
CHAPTER 3

Gödel’s Theorems

We now bring proof and recursion together. A principal object of study
in this chapter are the elementary functions, which are adequate for the
arithmetization of syntax leading to Gödel’s two incompleteness theorems.

3.1. The notion of truth in formal theories

We consider the question whether there is a truth formula B(z) such
that in appropriate theories T we have T ` A ↔ B(pAq) for all sentences
A. Here pAq is the “Gödel number” of A, and a is the “numeral” denoting
a ∈ N; both notions are defined in Section 3.1.1 below. The result will be
that this is impossible, under rather weak assumptions on the theory T .
Technically, the issue will be to have a syntactic substitute of the notion
of definability by “representability” within a formal theory. This notion is
defined in Section 3.1.2.

3.1.1. Gödel numbers. We will assign numbers – so-called Gödel
numbers, GN for short – to the syntactical constructs developed in Chap-
ter 1: terms, formulas and derivations. Using the elementary sequence-
coding and decoding machinery developed earlier we will be able to con-
struct the code number of a composed object from its parts, and conversely
to disassemble the code number of a composed object into the code numbers
of its parts.

Let L be a countable first-order language. Assume that we have injec-
tively assigned to every n-ary relation symbol R a symbol number sn(R) of
the form 〈1, n, i〉 and to every n-ary function symbol f a symbol number
sn(f) of the form 〈2, n, j〉. Call L elementarily presented if the set SymbL
of all these symbol numbers is elementary. In what follows we shall al-
ways assume that the languages L considered are elementarily presented.
In particular this applies to every language with finitely many relation and
function symbols.
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Let sn(Var) := 〈0〉. For every L-term t we define recursively its Gödel
number ptq by

pxiq := 〈sn(Var), i〉,
pft1 . . . tnq := 〈sn(f), pt1q, . . . , ptnq〉.

Assign numbers to the logical symbols by sn(→) := 〈3, 0〉 and sn(∀) := 〈3, 1〉.
For simplicity we leave out the logical connective ∧ here; it could be treated
similarly. We define for every L-formula A its Gödel number pAq by

pRt1 . . . tnq := 〈sn(R), pt1q, . . . , ptnq〉,
pA→ Bq := 〈sn(→), pAq, pBq〉,
p∀xiAq := 〈sn(∀), i, pAq〉.

Assume that 0 is a constant and S is a unary function symbol in L. For
every a ∈ N the numeral a ∈ TerL is defined by 0 := 0 and n+ 1 := Sn. We
can define an elementary function s such that for every formula C = C(z)
with z := x0,

s(pCq, k) = pC(k)q;

the proof is an exercise.
We define symbol numbers for the names of the natural deduction rules:

sn(AssVar) := 〈4, 0〉, sn(→+) := 〈4, 1〉, sn(→−) := 〈4, 2〉, sn(∀+) := 〈4, 3〉,
sn(∀−) := 〈4, 4〉. For a derivation M we define its Gödel number pMq by

puAi q := 〈sn(AssVar), i, pAq〉,
pλuAi Mq := 〈sn(→+), i, pAq, pMq〉,

pMNq := 〈sn(→−), pMq, pNq〉,
pλxiMq := 〈sn(∀+), i, pMq〉,
pMtq := 〈sn(∀−), pMq, ptq〉.

Let T be an L-theory determined by an elementary axiom system AxT
(containing StabL) plus the equality axioms EqL:

x = x (Reflexivity),

x = y → y = x (Symmetry),

x = y → y = z → x = z (Transitivity),

x1 = y1 → · · · → xn = yn → f(x1, . . . , xn) = f(y1, . . . , yn),

x1 = y1 → · · · → xn = yn → R(x1, . . . , xn)→ R(y1, . . . , yn),

for all n-ary function symbols f and relation symbols R of the language L.
For such axiomatized theories we can define an elementary binary relation
PrfT such that PrfT (d, a) holds if and only if d is the GN of a derivation
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with a closed end formula with GN a from a context composed of equality
axioms and formulas from AxT .

3.1.2. Representable relations and functions. In this section we
assume that L is an elementarily presented language with 0, S and = in L,
and T an L-theory containing the equality axioms EqL.

