
CHAPTER 2

Recursion Theory

In this chapter we develop the basics of recursive function theory, or as
it is more generally known, computability theory. Its history goes back to
the seminal works of Turing, Kleene and others in the 1930’s.

A computable function is one defined by a program whose operational
semantics tell an idealized computer what to do to its storage locations as
it proceeds deterministically from input to output, without any prior re-
strictions on storage space or computation time. We shall be concerned
with various program-styles and the relationships between them, but the
emphasis throughout will be on one underlying data-type, namely the natu-
ral numbers, since it is there that the most basic foundational connections
between proof theory and computation are to be seen in their clearest light.

The two best-known models of machine computation are the Turing
Machine and the (Unlimited) Register Machine of Shepherdson and Sturgis
(1963). We base our development on the latter since it affords the quickest
route to the results we want to establish.

2.1. Register machines

2.1.1. Programs. A register machine stores natural numbers in regis-
ters denoted u, v, w, x, y, z possibly with subscripts, and it responds step
by step to a program consisting of an ordered list of basic instructions:

I0
I1
...
Ik−1

Each instruction has one of the following three forms whose meanings are
obvious:

Zero: x := 0,
Succ: x := x+ 1,

Jump: [if x = y then In else Im].

The instructions are obeyed in order starting with I0 except when a condi-
tional jump instruction is encountered, in which case the next instruction

43

44 2. RECURSION THEORY

will be either In or Im according as the numerical contents of registers x
and y are equal or not at that stage. The computation terminates when it
runs out of instructions, that is when the next instruction called for is Ik.
Thus if a program of length k contains a jump instruction as above then it
must satisfy the condition n,m ≤ k and Ik means “halt”. Notice of course
that some programs do not terminate, for example the following one-liner:

[if x = x then I0 else I1]

2.1.2. Program constructs. We develop some shorthand for building
up standard sorts of programs.

Transfer. “x := y” is the program

x := 0
[if x = y then I4 else I2]
x := x+ 1
[if x = x then I1 else I1],

which copies the contents of register y into register x.
Predecessor. The program “x := y−· 1” copies the modified predecessor

of y into x, and simultaneously copies y into z:

x := 0
z := 0
[if x = y then I8 else I3]
z := z + 1
[if z = y then I8 else I5]
z := z + 1
x := x+ 1
[if z = y then I8 else I5].

Composition. “P ; Q” is the program obtained by concatenating pro-
gram P with program Q. However in order to ensure that jump instructions
in Q of the form “[if x = y then In else Im]” still operate properly within Q
they need to be re-numbered by changing the addresses n,m to k+n, k+m
respectively where k is the length of program P . Thus the effect of this
program is to do P until it halts (if ever) and then do Q.

Conditional. “if x = y then P else Q fi” is the program

[if x = y then I1 else Ik+2]
...P
[if x = x then Ik+2+l else I2]
...Q

2.1. REGISTER MACHINES 45

where k, l are the lengths of the programs P,Q respectively, and again their
jump instructions must be appropriately renumbered by adding 1 to the
addresses in P and k + 2 to the addresses in Q. Clearly if x = y then
program P is obeyed and the next jump instruction automatically bypasses
Q and halts. If x 6= y then program Q is performed.

For Loop. “for i = 1 . . . x do P od” is the program

i := 0
[if x = i then Ik+4 else I2]
i := i+ 1
...P
[if x = i then Ik+4 else I2]

where again, k is the length of program P and the jump instructions in
P must be appropriately re-addressed by adding 3. The intention of this
new program is that it should iterate the program P x times (do nothing
if x = 0). This requires the restriction that the register x and the “local”
counting-register i are not re-assigned new values inside P .

While Loop. “while x 6= 0 do P od” is the program

y := 0
[if x = y then Ik+3 else I2]
...P
[if x = y then Ik+3 else I2]

where again, k is the length of program P and the jump instructions in P
must be re-addressed by adding 2. This program keeps on doing P until (if
ever) the register x becomes 0; it requires the restriction that the auxiliary
register y is not re-assigned new values inside P .

2.1.3. Register machine computable functions. A register ma-
chine program P may have certain distinguished “input registers” and “out-
put registers”. It may also use other “working registers” for scratchwork and
these will initially be set to zero. We write P (x1, . . . , xk; y) to signify that
program P has input registers x1, . . . , xk and one output register y, which
are distinct.

