
CHAPTER 1

Logic

The main subject of Mathematical Logic is mathematical proof. In this
introductory chapter we deal with the basics of formalizing such proofs and,
via normalization, analysing their structure. The system we pick for the
representation of proofs is Gentzen’s natural deduction from (1935). Our
reasons for this choice are twofold. First, as the name says this is a natural
notion of formal proof, which means that the way proofs are represented
corresponds very much to the way a careful mathematician writing out all
details of an argument would proceed anyway. Second, formal proofs in
natural deduction are closely related (via the so-called Curry-Howard cor-
respondence) to terms in typed lambda calculus. This provides us not only
with a compact notation for logical derivations (which otherwise tend to be-
come somewhat unmanagable tree-like structures), but also opens up a route
to applying the computational techniques which underpin lambda calculus.

An underlying theme of this chapter is to bring out the constructive
content of logic, particularly in regard to the relationship between minimal
and classical logic. For us the latter is most appropriately viewed as a
subsystem of the former. This approach will reveal some interesting aspects
of proofs, e.g., that it is possible and useful to distinguish beween existential
proofs that actually construct witnessing objects, and others that don’t.

As an example for a non-constructive existence proof, consider the fol-
lowing proposition.

There are irrational numbers a, b such that ab is rational.

This can be proved as follows, by cases.

Case
√

2
√
2

is rational. Choose a =
√

2 and b =
√

2. Then a, b are
irrational and by assumption ab is rational.

Case
√

2
√
2

is irrational. Choose a =
√

2
√
2

and b =
√

2. Then by
assumption a, b are irrational and

ab =
(√

2

√
2
)√2

=
(√

2
)2

= 2

is rational.

3

4 1. LOGIC

As long as we have not decided whether
√

2
√
2

is rational, we do not
know which numbers a, b we must take. Hence we have an example of an
existence proof which does not provide an instance.

Weyl (1921) gave a somewhat drastic description of this situation:

Ein Existentialsatz – etwa “es gibt eine gerade Zahl” –
ist überhaupt kein Urteil im eigentlichen Sinne, das einen
Sachverhalt behauptet; Existentialsachverhalte sind eine
leere Erfindung der Logiker. “2 ist eine gerade Zahl”, das
ist ein wirkliches, einem Sachverhalt Ausdruck gebendes
Urteil; “es gibt eine gerade Zahl” ist nur ein aus diesem
Urteil gewonnenes Urteilsabstrakt. Bezeichne ich Erkennt-
nis als einen wertvollen Schatz, so ist das Urteilsabstrakt
ein Papier, welches das Vorhandensein eines Schatzes an-
zeigt, ohne jedoch zu verraten, an welchem Ort. Sein
einziger Wert kann darin liegen, daß es mich antreibt, nach
dem Schatze zu suchen.

1.1. Natural deduction

The rules of natural deduction come in pairs: we have an introduc-
tion and an elimination rule for each of the logical connectives. The re-
sulting system is called minimal logic; it was introduced by Kolmogorov
(1932), Gentzen (1935) and Johansson (1937). Notice that no negation
is yet present. If we go on and require ex-falso-quodlibet for the nullary
propositional symbol ⊥ (“falsum”) we can embed intuitionistic logic with
negation as A → ⊥. To embed classical logic, we need to go further and
add as an axiom schema the principle of indirect proof, also called stabil-
ity (∀~x(¬¬R~x→ R~x) for relation symbols R), but then it is appropriate to
restrict to the language based on→, ∀, ⊥ and ∧. The reason for this restric-
tion is that we can neither prove ¬¬∃xA→ ∃xA nor ¬¬(A∨B)→ A∨B, for
there are countermodels to both (the former is Markov’s scheme). However,
we can prove them for the classical existential quantifier and disjunction
defined by ¬∀x¬A and ¬A → ¬B → ⊥. Thus we need to make a distinc-
tion between two kinds of “exists” and two kinds of “or”: the classical ones
are “weak” and the non-classical ones “strong” since they have constructive
content. In situations where both kinds occur together we must mark the
distinction, and we shall do this by writing a tilde above the weak disjunction
and existence symbols thus ∨̃, ∃̃.

1.1.1. Terms and formulas. Let a countably infinite set { vi | i ∈ N }
of variables be given; they will be denoted by x, y, z. A first-order language
L then is determined by its signature, which is to mean the following.

1.1. NATURAL DEDUCTION 5

(i) For every natural number n ≥ 0 a (possible empty) set of n-ary rela-
tion symbols (or predicate symbols). 0-ary relation symbols are called
propositional symbols. ⊥ (read “falsum”) is required as a fixed proposi-
tional symbol. The language will not, unless stated otherwise, contain
= as a primitive. Binary relation symbols can be marked as infix.

(ii) For every natural number n ≥ 0 a (possible empty) set of n-ary function
symbols. 0-ary function symbols are called constants. Binary function
symbols can again be marked as infix.

We assume that all these sets of variables, relation and function symbols are
disjoint. L is kept fixed and will only be mentioned when necessary.

Terms are inductively defined as follows.

(i) Every variable is a term.
(ii) Every constant is a term.
(iii) If t1, . . . , tn are terms and f is an n-ary function symbol with n ≥ 1,

then f(t1, . . . , tn) is a term. (If t, s are terms and ◦ is a binary function
symbol, then (t ◦ s) is a term.)

From terms one constructs prime formulas, also called atomic formulas
or just atoms: If t1, . . . , tn are terms and R is an n-ary relation symbol, then
R(t1, . . . , tn) is a prime formula. (If t, s are terms and ∼ is a binary relation
symbol, then (t ∼ s) is a prime formula.)

Formulas are inductively defined from prime formulas by

(i) Every prime formula is a formula.
(ii) If A and B are formulas, then so are (A→ B) (“if A then B”), (A∧B)

(“A and B”) and (A ∨B) (“A or B”).
(iii) If A is a formula and x is a variable, then ∀xA (“A holds for all x”)

and ∃xA (“there is an x such that A”) are formulas.

Negation is defined by
¬A := (A→ ⊥).

We shall often need to do induction on the height, denoted |A|, of
formulas A. This is defined as follows: |P | = 0 for atoms P , |A ◦ B| =
max(|A|, |B|) + 1 for binary operators ◦ (i.e., →,∧,∨) and | ◦ A| = |A| + 1
for unary operators ◦ (i.e., ∀x, ∃x).

1.1.2. Substitution, free and bound variables. Expressions E , E ′
which differ only in the names of bound (occurrences of) variables will be
regarded as identical. This is sometimes expressed by saying that E and E ′
are α-equal. In other words, we are only interested in expressions “modulo
renaming of bound variables”. There are methods of finding unique repre-
sentatives for such expressions, e.g., the name-free terms of de Bruijn (1972).
For the human reader such representations are less convenient, so we shall
stick to the use of bound variables.

6 1. LOGIC

In the definition of “substitution of expression E ′ for variable x in ex-
pression E”, either one requires that no variable free in E ′ becomes bound
by a variable-binding operator in E , when the free occurrences of x are re-
placed by E ′ (also expressed by saying that there must be no “clashes of
variables”), “E ′ is free for x in E”, or the substitution operation is taken to
involve a systematic renaming operation for the bound variables, avoiding
clashes. Having stated that we are only interested in expressions modulo
renaming bound variables, we can without loss of generality assume that
substitution is always possible.

Also, it is never a real restriction to assume that distinct quantifier
occurrences are followed by distinct variables, and that the sets of bound
and free variables of a formula are disjoint.

Notation. “FV” is used for the (set of) free variables of an expression;
so FV(t) is the set of variables free in the term t, FV(A) the set of variables
free in formula A etc. A formula A is said to be closed if FV(A) = ∅.
E [x := t] denotes the result of substituting the term t for the variable

x in the expression E . Similarly, E [~x := ~t] is the result of simultaneously
substituting the terms ~t = t1, . . . , tn for the variables ~x = x1, . . . , xn, respec-
tively.

In a given context we shall adopt the following convention. Once a
formula has been introduced as A(x), i.e., A with a designated variable x,
we write A(t) for A[x := t], and similarly with more variables.

1.1.3. Subformulas. Unless stated otherwise, the notion of subfor-
mula will be that defined by Gentzen.

Definition. (Gentzen) subformulas of A are defined by

(a) A is a subformula of A;
(b) if B ◦ C is a subformula of A then so are B, C, for ◦ = →,∧,∨;
(c) if ∀xB(x) or ∃xB(x) is a subformula of A, then so is B(t).

Definition. The notions of positive, negative, strictly positive subfor-
mula are defined in a similar style:

(a) A is a positive and a strictly positive subformula of itself;
(b) if B ∧ C or B ∨ C is a positive (negative, strictly positive) subformula

of A, then so are B, C;
(c) if ∀xB(x) or ∃xB(x) is a positive (negative, strictly positive) subformula

of A, then so is B(t);
(d) if B → C is a positive (negative) subformula of A, then B is a negative

(positive) subformula of A, and C is a positive (negative) subformula of
A;

(e) if B → C is a strictly positive subformula of A, then so is C.

1.1. NATURAL DEDUCTION 7

A strictly positive subformula of A is also called a strictly positive part
(s.p.p.) of A. Note that the set of subformulas of A is the union of the
positive and negative subformulas of A.

Example. (P → Q) → R ∧ ∀xS(x) has as s.p.p.’s the whole formula,
R ∧ ∀xS(x), R, ∀xS(x), S(t). The positive subformulas are the s.p.p.’s and
in addition P ; the negative subformulas are P → Q, Q.

1.1.4. Examples of derivations. To motivate the rules for natural
deduction, let us start with informal proofs of some simple logical facts.

(A→ B → C)→ (A→ B)→ A→ C.

Informal proof. Assume A → B → C. To show: (A → B) → A → C.
So assume A → B. To show: A → C. So finally assume A. To show: C.
Using the third assumption twice we have B → C by the first assumption,
and B by the second assumption. From B → C and B we then obtain
C. Then A → C, cancelling the assumption on A; (A → B) → A → C
cancelling the second assumption; and the result follows by cancelling the
first assumption. �

∀x(A→ B)→ A→ ∀xB, if x /∈ FV(A).

Informal proof. Assume ∀x(A→ B). To show: A→ ∀xB. So assume A. To
show: ∀xB. Let x be arbitrary; note that we have not made any assumptions
on x. To show: B. We have A → B by the first assumption. Hence also
B by the second assumption. Hence ∀xB. Hence A → ∀xB, cancelling the
second assumption. Hence the result, cancelling the first assumption. �

A characteristic feature of these proofs is that assumptions are intro-
duced and eliminated again. At any point in time during the proof the free
or “open” assumptions are known, but as the proof progresses, free assump-
tions may become cancelled or “closed” because of the implies-introduction
rule.

