examples of entailment

* — % *
*\)/ >(<\)/ * *
> and \/
It is easy to see that a > b implies a 1 b.

We now turn to possibly infinite (or “ideal”) objects of our algebra Y,
which are viewed as given by their finite approximations, i.e., tokens.
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DEFINITION (Ideal in Y). A possibly infinite set  of tokens in Y is called
an ideal if

(a) x is consistent, i.e., any two tokens in x are consistent:

va,,beac (a T b)
(b) z is deductively closed, i.e.,

VaeczVp(a > b — b € x)
Examples of ideals

(1) 1:= closure of all

(2) —1 is defined similarly
(3) —1uU1
(4) 3 := closure of all
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(5) Closure of

(6) Closure of

DEFINITION (Total and cototal ideals in Y). An ideal z in Y is total if
it contains a token built from constructors only, i.e., without *x. We call x
cototal if it is either total or else for every token a € x there is a token b € x
with b > a and b different from a.

Among the above examples of ideals
(1) — (4) are cototal ideals,
(5) is a total ideal,

(6) is neither a total nor a cototal ideal.

5.2. Atomic coherent information systems

DEFINITION. An atomic coherent information system (abbreviated acis)
is a triple (A, Con, >) with A a countable set (the tokens, denoted a,b, ... ),
Con a nonempty set of finite subsets of A (the consistent sets or formal
neighborhoods, denoted U, V,...), and > a transitive and reflexive relation
on A (the entailment relation) which satisfy
(a) 0 € Con, and {a} € Con for every a € A,

(b) U € Con if and only if every two-element subset of U is in Con, and
(c) if {a,b} € Con and b > ¢, then {a,c} € Con.
We write U > a for Jpepyb > a, and U >V for Ve U > a.

LEMMA. Let A = (A, Con,>) be an acis. U > Vi, Va implies V1 U Vs €
Con.

ProoF. Let by € Vi, by € V. Then we have a1, as € U such that a; > b;.
From {a;, a2} € Con we obtain {aj,b2} € Con by (c), hence {b1,b2} € Con
again by (c). O

DEFINITION. Let A = (A4,Cong,>4) and B = (B, Cong, >p) be acis’s.
Define A — B = (C,Con, >) by

C :=Cony x B,
{(Ul,bl), - (Un, bn)} € Con :+ V@j (UZ U Uj € Conyg — {bi,bj} € COHB),
Ub) > (Vie) s V>4 UNb>p e
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LEMMA. Let A = (A,Cong,>4) and B = (B,Cong,>p) be acis’s.
Then A — B is an acis again.

PRrOOF. Clearly > is transitive and reflexive, and the conditions (a)
and (b) of an acis hold; it remains to check (c). Let {(Uy,b1), (U, b2)} €
Con and (Uz,b2) > (V,c), hence V' > Uy and by > ¢. We must show
{(U1,b1),(V,c)} € Con. Assume U; UV € Con; we must show {b1,c} € Con.
Now U1 UV € Con and V' > Us by the previous lemma imply U; UUy € Con.
But then {b1,b2} € Con, hence {b1,c} € Con by (c). O

Scott (1982) introduced the notion of an approzimable map from A to
B. Such a map is given by a relation r between Conyg and B, where r(U, b)
intuitively means that whenever we are given the information U € Conyg on
the argument, then we know that at least the token b appears in the value.

DEFINITION (Approximable map). Let A and B be acis’s. A relation
r C Cong X B is an approzimable map from A to B (written r: A — B) if
and only if

(a) if r(U,b1) and (U, ba), then {b1,b2} € Conpg, and
(b) if (U,b), V>4 U and b >p ¢, then r(V,c).

Call a (possibly infinite) set = of tokens consistent if U € Con for every
finite subset U C x, and deductively closed if Vqe;Vp<qb € x. The ideals
(or objects) of an information system are defined to be the consistent and
deductively closed sets of tokens; we write |A| for the set of ideals of A.

THEOREM 5.2.1. Let A and B be acis’s. The ideals of A — B are
exactly the approximable maps from A to B.

PROOF. We show that r € |[A — B]| satisfies the axioms for approxi-
mable maps. (a). Let r(U,b1) and (U, bz). Then {b1,b2} € Conpg by the
consistency of r. (b). Let 7(U,b), V >4 U and b >p ¢. Then (U,b) > (V,¢)
by definition, hence 7(V, ¢) by the deductive closure of r.

For the other direction suppose r: A — B is an approximable map. We
must show that r € |A — B|. Consistency of r: Suppose (U, b1), r(Us, b2)
and U = Uy UU; € Cong. We must show that {b1,b2} € Conp. Now
by definition of approximable maps, from r(U;, b;) and U >4 U; we obtain
r(U, b;), and hence {b1,b2} € Conpg. Deductive closure of r: Suppose (U, b)
and (U,b) > (V,¢), i.e., V>4 UAb >p ¢. Then r(V,c) by definition of
approximable maps. ]

The set |A| of ideals for A carries a natural topology (the Scott topo-
logy), which has the “cones” U := {z | z D U} generated by the formal
neighborhoods U as basis. The continuous maps f: |A| — |B| and the ideals
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r € |A — B are in a bijective correspondence. With any r € |[A — B| we
can associate a continuous |r|: |A| — |B]:

Ir|(z) :={be€ B|r(U,b) for some U C z },
and with any continuous f: |A| — |B| we can associate f € |[A — Bl:
f(Ub) = (be £(T)).
These assignments are inverse to each other, i.e., f =| f | and r = m

5.3. Partial continuous functionals

Recall that types are built from base types (free algebras, like Y) by
arrow formation 7 — o. For each type 7 we can now construct an acis
C, in a natural way. For base types this has been done in Section 5.1
for the example of binary trees; it can be done similarly for arbitrary base
types. For arrow types 7 — o we define C,_, to be C, — C,, as in
Theorem 5.2.1. The ideals in C; are called partial continuous functionals
of type 7 (Scott-Ershov model). Since ideals consist of tokens which can be
coded by natural numbers, we have an easy way to define computability of
these ideals:

DEFINITION. A partial continuous functional x € |C;| is computable if
it is recursively enumerable when viewed as a set of tokens.

We can now extend an arithmetical theory into a type theory with the
Scott-Ershov model of partial continuous functional as the intended model,
and moreover we have a reasonable notion of computability for such func-
tionals.