Definition. The program P (x1, . . . , xk; y) is said to compute the k-ary
partial function ϕ : Nk → N if, starting with any numerical values n1, . . . , nk
in the input registers, the program terminates with the number m in the
output register if and only if ϕ(n1, . . . , nk) is defined with value m. In this
case, the input registers hold their original values.

A function is register machine computable if there is some program which
computes it.

46 2. RECURSION THEORY

Here are some examples.
Addition. “Add(x, y; z)” is the program

z := x ; for i = 1, . . . , y do z := z + 1 od

which adds the contents of registers x and y into register z.
Subtraction. “Subt(x, y; z)” is the program

z := x ; for i = 1, . . . , y do w := z −· 1 ; z := w od

which computes the modified subtraction function x−· y.
Bounded Sum. If P (x1, . . . , xk, w; y) computes the k + 1-ary function ϕ

then the program Q(x1, . . . , xk, z;x):

x := 0 ;
for i = 1, . . . , z do w := i−· 1 ; P (~x,w; y) ; v := x ; Add(v, y;x) od

computes the function

ψ(x1, . . . , xk, z) =
∑
w<z

ϕ(x1, . . . , xk, w)

which will be undefined if for some w < z, ϕ(x1, . . . , xk, w) is undefined.
Multiplication. Deleting “w := i−· 1 ; P” from the last example gives a

program Mult(z, y;x) which places the product of y and z into x.
Bounded Product. If in the bounded sum example, the instruction x :=

x+ 1 is inserted immediately after x := 0, and if Add(v, y;x) is replaced by
Mult(v, y;x), then the resulting program computes the function

ψ(x1, . . . , xk, z) =
∏
w<z

ϕ(x1, . . . , xk, w).

Composition. If Pj(x1, . . . , xk; yj) computes ϕj for each j = 1, . . . , n and
if P0(y1, . . . , yn; y0) computes ϕ0, then the program Q(x1, . . . , xk; y0):

P1(x1, . . . , xk; y1) ; . . . ; Pn(x1, . . . , xk; yn) ; P0(y1, . . . , yn; y0)

computes the function

ψ(x1, . . . , xk) = ϕ0(ϕ1(x1, . . . , xk) , . . . , ϕn(x1, . . . , xk))

which will be undefined if any of the ϕ-subterms on the right hand side is
undefined.

Unbounded Minimization. If P (x1, . . . , xk, y; z) computes ϕ then the pro-
gram Q(x1, . . . , xk; z):

y := 0 ; z := 0 ; z := z + 1 ;
while z 6= 0 do P (x1, . . . , xk, y; z) ; y := y + 1 od ;
z := y −· 1

computes the function

ψ(x1, . . . , xk) = µy(ϕ(x1, . . . , xk, y) = 0)

2.2. ELEMENTARY FUNCTIONS 47

that is, the least number y such that ϕ(x1, . . . , xk, y
′) is defined for every

y′ ≤ y and ϕ(x1, . . . , xk, y) = 0.

2.2. Elementary functions

2.2.1. Definition and simple properties. The elementary functions
of Kalmár (1943) are those number-theoretic functions which can be defined
explicitly by compositional terms built up from variables and the constants
0, 1 by repeated applications of addition +, modified subtraction−· , bounded
sums and bounded products.

By omitting bounded products, one obtains the subelementary functions.
The examples in the previous section show that all elementary functions

are computable and totally defined. Multiplication and exponentiation are
elementary since

m · n =
∑

i<nm and mn =
∏
i<nm

and hence by repeated composition, all exponential polynomials are elemen-
tary.

In addition the elementary functions are closed under
Definition by Cases.

f(~n) =

{
g0(~n) if h(~n) = 0

g1(~n) otherwise

since f can be defined from g0, g1 and h by

f(~n) = g0(~n) · (1−· h(~n)) + g1(~n) · (1−· (1−· h(~n))).

Bounded Minimization.

f(~n,m) = µk<m(g(~n, k) = 0)

since f can be defined from g by

f(~n,m) =
∑
i<m

(
1−·

∑
k≤i

(1−· g(~n, k))
)
.