We reserve the word proof for the informal level; a formal representation
of a proof will be called a derivation.

An intuitive way to communicate derivations is to view them as labelled
trees each node of which denotes a rule application. The labels of the inner
nodes are the formulas derived as conclusions at those points, and the labels
of the leaves are formulas or terms. The labels of the nodes immediately
above a node k are the premises of the rule application. At the root of
the tree we have the conclusion (or end formula) of the whole derivation.
In natural deduction systems one works with assumptions at leaves of the
tree; they can be either open or closed (cancelled). Any of these assump-
tions carries a marker . As markers we use assumption variables denoted
u, v, w, u0, u1, The variables of the language previously introduced will

8 1. LOGIC

now often be called object variables, to distinguish them from assumption
variables. If at a node below an assumption the dependency on this as-
sumption is removed (it becomes closed) we record this by writing down the
assumption variable. Since the same assumption may be used more than
once (this was the case in the first example above), the assumption marked
with u (written u : A) may appear many times. Of course we insist that
distinct assumption formulas must have distinct markers. An inner node of
the tree is understood as the result of passing from premises to the conclu-
sion of a given rule. The label of the node then contains, in addition to the
conclusion, also the name of the rule. In some cases the rule binds or closes
or cancels an assumption variable u (and hence removes the dependency of
all assumptions u : A thus marked). An application of the ∀-introduction
rule similarly binds an object variable x (and hence removes the dependency
on x). In both cases the bound assumption or object variable is added to
the label of the node.

Definition. A formula A is called derivable (in minimal logic), writ-
ten ` A, if there is a derivation of A (without free assumptions) using
the natural deduction rules. A formula B is called derivable from assump-
tions A1, . . . , An, if there is a derivation of B with free assumptions among
A1, . . . , An. Let Γ be a (finite or infinite) set of formulas. We write Γ ` B if
the formula B is derivable from finitely many assumptions A1, . . . , An ∈ Γ.

We now formulate the rules of natural deduction.

1.1.5. Introduction and elimination rules for → and ∀. First we
have an assumption rule, allowing to write down an arbitrary formula A
together with a marker u:

u : A assumption.

The other rules of natural deduction split into introduction rules (I-rules for
short) and elimination rules (E-rules) for the logical connectives which, for
the time being, are just→ and ∀. For implication→ there is an introduction
rule →+ and an elimination rule →− also called modus ponens. The left
premise A→ B in →− is called the major (or main) premise, and the right
premise A the minor (or side) premise. Note that with an application of the
→+-rule all assumptions above it marked with u : A are cancelled (which
is denoted by putting square brackets around these assumptions), and the
u then gets written alongside. There may of course be other uncancelled
assumptions v : A of the same formula A, which may get cancelled at a later

1.1. NATURAL DEDUCTION 9

stage.
[u : A]

|M
B →+uA→ B

|M
A→ B

| N
A →−B

For the universal quantifier ∀ there is an introduction rule ∀+ (again marked,
but now with the bound variable x) and an elimination rule ∀− whose right
premise is the term t to be substituted. The rule ∀+x with conclusion ∀xA
is subject to the following (eigen-)variable condition: the derivation M of
the premise A must not contain any open assumption having x as a free
variable.

|M
A ∀+x∀xA

|M
∀xA(x) t

∀−
A(t)

We now give derivations of the two example formulas treated informally
above. Since in many cases the rule used is determined by the conclusion,
we suppress in such cases the name of the rule.

u : A→ B → C w : A
B → C

v : A→ B w : A
B

C →+wA→ C →+v
(A→ B)→ A→ C

→+u
(A→ B → C)→ (A→ B)→ A→ C

u : ∀x(A→ B) x

A→ B v : A
B ∀+x∀xB →+vA→ ∀xB →+u∀x(A→ B)→ A→ ∀xB

Note that the variable condition is satisfied: x is not free in A (and also not
free in ∀x(A→ B)).

1.1.6. Properties of negation. Recall that negation is defined by
¬A := (A→ ⊥). The following can easily be derived.

A→ ¬¬A,
¬¬¬A→ ¬A.

However, ¬¬A → A is in general not derivable (without stability – we will
come back to this later on).

10 1. LOGIC

Lemma. The following are derivable.

(A→ B)→ ¬B → ¬A,
¬(A→ B)→ ¬B,

¬¬(A→ B)→ ¬¬A→ ¬¬B,
(⊥ → B)→ (¬¬A→ ¬¬B)→ ¬¬(A→ B),

¬¬∀xA→ ∀x¬¬A.

Derivations are left as an exercise.

1.1.7. Introduction and elimination rules for disjunction ∨, con-
junction ∧ and existence ∃. For disjunction the introduction and elimi-
nation rules are

|M
A ∨+0A ∨B

|M
B ∨+1A ∨B

|M
A ∨B

[u : A]

| N
C

[v : B]

| K
C ∨−u, v

C

For conjunction we have

|M
A

| N
B ∧+A ∧B

|M
A ∧B

[u : A] [v : B]

| N
C ∧− u, v

C

and for the existential quantifier

t

|M
A(t)

∃+∃xA(x)

|M
∃xA

[u : A]

| N
B ∃−x, u (var.cond.)

B

Similar to ∀+x the rule ∃−x, u is subject to an (eigen-)variable condition:
in the derivation N the variable x (i) should not occur free in the formula
of any open assumption other than u : A, and (ii) should not occur free in
B.

Again, in each of the elimination rules ∨−, ∧− and ∃− the left premise
is called major (or main) premise, and the right premise is called the minor
(or side) premise.

It is easy to see that for each of the connectives ∨, ∧, ∃ the rules and the
following axioms are equivalent over minimal logic; this is left as an exercise.

1.1. NATURAL DEDUCTION 11

For disjunction the introduction and elimination axioms are

∨+0 : A→ A ∨B,
∨+1 : B → A ∨B,
∨− : A ∨B → (A→ C)→ (B → C)→ C.

For conjunction we have

∧+ : A→ B → A ∧B, ∧− : A ∧B → (A→ B → C)→ C

and for the existential quantifier

∃+ : A→ ∃xA, ∃− : ∃xA→ ∀x(A→ B)→ B (x /∈ FV(B)).

Remark. All these axioms can be seen as special cases of a general
schema, that of an inductively defined predicate, which is defined by some
introduction rules and one elimination rule.

We collect some easy facts about derivability; B ← A means A→ B.

Lemma. The following are derivable.

(A ∧B → C)↔ (A→ B → C),

(A→ B ∧ C)↔ (A→ B) ∧ (A→ C),

(A ∨B → C)↔ (A→ C) ∧ (B → C),

(A→ B ∨ C)← (A→ B) ∨ (A→ C),

(∀xA→ B)← ∃x(A→ B) if x /∈ FV(B),

(A→ ∀xB)↔ ∀x(A→ B) if x /∈ FV(A),

(∃xA→ B)↔ ∀x(A→ B) if x /∈ FV(B),

(A→ ∃xB)← ∃x(A→ B) if x /∈ FV(A).

Proof. A derivation of the final formula is

u : ∃x(A→ B)
x

w : A→ B v : A
B

∃xB ∃−x,w∃xB →+vA→ ∃xB →+u∃x(A→ B)→ A→ ∃xB

The variable condition for ∃− is satisfied since the variable x (i) is not free
in the formula A of the open assumption v : A, and (ii) is not free in ∃xB.
The rest of the proof is left as an exercise. �

12 1. LOGIC

As already mentioned, we distinguish between two kinds of “exists” and
two kinds of “or”: the “weak” or classical ones and the “strong” or non-
classical ones, with constructive content. In the present context both kinds
occur together and hence we must mark the distinction; we shall do this by
writing a tilde above the weak disjunction and existence symbols thus

A ∨̃ B := ¬A→ ¬B → ⊥, ∃̃xA := ¬∀x¬A.
These weak variants of disjunction and the existential quantifier are no
stronger than the proper ones (in fact, they are weaker):

A ∨B → A ∨̃ B, ∃xA→ ∃̃xA.
This can be seen easily by putting C := ⊥ in ∨− and B := ⊥ in ∃−.

Remark. Since ∃̃x∃̃yA unfolds into a rather awkward formula we extend

the ∃̃-terminology to lists of variables:

∃̃x1,...,xnA := ∀x1,...,xn(A→ ⊥)→ ⊥.
Moreover let

∃̃x1,...,xn(A1 ∧̃ . . . ∧̃Am) := ∀x1,...,xn(A1 → · · · → Am → ⊥)→ ⊥.
This allows to stay in the →,∀ part of the language. Notice that ∧̃ only
makes sense in this context, i.e., in connection with ∃̃.

1.1.8. Intuitionistic and classical derivability. In the definition of
derivability in Section 1.1.4 falsity ⊥ plays no role. We may change this and
require ex-falso-quodlibet axioms, of the form

∀~x(⊥ → R~x)

with R a relation symbol distinct from ⊥. Let Efq denote the set of all such
axioms. A formula A is called intuitionistically derivable, written `i A, if
Efq ` A. We write Γ `i B for Γ ∪ Efq ` B.

We may even go further and require stability axioms, of the form

∀~x(¬¬R~x→ R~x)

with R again a relation symbol distinct from ⊥. Let Stab denote the set of
all these axioms. A formula A is called classically derivable, written `c A,
if Stab ` A. We write Γ `c B for Γ ∪ Stab ` B.

It is easy to see that intuitionistically (i.e., from Efq) we can derive
⊥ → A for an arbitrary formula A, using the introduction rules for the
connectives. A similar generalization of the stability axioms is only possible
for formulas in the language not involving ∨,∃. However, it is still possible
to use the substitutes ∨̃ and ∃̃.

Theorem (Stability, or principle of indirect proof).

1.1. NATURAL DEDUCTION 13

(a) ` (¬¬A→ A)→ (¬¬B → B)→ ¬¬(A ∧B)→ A ∧B.
(b) ` (¬¬B → B)→ ¬¬(A→ B)→ A→ B.
(c) ` (¬¬A→ A)→ ¬¬∀xA→ A.
(d) `c ¬¬A→ A for every formula A without ∨, ∃.

