
CHAPTER 4

Initial Cases of Transfinite Induction

The goal here is to study the in a sense “most complex” proofs in first-
order arithmetic. The main tool for proving theorems in arithmetic is clearly
the induction schema

A(0)→ ∀x(A(x)→ A(Sx))→ ∀xA(x).

An equivalent form of this schema is “course-of-values” or cumulative in-
duction

∀x(∀y<xA(y)→ A(x))→ ∀xA(x).

Both schemes refer to the standard ordering of N. It is tempting to try
to strengthen arithmetic by allowing more general induction schemes, e.g.,
w.r.t. the lexicographical ordering of N× N. Even more generally, let ≺ be
a well-ordering of N and use transfinite induction:

∀x(∀y≺xA(y)→ A(x))→ ∀xA(x).

It can be understood as

Suppose the property A(x) is “progressive”, i.e., from the
validity of A(y) for all y ≺ x we can conclude that A(x)
holds. Then A(x) holds for all x.

For which well-orderings this schema is derivable in arithmetic? We will
discuss a classic result of Gentzen (1943) which in a sense answers this
question completely. However, to state the result we have to be more explicit
about the well-orderings used.

4.1. Ordinals below ε0

We need some knowledge and notations for ordinals. This can be done
without relying on set theory: we introduce an initial segment of the ordinals
(the ones < ε0) in a formal, combinatorial way, i.e., via ordinal notations
based on “Cantor normal form”. From now on “ordinal” means “ordinal
notation”.

Definition. We define

(a) α is an ordinal,
(b) α < β for ordinals α, β.

75



76 4. INITIAL CASES OF TRANSFINITE INDUCTION

simultaneously by induction, as follows.

(a) If αm, . . . , α0 are ordinals, m ≥ −1 and αm ≥ · · · ≥ α0 (where α ≥ β
means α > β or α = β), then

ωαm + · · ·+ ωα0

is an ordinal. The empty sum (denoted by 0) is allowed.
(b) If ωαm + · · ·+ ωα0 and ωβn + · · ·+ ωβ0 are ordinals, then

ωαm + · · ·+ ωα0 < ωβn + · · ·+ ωβ0

iff there is an i ≥ 0 such that αm−i < βn−i, αm−i+1 = βn−i+1, . . . ,
αm = βn, or else m < n and αm = βn, . . . , α0 = βn−m.

We shall use the notation:

1 := ω0,

k := ω0 + · · ·+ ω0 with k copies of ω0,

ωαk := ωα + · · ·+ ωα with k copies of ωα.

The level of an ordinal is defined by lev(0) := 0, lev(ωαm + · · · + ωα0) :=
lev(αm) + 1. For ordinals of level k + 1 we have ωk ≤ α < ωk+1, where
ω0 := 0, ω1 := ω1, ωk+1 := ωωk .

Lemma 4.1.1. < is a linear order with 0 the least element.

Proof. By induction on the levels. �

Example.

0 < 1 < 2 · · · < ω < ω + 1 · · · < ω2 < ω2 + 1 · · · < ω3 · · · < ω2

< ω2 + 1 · · · < ω2 + ω · · · < ω3 · · · < ωω = ω2 · · · < ω3 · · ·

Definition (Addition of ordinals).

(ωαm + · · ·+ ωα0) + (ωβn + · · ·+ ωβ0) := ωαm + · · ·+ ωαi + ωβn + · · ·+ ωβ0

where i is minimal such that αi ≥ βn.

Lemma 4.1.2. + is an associative operation which is strictly monotonic
in the second argument and weakly monotonic in the first argument.

Proof. Exercise. �

Remark. + is not commutative:

1 + ω = ω 6= ω + 1.



4.2. PROVABILITY OF INITIAL CASES OF TRANSFINITE INDUCTION 77

There is also a commutative version on addition, the natural sum (or
Hessenberg sum). It is defined by

(ωαm + · · ·+ ωα0)#(ωβn + · · ·+ ωβ0) := ωγm+n + · · ·+ ωγ0 ,

where γm+n, . . . , γ0 is a decreasing permutation of αm, . . . , α0, βn, . . . , β0. It
is easy to see that # is associative, commutative and strictly monotonic in
both arguments.

How ordinals of the form β+ωα can be approximated from below? First
note that

δ < α→ β + ωδk < β + ωα.