Note: this definition gives value m if there is no k < m such that g(~n, k) =
0. It shows that not only the elementary, but in fact the subelementary
functions are closed under bounded minimization. Furthermore, we define
µk≤m(g(~n, k) = 0) as µk<m+1(g(~n, k) = 0).

Lemma.

(a) For every elementary function f : Nr → N there is a number k such that
for all ~n = n1, . . . , nr,

f(~n) < 2k(max(~n))

where 20(m) := m and 2k+1(m) := 22k(m).

48 2. RECURSION THEORY

(b) The function n 7→ 2n(1) is not elementary.

Proof. (a). By induction on the build-up of the compositional term
defining f . The result clearly holds if f is any one of the base functions:

f(~n) = 0 or 1 or ni or ni + nj or ni −· nj .

If f is defined from g by application of bounded sum or product:

f(~n,m) =
∑
i<m

g(~n, i) or
∏
i<m

g(~n, i)

where g(~n, i) < 2k(max(~n, i)) then we have

f(~n,m) ≤ (2k(max(~n,m)))m < 2k+2(max(~n,m))

using nn < 22
n

(since nn < (2n−1)n ≤ 22
n

for n ≥ 3).
If f is defined from g0, g1, . . . , gl by composition:

f(~n) = g0(g1(~n), . . . , gl(~n))

where for each j ≤ l we have gj(−) < 2kj (max(−)), then with k = maxj kj ,

f(~n) < 2k(2k(max(~n))) = 22k(max(~n))

and this completes the first part.
(b). If 2n(1) were an elementary function of n then by (a) there would

be a positive k such that for all n,

2n(1) < 2k(n)

but then putting n = 2k(1) yields 22k(1)(1) < 22k(1), a contradiction. �

2.2.2. Elementary relations. A relation R on Nk is said to be ele-
mentary if its characteristic function

cR(~n) =

{
1 if R(~n)

0 otherwise

is elementary. In particular, the “equality” and “less than” relations are
elementary since their characteristic functions can be defined as follows:

c<(n,m) = 1−· (1−· (m−· n)), c=(n,m) = 1−· (c<(n,m) + c<(m,n)).

Furthermore if R is elementary then so is the function

f(~n,m) = µk<mR(~n, k)

since R(~n, k) is equivalent to 1−· cR(~n, k) = 0.

Lemma. The elementary relations are closed under applications of propo-
sitional connectives and bounded quantifiers.

2.2. ELEMENTARY FUNCTIONS 49

Proof. For example, the characteristic function of ¬R is

1−· cR(~n).

The characteristic function of R0 ∧R1 is

cR0(~n) · cR1(~n).

The characteristic function of ∀i<mR(~n, i) is

c=(m,µi<m(cR(~n, i) = 0)). �

Examples. The above closure properties enable us to show that many
“natural” functions and relations of number theory are elementary. For
instance, it is an easy exercise to show that b nmc is elementary, and then that
n mod m is elementary. Using this fact we can conclude that the following
are elementary as well:

Prime(n)↔ 1 < n ∧ ¬∃m<n(1 < m ∧ n mod m = 0),

pn = µm<22n (Prime(m) ∧ n =
∑
i<m

cPrime(i)),

so p0, p1, p2, . . . gives the enumeration of primes in increasing order. The
estimate pn ≤ 22

n
for the nth prime pn can be proved by induction on n:

For n = 0 this is clear, and for n ≥ 1 we obtain

pn ≤ p0p1 · · · pn−1 + 1 ≤ 22
0
22

1 · · · 22n−1
+ 1 = 22

n−1 + 1 < 22
n
.

2.2.3. The class E.

Definition. The class E consists of those number theoretic functions
which can be defined from the initial functions: constant 0, successor S,
projections (onto the ith coordinate), addition +, modified subtraction −· ,
multiplication · and exponentiation 2x, by applications of composition and
bounded minimization.

The remarks above show immediately that the characteristic functions
of the equality and less than relations lie in E , and that (by the proof of the
lemma) the relations in E are closed under propositional connectives and
bounded quantifiers.

Furthermore the above examples show that all the functions in the class
E are elementary. We now prove the converse, which will be useful later.

