CHAPTER 5

Computability in Higher Types

We view an infinite ("ideal") object as determined by the set of its finite approximations.

5.1. Binary trees

The algebra \mathbb{Y} of binary trees is given by its two constructors, "-" for a leaf and "Branch" for a binary branch.

By a *token* we mean an (applicative) term with some argument positions occupied by * (meaning "no knowledge"). An *extended token* is either a token of else *.

Examples:

The *height* of an extended token a^* is defined by |-| := |*| := 0 and $|\text{Branch}(a_1^*, a_2^*)| := \max(|a_1^*|, |a_2^*|) + 1$.

DEFINITION. We define *consistency* $a \uparrow b$ of two tokens a, b inductively by the clauses

$$-\uparrow -$$

$$(a_1 \uparrow b_1) \rightarrow (a_2 \uparrow b_2) \rightarrow (\operatorname{Branch}(a_1, a_2) \uparrow \operatorname{Branch}(b_1, b_2))$$

$$(a_1 \uparrow b_1) \rightarrow (\operatorname{Branch}(a_1, *) \uparrow \operatorname{Branch}(b_1, b_2))$$

$$(a_1 \uparrow b_1) \rightarrow (\operatorname{Branch}(b_1, b_2) \uparrow \operatorname{Branch}(a_1, *))$$

$$(a_2 \uparrow b_2) \rightarrow (\operatorname{Branch}(*, a_2) \uparrow \operatorname{Branch}(b_1, b_2))$$

$$(a_2 \uparrow b_2) \rightarrow (\operatorname{Branch}(b_1, b_2) \uparrow \operatorname{Branch}(*, a_2))$$

$$\operatorname{Branch}(*, *) \uparrow \operatorname{Branch}(*, *)$$

$$\operatorname{Branch}(*, *) \uparrow \operatorname{Branch}(*, *)$$

$$\operatorname{Branch}(*, *) \uparrow \operatorname{Branch}(*, *)$$

85

This definition can easily be extended to consistency of finite sets U of tokens.

Examples for consistency:

Moreover

DEFINITION. For any two consistent tokens a, b we inductively define a new token $a \lor b$ intended to be the least upper bound of the information contained in a and b. The clauses are

$$- \lor - := -$$

 $\operatorname{Branch}(a_1, a_2) \vee \operatorname{Branch}(b_1, b_2) := \operatorname{Branch}(a_1 \vee b_1, a_2 \vee b_2)$

Here $a \lor *$ and $* \lor a$ both mean a, and $* \lor *$ means *.

Example:

DEFINITION. For any two tokens a, b we inductively define a relation $a \ge b$ (a entails b) intended to mean that a contains at least the information contained in b. The clauses are

$$- \geq -$$

$$a_1 \geq b_1 \rightarrow a_2 \geq b_2 \rightarrow \operatorname{Branch}(a_1, a_2) \geq \operatorname{Branch}(b_1, b_2)$$

$$a_1 \geq b_1 \rightarrow \operatorname{Branch}(a_1, a_2) \geq \operatorname{Branch}(b_1, *)$$

$$a_2 \geq b_2 \rightarrow \operatorname{Branch}(a_1, a_2) \geq \operatorname{Branch}(*, b_2)$$

$$\operatorname{Branch}(a_1, a_2) > \operatorname{Branch}(*, *)$$

Examples of entailment

It is easy to see that $a \ge b$ implies $a \uparrow b$.

We now turn to possibly infinite (or "ideal") objects of our algebra \mathbb{Y} , which are viewed as given by their finite approximations, i.e., tokens.

86

DEFINITION (Ideal in \mathbb{Y}). A possibly infinite set x of tokens in \mathbb{Y} is called an *ideal* if

(a) x is consistent, i.e., any two tokens in x are consistent:

$$\forall_{a,b\in x}(a\uparrow b)$$

(b) x is deductively closed, i.e.,

$$\forall_{a \in x} \forall_b (a \ge b \to b \in x)$$

Examples of ideals

(1) 1 := closure of all

- (2) -1 is defined similarly
- $\begin{array}{l} (3) \\ (4) \\ \frac{1}{2} := \text{closure of all} \end{array}$

(5) Closure of

(6) Closure of

DEFINITION (Total and cototal ideals in \mathbb{Y}). An ideal x in \mathbb{Y} is *total* if it contains a token built from constructors only, i.e., without *. We call x cototal if it is either total or else for every token $a \in x$ there is a token $b \in x$ with $b \ge a$ and b different from a.