For any γ < β + ωα we can find a δ < α and a k such that

γ < β + ωδk.

It is easy to code ordinals < ε0 bijectively by natural numbers:

o(pαq) = α and po(x)q = x

such that relations and operations on ordinals transfer to elementary rela-
tions and operations on N. Abbreviations:

x ≺ y := o(x) < o(y),

ωx := pωo(x)q,

x⊕ y := po(x) + o(y)q,

xk := po(x)kq,

ωk := pωkq.

4.2. Provability of initial cases of transfinite induction

We will derive initial cases of transfinite induction in arithmetic:

∀x(∀y≺xPy → Px)→ ∀x≺aPx

for some number a and a predicate symbol P , where ≺ is the standard order
of order type ε0 defined before.

Remark. Gentzen (1943) proved that this result is optimal in the sense
that for the full system of ordinals < ε0 the principle

∀x(∀y≺xPy → Px)→ ∀xPx

of transfinite induction is underivable. However, we will not present a proof
in these notes.

By an arithmetical system Z we mean a theory based on minimal logic
in the ∀→-language (including equality axioms) such that



78 4. INITIAL CASES OF TRANSFINITE INDUCTION

(a) The language of Z consists of a fixed supply of function and relation
constants assumed to denote computable functions and relations on the
non-negative integers.

(b) Among the function constants there is a constant S for the successor
function and 0 for (the 0-place function) zero.

(c) Among the relation constants we have =, P and also ≺ for the ordering
of type ε0 of N, as introduced before.

(d) Terms are built up from object variables x, y, z by f(t1, . . . , tm), where
f is a function constant.

(e) We identify closed terms which have the same value; this expresses that
each function constant is computable.

(f) Terms of the form S(S(. . . S0 . . . )) are called numerals. Notation: Sn0
or n or just n.

(g) Formulas are built up from atomic formulas R(t1, . . . , tm), with R a
relation constant, by A→ B and ∀xA.

The axioms of Z are

• Compatibility of equality

x = y → A(x)→ A(y),

• the Peano axioms, i.e., the universal closures of

Sx = Sy → x = y,(42)

Sx = 0→ A,(43)

A(0)→ ∀x(A(x)→ A(Sx))→ ∀xA(x),(44)

with A(x) an arbitrary formula.
• R~n whenever R~n is true (to express that R is computable).
• Irreflexivity and transitivity for ≺

x ≺ x→ A,

x ≺ y → y ≺ z → x ≺ z

Further axioms – following Schütte – are the universal closures of

x ≺ 0→ A,(45)

z ≺ y ⊕ ω0 → (z ≺ y → A)→ (z = y → A)→ A,(46)

x⊕ 0 = x,(47)

x⊕ (y ⊕ z) = (x⊕ y)⊕ z,(48)

0⊕ x = x,(49)

ωx0 = 0,(50)

ωx(Sy) = ωxy ⊕ ωx,(51)



4.2. PROVABILITY OF INITIAL CASES OF TRANSFINITE INDUCTION 79

z ≺ y ⊕ ωSx → z ≺ y ⊕ ωe(x,y,z)m(x, y, z),(52)

z ≺ y ⊕ ωSx → e(x, y, z) ≺ Sx,(53)

where ⊕, λx,y(ω
xy), e and m denote function constants and A is any for-

mula. These axioms are formal counterparts to the properties of the ordinal
notations observed above.

Theorem 4.2.1 (Provable initial cases of transfinite induction in Z).
Transfinite induction up to ωn, i.e., for arbitrary A(x) the formula

∀x(∀y≺xA(y)→ A(x))→ ∀x≺ωn A(x),

is derivable in Z.

Proof. To every formula A(x) we assign a formula A+(x) (with respect
to a fixed variable x) by

A+(x) := ∀y(∀z≺y A(z)→ ∀z≺y⊕ωxA(z)).

We first show

If A(x) is progressive, then A+(x) is progressive,

where “B(x) is progressive” means ∀x(∀y≺xB(y) → B(x)). Assume that
A(x) is progressive and

(54) ∀y≺xA+(y).