Lemma. There are “pairing functions” π, π1, π2 in E with the following
properties:

(a) π maps N× N bijectively onto N,
(b) π(a, b) + b+ 2 ≤ (a+ b+ 1)2 for a+ b ≥ 1, hence π(a, b) < (a+ b+ 1)2,
(c) π1(c), π2(c) ≤ c,
(d) π(π1(c), π2(c)) = c,

50 2. RECURSION THEORY

(e) π1(π(a, b)) = a,
(f) π2(π(a, b)) = b.

Proof. Enumerate the pairs of natural numbers as follows:

...

6 . . .

3 7 . . .

1 4 8 . . .

0 2 5 9 . . .

At position (0, b) we clearly have the sum of the lengths of the preceding
diagonals, and on the next diagonal a + b remains constant. Let π(a, b) be
the number written at position (a, b). Then we have

π(a, b) =
(∑
i≤a+b

i
)

+ a =
1

2
(a+ b)(a+ b+ 1) + a.

Clearly π : N × N → N is bijective. Moreover, a, b ≤ π(a, b) and in case
π(a, b) 6= 0 also a < π(a, b). Let

π1(c) := µx≤c∃y≤c(π(x, y) = c),

π2(c) := µy≤c∃x≤c(π(x, y) = c).

Then clearly πi(c) ≤ c for i ∈ {1, 2} and

π1(π(a, b)) = a, π2(π(a, b)) = b, π(π1(c), π2(c)) = c.

π, π1 and π2 are in E by definition. For π(a, b) we have the estimate

π(a, b) + b+ 2 ≤ (a+ b+ 1)2 for a+ b ≥ 1.

This follows with n := a+ b from

1

2
n(n+ 1) + n+ 2 ≤ (n+ 1)2 for n ≥ 1,

which is equivalent to n(n + 1) + 2(n + 1) ≤ 2((n + 1)2 − 1) and hence to
(n+ 2)(n+ 1) ≤ 2n(n+ 2), which holds for n ≥ 1. �

The proof shows that π, π1 and π2 are in fact subelementary.

Theorem (Gödel’s β-function). There is in E a function β with the
following property: For every sequence a0, . . . , an−1 < b of numbers less

than b we can find a number c ≤ 4 · 4n(b+n+1)4 such that β(c, i) = ai for all
i < n.

2.2. ELEMENTARY FUNCTIONS 51

Proof. Let

a := π(b, n) and d :=
∏
i<n

(
1 + π(ai, i)a!

)
.

From a! and d we can, for each given i < n, reconstruct the number ai as
the unique x < b such that

1 + π(x, i)a! | d.

For clearly ai is such an x, and if some x < b were to satisfy the same
condition, then because π(x, i) < a and the numbers 1 + ka! are relatively
prime for k ≤ a, we would have π(x, i) = π(aj , j) for some j < n. Hence
x = aj and i = j, thus x = ai. – Therefore

ai = µx<b∃z<d((1 + π(x, i)a!)z = d).

We can now define Gödel’s β-function as

β(c, i) := µx<π1(c)∃z<π2(c)((1 + π(x, i) · π1(c)) · z = π2(c)).

Clearly β is in E . Furthermore with c := π(a!, d) we see that β(c, i) = ai.
It is then not difficult to estimate the given bound on c, using π(b, n) <
(b+ n+ 1)2. �

The above definition of β shows that it is subelementary.

2.2.4. Closure properties of E.

Theorem. The class E is closed under limited recursion. Thus if g, h, k
are given functions in E and f is defined from them according to the schema

f(~m, 0) = g(~m),

f(~m, n+ 1) = h(n, f(~m, n), ~m),

f(~m, n) ≤ k(~m, n),

then f is in E also.

Proof. Let f be defined from g, h and k in E , by limited recursion
as above. Using Gödel’s β-function as in the last theorem we can find for
any given ~m, n a number c such that β(c, i) = f(~m, i) for all i ≤ n. Let
R(~m, n, c) be the relation

β(c, 0) = g(~m) ∧ ∀i<n(β(c, i+ 1) = h(i, β(c, i), ~m))

and note by the remarks above that its characteristic function is in E . It
is clear, by induction, that if R(~m, n, c) holds then β(c, i) = f(~m, i), for all
i ≤ n. Therefore we can define f explicitly by the equation

f(~m, n) = β(µcR(~m, n, c), n).