Definition. A relation R ⊆ Nn is representable in T if there is a formula
A(x1, . . . , xn) such that

T ` A(a1, . . . , an) if (a1, . . . , an) ∈ R,
T ` ¬A(a1, . . . , an) if (a1, . . . , an) /∈ R.

A function f : Nn → N is called representable in T if there is a formula
A(x1, . . . , xn, y) representing the graph Gf ⊆ Nn+1 of f , i.e., such that

T ` A(a1, . . . , an, f(a1, . . . , an)),(20)

T ` ¬A(a1, . . . , an, c) if c 6= f(a1, . . . , an)(21)

and such that in addition

(22) T ` A(a1, . . . , an, y) ∧A(a1, . . . , an, z)→ y=z for all a1, . . . , an ∈ N.

Note that in case T ` b 6= c for b < c condition (21) follows from (20)
and (22).

Lemma. If the characteristic function cR of a relation R ⊆ Nn is repre-
sentable in T , then so is the relation R itself.

Proof. For simplicity assume n = 1. Let A(x, y) be a formula repre-
senting cR. We show that A(x, 1) represents the relation R. Assume a ∈ R.
Then cR(a) = 1, hence (a, 1) ∈ GcR , hence T ` A(a, 1). Conversely, assume
a /∈ R. Then cR(a) = 0, hence (a, 1) /∈ GcR , hence T ` ¬A(a, 1). �

3.1.3. Undefinability of the notion of truth in formal theories.

Lemma (Fixed point lemma). Assume that all elementary functions are
representable in T . Then for every formula B(z) we can find a closed for-
mula A such that

T ` A↔ B(pAq).

Proof. Let s be the elementary function introduced in Section 3.1.1
and As(x1, x2, x3) a formula representing s in T . Let

C(z) := ∀x(As(z, z, x)→ B(x)), A := C(pCq),

and therefore

A = ∀x(As(pCq, pCq, x)→ B(x)).
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Because of s(pCq, pCq) = pC(pCq)q = pAq we can prove in T

As(pCq, pCq, x)↔ x = pAq,

hence by definition of A also

A↔ ∀x(x = pAq→ B(x))

and therefore
A↔ B(pAq). �

Theorem. Let T be a consistent theory such that all elementary func-
tions are representable in T . Then there cannot exist a formula B(z) defining
the notion of truth, i.e., such that for all closed formulas A

T ` A↔ B(pAq).

Proof. Assume we would have such a B(z). Consider the formula
¬B(z) and choose by the fixed point lemma a closed formula A such that

T ` A↔ ¬B(pAq).

For this A we obtain T ` A↔ ¬A, contradicting the consistency of T . �

3.2. Undecidability and incompleteness

Consider a consistent formal theory T with the property that all recur-
sive functions are representable in T . This is a very weak assumption, as we
shall show in the next section: it is always satisfied if the theory allows to
develop a certain minimum of arithmetic. We shall show that such a the-
ory necessarily is undecidable. Then we prove Gödel’s (first) incompleteness
theorem saying that every axiomatized such theory must be incomplete. In
fact, we prove a sharpened form of this theorem due to Gödel and then
Rosser, which explicitly provides a closed formula A such that neither A nor
¬A is provable in the theory T .

In this section let L be an elementarily presented language with 0, S,
= in L and T a theory containing the equality axioms EqL. Call a relation
recursive if its (total) characteristic function is recursive. A set S of formulas
is called recursive (elementarily enumerable), if pSq := { pAq | A ∈ S } is
recursive (elementarily enumerable).

Theorem (Undecidability). Assume that T is a consistent theory such
that all recursive functions are representable in T . Then T is not recursive.

Proof. Assume that T is recursive. By assumption there exists a for-
mula B(z) representing pTq in T . Choose by the fixed point lemma a closed
formula A such that

T ` A↔ ¬B(pAq).

We shall prove (∗) T 6` A and (∗∗) T ` A; this is the desired contradiction.
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Ad (∗). Assume T ` A. Then A ∈ T , hence pAq ∈ pTq, hence T `
B(pAq) (because B(z) represents in T the set pTq). By the choice of A it
follows that T ` ¬A, which contradicts the consistency of T .