Our goal is A+(x) := ∀y(∀z≺y A(z)→ ∀z≺y⊕ωxA(z)). Assume

(55) ∀z≺yA(z)

and z ≺ y ⊕ ωx. We have to show A(z).
Case x = 0. Then z ≺ y ⊕ ω0. By (46):

z ≺ y ⊕ ω0 → (z ≺ y → A)→ (z = y → A)→ A

it suffices to derive A(z) from z ≺ y as well as from z = y. If z ≺ y, then
A(z) follows from (55), and if z = y, then A(z) follows from (55) and the
progressiveness of A(x).

Case Sx. From z ≺ y⊕ωSx we obtain z ≺ y⊕ωe(x,y,z)m(x, y, z) by (52)
and e(x, y, z) ≺ Sx by (53). By (54) we have A+(e(x, y, z)), i.e.

∀u≺y⊕ωe(x,y,z)vA(u)→ ∀u≺(y⊕ωe(x,y,z)v)⊕ωe(x,y,z)A(u)

and hence, using (48) and (51)

∀u≺y⊕ωe(x,y,z)vA(u)→ ∀u≺y⊕ωe(x,y,z)(Sv)A(u).

Also from (55) and (50), (47) we obtain

∀u≺y⊕ωe(x,y,z)0A(u).



80 4. INITIAL CASES OF TRANSFINITE INDUCTION

By induction:

∀u≺y⊕ωe(x,y,z)m(x,y,z)A(u)

and hence A(z).
Next we show, by induction on n, how to derive

∀x(∀y≺xA(y)→ A(x))→ ∀x≺ωnA(x) for arbitrary A(x).

Assume the left hand side, i.e., that A(x) is progressive.
Case 0. Then x ≺ ω0 and hence x ≺ 0⊕ ω0 by (49). By (46) it suffices

to derive A(x) from x ≺ 0 as well as from x = 0. Now x ≺ 0→ A(x) holds
by (45), and A(0) then follows from the progressiveness of A(x).

Case n+1. Since A(x) is progressive, also A+(x) is. By IH: ∀x≺ωnA+(x),
hence A+(ωn) since A+(x) is progressive. By definition of A+(x) (with (45):
x ≺ 0→ A and (49): 0⊕ x = x) we obtain ∀z≺ωωnA(z). �

Remark. In the induction step we derived transfinite induction up to
ωn+1 for A(x) from transfinite induction up to ωn for A+(x). Define the
level of a formula by

lev(R~t ) := 0,

lev(A→ B) := max(lev(A) + 1, lev(B)),

lev(∀xA) := max(1, lev(A)).

Then lev(A+(x)) = lev(A(x)) + 1. Hence to prove transfinite induction up
to ωn, the induction scheme in Z is used for formulas of level n.

4.3. Iteration operators of higher types

We have just seen that the strength of the induction scheme increases
with the level of the formula proved by induction. A similar phenomenon
occurs when one considers types instead of formulas, and iteration (a special
case of recursion) instead of induction. Such operators have a similar relation
to ordinals <ε0.

Definition. An ordinal ωαn + · · ·+ωα0 is a successor if α0 = 0. It is a
limit if α0 it is neither 0 nor a successor. For every limit λ = ωαn + · · ·+ωα0

we define its fundamental sequence λ[x] by

λ[x] :=

{
ωαn + . . .+ ωα1 + ωα0−1 · x if α0 is a successor

ωαn + . . .+ ωα1 + ωα0[x] if α0 is a limit.



4.3. ITERATION OPERATORS OF HIGHER TYPES 81

Examples.

ω[x] = x,

(ω + ω)[x] = ω + x,

ω2[x] = ωx,

ω3[x] = ω2x,

ωω[x] = ωx.

Definition (Extended Grzegorczyk hierarchy (Fα)α<ε0).

F0(x) := 2x,

Fα+1(x) := F (x)
α (x) (F

(x)
α x-th iterate of Fα),

Fλ(x) := Fλ[x](x).

We also define Fε0(x) := Fωx(x).

Remark. Fω is a variant of the Ackermann function (1940), and the Fn
for n < ω were (essentially) defined and studied by Grzegorczyk (1953).

Lemma 4.3.1. The function F1 is not an elementary function, but its
graph is an elementary relation.

Proof. That F1 is not elementary was essentially proved as a lemma
in Section 2.2.1. The see that the graph of F1 is elementary observe that

F1(x) = y ↔ ∃z
(
(z)0 = 0 ∧ ∀i<x((z)i+1 = 2(z)i) ∧ (z)x = y

)
.

Now it suffices to prove that z can be bounded by an elementary function
in x and y. But since F0 is increasing we can bound z by 〈y, . . . , y〉 with x
occurrences of y, and by a lemma in Section 2.2.5 we have

〈y, . . . , y︸ ︷︷ ︸
x

〉 < (y + 1)2
x
. �

Using similar arguments one can prove that all functions Fα for α < ε0
have elementary graphs.

Let T be a theory in a language containing 0, S with the property that
every elementary relation is representable in T . We call a function f : N→ N
provably recursive in T if we have a formula Af representing the graph of f
such that

T ` ∀x∃yAf (x, y).

In standard arithmetical systems like Z one can prove that all functions
Fα for α < ε0 are provably recursive, with methods similar to what we used
in Section 4.2. Again ε0 is a sharp bound: Fε0 is not be provably recursive.

We can characterize (Fα)α<ε0 by higher type iteration. To this end we
extend the definition of the functions Fα into higher types.



82 4. INITIAL CASES OF TRANSFINITE INDUCTION

Types are generated from the base type N by the formation of function
types τ → σ. The level of a type is defined similar to the level of a formula
(in Section 4.2), by

lev(N) := 0,

lev(τ → σ) := max(lev(τ) + 1, lev(σ)).

It is convenient here to introduce integer types ρn:

ρ0 := N,

ρn+1 := ρn → ρn.

If x0, . . . , xn+1 are of integer types ρ0, . . . , ρn+1, then we can form xn+1(xn)
(of type ρn) and so on, finally xn+1(xn) . . . (x0), or shortly xn+1(xn, . . . , x0).
Note that lev(ρn) = n.

We define Fn+1
α of type ρn+1 for α < ε0:

Fn+1
0 (xn, . . . , x0) :=

{
2x0 if n = 0

x
(x0)
n (xn−1, . . . , x0) otherwise.

Fn+1
α+1 (xn, . . . , x0) := (Fn+1

α )(x0)(xn, . . . , x0),

Fn+1
λ (xn, . . . , x0) := Fn+1

λ[x0]
(xn, . . . , x0).

Here x
(y)
n (xn−1, . . . , x0) denotes I(y, xn, . . . , x0) with an iteration functional

I of type N→ ρn → ρn−1 → . . .→ ρ0 → ρ0 defined by

I(0, y, z) := z,

I(x+ 1, y, z) := y(I(x, y, z)).

Theorem 4.3.2. For n ≥ 1 we have

Fn+1
α (Fnβ ) = Fnβ+ωα

provided β + ωα = β # ωα, i.e., in the Cantor normal form of β the last
summand ωβ0 (if it exists) has an exponent β0 ≥ α.

Proof. By induction on α. Case α = 0.

Fn+1
0 (Fnβ , xn−1, . . . , x0) = (Fnβ )(x0)(xn−1, . . . , x0)

= Fnβ+1(xn−1, . . . , x0).

Case α successor.

Fn+1
α (Fnβ , xn−1, . . . , x0) = (Fn+1

α−1 )(x0)(Fnβ , xn−1, . . . , x0)

= Fnβ+ωα−1·x0(xn−1, . . . , x0) by IH

:= Fn(β+ωα)[x0](xn−1, . . . , x0)

:= Fnβ+ωα(xn−1, . . . , x0).



4.3. ITERATION OPERATORS OF HIGHER TYPES 83

Case α limit.

Fn+1
α (Fnβ , xn−1, . . . , x0) = Fn+1

α[x0]
(Fnβ , xn−1, . . . , x0)

= Fn
β+ωα[x0]

(xn−1, . . . , x0) by IH

= Fn(β+ωα)[x0](xn−1, . . . , x0)

= Fnβ+ωα(xn−1, . . . , x0). �

The result just proved indicates the computational complexity involved
in the use of finite types. The functionals (Fn+1

α )α<ε0 and in particular the
functions (F 1

α)α<ε0 can be built from iteration functionals (and F0(x) =
2x) by application alone. In the resulting representation of the functions
(Fα)α<ε0 we do not need the fundamental sequences λ[x]. The application
pattern for Fα corresponds to the Cantor normal form of α.