52 2. RECURSION THEORY

f will lie in E if µc can be bounded by an E function. However, the theorem

on Gödel’s β-function gives a bound 4 · 4(n+1)(b+n+2)4 , where in this case b
can be taken as the maximum of k(~m, i) for i ≤ n. But this can be defined
in E as k(~m, i0), where i0 = µi≤n∀j≤n(k(~m, j) ≤ k(~m, i)). Hence µc can be
bounded by an E function. �

Remark. Note that it is in this proof only that the exponential function
is required, in providing a bound for µ.

Corollary. E is the class of all elementary functions.

Proof. It is sufficient merely to show that E is closed under bounded
sums and bounded products. Suppose for instance, that f is defined from
g in E by bounded summation: f(~m, n) =

∑
i<n g(~m, i). Then f can be

defined by limited recursion, as follows

f(~m, 0) = 0

f(~m, n+ 1) = f(~m, n) + g(~m, n)

f(~m, n) ≤ n ·max
i<n

g(~m, i)

and the functions (including the bound) from which it is defined are in E .
Thus f is in E by the theorem. If instead, f is defined by bounded product,
then proceed similarly. �

2.2.5. Coding finite lists. Computation on lists is a practical neces-
sity, so because we are basing everything here on the single data type N
we must develop some means of “coding” finite lists or sequences of natural
numbers into N itself. There are various ways to do this and we shall adopt
one of the most traditional, based on the pairing functions π, π1, π2.

The empty sequence is coded by the number 0 and a sequence n0, n1,
. . . , nk−1 is coded by the “sequence number”

〈n0, n1, . . . , nk−1〉 = π′(. . . π′(π′(0, n0), n1), . . . , nk−1)

with π′(a, b) := π(a, b) + 1, thus recursively,

〈〉 := 0,

〈n0, n1, . . . , nk〉 := π′(〈n0, n1, . . . , nk−1〉, nk).

Because of the surjectivity of π, every number a can be decoded uniquely as
a sequence number a = 〈n0, n1, . . . , nk−1〉. If a is greater than zero, hd(a) :=
π2(a−· 1) is the “head” (i.e., rightmost element) and tl(a) := π1(a−· 1) is the

“tail” of the list. The kth iterate of tl is denoted tl(k) and since tl(a) is less

than or equal to a, tl(k)(a) is elementarily definable (by limited recursion).

2.2. ELEMENTARY FUNCTIONS 53

Thus we can define elementarily the “length” and “decoding” functions:

lh(a) := µk≤a(tl
(k)(a) = 0),

(a)i := hd(tl(lh(a)−
· (i+1))(a)).

Then if a = 〈n0, n1, . . . , nk−1〉 it is easy to check that

lh(a) = k and (a)i = ni for each i < k.

Furthermore (a)i = 0 when i ≥ lh(a). We shall write (a)i,j for ((a)i)j and
(a)i,j,k for (((a)i)j)k. This elementary coding machinery will be used at
various crucial points in the following.

Note that our previous remarks show that the functions lh(·) and (a)i
are subelementary, and so is 〈n0, n1, . . . , nk−1〉 for each fixed k.

Lemma (Estimate for sequence numbers).

(n+ 1)k ≤ 〈n, . . . , n︸ ︷︷ ︸
k

〉 < (n+ 1)2
k
.

Proof. We prove a slightly strengthened form of the second estimate:

〈n, . . . , n︸ ︷︷ ︸
k

〉+ n+ 1 ≤ (n+ 1)2
k
,

by induction on k. For k = 0 the claim is clear. In the step k 7→ k + 1 we
have

〈n, . . . , n︸ ︷︷ ︸
k+1

〉+ n+ 1 = π(〈n, . . . , n︸ ︷︷ ︸
k

〉, n) + n+ 2

≤ (〈n, . . . , n︸ ︷︷ ︸
k

〉+ n+ 1)2 by the lemma in Section 2.2.3

≤ (n+ 1)2
k+1

by induction hypothesis.

For the first estimate the base case k = 0 is clear, and in the step we have

〈n, . . . , n︸ ︷︷ ︸
k+1

〉 = π(〈n, . . . , n︸ ︷︷ ︸
k

〉, n) + 1

≥ 〈n, . . . , n︸ ︷︷ ︸
k

〉+ n+ 1

≥ (n+ 1)(k + 1) by induction hypothesis. �

Concatenation of sequence numbers b ∗ a is defined thus:

b ∗ 〈〉 := b,

b ∗ 〈n0, n1, . . . , nk〉 := π(b ∗ 〈n0, n1, . . . , nk−1〉, nk) + 1.