Proof. (a) is left as an exercise.
(b) For simplicity, in the derivation to be constructed we leave out ap-

plications of →+ at the end.

u : ¬¬B → B

v : ¬¬(A→ B)

u1 : ¬B
u2 : A→ B w : A

B
⊥ →+u2¬(A→ B)

⊥ →+u1¬¬B
B

(c)

u : ¬¬A→ A

v : ¬¬∀xA

u1 : ¬A
u2 : ∀xA x

A
⊥ →+u2¬∀xA

⊥ →+u1¬¬A
A

(d) Induction on A. The case R~t with R distinct from ⊥ is given by Stab.
In the case ⊥ the desired derivation is

v : (⊥ → ⊥)→ ⊥
u : ⊥ →+u⊥ → ⊥

⊥
In the cases A ∧B, A→ B and ∀xA use (a), (b) and (c), respectively. �

Using stability we can prove some well-known facts about the interaction
of weak disjunction and the weak existential quantifier with implication. We
first prove a more refined claim, stating to what extent we need to go beyond
minimal logic.

Lemma. The following are derivable.

(∃̃xA→ B)→ ∀x(A→ B) if x /∈ FV(B),(1)

(¬¬B → B)→ ∀x(A→ B)→ ∃̃xA→ B if x /∈ FV(B),(2)

(⊥ → B[x:=c])→ (A→ ∃̃xB)→ ∃̃x(A→ B) if x /∈ FV(A),(3)

∃̃x(A→ B)→ A→ ∃̃xB if x /∈ FV(A).(4)

14 1. LOGIC

The last two items can also be seen as simplifying a weakly existentially
quantified implication whose premise does not contain the quantified variable.
In case the conclusion does not contain the quantified variable we have

(¬¬B → B)→ ∃̃x(A→ B)→ ∀xA→ B if x /∈ FV(B),(5)

∀x(¬¬A→ A)→ (∀xA→ B)→ ∃̃x(A→ B) if x /∈ FV(B).(6)

Proof. (1)

∃̃xA→ B

u1 : ∀x¬A x
¬A A

⊥ →+u1¬∀x¬A
B

(2)

¬¬B → B

¬∀x¬A

u2 : ¬B

∀x(A→ B) x

A→ B u1 : A
B

⊥ →+u1¬A
∀x¬A

⊥ →+u2¬¬B
B

(3) Writing B0 for B[x:=c] we have

∀x¬(A→ B) c

¬(A→ B0)

⊥ → B0

A→ ∃̃xB u2 : A

∃̃xB

∀x¬(A→ B) x

¬(A→ B)
u1 : B
A→ B

⊥ →+u1¬B
∀x¬B

⊥
B0 →+u2A→ B0

⊥
(4)

∃̃x(A→ B)

∀x¬B x
¬B

u1 : A→ B A
B

⊥ →+u1¬(A→ B)

∀x¬(A→ B)

⊥

1.1. NATURAL DEDUCTION 15

(5)

¬¬B → B

∃̃x(A→ B)

u2 : ¬B
u1 : A→ B

∀xA x
A

B
⊥ →+u1¬(A→ B)

∀x¬(A→ B)

⊥ →+u2¬¬B
B

(6) We derive ∀x(⊥ → A) → (∀xA → B) → ∀x¬(A → B) → ¬¬A. Writing
Ax,Ay for A(x), A(y) we have

∀x¬(Ax→ B) x

¬(Ax→ B)

∀xAx→ B

∀y(⊥ → Ay) y

⊥ → Ay
u1 : ¬Ax u2 : Ax

⊥
Ay

∀yAy
B →+u2Ax→ B

⊥ →+u1¬¬Ax
Using this derivation M we obtain

∀x¬(Ax→ B) x

¬(Ax→ B)

∀xAx→ B

∀x(¬¬Ax→ Ax) x

¬¬Ax→ Ax

|M
¬¬Ax

Ax
∀xAx

B
Ax→ B

⊥
Since clearly ` (¬¬A→ A)→ ⊥→ A the claim follows. �

Remark. An immediate consequence of (6) is the classical derivability

of the “drinker formula” ∃̃x(Px → ∀xPx), to be read “in every non-empty
bar there is a person such that, if this person drinks, then everybody drinks”.
To see this let A := Px and B := ∀xPx in (6).

Corollary.

`c (∃̃xA→ B)↔ ∀x(A→ B) if x /∈ FV(B) and B without ∨, ∃,

`i (A→ ∃̃xB)↔ ∃̃x(A→ B) if x /∈ FV(A),

`c ∃̃x(A→ B)↔ (∀xA→ B) if x /∈ FV(B) and A,B without ∨,∃.

16 1. LOGIC

There is a similar lemma on weak disjunction:

Lemma. The following are derivable.

(A ∨̃ B → C)→ (A→ C) ∧ (B → C),(7)

(¬¬C → C)→ (A→ C)→ (B → C)→ A ∨̃ B → C,(8)

(⊥ → B)→ (A→ B ∨̃ C)→ (A→ B) ∨̃ (A→ C),(9)

(A→ B) ∨̃ (A→ C)→ A→ B ∨̃ C,(10)

(¬¬C → C)→ (A→ C) ∨̃ (B → C)→ A→ B → C,(11)

(⊥ → C)→ (A→ B → C)→ (A→ C) ∨̃ (B → C).(12)

Proof. We only consider (8) and (12); the rest is left as an exercise.
(8)

¬¬C → C

¬A→ ¬B → ⊥

u1 : ¬C
A→ C u2 : A

C
⊥ →+u2¬A

¬B → ⊥

u1 : ¬C
B → C u3 : B

C
⊥ →+u3¬B

⊥ →+u1¬¬C
C

(12)

¬(B → C)

⊥ → C

¬(A→ C)

A→ B → C u1 : A
B → C u2 : B

C →+u1A→ C

⊥
C →+u2B → C

⊥
The general idea here is to view ∨̃ as a finitary version of ∃̃. �

Corollary.

`c (A ∨̃ B → C)↔ (A→ C) ∧ (B → C) for C without ∨,∃,
`i (A→ B ∨̃ C)↔ (A→ B) ∨̃ (A→ C),

`c (A→ C) ∨̃ (B → C)↔ (A→ B → C) for C without ∨, ∃.

The weak existential quantifier ∃̃ and weak disjunction ∨̃ satisfy the same
introduction axioms as the strong ones: this follows from the derivability
of ∃xA → ∃̃xA and A ∨ B → A ∨̃ B (see Section 1.1.7). They also satisfy

1.1. NATURAL DEDUCTION 17

the same elimination axioms, provided one restricts the conclusion to stable
formulas. For ∃̃ this has been proved in (2), and for ∨̃ in (8).

Therefore when proving a stable goal in minimal logic more proof tech-
niques are available than in the general case. For instance, case distinction
on an arbitrary formula A is possible by (8), since A ∨̃ ¬A is (easily) deriv-
able. Another important example is

Lemma. The following is derivable.

∀x¬A ∨̃ ∃̃xA.

Proof. Unfolding ∨̃ and ∃̃ gives

(∀x(A→ ⊥)→ ⊥)→ ((∀x(A→ ⊥)→ ⊥)︸ ︷︷ ︸
∃̃xA

→ ⊥)→ ⊥. �

It is often helpful to use this lemma in a slightly more general form, for
instancce

∀x,y(A→ B → ⊥) ∨̃ ∃̃x,y(A ∧̃B).

The proof is again immediate, since the right hand side ∃̃x,y(A ∧̃B) unfolds
into the negated left hand side.

1.1.9. Gentzen translation. Classical derivability Γ `c B was defined
in Section 1.1.8 by Γ ∪ Stab ` B. This embedding of classical logic into
minimal logic can be expressed in a somewhat different and very explicit
form, namely as a syntactic translation A 7→ Ag of formulas such that A
is derivable in classical logic if and only if its translation Ag is derivable in
minimal logic.

Definition (Gentzen translation Ag).

(R~t)g := ¬¬R~t for R distinct from ⊥,
⊥g := ⊥,
(A ∨B)g := Ag ∨̃ Bg,

(∃xA)g := ∃̃xAg,
(A ◦B)g := Ag ◦Bg for ◦ = →,∧,
(∀xA)g := ∀xAg.

Lemma (Stability of Ag). ` ¬¬Ag → Ag.

Proof. Induction on A.
Case R~t with R distinct from ⊥. We must show ¬¬¬¬R~t → ¬¬R~t,

which is a special case of ` ¬¬¬B → ¬B.
Case ⊥. Use ` ¬¬⊥ → ⊥.

18 1. LOGIC

Case A ∨ B. We must show ` ¬¬(Ag ∨̃ Bg) → Ag ∨̃ Bg, which is a
special case of ` ¬¬(¬C → ¬D → ⊥)→ ¬C → ¬D → ⊥:

¬¬(¬C → ¬D → ⊥)

u1 : ¬C → ¬D → ⊥ ¬C
¬D → ⊥ ¬D

⊥ →+u1¬(¬C → ¬D → ⊥)

⊥
Case ∃xA. In this case we must show ` ¬¬∃̃xAg → ∃̃xAg, but this is a

special case of ` ¬¬¬B → ¬B, because ∃̃xAg is the negation ¬∀x¬Ag.
Case A ∧ B. We must show ` ¬¬(Ag ∧ Bg) → Ag ∧ Bg. By induction

hypothesis ` ¬¬Ag → Ag and ` ¬¬Bg → Bg. Now use part (a) of the
stability theorem in Section 1.1.8.

The cases A → B and ∀xA are similar, using parts (b) and (c) of the
stability theorem instead. �

Theorem. (a) Γ `c A implies Γg ` Ag.
(b) Γg ` Ag implies Γ `c A for Γ, A without ∨,∃.

Proof. (a) We use induction on Γ `c A. In case of a stability axiom
∀~x(¬¬R~x → R~x) we must derive ∀~x(¬¬¬¬R~x → ¬¬R~x), which is easy
(as above). For the rules →+, →−, ∀+, ∀−, ∧+ and ∧− the claim follows
immediately from the induction hypothesis, using the same rule again. This
works because the Gentzen translation acts as a homomorphism for these
connectives. For the rules ∨+i , ∨−, ∃+ and ∃− the claim follows from the

induction hypothesis and the remark on the elimination rules for ∨̃, ∃̃ in
Section 1.1.8. For example, in case ∃− the induction hypothesis gives

|M
∃̃xAg

and
u : Ag

| N
Bg

with x /∈ FV(Bg). Now use ` (¬¬Bg → Bg) → ∃̃xAg → ∀x(Ag → Bg) →
Bg. Its premise ¬¬Bg → Bg is derivable by the lemma above.

