
CHAPTER 5

Computability in Higher Types

We view an infinite (“ideal”) object as determined by the set of its finite
approximations.

5.1. Binary trees

The algebra Y of binary trees is given by its two constructors, “−” for a
leaf and “Branch” for a binary branch.

By a token we mean an (applicative) term with some argument positions
occupied by ∗ (meaning “no knowledge”). An extended token is either a
token of else ∗.

Examples:

−
− −

HHH��
�
@@�� −

∗ −

HHH��
�
@@��

The height of an extended token a∗ is defined by |−| := |∗| := 0 and
|Branch(a∗1, a

∗
2)| := max(|a∗1|, |a∗2|) + 1.

Definition. We define consistency a ↑ b of two tokens a, b inductively
by the clauses

− ↑ −
(a1 ↑ b1)→ (a2 ↑ b2)→ (Branch(a1, a2) ↑ Branch(b1, b2))

(a1 ↑ b1)→ (Branch(a1, ∗) ↑ Branch(b1, b2))

(a1 ↑ b1)→ (Branch(b1, b2) ↑ Branch(a1, ∗))
(a2 ↑ b2)→ (Branch(∗, a2) ↑ Branch(b1, b2))

(a2 ↑ b2)→ (Branch(b1, b2) ↑ Branch(∗, a2))
Branch(∗, ∗) ↑ Branch(a, ∗)
Branch(a, ∗) ↑ Branch(∗, ∗)
Branch(∗, ∗) ↑ Branch(∗, b)
Branch(∗, b) ↑ Branch(∗, ∗)
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This definition can easily be extended to consistency of finite sets U of
tokens.

Examples for consistency:

− ∗
H
HH��

� ↑
∗ −
H
HH��

�

Moreover

− −
HHH�

�� 6↑
−

∗ ∗

HHH�
��
@@��

but

− ∗
HHH�

�� ↑
−

∗ ∗

HHH�
��
@@��

Definition. For any two consistent tokens a, b we inductively define a
new token a ∨ b intended to be the least upper bound of the information
contained in a and b. The clauses are

− ∨− := −
Branch(a1, a2) ∨ Branch(b1, b2) := Branch(a1 ∨ b1, a2 ∨ b2)

Here a ∨ ∗ and ∗ ∨ a both mean a, and ∗ ∨ ∗ means ∗.

Example:

− ∗
HHH�

�� ∨
∗ −
HHH��

�
=

− −
HHH��

�

Definition. For any two tokens a, b we inductively define a relation
a ≥ b (a entails b) intended to mean that a contains at least the information
contained in b. The clauses are

− ≥ −
a1 ≥ b1 → a2 ≥ b2 → Branch(a1, a2) ≥ Branch(b1, b2)

a1 ≥ b1 → Branch(a1, a2) ≥ Branch(b1, ∗)
a2 ≥ b2 → Branch(a1, a2) ≥ Branch(∗, b2)

Branch(a1, a2) ≥ Branch(∗, ∗)

Examples of entailment

∗
∗ −

HHH��
�@
@��

≥
∗

∗ ∗

HHH��
�@
@��

and

∗ ∗
HHH��

�

It is easy to see that a ≥ b implies a ↑ b.
We now turn to possibly infinite (or “ideal”) objects of our algebra Y,

which are viewed as given by their finite approximations, i.e., tokens.
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Definition (Ideal in Y). A possibly infinite set x of tokens in Y is called
an ideal if

(a) x is consistent, i.e., any two tokens in x are consistent:

∀a,b∈x(a ↑ b)

(b) x is deductively closed, i.e.,

∀a∈x∀b(a ≥ b→ b ∈ x)

Examples of ideals

(1) 1 := closure of all

0

−
1
2

−
3
4

−

− ∗

(2) −1 is defined similarly
(3) −1 ∪ 1
(4) 1

2 := closure of all

0

−
1
2

3
4

− −

− ∗ −

− ∗
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(5) Closure of

−
− −

H
HH��

�@
@��

(6) Closure of

−
∗ −

H
HH��

�@
@��

Definition (Total and cototal ideals in Y). An ideal x in Y is total if
it contains a token built from constructors only, i.e., without ∗. We call x
cototal if it is either total or else for every token a ∈ x there is a token b ∈ x
with b ≥ a and b different from a.

Among the above examples of ideals

(1)− (4) are cototal ideals,

(5) is a total ideal,

(6) is neither a total nor a cototal ideal.

5.2. Atomic coherent information systems

Definition. An atomic coherent information system (abbreviated acis)
is a triple (A,Con,≥) with A a countable set (the tokens, denoted a, b, . . . ),
Con a nonempty set of finite subsets of A (the consistent sets or formal
neighborhoods, denoted U, V, . . . ), and ≥ a transitive and reflexive relation
on A (the entailment relation) which satisfy

(a) ∅ ∈ Con, and {a} ∈ Con for every a ∈ A,
(b) U ∈ Con if and only if every two-element subset of U is in Con, and
(c) if {a, b} ∈ Con and b ≥ c, then {a, c} ∈ Con.

We write U ≥ a for ∃b∈Ub ≥ a, and U ≥ V for ∀a∈V U ≥ a.