54 2. RECURSION THEORY

To check that this operation is also elementary, define h(b, a, i) by recursion
on i as follows.

h(b, a, 0) = b,

h(b, a, i+ 1) = π(h(b, a, i), (a)i) + 1

and note that since

h(b, a, i) = 〈(b)0, . . . , (b)lh(b)−· 1, (a)0, . . . , (a)i−· 1〉 for i ≤ lh(a)

it follows from the estimate above that h(a, b, i) ≤ (b+ a)2
lh(b)+i

. Thus h is
definable by limited recursion from elementary functions and hence is itself
elementary. Finally

b ∗ a = h(b, a, lh(a)).

2.3. Kleene’s normal form theorem

2.3.1. Program numbers. The three types of register machine in-
structions I can be coded by “instruction numbers”]I thus, where v0, v1,
v2, . . . is a list of all variables used to denote registers:

If I is “vj := 0” then]I = 〈0, j〉.
If I is “vj := vj + 1” then]I = 〈1, j〉.
If I is “if vj = vl then Im else In” then]I = 〈2, j, l,m, n〉.

Clearly, using the sequence coding and decoding apparatus above, we can
check elementarily whether or not a given number is an instruction number.

Any register machine program P = I0, I1, . . . , Ik−1 can then be coded
by a “program number” or “index”]P thus:

]P = 〈]I0,]I1, . . . ,]Ik−1〉

and again (although it is tedious) we can elementarily check whether or not
a given number is indeed of the form]P for some program P . Tradition has
it that e is normally reserved as a variable over putative program numbers.

Standard program constructs such as those in Section 2.1 have associ-
ated “index-constructors”, i.e., functions which, given indices of the subpro-
grams, produce an index for the constructed program. The point is that
for standard program constructs the associated index-constructor functions
are elementary. For example, there is an elementary index-constructor comp
such that, given programs P0, P1 with indices e0, e1, comp(e0, e1) is an index
of the program P0 ; P1. A moment’s thought should convince the reader
that the appropriate definition of comp is as follows:

comp(e0, e1) = e0 ∗ 〈r(e0, e1, 0), r(e0, e1, 1), . . . , r(e0, e1, lh(e1)−· 1)〉

2.3. KLEENE’S NORMAL FORM THEOREM 55

where r(e0, e1, i) ={
〈2, (e1)i,1, (e1)i,2, (e1)i,3 + lh(e0), (e1)i,4 + lh(e0)〉 if (e1)i,0 = 2

(e1)i otherwise

re-addresses the jump instructions in P1. Clearly r and hence comp are
elementary functions.

Definition. Henceforth, ϕ
(r)
e denotes the partial function computed by

the register machine program with program number e, operating on the
input registers v1, . . . , vr and with output register v0. There is no loss of
generality here, since the variables in any program can always be renamed
so that v1, . . . , vr become the input registers and v0 the output. If e is not a
program number, or it is but does not operate on the right variables, then

we adopt the convention that ϕ
(r)
e (n1, . . . , nr) is undefined for all inputs

n1, . . . , nr. Alternative notation for ϕ
(r)
e (n1, . . . , nr) is {e}(n1, . . . , nr).

2.3.2. Normal form.

Theorem (Kleene’s normal form). For each arity r there is an elemen-
tary function U and an elementary relation T such that, for all e and all
inputs n1, . . . , nr,

(a) ϕ
(r)
e (n1, . . . , nr) is defined if and only if ∃sT (e, n1, . . . , nr, s),

(b) ϕ
(r)
e (n1, . . . , nr) = U(e, n1, . . . , nr, µsT (e, n1, . . . , nr, s)).

Proof. A computation of a register machine program P (v1, . . . , vr; v0)
on numerical inputs ~n = n1, . . . , nr proceeds deterministically, step by step,
each step corresponding to the execution of one instruction. Let e be its
program number, and let v0, . . . , vl be all the registers used by P , including
the “working registers”, so r ≤ l.