Among the above examples of ideals

(1) - (4) are cototal ideals,

- (5) is a total ideal,
- (6) is neither a total nor a cototal ideal.

5.2. Atomic coherent information systems

DEFINITION. An atomic coherent information system (abbreviated acis) is a triple (A, Con, \geq) with A a countable set (the tokens, denoted a, b, \ldots), Con a nonempty set of finite subsets of A (the consistent sets or formal neighborhoods, denoted U, V, \ldots), and \geq a transitive and reflexive relation on A (the entailment relation) which satisfy

(a) $\emptyset \in \text{Con}$, and $\{a\} \in \text{Con for every } a \in A$,

- (b) $U \in \text{Con if and only if every two-element subset of } U$ is in Con, and
- (c) if $\{a, b\} \in \text{Con and } b \ge c$, then $\{a, c\} \in \text{Con}$.

We write $U \ge a$ for $\exists_{b \in U} b \ge a$, and $U \ge V$ for $\forall_{a \in V} U \ge a$.

LEMMA. Let $\mathbf{A} = (A, \operatorname{Con}, \geq)$ be an acis. $U \geq V_1, V_2$ implies $V_1 \cup V_2 \in \operatorname{Con}$.

PROOF. Let $b_1 \in V_1$, $b_2 \in V_2$. Then we have $a_1, a_2 \in U$ such that $a_i \ge b_i$. From $\{a_1, a_2\} \in \text{Con}$ we obtain $\{a_1, b_2\} \in \text{Con}$ by (c), hence $\{b_1, b_2\} \in \text{Con}$ again by (c).

DEFINITION. Let $\mathbf{A} = (A, \operatorname{Con}_A, \geq_A)$ and $\mathbf{B} = (B, \operatorname{Con}_B, \geq_B)$ be acis's. Define $\mathbf{A} \to \mathbf{B} = (C, \operatorname{Con}, \geq)$ by

 $C := \operatorname{Con}_A \times B,$

 $\{(U_1, b_1), \dots, (U_n, b_n)\} \in \operatorname{Con} :\leftrightarrow \forall_{i,j} (U_i \cup U_j \in \operatorname{Con}_A \to \{b_i, b_j\} \in \operatorname{Con}_B),$ $(U, b) \ge (V, c) :\leftrightarrow V \ge_A U \land b \ge_B c.$

88

LEMMA. Let $\mathbf{A} = (A, \operatorname{Con}_A, \geq_A)$ and $\mathbf{B} = (B, \operatorname{Con}_B, \geq_B)$ be acis's. Then $\mathbf{A} \to \mathbf{B}$ is an acis again.

PROOF. Clearly \geq is transitive and reflexive, and the conditions (a) and (b) of an acis hold; it remains to check (c). Let $\{(U_1, b_1), (U_2, b_2)\} \in$ Con and $(U_2, b_2) \geq (V, c)$, hence $V \geq U_2$ and $b_2 \geq c$. We must show $\{(U_1, b_1), (V, c)\} \in$ Con. Assume $U_1 \cup V \in$ Con; we must show $\{b_1, c\} \in$ Con. Now $U_1 \cup V \in$ Con and $V \geq U_2$ by the previous lemma imply $U_1 \cup U_2 \in$ Con. But then $\{b_1, b_2\} \in$ Con, hence $\{b_1, c\} \in$ Con by (c).

Scott (1982) introduced the notion of an *approximable map* from A to B. Such a map is given by a relation r between Con_A and B, where r(U, b) intuitively means that whenever we are given the information $U \in \operatorname{Con}_A$ on the argument, then we know that at least the token b appears in the value.

