CHAPTER 4

Initial Cases of Transfinite Induction

The goal here is to study the in a sense "most complex" proofs in firstorder arithmetic. The main tool for proving theorems in arithmetic is clearly the induction schema

$$
A(0) \rightarrow \forall_{x}(A(x) \rightarrow A(S x)) \rightarrow \forall_{x} A(x)
$$

An equivalent form of this schema is "course-of-values" or cumulative induction

$$
\forall_{x}\left(\forall_{y<x} A(y) \rightarrow A(x)\right) \rightarrow \forall_{x} A(x)
$$

Both schemes refer to the standard ordering of \mathbb{N}. It is tempting to try to strengthen arithmetic by allowing more general induction schemes, e.g., w.r.t. the lexicographical ordering of $\mathbb{N} \times \mathbb{N}$. Even more generally, let \prec be a well-ordering of \mathbb{N} and use transfinite induction:

$$
\forall_{x}\left(\forall_{y \prec x} A(y) \rightarrow A(x)\right) \rightarrow \forall_{x} A(x)
$$

It can be understood as
Suppose the property $A(x)$ is "progressive", i.e., from the validity of $A(y)$ for all $y \prec x$ we can conclude that $A(x)$ holds. Then $A(x)$ holds for all x.
For which well-orderings this schema is derivable in arithmetic? We will discuss a classic result of Gentzen (1943) which in a sense answers this question completely. However, to state the result we have to be more explicit about the well-orderings used.

4.1. Ordinals below ε_{0}

We need some knowledge and notations for ordinals. This can be done without relying on set theory: we introduce an initial segment of the ordinals (the ones $<\varepsilon_{0}$) in a formal, combinatorial way, i.e., via ordinal notations based on "Cantor normal form". From now on "ordinal" means "ordinal notation".

Definition. We define

(a) α is an ordinal,
(b) $\alpha<\beta$ for ordinals α, β.
simultaneously by induction, as follows.
(a) If $\alpha_{m}, \ldots, \alpha_{0}$ are ordinals, $m \geq-1$ and $\alpha_{m} \geq \cdots \geq \alpha_{0}$ (where $\alpha \geq \beta$ means $\alpha>\beta$ or $\alpha=\beta$), then

$$
\omega^{\alpha_{m}}+\cdots+\omega^{\alpha_{0}}
$$

is an ordinal. The empty sum (denoted by 0) is allowed.
(b) If $\omega^{\alpha_{m}}+\cdots+\omega^{\alpha_{0}}$ and $\omega^{\beta_{n}}+\cdots+\omega^{\beta_{0}}$ are ordinals, then

$$
\omega^{\alpha_{m}}+\cdots+\omega^{\alpha_{0}}<\omega^{\beta_{n}}+\cdots+\omega^{\beta_{0}}
$$

iff there is an $i \geq 0$ such that $\alpha_{m-i}<\beta_{n-i}, \alpha_{m-i+1}=\beta_{n-i+1}, \ldots$, $\alpha_{m}=\beta_{n}$, or else $m<n$ and $\alpha_{m}=\beta_{n}, \ldots, \alpha_{0}=\beta_{n-m}$.

We shall use the notation:

$$
\begin{aligned}
1 & :=\omega^{0}, \\
k & :=\omega^{0}+\cdots+\omega^{0} \quad \text { with } k \text { copies of } \omega^{0}, \\
\omega^{\alpha} k & :=\omega^{\alpha}+\cdots+\omega^{\alpha} \quad \text { with } k \text { copies of } \omega^{\alpha} .
\end{aligned}
$$

The level of an ordinal is defined by $\operatorname{lev}(0):=0, \operatorname{lev}\left(\omega^{\alpha_{m}}+\cdots+\omega^{\alpha_{0}}\right):=$ $\operatorname{lev}\left(\alpha_{m}\right)+1$. For ordinals of level $k+1$ we have $\omega_{k} \leq \alpha<\omega_{k+1}$, where $\omega_{0}:=0, \omega_{1}:=\omega^{1}, \omega_{k+1}:=\omega^{\omega_{k}}$.

Lemma 4.1.1. < is a linear order with 0 the least element.
Proof. By induction on the levels.
Example.

$$
\begin{gathered}
0<1<2 \cdots<\omega<\omega+1 \cdots<\omega 2<\omega 2+1 \cdots<\omega 3 \cdots<\omega^{2} \\
<\omega^{2}+1 \cdots<\omega^{2}+\omega \cdots<\omega^{3} \cdots<\omega^{\omega}=\omega_{2} \cdots<\omega_{3} \cdots
\end{gathered}
$$

Definition (Addition of ordinals).

$$
\left(\omega^{\alpha_{m}}+\cdots+\omega^{\alpha_{0}}\right)+\left(\omega^{\beta_{n}}+\cdots+\omega^{\beta_{0}}\right):=\omega^{\alpha_{m}}+\cdots+\omega^{\alpha_{i}}+\omega^{\beta_{n}}+\cdots+\omega^{\beta_{0}}
$$

where i is minimal such that $\alpha_{i} \geq \beta_{n}$.
Lemma 4.1.2. + is an associative operation which is strictly monotonic in the second argument and weakly monotonic in the first argument.

Proof. Exercise.
Remark. + is not commutative:

$$
1+\omega=\omega \neq \omega+1 .
$$

There is also a commutative version on addition, the natural sum (or Hessenberg sum). It is defined by

$$
\left(\omega^{\alpha_{m}}+\cdots+\omega^{\alpha_{0}}\right) \#\left(\omega^{\beta_{n}}+\cdots+\omega^{\beta_{0}}\right):=\omega^{\gamma_{m+n}}+\cdots+\omega^{\gamma_{0}}
$$

where $\gamma_{m+n}, \ldots, \gamma_{0}$ is a decreasing permutation of $\alpha_{m}, \ldots, \alpha_{0}, \beta_{n}, \ldots, \beta_{0}$. It is easy to see that \# is associative, commutative and strictly monotonic in both arguments.

How ordinals of the form $\beta+\omega^{\alpha}$ can be approximated from below? First note that

$$
\delta<\alpha \rightarrow \beta+\omega^{\delta} k<\beta+\omega^{\alpha} .
$$

For any $\gamma<\beta+\omega^{\alpha}$ we can find a $\delta<\alpha$ and a k such that

$$
\gamma<\beta+\omega^{\delta} k
$$

It is easy to code ordinals $<\varepsilon_{0}$ bijectively by natural numbers:

$$
\mathrm{o}(\ulcorner\alpha\urcorner)=\alpha \quad \text { and } \quad\ulcorner\mathrm{o}(x)\urcorner=x
$$

such that relations and operations on ordinals transfer to elementary relations and operations on \mathbb{N}. Abbreviations:

$$
\begin{aligned}
x \prec y & :=\mathrm{o}(x)<\mathrm{o}(y), \\
\omega^{x} \quad & :=\left\ulcorner\omega^{\mathrm{o}(x)}\right\urcorner, \\
x \oplus y & :=\ulcorner\mathrm{o}(x)+\mathrm{o}(y)\urcorner, \\
x k \quad & :=\ulcorner\mathrm{o}(x) k\urcorner, \\
\omega_{k} \quad & :=\left\ulcorner\omega_{k}\right\urcorner .
\end{aligned}
$$

4.2. Provability of initial cases of transfinite induction

We will derive initial cases of transfinite induction in arithmetic:

$$
\forall_{x}\left(\forall_{y \prec x} P y \rightarrow P x\right) \rightarrow \forall_{x \prec a} P x
$$

for some number a and a predicate symbol P, where \prec is the standard order of order type ε_{0} defined before.

Remark. Gentzen (1943) proved that this result is optimal in the sense that for the full system of ordinals $<\varepsilon_{0}$ the principle

$$
\forall_{x}\left(\forall_{y \prec x} P y \rightarrow P x\right) \rightarrow \forall_{x} P x
$$

of transfinite induction is underivable. However, we will not present a proof in these notes.

By an arithmetical system \mathbf{Z} we mean a theory based on minimal logic in the $\forall \rightarrow$-language (including equality axioms) such that
(a) The language of \mathbf{Z} consists of a fixed supply of function and relation constants assumed to denote computable functions and relations on the non-negative integers.
(b) Among the function constants there is a constant S for the successor function and 0 for (the 0-place function) zero.
(c) Among the relation constants we have $=, P$ and also \prec for the ordering of type ε_{0} of \mathbb{N}, as introduced before.
(d) Terms are built up from object variables x, y, z by $f\left(t_{1}, \ldots, t_{m}\right)$, where f is a function constant.
(e) We identify closed terms which have the same value; this expresses that each function constant is computable.
(f) Terms of the form $S(S(\ldots S 0 \ldots))$ are called numerals. Notation: $S^{n} 0$ or \underline{n} or just n.
(g) Formulas are built up from atomic formulas $R\left(t_{1}, \ldots, t_{m}\right)$, with R a relation constant, by $A \rightarrow B$ and $\forall_{x} A$.
The axioms of \mathbf{Z} are

- Compatibility of equality

$$
x=y \rightarrow A(x) \rightarrow A(y)
$$

- the Peano axioms, i.e., the universal closures of

$$
\begin{align*}
& S x=S y \rightarrow x=y \tag{42}\\
& S x=0 \rightarrow A \tag{43}\\
& A(0) \rightarrow \forall_{x}(A(x) \rightarrow A(S x)) \rightarrow \forall_{x} A(x) \tag{44}
\end{align*}
$$

with $A(x)$ an arbitrary formula.

- $R \vec{n}$ whenever $R \vec{n}$ is true (to express that R is computable).
- Irreflexivity and transitivity for \prec

$$
\begin{aligned}
& x \prec x \rightarrow A, \\
& x \prec y \rightarrow y \prec z \rightarrow x \prec z
\end{aligned}
$$

Further axioms - following Schütte - are the universal closures of

$$
\begin{align*}
& x \prec 0 \rightarrow A \tag{45}\\
& z \prec y \oplus \omega^{0} \rightarrow(z \prec y \rightarrow A) \rightarrow(z=y \rightarrow A) \rightarrow A \tag{46}\\
& x \oplus 0=x \tag{47}\\
& x \oplus(y \oplus z)=(x \oplus y) \oplus z \tag{48}\\
& 0 \oplus x=x \tag{49}\\
& \omega^{x} 0=0 \tag{50}\\
& \omega^{x}(S y)=\omega^{x} y \oplus \omega^{x} \tag{51}
\end{align*}
$$

$$
\begin{align*}
& z \prec y \oplus \omega^{S x} \rightarrow z \prec y \oplus \omega^{e(x, y, z)} m(x, y, z) \tag{52}\\
& z \prec y \oplus \omega^{S x} \rightarrow e(x, y, z) \prec S x \tag{53}
\end{align*}
$$

where $\oplus, \lambda_{x, y}\left(\omega^{x} y\right), e$ and m denote function constants and A is any formula. These axioms are formal counterparts to the properties of the ordinal notations observed above.

Theorem 4.2.1 (Provable initial cases of transfinite induction in \mathbf{Z}). Transfinite induction up to ω_{n}, i.e., for arbitrary $A(x)$ the formula

$$
\forall_{x}\left(\forall_{y \prec x} A(y) \rightarrow A(x)\right) \rightarrow \forall_{x \prec \omega_{n}} A(x)
$$

is derivable in \mathbf{Z}.
Proof. To every formula $A(x)$ we assign a formula $A^{+}(x)$ (with respect to a fixed variable x) by

$$
A^{+}(x):=\forall_{y}\left(\forall_{z \prec y} A(z) \rightarrow \forall_{z \prec y \oplus \omega^{x}} A(z)\right)
$$

We first show
If $A(x)$ is progressive, then $A^{+}(x)$ is progressive,
where " $B(x)$ is progressive" means $\forall_{x}\left(\forall_{y \prec x} B(y) \rightarrow B(x)\right)$. Assume that $A(x)$ is progressive and

$$
\begin{equation*}
\forall_{y \prec x} A^{+}(y) . \tag{54}
\end{equation*}
$$

Our goal is $A^{+}(x):=\forall_{y}\left(\forall_{z \prec y} A(z) \rightarrow \forall_{z \prec y \oplus \omega^{x}} A(z)\right)$. Assume

$$
\begin{equation*}
\forall_{z \prec y} A(z) \tag{55}
\end{equation*}
$$

and $z \prec y \oplus \omega^{x}$. We have to show $A(z)$.
Case $x=0$. Then $z \prec y \oplus \omega^{0}$. By (46):

$$
z \prec y \oplus \omega^{0} \rightarrow(z \prec y \rightarrow A) \rightarrow(z=y \rightarrow A) \rightarrow A
$$

it suffices to derive $A(z)$ from $z \prec y$ as well as from $z=y$. If $z \prec y$, then $A(z)$ follows from (55), and if $z=y$, then $A(z)$ follows from (55) and the progressiveness of $A(x)$.

Case $S x$. From $z \prec y \oplus \omega^{S x}$ we obtain $z \prec y \oplus \omega^{e(x, y, z)} m(x, y, z)$ by (52) and $e(x, y, z) \prec S x$ by (53). By (54) we have $A^{+}(e(x, y, z))$, i.e.

$$
\forall_{u \prec y \oplus \omega^{e(x, y, z)} v} A(u) \rightarrow \forall_{u \prec\left(y \oplus \omega^{e(x, y, z)} v\right) \oplus \omega^{e(x, y, z)}} A(u)
$$

and hence, using (48) and (51)

$$
\forall_{u \prec y \oplus \omega^{e(x, y, z)} v} A(u) \rightarrow \forall_{u \prec y \oplus \omega^{e(x, y, z)}(S v)} A(u) .
$$

Also from (55) and (50), (47) we obtain

$$
\forall_{u \prec y \oplus \omega^{e(x, y, z)} 0} A(u) .
$$

By induction:

$$
\forall_{u \prec y \oplus \omega^{e(x, y, z)}}{ }_{m(x, y, z)} A(u)
$$

and hence $A(z)$.
Next we show, by induction on n, how to derive

$$
\forall_{x}\left(\forall_{y \prec x} A(y) \rightarrow A(x)\right) \rightarrow \forall_{x \prec \omega_{n}} A(x) \quad \text { for arbitrary } A(x) .
$$

Assume the left hand side, i.e., that $A(x)$ is progressive.
Case 0. Then $x \prec \omega^{0}$ and hence $x \prec 0 \oplus \omega^{0}$ by (49). By (46) it suffices to derive $A(x)$ from $x \prec 0$ as well as from $x=0$. Now $x \prec 0 \rightarrow A(x)$ holds by (45), and $A(0)$ then follows from the progressiveness of $A(x)$.

Case $n+1$. Since $A(x)$ is progressive, also $A^{+}(x)$ is. By IH: $\forall_{x \prec \omega_{n}} A^{+}(x)$, hence $A^{+}\left(\omega_{n}\right)$ since $A^{+}(x)$ is progressive. By definition of $A^{+}(x)$ (with (45): $x \prec 0 \rightarrow A$ and (49): $0 \oplus x=x$) we obtain $\forall_{z \prec \omega^{\omega_{n}}} A(z)$.

Remark. In the induction step we derived transfinite induction up to ω_{n+1} for $A(x)$ from transfinite induction up to ω_{n} for $A^{+}(x)$. Define the level of a formula by

$$
\begin{array}{ll}
\operatorname{lev}(R \vec{t}) & :=0, \\
\operatorname{lev}(A \rightarrow B) & :=\max (\operatorname{lev}(A)+1, \operatorname{lev}(B)), \\
\operatorname{lev}\left(\forall_{x} A\right) & :=\max (1, \operatorname{lev}(A)) .
\end{array}
$$

Then $\operatorname{lev}\left(A^{+}(x)\right)=\operatorname{lev}(A(x))+1$. Hence to prove transfinite induction up to ω_{n}, the induction scheme in \mathbf{Z} is used for formulas of level n.

4.3. Iteration operators of higher types

We have just seen that the strength of the induction scheme increases with the level of the formula proved by induction. A similar phenomenon occurs when one considers types instead of formulas, and iteration (a special case of recursion) instead of induction. Such operators have a similar relation to ordinals $<\varepsilon_{0}$.

Definition. An ordinal $\omega^{\alpha_{n}}+\cdots+\omega^{\alpha_{0}}$ is a successor if $\alpha_{0}=0$. It is a limit if α_{0} it is neither 0 nor a successor. For every limit $\lambda=\omega^{\alpha_{n}}+\cdots+\omega^{\alpha_{0}}$ we define its fundamental sequence $\lambda[x]$ by

$$
\lambda[x]:= \begin{cases}\omega^{\alpha_{n}}+\ldots+\omega^{\alpha_{1}}+\omega^{\alpha_{0}-1} \cdot x & \text { if } \alpha_{0} \text { is a successor } \\ \omega^{\alpha_{n}}+\ldots+\omega^{\alpha_{1}}+\omega^{\alpha_{0}}[x] & \text { if } \alpha_{0} \text { is a limit. } .\end{cases}
$$

Examples.

$$
\begin{aligned}
\omega[x] & =x, \\
(\omega+\omega)[x] & =\omega+x, \\
\omega^{2}[x] & =\omega x, \\
\omega^{3}[x] & =\omega^{2} x, \\
\omega^{\omega}[x] & =\omega^{x} .
\end{aligned}
$$

Definition (Extended Grzegorczyk hierarchy $\left.\left(F_{\alpha}\right)_{\alpha<\varepsilon_{0}}\right)$.

$$
\begin{aligned}
F_{0}(x) & :=2^{x}, \\
F_{\alpha+1}(x) & :=F_{\alpha}^{(x)}(x) \quad\left(F_{\alpha}^{(x)} x \text {-th iterate of } F_{\alpha}\right), \\
F_{\lambda}(x) & :=F_{\lambda[x]}(x) .
\end{aligned}
$$

We also define $F_{\varepsilon_{0}}(x):=F_{\omega_{x}}(x)$.
Remark. F_{ω} is a variant of the Ackermann function (1940), and the F_{n} for $n<\omega$ were (essentially) defined and studied by Grzegorczyk (1953).

Lemma 4.3.1. The function F_{1} is not an elementary function, but its graph is an elementary relation.

Proof. That F_{1} is not elementary was essentially proved as a lemma in Section 2.2.1. The see that the graph of F_{1} is elementary observe that

$$
F_{1}(x)=y \leftrightarrow \exists_{z}\left((z)_{0}=0 \wedge \forall_{i<x}\left((z)_{i+1}=2^{(z)_{i}}\right) \wedge(z)_{x}=y\right)
$$

Now it suffices to prove that z can be bounded by an elementary function in x and y. But since F_{0} is increasing we can bound z by $\langle y, \ldots, y\rangle$ with x occurrences of y, and by a lemma in Section 2.2.5 we have

$$
\langle\underbrace{y, \ldots, y}_{x}\rangle<(y+1)^{2^{x}} .
$$

Using similar arguments one can prove that all functions F_{α} for $\alpha<\varepsilon_{0}$ have elementary graphs.

Let T be a theory in a language containing $0, S$ with the property that every elementary relation is representable in T. We call a function $f: \mathbb{N} \rightarrow \mathbb{N}$ provably recursive in T if we have a formula A_{f} representing the graph of f such that

$$
T \vdash \forall_{x} \exists_{y} A_{f}(x, y) .
$$

In standard arithmetical systems like \mathbf{Z} one can prove that all functions F_{α} for $\alpha<\varepsilon_{0}$ are provably recursive, with methods similar to what we used in Section 4.2. Again ε_{0} is a sharp bound: $F_{\varepsilon_{0}}$ is not be provably recursive.

We can characterize $\left(F_{\alpha}\right)_{\alpha<\varepsilon_{0}}$ by higher type iteration. To this end we extend the definition of the functions F_{α} into higher types.

Types are generated from the base type \mathbb{N} by the formation of function types $\tau \rightarrow \sigma$. The level of a type is defined similar to the level of a formula (in Section 4.2), by

$$
\begin{array}{ll}
\operatorname{lev}(\mathbb{N}) & :=0 \\
\operatorname{lev}(\tau \rightarrow \sigma) & :=\max (\operatorname{lev}(\tau)+1, \operatorname{lev}(\sigma))
\end{array}
$$

It is convenient here to introduce integer types ρ_{n} :

$$
\begin{aligned}
\rho_{0} & :=\mathbb{N}, \\
\rho_{n+1} & :=\rho_{n} \rightarrow \rho_{n} .
\end{aligned}
$$

If x_{0}, \ldots, x_{n+1} are of integer types $\rho_{0}, \ldots, \rho_{n+1}$, then we can form $x_{n+1}\left(x_{n}\right)$ (of type ρ_{n}) and so on, finally $x_{n+1}\left(x_{n}\right) \ldots\left(x_{0}\right)$, or shortly $x_{n+1}\left(x_{n}, \ldots, x_{0}\right)$. Note that $\operatorname{lev}\left(\rho_{n}\right)=n$.

We define F_{α}^{n+1} of type ρ_{n+1} for $\alpha<\varepsilon_{0}$:

$$
\begin{aligned}
F_{0}^{n+1}\left(x_{n}, \ldots, x_{0}\right) & := \begin{cases}2^{x_{0}} & \text { if } n=0 \\
x_{n}^{\left(x_{0}\right)}\left(x_{n-1}, \ldots, x_{0}\right) & \text { otherwise. }\end{cases} \\
F_{\alpha+1}^{n+1}\left(x_{n}, \ldots, x_{0}\right) & :=\left(F_{\alpha}^{n+1}\right)^{\left(x_{0}\right)}\left(x_{n}, \ldots, x_{0}\right), \\
F_{\lambda}^{n+1}\left(x_{n}, \ldots, x_{0}\right) & :=F_{\lambda\left[x_{0}\right]}^{n+1}\left(x_{n}, \ldots, x_{0}\right) .
\end{aligned}
$$

Here $x_{n}^{(y)}\left(x_{n-1}, \ldots, x_{0}\right)$ denotes $I\left(y, x_{n}, \ldots, x_{0}\right)$ with an iteration functional I of type $\mathbb{N} \rightarrow \rho_{n} \rightarrow \rho_{n-1} \rightarrow \ldots \rightarrow \rho_{0} \rightarrow \rho_{0}$ defined by

$$
\begin{aligned}
I(0, y, z) & :=z \\
I(x+1, y, z) & :=y(I(x, y, z))
\end{aligned}
$$

TheOrem 4.3.2. For $n \geq 1$ we have

$$
F_{\alpha}^{n+1}\left(F_{\beta}^{n}\right)=F_{\beta+\omega^{\alpha}}^{n}
$$

provided $\beta+\omega^{\alpha}=\beta \# \omega^{\alpha}$, i.e., in the Cantor normal form of β the last summand $\omega^{\beta_{0}}$ (if it exists) has an exponent $\beta_{0} \geq \alpha$.

Proof. By induction on α. Case $\alpha=0$.

$$
\begin{aligned}
F_{0}^{n+1}\left(F_{\beta}^{n}, x_{n-1}, \ldots, x_{0}\right) & =\left(F_{\beta}^{n}\right)^{\left(x_{0}\right)}\left(x_{n-1}, \ldots, x_{0}\right) \\
& =F_{\beta+1}^{n}\left(x_{n-1}, \ldots, x_{0}\right)
\end{aligned}
$$

Case α successor.

$$
\begin{aligned}
F_{\alpha}^{n+1}\left(F_{\beta}^{n}, x_{n-1}, \ldots, x_{0}\right) & =\left(F_{\alpha-1}^{n+1}\right)^{\left(x_{0}\right)}\left(F_{\beta}^{n}, x_{n-1}, \ldots, x_{0}\right) \\
& =F_{\beta+\omega^{\alpha-1} \cdot x_{0}}^{n}\left(x_{n-1}, \ldots, x_{0}\right) \text { by IH } \\
& :=F_{\left(\beta+\omega^{\alpha}\right)\left[x_{0}\right]}^{n}\left(x_{n-1}, \ldots, x_{0}\right) \\
& :=F_{\beta+\omega^{\alpha}}^{n}\left(x_{n-1}, \ldots, x_{0}\right)
\end{aligned}
$$

Case α limit.

$$
\begin{aligned}
F_{\alpha}^{n+1}\left(F_{\beta}^{n}, x_{n-1}, \ldots, x_{0}\right) & =F_{\alpha\left[x_{0}\right]}^{n+1}\left(F_{\beta}^{n}, x_{n-1}, \ldots, x_{0}\right) \\
& =F_{\beta+\omega^{\alpha\left[x_{0}\right]}}^{n}\left(x_{n-1}, \ldots, x_{0}\right) \quad \text { by IH } \\
& =F_{\left(\beta+\omega^{\alpha}\right)\left[x_{0}\right]}^{n}\left(x_{n-1}, \ldots, x_{0}\right) \\
& =F_{\beta+\omega^{\alpha}}^{n}\left(x_{n-1}, \ldots, x_{0}\right) .
\end{aligned}
$$

The result just proved indicates the computational complexity involved in the use of finite types. The functionals $\left(F_{\alpha}^{n+1}\right)_{\alpha<\varepsilon_{0}}$ and in particular the functions $\left(F_{\alpha}^{1}\right)_{\alpha<\varepsilon_{0}}$ can be built from iteration functionals (and $F_{0}(x)=$ 2^{x}) by application alone. In the resulting representation of the functions $\left(F_{\alpha}\right)_{\alpha<\varepsilon_{0}}$ we do not need the fundamental sequences $\lambda[x]$. The application pattern for F_{α} corresponds to the Cantor normal form of α.