The “state” of the computation at step s is defined to be the sequence
number

state(e, ~n, s) = 〈e, i,m0,m1, . . . ,ml〉
where m0,m1, . . . ,ml are the values stored in the registers v0, v1, . . . , vl after
step s is completed, and the next instruction to be performed is the i-th one,
thus (e)i is its instruction number.

The “state transition function” tr : N → N computes the “next state”.
So suppose that x = 〈e, i,m0,m1, . . . ,ml〉 is any putative state. Then in
what follows, e = (x)0, i = (x)1, and mj = (x)j+2 for each j ≤ l. The
definition of tr(x) is therefore as follows:

tr(x) = 〈e, i′,m′0,m′1, . . . ,m′l〉
where

56 2. RECURSION THEORY

(i) If (e)i = 〈0, j〉 where j ≤ l then i′ = i + 1, m′j = 0, and all other

registers remain unchanged, i.e., m′k = mk for k 6= j.
(ii) If (e)i = 〈1, j〉 where j ≤ l then i′ = i+ 1, m′j = mj + 1, and all other

registers remain unchanged.
(iii) If (e)i = 〈2, j0, j1, i0, i1〉 where j0, j1 ≤ l and i0, i1 ≤ lh(e) then i′ = i0

or i′ = i1 according as mj0 = mj1 or not, and all registers remain
unchanged, i.e., m′j = mj for all j ≤ l.

(iv) Otherwise, if e is not a program number, or if it refers to a register vk
with l < k, or if lh(e) ≤ i, then tr(x) simply repeats the same state x
so i′ = i, and m′j = mj for every j ≤ l.

Clearly tr is an elementary function, since it is defined by elementarily de-
cidable cases, with (a great deal of) elementary decoding and re-coding
involved in each case.

Consequently, the “state function” state(e, ~n, s) is also elementary be-
cause it can be defined by iterating the transition function by limited recur-
sion on s as follows:

state(e, ~n, 0) = 〈e, 0, 0, n1, . . . , nr, 0, . . . , 0〉
state(e, ~n, s+ 1) = tr(state(e, ~n, s))

state(e, ~n, s) ≤ h(e, ~n, s)

where for the bounding function h we can take

h(e, ~n, s) = 〈e, e〉 ∗ 〈max(~n) + s, . . . ,max(~n) + s〉.
This is because the maximum value of any register at step s cannot be
greater than max(~n) + s. Now this expression clearly is elementary, since
〈m, . . . ,m〉 with i occurrences of m is definable by a limited recursion with

bound (m+ 1)2
i
, by the estimate Lemma in Section 2.2.5.

Now recall that if program P has program number e then computation
terminates when instruction Ilh(e) is encountered. Thus we can define the
“termination relation” T (e, ~n, s), meaning “computation terminates at step
s”, by

T (e, ~n, s) := ((state(e, ~n, s))1 = lh(e)).

Clearly T is elementary and

ϕ(r)
e (~n) is defined↔ ∃sT (e, ~n, s).

The output on termination is the value of register v0, so if we define the
“output function” U(e, ~n, s) by

U(e, ~n, s) := (state(e, ~n, s))2

then U is also elementary and

ϕ(r)
e (~n) = U(e, ~n, µsT (e, ~n, s)). �

2.3. KLEENE’S NORMAL FORM THEOREM 57

2.3.3. Σ0
1-definable relations and µ-recursive functions. A rela-

tion R of arity r is said to be Σ0
1-definable if there is an elementary relation

E, say of arity r + l, such that for all ~n = n1, . . . , nr,

R(~n)↔ ∃k1,...klE(~n, k1, . . . , kl).

A partial function ϕ is said to be Σ0
1-definable if its graph

{ (~n,m) | ϕ(~n) is defined and = m }
is Σ0

1-definable.
To say that a non-empty relation R is Σ0

1-definable is equivalent to saying
that the set of all sequences 〈~n〉 satisfying R can be enumerated (possibly
with repetitions) by some elementary function f : N→ N. Such relations are
called elementarily enumerable. For choose any fixed sequence 〈a1, . . . , ar〉
satisfying R and define

f(m) =

{
〈(m)1, . . . , (m)r〉 if E((m)1, . . . , (m)r+l)

〈a1, . . . , ar〉 otherwise.