(b) First note that `c (B ↔ Bg) if B is without ∨,∃. Now assume that
Γ, A are without ∨,∃. From Γg ` Ag we obtain Γ `c A as follows. We argue
informally. Assume Γ. Then Γg by the note, hence Ag because of Γg ` Ag,
hence A again by the note. �

1.2. Normalization

A derivation in normal form does not make “detours”, or more precisely,
it cannot occur that an elimination rule immediately follows an introduction
rule. We use “conversions” to remove such “local maxima” of complexity,
thus reducing any given derivation to normal form.

1.2. NORMALIZATION 19

We consider derivations involving →, ∀-rules only, and prove that (i)
every such reduction sequence terminates after finitely many steps, and (ii)
that the resulting “normal form” is uniquely determined. Uniqueness of
normal form will be shown by means of an application of Newman’s lemma;
we will also introduce and discuss the related notions of confluence, weak
confluence and the Church-Rosser property. Moreover we analyse the shape
of derivations in normal form, and prove the subformula property, which says
that every formula in a normal derivation is a subformula of the end-formula
or else of an assumption.

1.2.1. The Curry-Howard correspondence. Since natural deduc-
tion derivations can be notationally cumbersome, it will be convenient to
represent them as typed “derivation terms”, where the derived formula is
the “type” of the term (and displayed as a superscript). This representa-
tion goes under the name of Curry-Howard correspondence. It dates back
to Curry (1930) and somewhat later Howard, published only in (1980), who
noted that the types of the combinators used in combinatory logic are ex-
actly the Hilbert style axioms for minimal propositional logic. Subsequently
Martin-Löf (1972) transferred these ideas to a natural deduction setting
where natural deduction proofs of formulas A now correspond exactly to
lambda terms with type A. This representation of natural deduction proofs
will henceforth be used consistently.

We give an inductive definition of such derivation terms for the →,∀-
rules in Table 1 where for clarity we have written the corresponding deriva-
tions to the left. This can be extended to the rules for ∨, ∧ and ∃, but we
will not do this here.

Every derivation term carries a formula as its type. However, we shall
usually leave these formulas implicit and write derivation terms without
them. Note that every derivation term can be written uniquely in one of
the forms

u ~M | λvM | (λvM)N~L,

where u is an assumption variable or assumption constant, v is an assump-
tion variable or object variable, and M , N , L are derivation terms or object

terms. Here the final form is not normal: (λvM)N~L is called a β-redex (for
“reducible expression”). It can be reduced by a “conversion”. A conversion
removes a detour in a derivation, i.e., an elimination immediately follow-
ing an introduction. We consider the following conversions, for derivations
written in tree notation and also as derivation terms.

20 1. LOGIC

Derivation Term

u : A uA

[u : A]

|M
B →+uA→ B

(λuAM
B)A→B

|M
A→ B

| N
A →−B

(MA→BNA)B

|M
A ∀+x (with var.cond.)∀xA

(λxM
A)∀xA (with var.cond.)

|M
∀xA(x) t

∀−
A(t)

(M∀xA(x)t)A(t)

Table 1. Derivation terms for → and ∀

→-conversion.

[u : A]

|M
B →+uA→ B

| N
A →−B

7→β

| N
A
|M
B

or written as derivation terms

(λuM(uA)B)A→BNA 7→β M(NA)B.

The reader familiar with λ-calculus should note that this is nothing other
than β-conversion.

1.2. NORMALIZATION 21

∀-conversion.

|M
A(x)

∀+x∀xA(x) t
∀−

A(t)

7→β
|M ′

A(t)

or written as derivation terms

(λxM(x)A(x))∀xA(x)t 7→β M(t).

The closure 7→ of the conversion relation 7→β is defined by

(a) If M 7→β M
′, then M 7→M ′.

(b) If M 7→ M ′, then also MN 7→ M ′N , NM 7→ NM ′, λvM 7→ λvM
′

(inner reductions).

Therefore M 7→ N means that M reduces in one step to N , i.e., N is
obtained from M by replacement of (an occurrence of) a redex M ′ of M by
a conversum M ′′ of M ′, i.e., by a single conversion.

Example. Consider assumption variables

x : A→ (B → A)→ A u : A u′ : A

y : A→ B → A v : B → A v′ : B

z : A

Then we have derivation terms

S := λxλyλz(xz(yz))
A : (A→ (B → A)→ A)→ (A→ B → A)→ A→ A

K := λuλvu : A→ (B → A)→ A

K ′ := λu′λv′u
′ : A→ B → A

By the one step reduction relation we obtain

SKK ′ 7→ (λxλyλz(xz(yz)))(λuλv u)(λu′λv′ u
′) 7→

(λyλz((λuλv u)z(yz)))(λu′λv′ u
′) 7→

(λyλz((λv z)(yz)))(λu′λv′ u
′) 7→

(λyλz z)(λu′λv′ u
′) 7→ λz z.

The relation 7→+ (“properly reduces to”) is the transitive closure of 7→,
and 7→∗ (“reduces to”) is the reflexive and transitive closure of 7→. The
relation 7→∗ is said to be the notion of reduction generated by 7→.

Lemma (Substitutivity of 7→).

(a) If M(v) 7→M ′(v), then M(N) 7→M ′(N).
(b) If N 7→ N ′, then M(N) 7→∗ M(N ′).

22 1. LOGIC

Proof. (a) is proved by induction on M(v) 7→M ′(v); (b) by induction
on M(v). Notice that the reason for 7→∗ in (b) is the fact that v may have
many occurrences in M(v). �

1.2.2. Strong normalization. A term M is in normal form, or M is
normal , if M does not contain a redex. M has a normal form if there is a
normal N such that M 7→∗ N . A reduction sequence is a (finite or infinite)
sequence M0 7→ M1 7→ M2 . . . such that Mi 7→ Mi+1, for all i. Finite
reduction sequences are partially ordered under the initial part relation; the
collection of finite reduction sequences starting from a term M forms a tree,
the reduction tree of M . The branches of this tree may be identified with
the collection of all infinite and all terminating finite reduction sequences.
A term is strongly normalizing if its reduction tree is finite.

We show that every term is strongly normalizing.

Definition. We write sn(M,k) to mean that k is an upper bound on
the number of reduction steps up to normal form (i.e., on the height of the
reduction tree).

Clearly a term is strongly normalizing if there is a k such that sn(M,k).
Moreover, the relation sn has the following properties.

sn(M, 0) if and only if M is in normal form,

sn(M,k + 1) if and only if sn(M ′, k) for all M ′ such that M 7→M ′.

We first prove some closure properties of the relation sn, but a word
about notation is crucial here. Whenever we write an applicative term as

M ~N := MN1 . . . Nk the convention is that bracketing to the left operates.

That is, M ~N = (. . . (MN1) . . . Nk).

Lemma (Properties of sn). (a) If sn(M,k), then sn(M,k + 1).
(b) If sn(MN, k), then sn(M,k).
(c) If sn(Mi, ki) for i = 1 . . . n, then sn(uM1 . . .Mn, k1 + · · ·+ kn).
(d) If sn(M,k), then sn(λvM,k).

(e) If sn(M(N)~L, k) and sn(N, l), then sn((λvM(v))N~L, k + l + 1).

Proof. (a) Induction on k. Assume sn(M,k). We show sn(M,k + 1).
Let M ′ with M 7→ M ′ be given; because of sn(M,k) we must have k > 0.
We have to show sn(M ′, k). Because of sn(M,k) we have sn(M ′, k − 1),
hence by induction hypothesis sn(M ′, k).

(b) Induction on k. Assume sn(MN, k). We show sn(M,k). In case k =
0 the term MN is normal, hence also M is normal and therefore sn(M, 0).
Let k > 0 and M 7→ M ′; we have to show sn(M ′, k − 1). From M 7→
M ′ we obtain MN 7→ M ′N . Because of sn(MN, k) we have by definition
sn(M ′N, k − 1), hence sn(M ′, k − 1) by induction hypothesis.

1.2. NORMALIZATION 23

(c) Assume sn(Mi, ki) for i = 1 . . . n. We show sn(uM1 . . .Mn, k) with
k := k1 + · · · + kn. Again we employ induction on k. In case k = 0
all Mi are normal, hence also uM1 . . .Mn. Let k > 0 and uM1 . . .Mn 7→
M ′. Then M ′ = uM1 . . .M

′
i . . .Mn with Mi 7→ M ′i . We have to show

sn(uM1 . . .M
′
i . . .Mn, k − 1). Because of Mi 7→ M ′i and sn(Mi, ki) we have

ki > 0 and sn(M ′i , ki − 1), hence sn(uM1 . . .M
′
i . . .Mn, k − 1) by induction

hypothesis.
(d) Assume sn(M,k). We have to show sn(λvM,k). Use induction on

k. In case k = 0 M is normal, hence λvM is normal, hence sn(λvM, 0).
Let k > 0 and λvM 7→ L. Then L has the form λvM

′ with M 7→ M ′. So
sn(M ′, k − 1) by definition, hence sn(λvM

′, k − 1) by induction hypothesis.

(e) Assume sn(M(N)~L, k) and sn(N, l). We show sn((λvM(v))N~L, k +

l+ 1). We use induction on k+ l. In case k+ l = 0 the term N and M(N)~L
are normal, hence also M and all Li. So there is exactly one term K such

that (λvM(v))N~L 7→ K, namely M(N)~L, and this K is normal. Now let

k + l > 0 and (λvM(v))N~L 7→ K. We have to show sn(K, k + l).

Case K = M(N)~L, i.e., we have a head conversion. From sn(M(N)~L, k)

we obtain sn(M(N)~L, k + l) by (a).

Case K = (λvM
′(v))N~L with M 7→ M ′. Then M(N)~L 7→ M ′(N)~L.

Now sn(M(N)~L, k) implies k > 0 and sn(M ′(N)~L, k − 1). The induction

hypothesis yields sn((λvM
′(v))N~L, k − 1 + l + 1).

Case K = (λvM(v))NL1 . . . L
′
i . . . Ln with Li 7→ L′i. Then we have

k > 0 and sn(M(N)L1 . . . L
′
i . . . Ln, k − 1). The induction hypothesis yields

sn((λvM(v))NL1 . . . L
′
i . . . Ln, k − 1 + l + 1).

Case K = (λvM(v))N ′~L with N 7→ N ′. Now sn(N, l) implies l > 0 and

sn(N ′, l−1). The induction hypothesis yields sn((λvM(v))N ′~L, k+l−1+1),

since sn(M(N ′)~L, k) by (a). �

The essential idea of the strong normalization proof is to view the last
three closure properties of sn from the preceding lemma without the infor-
mation on the bounds as an inductive definition of a new set SN:

~M ∈ SN (Var)
u ~M ∈ SN

M ∈ SN (λ)
λvM ∈ SN

M(N)~L ∈ SN N ∈ SN
(β)

(λvM(v))N~L ∈ SN

Corollary. For every term M ∈ SN there is a k ∈ N such that
sn(M,k). Hence every term M ∈ SN is strongly normalizing.