DEFINITION (Approximable map). Let A and B be acis's. A relation $r \subseteq \text{Con}_A \times B$ is an *approximable map* from A to B (written $r: A \to B$) if and only if

(a) if $r(U, b_1)$ and $r(U, b_2)$, then $\{b_1, b_2\} \in \text{Con}_B$, and (b) if r(U, b), $V \ge_A U$ and $b \ge_B c$, then r(V, c).

Call a (possibly infinite) set x of tokens consistent if $U \in \text{Con}$ for every finite subset $U \subseteq x$, and deductively closed if $\forall_{a \in x} \forall_{b \leq a} b \in x$. The ideals (or objects) of an information system are defined to be the consistent and deductively closed sets of tokens; we write $|\mathbf{A}|$ for the set of ideals of \mathbf{A} .

THEOREM 5.2.1. Let A and B be acis's. The ideals of $A \rightarrow B$ are exactly the approximable maps from A to B.

PROOF. We show that $r \in |\mathbf{A} \to \mathbf{B}|$ satisfies the axioms for approximable maps. (a). Let $r(U, b_1)$ and $r(U, b_2)$. Then $\{b_1, b_2\} \in \operatorname{Con}_B$ by the consistency of r. (b). Let $r(U, b), V \geq_A U$ and $b \geq_B c$. Then $(U, b) \geq (V, c)$ by definition, hence r(V, c) by the deductive closure of r.

For the other direction suppose $r: \mathbf{A} \to \mathbf{B}$ is an approximable map. We must show that $r \in |\mathbf{A} \to \mathbf{B}|$. Consistency of r: Suppose $r(U_1, b_1), r(U_2, b_2)$ and $U = U_1 \cup U_2 \in \operatorname{Con}_A$. We must show that $\{b_1, b_2\} \in \operatorname{Con}_B$. Now by definition of approximable maps, from $r(U_i, b_i)$ and $U \ge_A U_i$ we obtain $r(U, b_i)$, and hence $\{b_1, b_2\} \in \operatorname{Con}_B$. Deductive closure of r: Suppose r(U, b)and $(U, b) \ge (V, c)$, i.e., $V \ge_A U \land b \ge_B c$. Then r(V, c) by definition of approximable maps.

The set $|\mathbf{A}|$ of ideals for \mathbf{A} carries a natural topology (the Scott topology), which has the "cones" $\tilde{U} := \{ z \mid z \supseteq U \}$ generated by the formal neighborhoods U as basis. The continuous maps $f : |\mathbf{A}| \to |\mathbf{B}|$ and the ideals

 $r \in |\mathbf{A} \to \mathbf{B}|$ are in a bijective correspondence. With any $r \in |\mathbf{A} \to \mathbf{B}|$ we can associate a continuous $|r|: |\mathbf{A}| \to |\mathbf{B}|$:

 $|r|(z) := \{ b \in B \mid r(U, b) \text{ for some } U \subseteq z \},\$

and with any continuous $f: |\mathbf{A}| \to |\mathbf{B}|$ we can associate $\hat{f} \in |\mathbf{A} \to \mathbf{B}|$:

$$\hat{f}(U,b) := (b \in f(\overline{U})).$$

These assignments are inverse to each other, i.e., $f = |\hat{f}|$ and $r = \widehat{|r|}$.

5.3. Partial continuous functionals

Recall that types are built from base types (free algebras, like \mathbb{Y}) by arrow formation $\tau \to \sigma$. For each type τ we can now construct an acis C_{τ} , in a natural way. For base types this has been done in Section 5.1 for the example of binary trees; it can be done similarly for arbitrary base types. For arrow types $\tau \to \sigma$ we define $C_{\tau\to\sigma}$ to be $C_{\tau} \to C_{\sigma}$, as in Theorem 5.2.1. The ideals in C_{τ} are called *partial continuous functionals* of type τ (Scott-Ershov model). Since ideals consist of tokens which can be coded by natural numbers, we have an easy way to define computability of these ideals:

DEFINITION. A partial continuous functional $x \in |C_{\tau}|$ is *computable* if it is recursively enumerable when viewed as a set of tokens.

We can now extend an arithmetical theory into a type theory with the Scott-Ershov model of partial continuous functional as the intended model, and moreover we have a reasonable notion of computability for such functionals.