Conversely if R is elementarily enumerated by f then

R(~n)↔ ∃m(f(m) = 〈~n〉)
is a Σ0

1-definition of R.
The µ-recursive functions are those (partial) functions which can be

defined from the initial functions: constant 0, successor S, projections (onto
the i-th coordinate), addition +, modified subtraction −· and multiplication
·, by applications of composition and unbounded minimization. Note that
it is through unbounded minimization that partial functions may arise.

Lemma. Every elementary function is µ-recursive.

Proof. By simply removing the bounds on µ in the lemmas in Sec-
tion 2.2.3 one obtains µ-recursive definitions of the pairing functions π, π1,
π2 and of Gödel’s β-function. Then by removing all mention of bounds
from the theorem in Section 2.2.4 one sees that the µ-recursive functions are
closed under (unlimited) primitive recursive definitions: f(~m, 0) = g(~m),
f(~m, n+ 1) = h(n, f(~m, n), ~m). Thus one can µ-recursively define bounded
sums and bounded products, and hence all elementary functions. �

2.3.4. Computable functions.

Definition. The while programs are those programs which can be built
up from assignment statements x := 0, x := y, x := y + 1, x := y −· 1, by
conditionals, composition, for-loops and while-loops as in Section 2.1 (on
program constructs).

Theorem. The following are equivalent:

58 2. RECURSION THEORY

(a) ϕ is register machine computable,
(b) ϕ is Σ0

1-definable,
(c) ϕ is µ-recursive,
(d) ϕ is computable by a while program.

Proof. The normal form theorem shows immediately that every regi-

ster machine computable function ϕ
(r)
e is Σ0

1-definable since

ϕ(r)
e (~n) = m↔ ∃s(T (e, ~n, s) ∧ U(e, ~n, s) = m)

and the relation T (e, ~n, s) ∧ U(e, ~n, s) = m is clearly elementary. If ϕ is
Σ0
1-definable, say

ϕ(~n) = m↔ ∃k1,...klE(~n,m, k1, . . . , kl),

then ϕ can be defined µ-recursively by

ϕ(~n) = (µmE(~n, (m)0, (m)1, . . . , (m)l))0 ,

using the fact (above) that elementary functions are µ-recursive. The ex-
amples of computable functionals in Section 2.1 show how the definition of
any µ-recursive function translates automatically into a while program. Fi-
nally, Section 2.1 shows how to implement any while program on a register
machine. �

Henceforth computable means “register machine computable” or any of
its equivalents.

Corollary. The function ϕ
(r)
e (n1, . . . , nr) is a computable partial func-

tion of the r + 1 variables e, n1, . . . , nr.

Proof. Immediate from the normal form. �

Lemma. Let R and R̄ be disjoint inhabited relations with ∀~n(R~n∨ R̄~n).
Then R is computable if and only if both R and R̄ are Σ0

1-definable.

Proof. We assume (for simplicity) that R and R̄ are unary.
“→”. By the theorem above every computable relation is Σ0

1-definable,
and with R clearly R̄ is computable.

“←”. Let f, g ∈ E enumerate R and R̄, respectively. Then

h(n) := µi(f(i) = n ∨ g(i) = n)

is a total µ-recursive function, and R(n)↔ f(h(n)) = n. �

2.3. KLEENE’S NORMAL FORM THEOREM 59

2.3.5. Undecidability of the halting problem. The above corollary
says that there is a single “universal” program which, given numbers e and

~n, computes ϕ
(r)
e (~n) if it is defined. However, we cannot decide in advance

whether or not it will be defined. There is no program which, given e and
~n, computes the total function

h(e, ~n) =

{
1 if ϕ

(r)
e (~n) is defined

0 if ϕ
(r)
e (~n) is undefined.

For suppose there were such a program. Then the function

ψ(~n) = µm(h(n1, ~n) = 0)

would be computable, say with fixed program number e0, and therefore

ϕ(r)
e0 (~n) =

{
0 if h(n1, ~n) = 0

undefined if h(n1, ~n) = 1.

But then fixing n1 = e0 gives

ϕ
(r)
e0 (~n) defined↔ h(e0, ~n) = 0↔ ϕ

(r)
e0 (~n) undefined,

a contradiction. Hence the relation R(e, ~n), which holds if and only if

ϕ
(r)
e (~n) is defined, is not recursive. It is however Σ0

1-definable.