Proof. By induction on M ∈ SN, using the previous lemma. �

In what follows we shall show that every term is in SN and hence is
strongly normalizing. Given the definition of SN we only have to show

24 1. LOGIC

that SN is closed under application. In order to prove this we must prove
simultaneously the closure of SN under substitution.

Theorem (Properties of SN). For all formulas A,

(a) for all M(v) ∈ SN, if NA ∈ SN, then M(N) ∈ SN,
(b) for all M(x) ∈ SN, M(t) ∈ SN,
(c) if M ∈ SN derives A→ B and NA ∈ SN, then MN ∈ SN,
(d) if M ∈ SN derives ∀xA, then Mt ∈ SN.

Proof. By course-of-values induction on |A|, with a side induction on
M ∈ SN. Let NA ∈ SN. We distinguish cases on the form of M .

Case u ~M by (Var) from ~M ∈ SN. (a) The side induction hypothesis

(a) yields Mi(N) ∈ SN for all Mi from ~M . In case u 6= v we immediately

have u ~M(N) ∈ SN. Otherwise we need N ~M(N) ∈ SN. But this follows by
multiple applications of induction hypothesis (c), since every Mi(N) derives
a subformula of A with smaller height. (b) Similar, and simpler. (c), (d)
Use (Var) again.

Case λvM by (λ) from M ∈ SN. (a), (b) Use (λ) again. (c) Our goal is
(λvM(v))N ∈ SN. By (β) it suffices to show M(N) ∈ SN and N ∈ SN. The
latter holds by assumption, and the former by the side induction hypothesis
(a). (d) Similar, and simpler.

Case (λwM(w))K~L by (β) from M(K)~L ∈ SN and K ∈ SN. (a) The

side induction hypothesis (a) yields M(N)(K(N))~L(N) ∈ SN and K(N) ∈
SN, hence (λwM(N))K(N)~L(N) ∈ SN by (β). (b) Similar, and simpler.
(c), (d) Use (β) again. �

Corollary. For every term we have M ∈ SN; in particular every term
M is strongly normalizing.

Proof. Induction on the (first) inductive definition of derivation terms
M . In cases u and λvM the claim follows from the definition of SN, and in
case MN it follows from the preceding theorem. �

1.2.3. Uniqueness of normal forms. We show that normal forms
w.r.t. the →,∀-conversions are uniquely determined. This is also expressed
by saying that the reduction relation is “confluent”. The proof relies on the
fact that the reduction relation terminates.

A relation 7→ is said to be confluent , or to have the Church-Rosser
property (CR), if, whenever M0 7→ M1 and M0 7→ M2, then there is an M3

such that M1 7→ M3 and M2 7→ M3. A relation 7→ is said to be weakly
confluent , or to have the weak Church-Rosser property (WCR), if, whenever
M0 7→ M1 and M0 7→ M2 then there is an M3 such that M1 7→∗ M3 and
M2 7→∗ M3, where 7→∗ is the reflexive and transitive closure of 7→.

1.2. NORMALIZATION 25

(λvM(v))N~L
�
��	

@
@@R

M(N)~L
@
@@R

(λvM
′(v))N~L

�
��	

M ′(N)~L

(λvM(v))N~L
�

��	
@
@@R

M(N)~L
@
@@R
∗

(λvM(v))N ′~L
�

��	
M(N ′)~L

(λvM(v))N~L
�

��	
@
@@R

M(N)~L
@
@@R

(λvM(v))N~L′

�
��	

M(N)~L′

Figure 1. Weak concluence of 7→

Proposition. 7→ is weakly confluent.

Proof. We write N 7→M for M 7→ N , and N 7→∗ M for M 7→∗ N .
Assume N0 7→M 7→ N1. We show that N0 7→∗ N 7→∗ N1 for some N , by
induction on M . If there are two inner reductions both on the same subterm,
then the claim follows from the induction hypothesis using substitutivity. If
they are on distinct subterms, then the subterms do not overlap and the
claim is obvious. It remains to deal with the case of a head reduction
together with an inner conversion. This is done in Figure 1, where for the
lower left arrows we have used substitutivity again. �

In the proof of Newman’s Lemma below we will use a scheme of induction
on finitely branching trees which are “well-founded”, i.e, with the property
that every branch terminates. For the present case of the reduction tree TM
for a derivation term M it reads as follows. Let E be a property of derivation
terms. Assume that E(M) holds for all normal M . Assume further that we
can infer E(M) from E(M ′) for all M ′ such that M 7→ M ′. Then E(M)
holds for all M .

Lemma (Newman). The normal form w.r.t. 7→ is unique.

Proof. Call M good if it satisfies the confluence property w.r.t. 7→∗,
i.e., whenever K 7→∗ M 7→∗ L, then K 7→∗ N 7→∗ L for some N . We show
that every M is good, by induction on the reduction tree TM for M . Clearly
every normal term M is good. Now let M be given and assume

every M ′ with M 7→M ′ is good.

26 1. LOGIC

M
�

��	
@
@@R

M ′ weak conf.M ′′

�
��	
∗ @

@@R
∗ �

��	
∗ @

@@R
∗

K IH(M ′) ∃N ′ L
@
@@R
∗ �

��	
∗ �

�
�
�

�
�	

∗
IH(M ′′)

∃N ′′
@
@@R
∗

∃N

Figure 2. Proof of Newman’s Lemma

We must show that M is good, so assume K 7→∗ M 7→∗ L. We may further
assume that there are M ′,M ′′ such that K 7→∗ M ′ 7→M 7→ M ′′ 7→∗ L, for
otherwise the claim is trivial. But then the claim follows from the assumed
weak confluence and the induction hypothesis for M ′ and M ′′, as shown in
Figure 2. �

1.2.4. The structure of normal derivations. To analyze normal
derivations, it will be useful to introduce the notion of a track in a proof
tree, which makes sense for non-normal derivations as well.

Definition. A track of a derivation M is a sequence of formula occur-
rences (f.o.) A0, . . . , An such that

(a) A0 is a top f.o. in M ;
(b) Ai for i < n is not the minor premise of an instance of →−, and Ai+1 is

directly below Ai;
(c) An is either the minor premise of an instance of →−, or the conclusion

of M .

The track of order 0, or main track , in a derivation is the (unique) track
ending in the conclusion of the whole derivation. A track of order n + 1
is a track ending in the minor premise of an →−-application, with major
premise belonging to a track of order n.

Lemma. In a derivation each formula occurrence belongs to some track.

Proof. By induction on derivations. �

Now consider a normal derivation M . Since by normality an E-rule
cannot have the conclusion of an I-rule as its major premise, the E-rules

1.3. SOUNDNESS AND COMPLETENESS FOR TREE MODELS 27

have to precede the I-rules in a track, so the following is obvious: a track
may be divided into an E-part, say A0, . . . , Ai−1, a minimal formula Ai, and
an I-part Ai+1, . . . , An. In the E-part all rules are E-rules; in the I-part all
rules are I-rules; Ai is the conclusion of an E-rule and, if i < n, a premise
of an I-rule. Tracks are pieces of branches of the tree with successive f.o.’s
in the subformula relationship: either Ai+1 is a subformula of Ai or vice
versa. As a result, all formulas in a track A0, . . . , An are subformulas of A0

or of An; and from this, by induction on the order of tracks, we see that
every formula in M is a subformula either of an open assumption or of the
conclusion. To summarize:

Theorem (Subformula property). In a normal derivation each formula
is a subformula of either the end formula or else an assumption formula.

Proof. One proves this for tracks of order n, by induction on n. �

Remark (Long normal form). The minimal formula in a track can be
an implication A → B or a generalization ∀xA. However, we can apply an
“η-expansion” and replace the occurrence of A→ B or ∀xA by

A→ B u : A →−B →+uA→ B

∀xA x
∀−A ∀+x∀xA

Repeating this process we obtain a derivation in “long normal form”, all of
whose minimal formulas are neither implications nor generalizations.

1.3. Soundness and completeness for tree models

It is an obvious question to ask whether the logical rules we have been
considering suffice, i.e., whether we have forgotten some necessary rules. To
answer this question we first have to fix the meaning of a formula, i.e., pro-
vide a semantics. This will be done by means of the tree models introduced
by Beth (1956). Using this concept of a model we will prove soundness and
completeness.

1.3.1. Tree models. Consider a finitely branching tree of “possible
worlds”. The worlds are represented as nodes in this tree. They may be
thought of as possible states such that all nodes “above” a node k are the
ways in which k may develop in the future. The worlds are increasing; that
is, if an atomic formula R~t is true in a world k, then R~t is true in all future
worlds k′.

More formally, each tree model is based on a finitely branching tree T . A
node k over a set S is a finite sequence k = 〈a0, a1, . . . , an−1〉 of elements of
S; lh(k) is the length of k. We write k � k′ if k is an initial segment of k′. A
tree on S is a set of nodes closed under initial segments. A tree T is finitely

28 1. LOGIC

branching if every node in T has finitely many immediate successors. A tree
T is infinite if for every n ∈ N there is a node k ∈ T such that lh(k) = n.
A branch of a tree T is a linearly ordered subtree of T with the same root,
and a leaf of T is a node without successors in T . A tree T is complete if
every node in T has an immediate successor, i.e., T has no leaves.

For the proof of the completeness theorem, the full tree over {0, 1}
(whose branches constitute Cantor space) will suffice. The nodes will be
all the finite sequences of 0’s and 1’s, and the ordering is as above. The root
is the empty sequence and k0 is the sequence k with the element 0 added at
the end; similarly for k1.

For the rest of this section, fix a countable formal language L.

Definition. Let T be a finitely branching tree. A tree model on T is a
triple T = (D, I0, I1) such that

(a) D is a non-empty set;
(b) for every n-ary function symbol f (in the underlying language L), I0

assigns to f a map I0(f) : Dn → D;
(c) for every n-ary relation symbol R and every node k ∈ T , I1(R, k) ⊆ Dn

is assigned in such a way that monotonicity is preserved:

k � k′ → I1(R, k) ⊆ I1(R, k′).

If n = 0, then I1(R, k) is either true or false. There is no special re-
quirement set on I1(⊥, k). (Recall that minimal logic places no particular
constraints on falsum ⊥.) We write RT (~a, k) for ~a ∈ I1(R, k), and |T | to
denote the domain D.