Ad (∗∗). By (∗) we know T 6` A. Therefore A /∈ T , hence pAq /∈ pTq
and therefore T ` ¬B(pAq). By the choice of A it follows that T ` A. �

Theorem (Gödel-Rosser). Let T be axiomatized and consistent. As-
sume that there is a formula L(x, y) – written x < y – such that

T ` ∀x<n(x = 0 ∨̃ · · · ∨̃ x = n− 1),(23)

T ` ∀x(x = 0 ∨̃ · · · ∨̃ x = n ∨̃ n < x).(24)

Assume also that every elementary function is representable in T . Then we
can find a closed formula A such that neither A nor ¬A is provable in T .

Proof. We first define RefutT ⊆ N× N by

RefutT (d, a) := PrfT (d, ¬̇a)

with ¬̇a := 〈sn(→), a, sn(⊥)〉. Then RefutT is elementary and RefutT (d, a)
holds if and only if d is the GN of a derivation of the negation of a formula
with GN a from a context composed of equality axioms and formulas from
AxT . Let BPrfT (x1, x2) and BRefutT (x1, x2) be formulas representing PrfT
and RefutT , respectively. Choose by the fixed point lemma a closed formula
A such that

T ` A↔ ∀x(BPrfT (x, pAq)→ ∃̃y<xBRefutT (y, pAq)).

A expresses its own underivability, in the form (due to Rosser): “For every
proof of me there is a shorter proof of my negation”.

We shall show (∗) T 6` A and (∗∗) T 6` ¬A.
Ad (∗). Assume T ` A. Choose n such that

PrfT (n, pAq).

Then we also have

not RefutT (m, pAq) for all m,

since T is consistent. Hence

T ` BPrfT (n, pAq),

T ` ¬BRefutT (m, pAq) for all m.

By (23) we can conclude

T ` BPrfT (n, pAq) ∧ ∀y<n¬BRefutT (y, pAq).
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Hence

T ` ∃̃x(BPrfT (x, pAq) ∧ ∀y<x¬BRefutT (y, pAq)),

T ` ¬A.

This contradicts the assumed consistency of T .
Ad (∗∗). Assume T ` ¬A. Choose n such that

RefutT (n, pAq).

Then we also have

not PrfT (m, pAq) for all m,

since T is consistent. Hence

T ` BRefutT (n, pAq),

T ` ¬BPrfT (m, pAq) for all m.

This implies

T ` ∀x(BPrfT (x, pAq)→ ∃̃y<xBRefutT (y, pAq)),

as can be seen easily by cases on x, using (24). Hence T ` A. But this again
contradicts the assumed consistency of T . �

Finally we formulate a variant of this theorem which does not assume
that the theory T talks about numbers only. Call T a theory with defined
natural numbers if there is a formula N(x) – written Nx – such that T ` N0
and T ` ∀x∈NN(Sx) where ∀x∈NA is short for ∀x(Nx→ A). Representing
a function in such a theory of course means that the free variables in (22)
are relativized to N :

T ` ∀y,z∈N (A(a1, . . . , an, y)→ A(a1, . . . , an, z)→ y=z) for all ~a ∈ N.

Theorem (Gödel-Rosser). Assume that T is an axiomatized consistent
theory with defined natural numbers, and that there is a formula L(x, y) –
written x < y – such that

T ` ∀x∈N (x < n→ x = 0 ∨̃ · · · ∨̃ x = n− 1),

T ` ∀x∈N (x = 0 ∨̃ · · · ∨̃ x = n ∨̃ n < x).

Assume also that every elementary function is representable in T . Then one
can find a closed formula A such that neither A nor ¬A is provable in T .

Proof. As for the Gödel-Rosser theorem above; just relativize all quan-
tifiers to N . �
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3.3. Representability of recursive functions

We show in this section that already very simple theories have the pro-
perty that all recursive functions are representable in them; an example is
a finitely axiomatized arithmetical theory Q due to Robinson (1950). A
consequence will be the (even “essential”) undecidability of Q.

3.3.1. Weak arithmetical theories.

Theorem. Let L be an elementarily presented language with 0, S, =
in L and T a consistent theory with defined natural numbers containing the
equality axioms EqL. Assume that

T ` Sa 6= 0 for all a ∈ N,(25)

T ` Sa = Sb→ a = b for all a, b ∈ N,(26)

the functions + and · are representable in T(27)

and that there is a formula L(x, y) – written x < y – such that

T ` ∀x∈N (x 6< 0),(28)

T ` ∀x∈N (x < Sb→ x < b ∨̃ x = b) for all b ∈ N,(29)

T ` ∀x∈N (x < b ∨̃ x = b ∨̃ b < x) for all b ∈ N.(30)

Then every recursive function is representable in T .

Proof. First note that the formulas x = y and x < y actually do
represent in T the equality and the less-than relations, respectively. From
(25) and (26) we can see immediately that T ` a 6= b when a 6= b. Assume
a 6< b. We show T ` a 6< b by induction on b. T ` a 6< 0 follows from
(28). In the step we have a 6< Sb, hence a 6< b and a 6= b, hence by induction
hypothesis and the representability (above) of the equality relation, T ` a 6<
b and T ` a 6= b, hence by (29) T ` a 6< Sb. Now assume a < b. Then
T ` a 6= b and T ` b 6< a, hence by (30) T ` a < b.

We now show by induction on the definition of µ-recursive functions that
every recursive function is representable in T . Recall (from Section 3.1.2)
that the second condition (21) in the definition of representability of a func-
tion automatically follows from the other two (and hence need not be checked
further). This is because T ` a 6= b for a 6= b.

The initial functions constant 0, successor and projection (onto the i-
th coordinate) are trivially represented by the formulas 0 = y, Sx = y
and xi = y respectively. Addition and multiplication are represented in
T by assumption. Recall that the one remaining initial function of µ-
recursiveness is −· , but this is definable from the characteristic function
of < by a−· b = µi(b+ i ≥ a) = µi(c<(b+ i, a) = 0). We now show that the
characteristic function of < is representable in T . (It will then follow that
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−· is representable, once we have shown that the representable functions are
closed under µ.) We show that

A(x1, x2, y) := (x1 < x2 ∧ y = 1) ∨̃ (x1 6< x2 ∧ y = 0)

represents c<. First notice that ∀y,z∈N (A(a1, a2, y)→ A(a1, a2, z)→ y = z)
already follows logically from the equality axiom (by cases on the alternatives
of A). Assume a1 < a2. Then T ` a1 < a2, hence T ` A(a1, a2, 1). Now
assume a1 6< a2. Then T ` a1 6< a2, hence T ` A(a1, a2, 0).

For the composition case, suppose f is defined from h, g1, . . . , gm by

f(~a ) = h(g1(~a ), . . . , gm(~a )).

By induction hypothesis we already have representing formulas Agi(~x, yi)
and Ah(~y, z). As representing formula for f we take

Af := ∃̃~y∈N (Ag1(~x, y1) ∧̃ . . . ∧̃Agm(~x, ym) ∧̃Ah(~y, z)).

Assume f(~a ) = c. Then there are b1, . . . , bm such that T ` Agi(~a, bi) for each

i, and T ` Ah(~b, c) so by logic T ` Af (~a, c). It remains to show uniqueness
T ` ∀z1,z2∈N (Af (~a, z1) → Af (~a, z2) → z1 = z2). But this follows by logic
from the induction hypothesis for gi, which gives

T ` ∀y1i,y2i∈N (Agi(~a, y1i)→ Agi(~a, y2i)→ y1i = y2i = gi(~a ))

and the induction hypothesis for h, which gives

T ` ∀z1,z2∈N (Ah(~b, z1)→ Ah(~b, z2)→ z1 = z2) with bi = gi(~a ).

For the µ case, suppose f is defined from g (taken here to be binary for

notational convenience) by f(a) = µi(g(i, a) = 0), assuming ∀a∃̃i(g(i, a) =
0). By induction hypothesis we have a formula Ag(y, x, z) representing g.
In this case we represent f by the formula

Af (x, y) := Ny ∧Ag(y, x, 0) ∧ ∀v∈N (v < y → ∃̃u∈N ;u6=0Ag(v, x, u)).

We first show the representability condition (20), that is T ` Af (a, b) when
f(a) = b. Because of the form of Af this follows from the assumed repre-
sentability of g together with T ` ∀v∈N (v < b→ v = 0 ∨̃ · · · ∨̃ v = b− 1).

We now tackle the uniqueness condition (22). Given a, let b := f(a)
(thus g(b, a) = 0 and b is the least such). It suffices to show

T ` ∀y∈N (Af (a, y)→ y = b).

We prove T ` ∀y∈N (y < b→ ¬Af (a, y)) and T ` ∀y∈N (b < y → ¬Af (a, y)),
and then appeal to the trichotomy law.

We first show T ` ∀y∈N (y < b → ¬Af (a, y)). Now since, for any i < b,
T ` ¬Ag(i, a, 0) by the assumed representability of g, we obtain immediately
T ` ¬Af (a, i). Hence because of T ` ∀y∈N (y < b→ y = 0 ∨̃ · · · ∨̃ y = b− 1)
the claim follows.
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Secondly, T ` ∀y∈N (b < y → ¬Af (a, y)) follows almost immediately

from T ` ∀y∈N (b < y → Af (a, y)→ ∃̃u∈N ;u6=0Ag(b, a, u)) and the uniqueness
for g, T ` ∀u∈N (Ag(b, a, u)→ u = 0). �

3.3.2. Robinson’s theory Q. We conclude this section by conside-
ring a special and particularly simple arithmetical theory due originally to
Robinson (1950). Let L1 be the language given by 0, S, +, · and =, and let
Q be the theory determined by the axioms EqL1 and

Sx 6= 0,(31)

Sx = Sy → x = y,(32)

x+ 0 = x,(33)

x+ Sy = S(x+ y),(34)

x · 0 = 0,(35)

x · Sy = x · y + x,(36)

∃̃z(x+ Sz = y) ∨̃ x = y ∨̃ ∃̃z(y + Sz = x).(37)

Theorem (Robinson’s Q). Every consistent theory T ⊇ Q fulfills the

assumptions of the previous theorem w.r.t. the definition L(x, y) := ∃̃z(x +
Sz = y) of the <-relation. Hence every recursive function is representable
in T .

Proof. We show that T satisfies the conditions of the previous theorem.
For (25) and (26) this is clear. For (27) we can take x+ y = z and x · y = z

as representing formulas. For (28) we have to show ¬∃̃z(x + Sz = 0); this
follows from (34) and (31). For the proof of (29) we need the auxiliary
proposition

(38) x = 0 ∨̃ ∃̃y(x = 0 + Sy),

which will be attended to below. Assume x+Sz = Sb, hence also S(x+z) =

Sb and therefore x + z = b. We must show ∃̃y′(x + Sy′ = b) ∨̃ x = b. But
this follows from (38) for z. In case z = 0 we obtain x = b, and in case

∃̃y(z = 0 +Sy) we have ∃̃y′(x+Sy′ = b), since 0 +Sy = S(0 +y). Thus (29)
is proved. (30) follows immediately from (37). For the proof of (38) we use

(37) with y = 0. It clearly suffices to exclude the first case ∃̃z(x+ Sz = 0).
But this means S(x+ z) = 0, contradicting (31). �

Corollary (Essential undecidability of Q). Every consistent theory
T ⊇ Q in an elementarily presented language is non-recursive.

Proof. This follows from the theorem above and the undecidability
theorem in Section 3.2. �
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Corollary (Undecidability of logic). The set of formulas derivable in
minimal logic is non-recursive.

Proof. Otherwise Q would be recursive, because a formula A is deriv-
able in Q if and only if the implication B → A is derivable, where B is the
conjunction of the finitely many axioms and equality axioms of Q. �

Remark. Note that it suffices that the underlying language contains
one binary relation symbol (for =), one constant symbol (for 0), one unary
function symbol (for S) and two binary functions symbols (for + and ·). The
study of decidable fragments of first-order logic is one of the oldest research
areas of mathematical logic. For more information see Börger et al. (1997).

3.3.3. Σ1-formulas. Reading the above proof of representability, one
can see that the representing formulas used are of a restricted form, having
no unbounded universal quantifiers and therefore defining Σ0

1-relations. This
will be of crucial importance for our proof of Gödel’s second incompleteness
theorem to follow, but in addition we need to make a syntactically precise
definition of the class of formulas involved, more specific and apparently
more restrictive than the notion of Σ1-formula used earlier. However, as
proved in the corollary below, we can still represent all recursive functions
even in the weak theory Q by means of Σ1-formulas in this more restrictive
sense. Consequently provable Σ1-ness will be the same whichever definition
we take.

Definition. For the remainder of this chapter, the Σ1-formulas of the
language L1 will be those generated inductively by the following clauses:

(a) Only atomic formulas of the restricted forms x = y, x 6= y, 0 = x,
Sx = y, x+ y = z and x · y = z are allowed as Σ1-formulas.

(b) If A and B are Σ1-formulas, then so are A ∧B and A ∨̃ B.
(c) If A is a Σ1-formula, then so is ∀x<yA, which is an abbreviation for

∀x(∃̃z(x+ Sz = y)→ A).

(d) If A is a Σ1-formula, then so is ∃̃xA.

Corollary. Every recursive function is representable in Q by a Σ1-
formula in the language L1.

Proof. This can be seen immediately by inspecting the proof of the
theorem above on weak arithmetical theories. Only notice that because of
the equality axioms ∃̃z(x+Sz = y) is equivalent to ∃̃z∃̃w(Sz = w∧x+w = y)

and A(0) is equivalent to ∃̃x(0 = x ∧A(x)). �

3.4. Unprovability of consistency

We have seen in the theorem of Gödel-Rosser how, for every axiomatized
consistent theory T safisfying certain weak assumptions, we can construct
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an undecidable sentence A meaning “For every proof of me there is a shorter
proof of my negation”. Because A is unprovable, it is clearly true.

Gödel’s second incompleteness theorem provides a particularly interes-
ting alternative to A, namely a formula ConT expressing the consistency of
T . Again it turns out to be unprovable and therefore true. We shall prove
this theorem in a sharpened form due to Löb.

3.4.1. Σ1-completeness. We prove an auxiliary proposition, express-
ing the completeness of Q with respect to Σ1-formulas.

Lemma (Σ1-completeness). Let A(x1, . . . , xn) be a Σ1-formula of the
language L1. Assume that N1 |= A(a1, . . . , an) where N1 is the standard
model of L1. Then Q ` A(a1, . . . , an).

Proof. By induction on the Σ1-formulas of the language L1. For atomic
formulas, the cases have been dealt with either in the earlier parts of the
proof of the theorem above on weak arithmetical theories, or (for x+ y = z
and x · y = z) they follow from the recursion equations (33) - (36).

Cases A∧B, A ∨̃ B. The claim follows immediately from the induction
hypothesis.

Case ∀x<yA(x, y, z1, . . . , zn); for simplicity assume n = 1. Suppose
N1 |= (∀x<yA)(b, c). Then also N1 |= A(i, b, c) for each i < b and hence by
induction hypothesis Q ` A(i, b, c). Now by the theorem above on Robin-
son’s Q

Q ` ∀x<b(x = 0 ∨̃ · · · ∨̃ x = b− 1),

hence

Q ` (∀x<yA)(b, c).

Case ∃̃xA(x, y1, . . . , yn); for simplicity again take n = 1. Assume N1 |=
(∃̃xA)(b). Then N1 |= A(a, b) for some a ∈ N, hence by induction hypothesis

Q ` A(a, b) and therefore Q ` (∃̃xA)(b). �

3.4.2. Derivability conditions. Let T be an axiomatized consistent
theory with T ⊇ Q, and let PrfT (p, z) be a Σ1-formula of the language
L1 which represents in Robinson’s theory Q the recursive relation “a is the
Gödel number of a proof in T of the formula with Gödel number b”. Consider
the following L1-formulas:

ThmT (x) := ∃̃yPrfT (y, x),

ConT := ¬∃̃yPrfT (y, p⊥q).

Then ThmT (x) defines in N1 the set of formulas provable in T , and we have
N1 |= ConT if and only if T is consistent. We write �A for ThmT (pAq);
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hence ConT can be written ¬�⊥. Now suppose, in addition, that T satisfies
the following two derivability conditions, due to Hilbert and Bernays (1939):

T ` �A→ ��A,(39)

T ` �(A→ B)→ �A→ �B.(40)

(39) formalizes Σ1-completeness of the theory T for closed formulas, and
(40) is a formalization of its closure under modus ponens (i.e., →−). The
derivability conditions place further restrictions on the theory T and its
proof predicate PrfT . We check them under the assumption that PrfT is as
defined earlier. (There are non-standard ways of coding proofs which lead
to various “pathologies” - see, e.g., Feferman (1960)).

The formalized version of modus ponens is easy to see, assuming that T
can be conservatively extended to include a “proof-term” t(y, y′) such that
one may prove

PrfT (y, pA→ Bq)→ PrfT (y′, pAq)→ PrfT (t(y, y′), pBq)

for then (40) follows immediately by quantifier rules.
(39) is harder. A detailed proof requires a great deal of syntactic ma-

chinery to do with the construction of proof terms, as above, acting on Gödel
numbers so as to mimic the various rules inside T . We merely content our-
selves here with a short indication of why (39) holds; this should be sufficient
to convince the reader of its validity.

As we have seen at the beginning of this chapter, the elementary func-
tions are provably recursive and so we may take their definitions as having
been added conservatively. Working informally “inside” T one shows, by
induction on y, that

PrfT (y, pAq)→ PrfT (f(y), p�Aq)

where f is elementary. Then (39) follows by the quantifier rules.
If y is the Gödel number of a derivation (in T ) consisting of an axiom

A then there will be a term t, elementarily computable from y, such that
PrfT (t, pAq) and hence �A are derivable in T . This derivation may be
syntactically complex, but it will essentially consist of checking that t, as a
Gödel number, encodes the right thing. Thus the derivation of �A has a
fixed Gödel number (depending on t and hence y) and this is what we take
as the value of f(y).

If y is the Gödel number of a derivation of A in which one of the rules is
finally applied, say to premises A′ and A′′, then there will be y′, y′′ < y such
that PrfT (y′, pA′q) and PrfT (y′′, pA′′q). By the induction hypothesis, f(y′)
and f(y′′) will be the Gödel numbers of T -derivations of �A′ and �A′′, and
as in the modus-ponens case above, there will be a fixed derivation which
combines these two into a new derivation of �A. We take, as the value f(y),
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the Gödel number of this final derivation, computable from f(y′) and f(y′′)
by applying some additional (sub-elementary) coding corresponding to the
additional steps from �A′ and �A′′ to �A.

The function f will be definable from elementary functions by a course-
of-values recursion in which the recursion steps are in fact computed sub-
elementarily. Therefore it will be a limited course-of-values recursion and,
by a result in Chapter 2, f will therefore be elementary as required.

Theorem (Gödel’s second incompleteness theorem). Let T be an ax-
iomatized consistent extension of Q, satisfying the derivability conditions
(39) und (40). Then T 6` ConT .

Proof. Let C := ⊥ in Löb’s theorem below, which is a generalization
of Gödel’s original result. �

Theorem (Löb). Let T be an axiomatized consistent extension of Q
satisfying the derivability conditions (39) and (40). Then for any closed
L1-formula C, if T ` �C → C, then already T ` C.

Proof. Assume T ` �C → C. We must show T ` C. Choose A by the
fixed point lemma such that

(41) Q ` A↔ (�A→ C).

First we show T ` �A→ C. We obtain

T ` A→ �A→ C by (41)

T ` �(A→ �A→ C) by Σ1-completeness

T ` �A→ �(�A→ C) by (40)

T ` �A→ ��A→ �C again by (40)

T ` �A→ �C since T ` �A→ ��A by (39).

Therefore the assumption T ` �C → C implies T ` �A→ C. Hence T ` A
by (41), and then T ` �A by Σ1-completeness. But T ` �A → C as we
have just shown, therefore T ` C. �

Remark. It follows that if T is any axiomatized consistent extension
of Q satisfying the derivability conditions (39) und (40), then the reflection
schema

�C → C for closed L1-formulas C

is not derivable in T . For by Löb’s theorem, it cannot be derivable when C
is underivable.