Lemma. Let A = (A,Con,≥) be an acis. U ≥ V1, V2 implies V1 ∪ V2 ∈
Con.

Proof. Let b1 ∈ V1, b2 ∈ V2. Then we have a1, a2 ∈ U such that ai ≥ bi.
From {a1, a2} ∈ Con we obtain {a1, b2} ∈ Con by (c), hence {b1, b2} ∈ Con
again by (c). �

Definition. Let A = (A,ConA,≥A) and B = (B,ConB,≥B) be acis’s.
Define A→ B = (C,Con,≥) by

C := ConA ×B,
{(U1, b1), . . . (Un, bn)} ∈ Con :↔ ∀i,j

(
Ui ∪ Uj ∈ ConA → {bi, bj} ∈ ConB

)
,

(U, b) ≥ (V, c) :↔ V ≥A U ∧ b ≥B c.
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Lemma. Let A = (A,ConA,≥A) and B = (B,ConB,≥B) be acis’s.
Then A→ B is an acis again.

Proof. Clearly ≥ is transitive and reflexive, and the conditions (a)
and (b) of an acis hold; it remains to check (c). Let {(U1, b1), (U2, b2)} ∈
Con and (U2, b2) ≥ (V, c), hence V ≥ U2 and b2 ≥ c. We must show
{(U1, b1), (V, c)} ∈ Con. Assume U1∪V ∈ Con; we must show {b1, c} ∈ Con.
Now U1∪V ∈ Con and V ≥ U2 by the previous lemma imply U1∪U2 ∈ Con.
But then {b1, b2} ∈ Con, hence {b1, c} ∈ Con by (c). �

Scott (1982) introduced the notion of an approximable map from A to
B. Such a map is given by a relation r between ConA and B, where r(U, b)
intuitively means that whenever we are given the information U ∈ ConA on
the argument, then we know that at least the token b appears in the value.

Definition (Approximable map). Let A and B be acis’s. A relation
r ⊆ ConA ×B is an approximable map from A to B (written r : A→ B) if
and only if

(a) if r(U, b1) and r(U, b2), then {b1, b2} ∈ ConB, and
(b) if r(U, b), V ≥A U and b ≥B c, then r(V, c).

Call a (possibly infinite) set x of tokens consistent if U ∈ Con for every
finite subset U ⊆ x, and deductively closed if ∀a∈x∀b≤ab ∈ x. The ideals
(or objects) of an information system are defined to be the consistent and
deductively closed sets of tokens; we write |A| for the set of ideals of A.

Theorem 5.2.1. Let A and B be acis’s. The ideals of A → B are
exactly the approximable maps from A to B.

Proof. We show that r ∈ |A → B| satisfies the axioms for approxi-
mable maps. (a). Let r(U, b1) and r(U, b2). Then {b1, b2} ∈ ConB by the
consistency of r. (b). Let r(U, b), V ≥A U and b ≥B c. Then (U, b) ≥ (V, c)
by definition, hence r(V, c) by the deductive closure of r.

For the other direction suppose r : A→ B is an approximable map. We
must show that r ∈ |A→ B|. Consistency of r: Suppose r(U1, b1), r(U2, b2)
and U = U1 ∪ U2 ∈ ConA. We must show that {b1, b2} ∈ ConB. Now
by definition of approximable maps, from r(Ui, bi) and U ≥A Ui we obtain
r(U, bi), and hence {b1, b2} ∈ ConB. Deductive closure of r: Suppose r(U, b)
and (U, b) ≥ (V, c), i.e., V ≥A U ∧ b ≥B c. Then r(V, c) by definition of
approximable maps. �

The set |A| of ideals for A carries a natural topology (the Scott topo-

logy), which has the “cones” Ũ := { z | z ⊇ U } generated by the formal
neighborhoods U as basis. The continuous maps f : |A| → |B| and the ideals
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r ∈ |A → B| are in a bijective correspondence. With any r ∈ |A → B| we
can associate a continuous |r| : |A| → |B|:

|r|(z) := { b ∈ B | r(U, b) for some U ⊆ z },

and with any continuous f : |A| → |B| we can associate f̂ ∈ |A→ B|:

f̂(U, b) := (b ∈ f(U)).

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|.

5.3. Partial continuous functionals

Recall that types are built from base types (free algebras, like Y) by
arrow formation τ → σ. For each type τ we can now construct an acis
Cτ , in a natural way. For base types this has been done in Section 5.1
for the example of binary trees; it can be done similarly for arbitrary base
types. For arrow types τ → σ we define Cτ→σ to be Cτ → Cσ, as in
Theorem 5.2.1. The ideals in Cτ are called partial continuous functionals
of type τ (Scott-Ershov model). Since ideals consist of tokens which can be
coded by natural numbers, we have an easy way to define computability of
these ideals:

Definition. A partial continuous functional x ∈ |Cτ | is computable if
it is recursively enumerable when viewed as a set of tokens.

We can now extend an arithmetical theory into a type theory with the
Scott-Ershov model of partial continuous functional as the intended model,
and moreover we have a reasonable notion of computability for such func-
tionals.