It is obvious from the definition that any tree T can be extended to
a complete tree T̄ (i.e., without leaves), in which for every leaf k ∈ T all
sequences k0, k00, k000, . . . are added to T . For every node k0 . . . 0, we
then add I1(R, k0 . . . 0) := I1(R, k). In the sequel we assume that all trees
T are complete.

An assignment (or variable assignment) in D is a map η assigning to
every variable x ∈ dom(η) a value η(x) ∈ D. Finite assignments will be
written as [x1 := a1, . . . , xn := an] or else as [a1/x1, . . . , an/xn], with distinct
x1, . . . , xn. If η is an assignment in D and a ∈ D, let ηax be the assignment
in D mapping x to a and coinciding with η elsewhere:

ηax(y) :=

{
η(y) if y 6= x,

a if y = x.

Let a tree model T = (D, I0, I1) and an assignment η in D be given. We
define a homomorphic extension of η (denoted by η as well) to terms t whose

1.3. SOUNDNESS AND COMPLETENESS FOR TREE MODELS 29

variables lie in dom(η) by

η(c) := I0(c),

η(f(t1, . . . , tn)) := I0(f)(η(t1), . . . , η(tn)).

Observe that the extension of η depends on T ; we often write tT [η] for η(t).

Definition. T , k A[η] (T forces A at node k for an assignment η) is
defined inductively. We write k A[η] when it is clear from the context what
the underlying model T is, and ∀k′�nkA for ∀k′�k(lh(k′) = lh(k) + n→ A).

k (R~t)[η] := ∃n∀k′�nkRT (~t T [η], k′),

k (A ∨B)[η] := ∃n∀k′�nk(k′ A[η] ∨ k′ B[η]),

k (∃xA)[η] := ∃n∀k′�nk∃a∈|T |(k′ A[ηax]),

k (A→ B)[η] := ∀k′�k(k′ A[η]→ k′ B[η]),

k (A ∧B)[η] := k A[η] ∧ k B[η],

k (∀xA)[η] := ∀a∈|T |(k A[ηax]).

Thus in the atomic, disjunctive and existential cases, the set of k′ whose
length is lh(k) + n acts as a “bar” in the complete tree. Note that the im-
plicational case is treated differently, and refers to the “unbounded future”.

In this definition, the logical connectives →,∧,∨, ∀, ∃ on the left hand
side are part of the object language, whereas the same connectives on the
right hand side are to be understood in the usual sense: they belong to
the “metalanguage”. It should always be clear from the context whether a
formula is part of the object or the metalanguage.

1.3.2. Covering lemma. It is easily seen (using the definition and
monotonicity) that from k A[η] and k � k′ we can conclude k′ A[η].
The converse is true as well:

Lemma (Covering).

∀k′�nk(k′ A[η])→ k A[η].

Proof. Induction on A. We write k A for k A[η].
Case R~t. Assume

∀k′�nk(k′ R~t),

hence by definition

∀k′�nk∃m∀k′′�mk′RT (~t T [η], k′′).

Since T is a finitely branching tree,

∃m∀k′�mkRT (~t T [η], k′).

30 1. LOGIC

Hence k R~t.
The cases A ∨B and ∃xA are handled similarly.
Case A → B. Assume that for all k′ � k with lh(k′) = lh(k) + n we

have k′ A→ B . The goal is k A→ B, i.e.,

∀l�k(l A→ l B).

Let l � k and l A. We must show l B. Case lh(l) ≤ lh(k′):

n

k′

l

k

Then k′ B for all these k′, hence l B by IH for B. Case lh(k′) < lh(l):

n

l

k′

k

Because of k′ A→ B and l A we obtain l B, by definition of .
The cases A ∧B and ∀xA are easy. �

1.3.3. Soundness.

Lemma (Coincidence). Let T be a tree model, t a term, A a formula
and η, ξ assignments in |T |.
(a) If η(x) = ξ(x) for all x ∈ vars(t), then η(t) = ξ(t).
(b) If η(x) = ξ(x) for all x ∈ FV(A), then T , k A[η] if and only if
T , k A[ξ].

Proof. Induction on terms and formulas. �

Lemma (Substitution). Let T be a tree model, t, r(x) terms, A(x) a
formula and η an assignment in |T |. Then

1.3. SOUNDNESS AND COMPLETENESS FOR TREE MODELS 31

(a) η(r(t)) = η
η(t)
x (r(x)).

(b) T , k A(t)[η] if and only if T , k A(x)[η
η(t)
x].

Proof. Induction on terms and formulas. �

Theorem (Soundness). Let Γ∪{A} be a set of formulas such that Γ ` A.
Then, if T is a tree model, k any node and η an assignment in |T |, it follows
that T , k Γ[η] implies T , k A[η].

Proof. Induction on derivations.
We begin with the axiom schemes ∨+0 , ∨+1 , ∨−, ∧+, ∧−, ∃+ and ∃−.

k C[η] is abbreviated k C, when η is known from the context.
Case ∨+0 : A→ A∨B. We show k A→ A∨B. Assume for k′ � k that

k′ A. Show: k′ A ∨ B. This follows from the definition, since k′ A.
The case ∨+1 : B → A ∨B is symmetric.

Case ∨− : A ∨ B → (A → C) → (B → C) → C. We show that
k A ∨ B → (A → C) → (B → C) → C. Assume for k′ � k that
k′ A ∨ B, k′ A → C and k′ B → C (we can safely assume that k′

is the same for all three premises). Show that k′ C. By definition, there
is an n s.t. for all k′′ �n k′, k′′ A or k′′ B. In both cases it follows
that k′′ C, since k′ A → C and k′ B → C. By the covering lemma,
k′ C.

The cases ∧+, ∧− are easy.
Case ∃+ : A → ∃xA. We show k (A → ∃xA)[η]. Assume k′ � k and

k′ A[η]. We show k′ (∃xA)[η]. Since η = η
η(x)
x there is an a ∈ |T |

(namely a := η(x)) such that k′ A[ηax]. Hence, k′ (∃xA)[η].
Case ∃− : ∃xA → ∀x(A → B) → B and x /∈ FV(B). We show that

k (∃xA → ∀x(A → B) → B)[η]. Assume that k′ � k and k′ (∃xA)[η]
and k′ ∀x(A → B)[η]. We show k′ B[η]. By definition, there is
an n such that for all k′′ �n k′ we have a ∈ |T | and k′′ A[ηax]. From
k′ ∀x(A → B)[η] it follows that k′′ B[ηax], and since x /∈ FV(B), from
the coincidence lemma, k′′ B[η]. Then, finally, by the covering lemma
k′ B[η].

This concludes the treatment of the axioms. We now consider the rules.
In case of the assumption rule u : A we have A ∈ Γ and the claim is obvious.

Case →+. Assume k Γ. We show k A → B. Assume k′ � k and
k′ A. Our goal is k′ B. We have k′ Γ ∪ {A}. Thus, k′ B by
induction hypothesis.

Case →−. Assume k Γ. The induction hypothesis gives us k A→ B
and k A. Hence k B.

32 1. LOGIC

Case ∀+. Assume k Γ[η] and x /∈ FV(Γ). We show k (∀xA)[η], i.e.,
k A[ηax] for an arbitrary a ∈ |T |. We have

k Γ[ηax] by the coincidence lemma, since x /∈ FV(Γ),

k A[ηax] by induction hypothesis.

Case ∀−. Let k Γ[η]. We show that k A(t)[η]. This follows from

k (∀xA(x))[η] by induction hypothesis,

k A(x)[ηη(t)x] by definition,

k A(t)[η] by the substitution lemma.

This concludes the proof. �

1.3.4. Counter models. With soundness at hand, it is easy to build
counter models proving that certain formulas are underivable in minimal
or intuitionistic logic. A tree model for intuitionistic logic is a tree model
T = (D, I0, I1) in which I1(⊥, k) is false for all k.

As an example we show that 6`i ¬¬P → P . Assume `i ¬¬P → P , i.e.,
Efq ` ¬¬P → P . We will obtain a contradiction from this assumption.
For simplicity we assume that from Efq we have only used ⊥ → P and
say ⊥ → Q for some Q. We can now substitute ⊥ for Q everywhere and
obtain a derivation in minimal logic, since ⊥ → ⊥ is immediately derivable.
Hence we have ` (⊥ → P) → ¬¬P → P . We can now obtain the desired
contradiction using a tree model determined by the figure below. Next to
every node we write all propositions forced at that node.

◦@
@
�
�

•P ◦@
@
�
�

•P ◦@
@
��

•P ..
.

This is a tree model because monotonicity clearly holds. Observe also that
I1(⊥, k) is false at all nodes k. Hence this is an intuitionistic tree model.
By the definition of forcing we have

(i) ⊥ → P is forced at every node.
(ii) P → ⊥ (i.e., ¬P) is never forced.

(iii) ¬¬P is forced at every node.
(iv) The root node does not force P , since there are arbitrarily long ◦-nodes.

This is the desired contradiction to the Soundness Theorem.
The model also shows that the Peirce formula ((P → Q) → P) → P is

not derivable in intuitionistic logic.

1.3. SOUNDNESS AND COMPLETENESS FOR TREE MODELS 33

1.3.5. Completeness.

Theorem (Completeness). Let Γ ∪ {A} be a set of formulas. Then the
following propositions are equivalent.

(a) Γ ` A.
(b) Γ A, i.e., for all tree models T , nodes k and assignments η

T , k Γ[η]→ T , k A[η].

Proof. Soundness already gives “(a) implies (b)”. For the other direc-
tion we employ a technique due to Harvey Friedman and construct a tree
model T (over the set T01 of all finite 0-1-sequences) whose domain D is the
set of all terms of the underlying language, with the property that Γ ` B is
equivalent to T , 〈〉 B[id]. T will depend on Γ. We can assume here that
Γ and A are closed.

In order to define T , we will need an enumeration A0, A1, A2, . . . of the
underlying language L (assumed countable), in which every formula occurs
infinitely often. We also fix an enumeration x0, x1, . . . of distinct variables.
Since Γ is countable it can we written Γ =

⋃
n Γn with finite sets Γn such

that Γn ⊆ Γn+1. With every node k ∈ T01, we associate a finite set ∆k of
formulas and a set Vk of variables, by induction on the length of k.

Let ∆〈〉 := ∅ and V〈〉 := ∅. Take a node k such that lh(k) = n and
suppose that ∆k, Vk are already defined. Write ∆ `n B to mean that there
is a derivation of length ≤ n of B from ∆. We define ∆k0, Vk0 and ∆k1, Vk1
as follows:

Case 0. FV(An) 6⊆ Vk. Then let

∆k0 := ∆k1 := ∆k and Vk0 := Vk1 := Vk.

Case 1. FV(An) ⊆ Vk and Γn,∆k 6`n An. Let

∆k0 := ∆k and ∆k1 := ∆k ∪ {An},
Vk0 := Vk1 := Vk.

Case 2. FV(An) ⊆ Vk and Γn,∆k `n An = A′n ∨A′′n. Let

∆k0 := ∆k ∪ {An, A′n} and ∆k1 := ∆k ∪ {An, A′′n},
Vk0 := Vk1 := Vk.

Case 3. FV(An) ⊆ Vk and Γn,∆k `n An = ∃xA′n(x). Let

∆k0 := ∆k1 := ∆k ∪ {An, A′n(xi)} and Vk0 := Vk1 := Vk ∪ {xi},
where xi is the first variable /∈ Vk.

Case 4. FV(An) ⊆ Vk and Γn,∆k `n An, with An neither a disjunction
nor an existentially quantified formula. Let

∆k0 := ∆k1 := ∆k ∪ {An} and Vk0 := Vk1 := Vk.

34 1. LOGIC

Obviously FV(∆k) ⊆ Vk, and k � k′ implies that ∆k ⊆ ∆k′ . Notice
also that because of ` ∃x(⊥ → ⊥) and the fact that this formula is repeated
infinitely often in the given enumeration, for every variable xi there is an m
such that xi ∈ Vk for all k with lh(k) = m.

We note that

(13) ∀k′�nk (Γ,∆k′ ` B)→ Γ,∆k ` B, provided FV(B) ⊆ Vk.
It is sufficient to show that, for FV(B) ⊆ Vk,

(Γ,∆k0 ` B) ∧ (Γ,∆k1 ` B)→ (Γ,∆k ` B).

In cases 0, 1 and 4, this is obvious. For case 2, the claim follows imme-
diately from the axiom schema ∨−. In case 3, we have FV(An) ⊆ Vk and
Γn,∆k `n An = ∃xA′n(x). Assume Γ,∆k ∪ {An, A′n(xi)} ` B with xi /∈ Vk,
and FV(B) ⊆ Vk. Then xi /∈ FV(∆k ∪ {An, B}), hence Γ,∆k ∪ {An} ` B
by ∃− and therefore Γ,∆k ` B.

Next, we show

(14) Γ,∆k ` B → ∃n∀k′�nk (B ∈ ∆k′), provided FV(B) ⊆ Vk.
Choose n ≥ lh(k) such that B = An and Γn,∆k `n An. For all k′ � k, if
lh(k′) = n+ 1 then An ∈ ∆k′ (cf. the cases 2 - 4).

Using the sets ∆k we can define a tree model T as (Ter, I0, I1) where
Ter denotes the set of terms of the underlying language, I0(f)(~t) := f~t and

RT (~t, k) = I1(R, k)(~t) := (R~t ∈ ∆k).

Obviously, tT [id] = t for all terms t.
Now write k B for T , k B[id]. We show:

Claim. Γ,∆k ` B ↔ k B provided FV(B) ⊆ Vk.

The proof is by induction on B.
Case R~t. Assume FV(R~t) ⊆ Vk. The following are equivalent:

Γ,∆k ` R~t,
∃n∀k′�nk (R~t ∈ ∆k′) by (14) and (13),

∃n∀k′�nk RT (~t, k′) by definition of T ,
k R~t by definition of , since tT [id] = t.

Case B ∨ C. Assume FV(B ∨ C) ⊆ Vk. For the implication → let
Γ,∆k ` B ∨ C. Choose an n ≥ lh(k) such that Γn,∆k `n An = B ∨ C.
Then, for all k′ � k s.t. lh(k′) = n,

∆k′0 = ∆k′ ∪ {B ∨ C,B} and ∆k′1 = ∆k′ ∪ {B ∨ C,C},
and therefore by induction hypothesis

k′0 B and k′1 C.

1.3. SOUNDNESS AND COMPLETENESS FOR TREE MODELS 35

Then by definition we have k B ∨C. For the reverse implication ← argue
as follows.

k B ∨ C,
∃n∀k′�nk(k′ B ∨ k′ C),

∃n∀k′�nk((Γ,∆k′ ` B) ∨ (Γ,∆k′ ` C)) by induction hypothesis,

∃n∀k′�nk (Γ,∆k′ ` B ∨ C),

Γ,∆k ` B ∨ C by (13).

Case B ∧ C. This is evident.
Case B → C. Assume FV(B → C) ⊆ Vk. For → let Γ,∆k ` B → C.

We must show k B → C, i.e.,

∀k′�k(k′ B → k′ C).

Let k′ � k be such that k′ B. By induction hypothesis, it follows that
Γ,∆k′ ` B. Hence Γ,∆k′ ` C follows by assumption. Then again by
induction hypothesis k′ C.

For ← let k B → C, i.e., ∀k′�k(k′ B → k′ C). We show that
Γ,∆k ` B → C, using (13). Choose n ≥ lh(k) such that B = An. For all
k′ �m k with m := n− lh(k) we show that Γ,∆k′ ` B → C.

If Γn,∆k′ `n An, then k′ B by induction hypothesis, and k′ C
by assumption. Hence Γ,∆k′ ` C again by induction hypothesis and thus
Γ,∆k′ ` B → C.

If Γn,∆k′ 6`n An, then by definition ∆k′1 = ∆k′ ∪ {B}. Hence Γ,∆k′1 `
B, and thus k′1 B by induction hypothesis. Now k′1 C by assumption,
and finally Γ,∆k′1 ` C by induction hypothesis. From ∆k′1 = ∆k′ ∪ {B} it
follows that Γ,∆k′ ` B → C.

Case ∀xB(x). Assume FV(∀xB(x)) ⊆ Vk. For → let Γ,∆k ` ∀xB(x).
Fix a term t. Then Γ,∆k ` B(t). Choose n ≥ lh(k) such that FV(B(t)) ⊆
Vk′ for all k′ with lh(k′) = n. Then ∀k′�mk (Γ,∆k′ ` B(t)) with m :=
n− lh(k), hence ∀k′�mk (k′ B(t)) by induction hypothesis, hence k B(t)
by the covering lemma. This holds for every term t, hence k ∀xB(x).

For ← assume k ∀xB(x). Pick k′ �n k such that Am = ∃x(⊥ → ⊥),
for m := lh(k) + n. Then at height m we put some xi into the variable
sets: for k′ �n k we have xi /∈ Vk′ but xi ∈ Vk′j . Clearly k′j B(xi),
hence Γ,∆k′j ` B(xi) by induction hypothesis, hence (since at this height
we consider the trivial formula ∃x(⊥ → ⊥)) also Γ,∆k′ ` B(xi). Since
xi /∈ Vk′ we obtain Γ,∆k′ ` ∀xB(x). This holds for all k′ �n k, hence
Γ,∆k ` ∀xB(x) by (13).

Case ∃xB(x). Assume FV(∃xB(x)) ⊆ Vk. For → let Γ,∆k ` ∃xB(x).
Choose an n ≥ lh(k) such that Γn,∆k `n An = ∃xB(x). Then, for all k′ � k

36 1. LOGIC

with lh(k′) = n

∆k′0 = ∆k′1 = ∆k′ ∪ {∃xB(x), B(xi)}
where xi /∈ Vk′ . Hence by induction hypothesis for B(xi) (applicable since
FV(B(xi)) ⊆ Vk′j for j = 0, 1)

k′0 B(xi) and k′1 B(xi).

It follows by definition that k ∃xB(x).
For ← assume k ∃xB(x). Then ∀k′�nk∃t∈Ter (k′ B(x)[idtx]) for some

n, hence ∀k′�nk∃t∈Ter (k′ B(t)). For each of the finitely many k′ �n k pick
an m such that ∀k′′�mk′ (FV(B(tk′)) ⊆ Vk′′). Let m0 be the maximum of all
these m. Then

∀k′′�m0+nk
∃t∈Ter ((k′′ B(t)) ∧ FV(B(t)) ⊆ Vk′′).

The induction hypothesis for B(t) yields

∀k′′�m0+nk
∃t∈Ter (Γ,∆k′′ ` B(t)),

∀k′′�m0+nk
(Γ,∆k′′ ` ∃xB(x)),

Γ,∆k ` ∃xB(x) by (13),

and this completes the proof of the claim.
Now we can finish the proof of the completeness theorem by showing

that (b) implies (a). We apply (b) to the tree model T constructed above
from Γ, the empty node 〈〉 and the assignment η = id. Then T , 〈〉 Γ[id] by
the claim (since each formula in Γ is derivable from Γ). Hence T , 〈〉 A[id]
by (b) and therefore Γ ` A by the claim again. �

1.4. Soundness and completeness of the classical fragment

We give a proof of completeness of classical logic which relies on the
above completeness proof for minimal logic. This proof is due to Ulrich
Berger.

1.4.1. Models. We define the notion of a (classical) model (or more
accurately, L-model), and what the value of a term and the meaning of
a formula in a model should be. The latter definition is by induction on
formulas, where in the quantifier case we need a quantifier in the definition.

For the rest of this section, fix a countable formal language L; we do not
mention the dependence on L in the notation. Since we deal with classical
logic, we only consider formulas built without ∨,∃.

Definition. A model is a triple M = (D, I0, I1) such that

(a) D is a non-empty set;
(b) for every n-ary function symbol f , I0 assigns to f a map I0(f) : Dn → D;

1.4. SOUNDNESS AND COMPLETENESS OF THE CLASSICAL FRAGMENT 37

(c) for every n-ary relation symbol R, I1 assigns to R an n-ary relation on
Dn. In case n = 0, I1(R) is either true or false. We require that I1(⊥)
is false.

We write |M| for the carrier set D of M and fM, RM for the inter-
pretations I0(f), I1(R) of the function and relation symbols. Assignments
η and their homomorphic extensions are defined as in Section 1.3.1. Again
we write tM[η] for η(t).

Definition (Validity). For every model M, assignment η in |M| and
formula A such that FV(A) ⊆ dom(η) we defineM |= A[η] (read: A is valid
in M under the assignment η) by induction on A.

M |= (R~t)[η] := RM(~t M[η]),

M |= (A→ B)[η] := ((M |= A[η])→ (M |= B[η])),

M |= (A ∧B)[η] := ((M |= A[η]) ∧ (M |= B[η])),

M |= (∀xA)[η] := ∀a∈|M|(M |= A[ηax]).

Since I1(⊥) is false, we have M 6|= ⊥[η].

1.4.2. Soundness of classical logic.

Lemma (Coincidence). Let M be a model, t a term, A a formula and
η, ξ assignments in |M|.
(a) If η(x) = ξ(x) for all x ∈ vars(t), then η(t) = ξ(t).
(b) If η(x) = ξ(x) for all x ∈ FV(A), then M |= A[η] if and only if M |=

A[ξ].

Proof. Induction on terms and formulas. �

Lemma (Substitution). LetM be a model, t, r(x) terms, A(x) a formula
and η an assignment in |M|. Then

(a) η(r(t)) = η
η(t)
x (r(x)).

(b) M |= A(t)[η] if and only if M |= A(x)[η
η(t)
x].

Proof. Induction on terms and formulas. �

A model M is called classical if ¬¬RM(~a) → RM(~a) for all relation
symbols R and all ~a ∈ |M|. We prove that every formula derivable in
classical logic is valid in an arbitrary classical model.

Theorem (Soundness of classical logic). Let Γ∪{A} be a set of formulas
such that Γ `c A. Then, if M is a classical model and η an assignment in
|M|, it follows that M |= Γ[η] implies M |= A[η].

38 1. LOGIC

Proof. Induction on derivations. We begin with the axioms in Stab
and the axiom schemes ∧+, ∧−. M |= C[η] is abbreviated M |= C when η
is known from the context.

For the stability axiom ∀~x(¬¬R~x → R~x) the claim follows from our
assumption that M is classical, i.e., ¬¬RM(~a) → RM(~a) for all ~a ∈ |M|.
The axioms ∧+, ∧− are clearly valid.

This concludes the treatment of the axioms. We now consider the rules.
In case of the assumption rule u : A we have A ∈ Γ and the claim is obvious.

Case →+. Assume M |= Γ. We show M |= (A → B). So assume in
addition M |= A. We must show M |= B. By induction hypothesis (with
Γ ∪ {A} instead of Γ) this clearly holds.

Case →−. Assume M |= Γ. We must show M |= B. By induction
hypothesis, M |= (A → B) and M |= A. The claim follows from the
definition of |=.

Case ∀+. Assume M |= Γ[η] and x /∈ FV(Γ). We show M |= (∀xA)[η],
i.e., M |= A[ηax] for an arbitrary a ∈ |M|. We have

M |= Γ[ηax] by the coincidence lemma, since x /∈ FV(Γ),

M |= A[ηax] by induction hypothesis.

Case ∀−. LetM |= Γ[η]. We show thatM |= A(t)[η]. This follows from

M |= (∀xA(x))[η] by induction hypothesis,

M |= A(x)[ηη(t)x] by definition,

M |= A(t)[η] by the substitution lemma.

This concludes the proof. �

1.4.3. Completeness of classical logic. We give a constructive ana-
lysis of the completeness of classical logic by using, in the metatheory below,
constructively valid arguments only, mentioning explicitly any assumptions
which go beyond. When dealing with the classical fragment we of course
need to restrict to classical models. The only non-constructive principle
will be the use of the axiom of dependent choice for the weak existential
quantifier

∃̃xA(0, x)→ ∀n,x(A(n, x)→ ∃̃yA(n+ 1, y))→ ∃̃f∀nA(n, fn).

Recall that we only consider formulas without ∨,∃.

Theorem (Completeness of classical logic). Let Γ ∪ {A} be a set of
formulas. Assume that for all classical models M and assignments η,

M |= Γ[η]→M |= A[η].

Then there must exist a derivation of A from Γ ∪ Stab.

1.4. SOUNDNESS AND COMPLETENESS OF THE CLASSICAL FRAGMENT 39

Proof. Since “there must exist a derivation” expresses the weak ex-
istential quantifier in the metalanguage, we need to prove a contradiction
from the assumption Γ, Stab 6` A.

By the completeness theorem for minimal logic, there must be a tree
model T = (Ter, I0, I1) on the complete binary tree T01 and a node l0 such
that l0 Γ, Stab and l0 6 A.

Call a node k consistent if k 6 ⊥, and stable if k Stab. We prove

(15) k 6 B → ∃̃k′�k(k′ ¬B ∧ k′ 6 ⊥) (k stable).

Let k be a stable node, andB a formula (without ∨, ∃). Then Stab ` ¬¬B →
B by the stability theorem, and therefore k ¬¬B → B. Hence from k 6 B
we get k 6 ¬¬B. By definition this implies ¬∀k′�k(k′ ¬B → k′ ⊥), i.e.,

∃̃k′�k(k′ ¬B ∧ k′ 6 ⊥),

which proves (15) (since k′ 6 ⊥ implies k′0 6 ⊥ or k′1 6 ⊥).
Let α be a branch in the underlying tree T01. We define

α A := ∃̃k∈α(k A),

α is consistent := α 6 ⊥,

α is stable := ∃̃k∈α(k Stab).

Note that from α ~A and ` ~A → B it follows that α B. To see this,

consider α ~A. Then k ~A for some k ∈ α, since α is linearly ordered.

From ` ~A→ B it follows that k B, i.e., α B.
A branch α is generic (in the sense that it generates a classical model)

if it is consistent and stable, if in addition for all formulas B

(16) (α B) ∨̃ (α ¬B),

and if for all formulas ∀~yB(~y) with B(~y) not a universal formula

(17) ∀~t∈Ter(α B(~t))→ α ∀~yB(~y).

For a branch α, we define a classical model Mα = (Ter, I0, I
α
1) by

Iα1 (R)(~t) := ∃̃k∈αI1(R, k)(~t) (R 6= ⊥).

Since ∃̃ is used in this definition, Mα is classical.
We show that for every generic branch α and formula B (without ∨, ∃)

(18) α B ↔Mα |= B.

The proof is by induction on the logical complexity of B.
Case R~t with R 6= ⊥. Then (18) holds for all α.
Case ⊥. We have α 6 ⊥ since α is consistent.
Case B → C. Let α B → C and Mα |= B. We must show that

Mα |= C. Note that α B by induction hypothesis, hence α C, hence

40 1. LOGIC

Mα |= C again by induction hypothesis. Conversely let Mα |= B → C.
Clearly (Mα |= B) ∨̃ (Mα 6|= B). IfMα |= B, thenMα |= C. Hence α C
by induction hypothesis and therefore α B → C. IfMα 6|= B then α 6 B
by induction hypothesis. Hence α ¬B by (16) and therefore α B → C,
since α is stable (and ` (¬¬C → C) → ⊥ → C). [Note that for this
argument to be constructively valid one needs to observe that the formula
α B → C is a negation, and therefore one can argue by the case distinction
based on ∨̃. This is because, with P1 := Mα |= B, P2 := Mα 6|= B and
Q := α B → C, the formula (P1 ∨̃ P2)→ (P1 → Q)→ (P2 → Q)→ Q is
derivable in minimal logic.]

Case B ∧ C. Easy.
Case ∀~yB(~y) (~y not empty) where B(~y) is not a universal formula. The

following are equivalent.

α ∀~yB(~y),

∀~t∈Ter(α B(~t)) by (17),

∀~t∈Ter(M
α |= B(~t)) by induction hypothesis,

Mα |= ∀~yB(~y).

This concludes the proof of (18).
Next we show that for every consistent and stable node k there must be

a generic branch containing k:

(19) k 6 ⊥ → k Stab→ ∃̃α(α generic ∧ k ∈ α).

For the proof, let A0, A1, . . . enumerate all formulas. We define a sequence
k = k0 � k1 � k2 . . . of consistent stable nodes by dependent choice. Let
k0 := k. Assume that kn is defined. We write An in the form ∀~yB(~y) (with
~y possibly empty) where B is not a universal formula. In case kn ∀~yB(~y)

let kn+1 := kn. Otherwise we have kn 6 B(~t) for some ~t, and by (15) there
must be a consistent node k′ � kn such that k′ ¬B(~t). Let kn+1 := k′.
Since kn � kn+1, the node kn+1 is stable.

Let α := { l | ∃n(l � kn) }, hence k ∈ α. We show that α is generic.
Clearly α is consistent and stable. We now prove both (16) and (17). Let
C = ∀~yB(~y) (with ~y possibly empty) where B(~y) is not a universal for-
mula, and choose n such that C = An. In case kn ∀~yB(~y) we are done.

Otherwise by construction kn+1 ¬B(~t) for some ~t. For (16) we get
kn+1 ¬∀~yB(~y) since ` ∀~yB(~y)→ B(~t), and (17) follows from the consis-
tency of α. This concludes the proof of (19).

Now we can finalize the completeness proof. Recall that l0 Γ,Stab and
l0 6 A. Since l0 6 A and l0 is stable, (15) yields a consistent node k � l0
such that k ¬A. Evidently, k is stable as well. By (19) there must be a

1.4. SOUNDNESS AND COMPLETENESS OF THE CLASSICAL FRAGMENT 41

generic branch α such that k ∈ α. Since k ¬A it follows that α ¬A,
hence Mα |= ¬A by (18). Moreover, α Γ, thus Mα |= Γ by (18). This
contradicts our assumption. �

1.4.4. Compactness and Löwenheim-Skolem theorems. Among
the many important corollaries of the completeness theorem the compactness
and Löwenheim-Skolem theorems stand out as particularly important. A set
Γ of formulas is consistent if Γ 6`c ⊥, and satisfiable if there is (in the weak
sense) a classical modelM and an assignment η in |M| such thatM |= Γ[η].

Corollary. Let Γ be a set of formulas.

(a) If Γ is consistent, then Γ is satisfiable.
(b) (Compactness). If each finite subset of Γ is satisfiable, Γ is satisfiable.

Proof. (a). Assume Γ 6`c ⊥ and that for all classical models M we
haveM 6|= Γ, i.e.,M |= Γ impliesM |= ⊥. Then the completeness theorem
yields a contradiction.

(b). Otherwise by the completeness theorem there must be a derivation
of ⊥ from Γ∪Stab, hence also from Γ0∪Stab for some finite subset Γ0 ⊆ Γ.
This contradicts the assumption that Γ0 is satisfiable. �

Remark. In the proof of the completeness theorem for classical logic we
constructed a model with a countably infinite carrier set, the set Ter of all
terms of the underlying language. Therefore we can weaken its assumption
on models to only hold for models with a countably infinite carrier set.

Corollary (Löwenheim and Skolem). Let Γ be a set of formulas (we
assume that L is countable). If Γ is satisfiable, then Γ is satisfiable in a
model with a countably infinite carrier set.

Proof. Assume that Γ is not satisfiable in a countably infinite model.
Then by the completeness theorem and the remark above Γ ∪ Stab ` ⊥.
Therefore by the soundness theorem Γ cannot be satisfiable. �

