CHAPTER 3
Computability

In this chapter we develop the basics of recursive function theory, or as
it is more generally known, computability theory. Its history goes back to
the seminal works of Turing, Kleene and others in the 1930’s.

A computable function is one defined by a program whose operational
semantics tell an idealized computer what to do to its storage locations as
it proceeds deterministically from input to output, without any prior re-
strictions on storage space or computation time. We shall be concerned
with various program-styles and the relationships between them, but the
emphasis throughout will be on one underlying data-type, namely the nat-
ural numbers, since it is there that the most basic foundational connections
between proof theory and computation are to be seen in their clearest light.

The two best-known models of machine computation are the Turing
Machine and the (Unlimited) Register Machine of Shepherdson and Sturgis
[22]. We base our development on the latter since it affords the quickest
route to the results we want to establish.

1. Register Machines

1.1. Programs. A register machine stores natural numbers in registers
denoted u, v, w, z, y, z possibly with subscripts, and it responds step by
step to a program consisting of an ordered list of basic instructions:

Each instruction has one of the following three forms whose meanings are
obvious:

Zero: £ :=0

Succ: z: =z +1

Jump: if £ =y then I, else I,

The instructions are obeyed in order starting with Iy except when a condi-
tional jump instruction is encountered, in which case the next instruction
will be either I, or I, according as the numerical contents of registers z
and y are equal or not at that stage. The computation terminates when it
runs out of instructions, that is when the next instruction called for is I.
Thus if a program of length k contains a jump instruction as above then it
must satisfy the condition m,n < k and I} means “halt”. Notice of course
that some programs do not terminate, for example the following one-liner:

if £ = z then I else I

55

56 3. COMPUTABILITY

1.2. Program Constructs. We develop some shorthand for building
up standard sorts of programs.
Transfer. “x :=1y” is the program

z:=0
if =y then I, else I
rz:=z+1

if £ = z then I else I;

which copies the contents of register y into register z.
Predecessor. The program “z := y = 1”7 copies the modified predecessor
of y into z, and simultaneously copies y into z:

z:=0

z:=0

if £ = y then Ig else I3
z=z+1

if z =y then I3 else I5
z:=z+1

z:=z+1

if z =y then I else I5.

Composition. “P 3 Q" is the program obtained by concatenating pro-
gram P with program ¢). However in order to ensure that jump instructions
in @ of the form “if z =y then I,,, else I,” still operate properly within @)
they need to be re-numbered by changing the addresses m,n to k+m,k+n
respectively where k is the length of program P. Thus the effect of this
program is to do P until it halts (if ever) and then do Q.

Conditional. “if z =y then P else Q fi” is the program

if z =y then I, else I o

:P
if z =z then Ik+2+l else IQ

Q
where k,[are the lengths of the programs P, () respectively, and again their
jump instructions must be appropriately renumbered by adding 1 to the
addresses in P and k + 2 to the addresses in (). Clearly if z = y then
program P is obeyed and the next jump instruction automatically bipasses
@ and halts. If x # y then program () is performed.
For Loop. “for :+ =1...x do P od” is the program

1:=0

if £ =4 then Iy, else I,

1:=1+1

:P

if £ =4 then Iy, 4 else I,
where again, k is the length of program P and the jump instructions in
P must be appropriately re-addressed by adding 3. The intention of this
new program is that it should iterate the program P z times (do nothing
if z = 0). This requires the restriction that the register = and the “local”
counting-register ¢ are not re-assigned new values inside P.

1. REGISTER MACHINES 57

While Loop. “while z # 0 do P od” is the program
if x =0 then I, else I;

:P
if x =0 then I}, else I;

where again, k is the length of program P and the jump instructions in P
must be re-addressed by adding 1. This program keeps on doing P until (if
ever) the register becomes 0.

1.3. Computable Functions. A register machine program P may
have certain distinguished “input registers” and “output registers”. It may
also use other “working registers” for scratchwork and these will initially be
set to zero. We write P(z1,...,zx;y) to signify that program P has input
registers 1, ...,z and one output register y, which are distinct.

DEFINITION. The program P(z1,...,zk;y) is said to compute the k-ary
partial function ¢: N¥ — N if, starting with any numerical values n1, ..., n
in the input registers, the program terminates with the number m in the
output register if and only if ¢(n1,...,nk) is defined with value m. In this
case, the input registers hold their original values.

A function is register machine computable if there is some program which
computes it.

Here are some examples.
Addition. “Add(z,y;z)” is the program
z=xji3fori=1,...,ydoz:=2+1 od

which adds the contents of registers z and y into register z.
Subtraction. “Subt(z,y;z)” is the program

zi=zxj3fori=1,...,.ydow:=2+1;2z:=w od

which computes the modified subtraction function z - y.
Bounded Sum. If P(z1,...,zk,w;y) computes the k + l-ary function ¢
then the program Q(z1,...,z, 2z;T):

z:=0;
fori=1,...,2dow:=i~+ 13 P(Z,w;y) ; v:=z ; Add(v,y;z) od

computes the function

’(p(ml""axkaz) = Z‘p(mla""xkaw)

w<z

which will be undefined if for some w < z, p(z1,...,2k, w) is undefined.
Multiplication. Deleting “w :=1¢ = 1 ; P” from the last example gives a
program Mult(z, y; z) which places the product of y and z into z.
Bounded Product. If in the bounded sum example, the instruction z :=
x + 1 is inserted immediately after z := 0, and if Add(v, y;z) is replaced by
Mult(v,y; z), then the resulting program computes the function

(r1,..., Tk, 2) = H o(z1,. .., zp,w).

w<z

58 3. COMPUTABILITY

Composition. If Pj(x1,...,xk;y;) computes ¢; for each j =4,...,m and
if Py(y1,---,Ym;Yo) computes g, then the program Q(z1,..., Tk Y0):

Pi(z1,....,zk501) 5 --- 5 P(21, .- s 265Ym) 5 Po(yr, -, Ymi Yo)

computes the function

¢($17"'7$k) = (PO((P1($1""’xk)7"'7 (pm(x17"'7$k))

which will be undefined if any of the p-subterms on the right hand side is
undefined.
Unbounded Minimization. If P(zq,...,zk,y; z) computes ¢ then the pro-

gram Q(z1,...,Zk; 2):

y:=032:=03;2:=2+4+1;
while z # 0 do P(z1,...,z,9;2) 5 y:=y+1 od ;
z:=y=1

computes the function

Y1, zk) = py(e(z1,-..,7k,y) =0)

that is, the least number y such that o(z1,...,zk,y") is defined for every
y' <y and o(x1,...,7k,9) =0.

2. Elementary Functions

2.1. Definition and Simple Properties. The elementary functions
of Kalmar (1943) are those number-theoretic functions which can be defined
explicitly by compositional terms built up from variables and the constants
0,1 by repeated applications of addition +, modified subtraction =, bounded
sums and bounded products.

By omitting bounded products, one obtains the subelementary functions.

The examples in the previous section show that all elementary functions
are computable and totally defined. Multiplication and exponentiation are

elementary since
m-n:Zm and m" :Hm
i<n i<n
and hence by repeated composition, all exponential polynomials are elemen-
tary.
In addition the elementary functions are closed under
Definitions by Cases.

£(it) = {90(77) if h(7) = 0

g1(7) otherwise

since f can be defined from gy, g1 and h by

f(@) = go(7) - (1 = h(7)) 4+ g1(7) - (1 = (1 = h(D))).

2. ELEMENTARY FUNCTIONS 59

Bounded Minimization.
f(i,m) = pk<m (g(i, k) = 0)

since f can be defined from g by

fli,m) = (1= (1= g(7i, k))).

i<m k<i

Note: this definition gives value m if there is no k < m such that g(7, k) =
0. It shows that not only the elementary, but in fact the subelementary
functions are closed under bounded minimization. Furthermore, we define
pwk<m (g(7,k) = 0) as pk<m+1(g(7, k) = 0). Another notational conven-
tion will be that we shall often replace the brackets in yk<m (g(7, k) = 0)

by a dot, thus: pk<m.g(7, k) = 0.

LEMMA.
(a) For every elementary function f: N — N there is a number k such that
foralli=mny,...,n,.,

(@) < 2% max(7)

where 29(m) = m and 2j41(m) = 22(™),
(b) Hence the function w»2,(1) is not elementary.

PROOF. (a). By induction on the build-up of the compositional term
defining f. The result clearly holds if f is any one of the base functions:

f(it) = 0 or 1 or n; or n; + nj or n; ~ n;.

If f is defined from g by application of bounded sum or product:

f(ﬁvm) = Zg(’ﬁ:,l) or H g(ﬁai)

i<m i<m
where ¢(7i,4) < 2 max(7,4) then we have
f(#@,m) <2 max(7l, m)™ < 2kyo max(i, m)
(using m™ < 22™). If f is defined from gq, g1,..., g by composition:
f(@) = go(g1(7), ..., 9u(77))
where for each j <[we have g;(—) < 2, (max(—)), then with k£ = max; kj,
f() < 2§ (2 max(7)) = 29, max (i)

and this completes the first part.
(b). If 2,,(1) were an elementary function of n then by (a) there would
be a positive k such that for all n,

2,(1) < 2%(n)

but then putting n = 2(1) yields 25, (1)(1) < 22¢(1), a contradiction. O

60 3. COMPUTABILITY

2.2. Elementary Relations. A relation R on NF is said to be elemen-
tary if its characteristic function

)1 if R(7)
cr (7)) = {O otherwise

is elementary. In particular, the “equality” and “less than” relations are
elementary since their characteristic functions can be defined as follows:

cc(myn) =1= (1= (n=m)) ; c=(m,n) =1= (cc(m,n) + c<(n,m))).
Furthermore if R is elementary then so is the function
f(#t,m) = pk<m R(it, k)

since R(1, k) is equivalent to 1 = cg(7, k) = 0.
LEMMA. The elementary relations are closed under applications of propo-
sitional connectives and bounded quantifiers.

Proor. For example, the characteristic function of - R is
1= cr(7) .
The characteristic function of Ry A Ry is
CRo (1) - cr, (7).
The characteristic function of Vi<m R(7, 1) is
c=(m, pi<m. cg(7,i) = 0).

O

ExAMPLES. The above closure properties enable us to show that many
“natural” functions and relations of number theory are elementary; thus

L%J = pk<m(m < (k+ 1)n)

mmodn =m = L%Jn

Prime(m) < 1 <m A =3n<m(l < n Am mod n = 0)

Dn = pm<2¥" (Prime(m) ANn= Z cP,ime(i))
i<m
SO Pg, P1,P2,--- gives the enumeration of primes in increasing order. The

estimate p, < 22" for the nth prime p, can be proved by induction on n:
For n = 0 this is clear, and for n > 1 we obtain

Pn <popr---Pn-1+1< 92992 ... 92" 11 =921 1 < 27",

2.3. The Class £.

DEFINITION. The class £ consists of those number theoretic functions
which can be defined from the initial functions: constant 0, successor S,
projections (onto the ith coordinate), addition +, modified subtraction =,
multiplication - and exponentiation 2%, by applications of composition and
bounded minimization.

2. ELEMENTARY FUNCTIONS 61

The remarks above show immediately that the characteristic functions
of the equality and less than relations lie in £, and that (by the proof of the
lemma) the relations in £ are closed under propositional connectives and
bounded quantifiers.

Furthermore the above examples show that all the functions in the class
£ are elementary. We now prove the converse, which will be useful later.

LEMMA. There are “pairing functions” 7,71, 7o in € with the following
properties:

(a) ™ maps N x N bijectively onto N,

PROOF. Enumerate the pairs of natural numbers as follows:

6 ...

3 7 .

1 4 8

0 2 5 9

At position (0,b) we clearly have the sum of the lengths of the preceeding
diagonals, and on the next diagonal a + b remains constant. Let w(a,b) be
the number written at position (a,b). Then we have

7(a,b) = (g‘;bi) +a= %(a+b)(a+b+ 1) +a.
Clearly m: N x N — N is bijective. Moreover, a,b < w(a,b) and in case
m(a,b) # 0 also a < 7(a,b). Let
mi(c) = pr<cy<c(n(z,y) = ¢),
ma(c) = py<cz<c(w(z,y) = c).
Then clearly 7;(c) < ¢ for ¢ € {1,2} and
m1(m(a,b) =a
mo(m(a,b)) = b

w(mi(c), m2(c)) = c.

7, w1 and 7o are elementary by definiton. a

REMARK. The above proof shows that 7, 71 and 79 are in fact subele-
mentary.

LEMMA (Godel). There is in & a function B with the following property:
For every sequence ag,...,an—1 < b of numbers less than b we can find a
number ¢ < 4 - 4" guch that B(c,i) = a; for all i < n.

62 3. COMPUTABILITY

PROOF. Let
a:=m(byn) and d:= H(l + m(a;, i)al).
i<n
From a! and d we can, for each given ¢ < n, reconstruct the number a; as
the unique z < b such that
1+ w(z,i)al! | d.

For clearly a; is such an z, and if some z < b were to satisfy the same
condition, then because 7(x,7) < a and the numbers 1 + ka! are relatively
prime for k& < a, we would have 7(z,i) = 7(a;,j) for some j < n. Hence
z = aj and i = j, thus = = a;.

We can now define the Gddel B-function as

Ble,i) = m (uy<ec. (1 +m(mi(y),i) - mi(c)) - ma(y) = ma(c)).

Clearly § is in £. Furthermore with ¢ := n(al,d) we see that n(a;, [d/1 +
m(ai,i)al]) is the unique such y, and therefore B(c,i) = a;. It is then not
difficult to estimate the given bound on ¢, using 7(b,n) < (b+n +1)2. O

REMARK. The above definition of 8 shows that it is subelementary.

2.4. Closure Properties of £.

THEOREM. The class € is closed under limited recursion. Thus if g, h, k
are given functions in € and f is defined from them according to the scheme

f (i, + 1) = h(n, f (1, n), m)
fl,n) < k(ri,n)
then f s in & also.

PROOF. Let f be defined from g, h and k£ in &£, by limited recursion
as above. Using Godel’s B-function as in the last lemma we can find for
any given 7, n a number ¢ such that S(c,7) = f(m,4) for all i+ < n. Let
R(m,n,c) be the relation

Blc,0) = g(m) AVi<n. B(c,i + 1) = h(i, B(c, i),)
and note by the remarks above that its characteristic function is in €. It

is clear, by induction, that if R(m,n,c) holds then S(c,i) = f(m,1), for all
i < n. Therefore we can define f explicitly by the equation

f(ﬁi,n) = IB(HC R(T?I,, n, C),’I’L).
f will lie in & if pc can be bounded by an £ function. However, Lemma 2.3
gives a bound 4 - 4(”"‘1)(”"'”"'2)4, where in this case b can be taken as the
maximum of k(m,%) for ¢ < n. But this can be defined in & as k(m, o),
where ig = pi<n. Vj<n. k(m, j) < k(m,1). Hence pc can be bounded by an
& function. O

REMARK. Notice that it is in this proof only that the exponential func-
tion is required, in providing a bound for u.
COROLLARY. & is the class of all elementary functions.

2. ELEMENTARY FUNCTIONS 63

ProoOF. It is sufficient merely to show that £ is closed under bounded
sums and bounded products. Suppose for instance, that f is defined from
g in & by bounded summation: f(77,n) = Y, ., g(77,i). Then f can be
defined by limited recursion, as follows

f(m,0) =0
[, n 4 1) = f(m,n) + g(m,n)
f(i,n) <mn- I&agcg('rﬁ,i)

and the functions (including the bound) from which it is defined are in £.
Thus f is in £ by the last lemma. If instead, f is defined by bounded
product, then proceed similarly. O

2.5. Coding Finite Lists. Computation on lists is a practical neces-
sity, so because we are basing everything here on the single data type N
we must develop some means of “coding” finite lists or sequences of natural
numbers into N itself. There are various ways to do this and we shall adopt
one of the most traditional, based on the pairing functions =, 71, mo.

The empty sequence is coded by the number 0 and a sequence ng, n1,
..., ng_1 is coded by the “sequence number”

(no,ni,...,np_1) =7 (... 7" (7'(0,m0),m1),- .., np_1)
with 7'(a,b) := w(a,b) + 1, thus recursively,
() =0,
(ng,n1,...,ng) =7 ((ng,n1,...,nk_1), nk).

Because of the surjectivity of 7, every number a can be decoded uniquely as
a sequence number a = (ng,n1,...,ng_1). If a is greater than zero, hd(a) :=
ma(a = 1) is the “head” (i.e. rightmost element) and tl(a) := m1(a = 1) is the
“tail” of the list. The kth iterate of tl is denoted tI*) and since tl(a) is less

than or equal to a, tI*¥)(a) is elementarily definable (by limited recursion).
Thus we can define elementarily the “length” and “decoding” functions:

lh(a) := pk<a. tI®)(a) = 0,
(@)i := hd(tl"@=(+D)(q)).
Then if a = (ng,n1,...,nk_1) it is easy to check that
Ih(a) = k and (a); = n; for each i < k.

Furthermore (a); = 0 when ¢ > lh(a). We shall write (a); ; for ((a);); and
(a)ijk for (((a)i);)k- This elementary coding machinery will be used at
various crucial points in the following.

Note that our previous remarks show that the functions Ih and (a); are

subelementary, and so is (ng,n1,...,nx_1) for each fixed & .
Concatenation of sequence numbers b * a is defined thus:
bx () :=b,

b* <7’L0,7’L1,. e ank> = ﬂ-(b* <7’L0,’)’I,1,. e 7nk:—1>7nk) + 1.

64 3. COMPUTABILITY

To check that this operation is also elementary, define h(b,a, %) by recursion
on ¢ as follows.

h(b,a,0) =b,
h(b,a,i+ 1) = w(h(b,a,i),(a);) + 1
and note that since 7(h(b, a,1), (a);) < (h(b,a,i)+a)? it follows by induction

on i that h(b, a, i) is less than or equal to (b+a+1)?". Thus h is definable by
limited recursion from elementary functions and hence is itself elementary.
Finally
bxa = h(b,a,lh(a)).
LEMMA. The class & is closed under limited course-of-values recursion.
Thus if h, k are given functions in £ and f is defined from them according
to the scheme

F(,n) = h(n, (f(7,0),....f(7,n — 1)),1)
f (i, n) < k(m,n)

then f is in &€ also.

3. The Normal Form Theorem

3.1. Program Numbers. The three types of register machine instruc-
tions I can be coded by “instruction numbers” §I thus, where vy, v1,v2,. ..
is a list of all variables used to denote registers:

If Iis “vj := 0" then §I = (0, j).

If I'is “vj :=wv; + 1”7 then §I = (1, 7).

If I'is “ifv; =v; thenI,, else I,” then §I = (2,4,1,m,n).
Clearly, using the sequence coding and decoding apparatus above, we can
check elementarily whether or not a given number is an instruction number.

Any register machine program P = Iy, I;,...,I;_1 can then be coded
by a “program number” or “index” §P thus:

iP = ({lo, 811, ., 8k—1)

and again (although it is tedious) we can elementarily check whether or not
a given number is indeed of the form §P for some program P. Tradition has
it that e is normally reserved as a variable over putative program numbers.

Standard program constructs such as those in Section 1 have associated
“index-constructors”, i.e. functions which, given indices of the subprograms,
produce an index for the constructed program. The point is that for stan-
dard program constructs the associated index-constructor functions are el-
ementary. For example there is an elementary index-constructor comp such

3. THE NORMAL FORM THEOREM 65

that, given programs Py, P| with indices ey, e1, comp(eg,e1) is an index of
the program Py ; P;. A moment’s thought should convince the reader that
the appropriate definition of comp is as follows:

comp(eg,e1) = eg*(r(eo,e1,0),7(eo,e1,1),...,7(eq, e1,lh(er) = 1))

where 7(eg, e1,1) =

(2, (e1)in, (e1)i2, (€1)i3 +Th(eo), (€1)ia + Ih(eg)) if (e1)i0 =2
(e1) otherwise

re-addresses the jump instructions in P;. Clearly » and hence comp are
elementary functions.

DEFINITION. Henceforth, <pf!) denotes the partial function computed by
the register machine program with program number e, operating on the
input registers v1,...,v, and with output register vg. There is no loss of
generality here, since the variables in any program can always be renamed
so that vy,...,v, become the input registers and vy the output. If e is not a
program number, or it is but does not operate on the right variables, then
we adopt the convention that gog)(m,...,m) is undefined for all inputs
NiyeeeyNp.

3.2. Normal Form.

THEOREM (Kleene’s Normal Form). For each arity v there is an ele-
mentary function U and an elementary relation T such that, for all e and
all inputs ny,...,n,,

. gogr)(nl,...,nr) is defined <— 3sT(e,n1,...,ny,8)

o gog)(nl,...,nr) =U(eny,...,np,usT(e,n1,...,np0,8)).

PROOF. A computation of a register machine program P(vy,...,v;vp)
on numerical inputs 7 = n1,...,n, proceeds deterministically, step by step,
each step corresponding to the execution of one instruction. Let e be its
program number, and let vy, ..., v; be all the registers used by P, including
the “working registers” so r < [.

The “state” of the computation at step s is defined to be the sequence
number

state(e, i, s) = (e, i, mg, m1,...,mMy)
where mg, m1, ..., m; are the values stored in the registers vy, v1, ..., v; after
step s is completed, and the next instruction to be performed is the ¢th one,
thus (e); is its instruction number.

The “state transition function” tr: N — N computes the “next state”.
So suppose that z = (e, i, mg, m1,...,my) is any putative state. Then in
what follows, e = (z)o, i = ()1, and m; = (z)j42 for each j < [. The
definition of tr(z) is therefore as follows:

tr(z) = (e,i',mg, m},...,m])
where

o If (e); = (0,7) where j <1 then ' =i+ 1, m} = 0, and all other
registers remain unchanged, i.e. m) = my, for k # j.

66 3. COMPUTABILITY

o If (e); = (1,j) where j < then i’ =i+ 1, m; = m;+ 1, and all
other registers remain unchanged.

o If (e);i = (2,Jo,J1,%0,41) wWhere jo,71 < I and ip,i; < Ih(e) then
i’ =1p or i’ = 4; according as mj, = m;, or not, and all registers
remain unchanged, i.e. m;- =m,; for all 5 <I.

e Otherwise, if z is not a sequence number, or if e is not a program
number, or if it refers to a register v, with [< k, or if lh(e) < 1,
then tr(z) simply repeats the same state z so 7' = 4, and m; =m;

for every 5 <.
Clearly tr is an elementary function, since it is defined by elementarily decid-
able cases, with (a great deal of) elementary decoding and re-coding involved
in each case.
Consequently, the “state function” state(e, 7, s) is also elementary be-
cause it can be defined by iterating the transition function by limited recur-
sion on s as follows:

state(e, 72, 0) =(e,0,n1,...,np,0,...,0)
state(e, 71, s + 1) = tr(state(e, 72, s))

state(e, 71, s) < h(e,1i,s)

where for the bounding function h we can take
h(e,7,s) = (e, e) x (max(7) + s, ..., max(7) + s),

This is because the maximum value of any register at step s cannot be
greater than max(7) + s. Now this expression clearly is elementary, since
(m,...,m) with 7 occurrences of m is definable by a limited recursion with
bound (m + 1)?', as is easily seen by induction on i.

Now recall that if program P has program number e then computation
terminates when instruction Ijy() is encountered. Thus we can define the
“termination relation” T'(e, 7, s) meaning “computation terminates at step
8”, by

T(e,7,s) <= (state(e,,s))1 = lh(e).
Clearly T is elementary and
) (1) is defined <= IsT(e, 7, s).
The output on termination is the value of register vg, so if we define the
“output function” U (e, 1, s) by
Ule,7,s) = (state(e,,s))2
then U is also elementary and
©I(7) = Ule, i, us T(e, 7, 5))-

This completes the proof. O

3.3. Y-Definable Relations and u-Recursive Functions. A rela-

tion R of arity r is said to be $!-definable if there is an elementary relation
FE, say of arity r + [, such that for all 7 =nq,...,n,,

R(’ﬁ:) — Jdki.. .E”{,‘lE(ﬁ, ki,.. .,kl).

3. THE NORMAL FORM THEOREM 67

A partial function ¢ is said to be X9-definable if its graph
{(fi,m) | p(7) is defined and =m }

is 2.0-definable.

To say that a non-empty relation R is $9-definable is equivalent to saying
that the set of all sequences (i) satisfying R can be enumerated (possibly
with repetitions) by some elementary function f: N — N. Such relations are
called elementarily enumerable. For choose any fixed sequence (ay,...,a,)
satisfying R and define

F(m) = {((m)la"'a(m)r> if E((m)1,-..,(m)r11)

(a1y...,ap) otherwise.

Conversely if R is elementarily enumerated by f then
R(it) <= Fm(f(m) = (7i))

is a %0-definition of R.

The p-recursive functions are those (partial) functions which can be
defined from the initial functions: constant 0, successor S, projections (onto
the ith coordinate), addition +, modified subtraction — and multiplication
-, by applications of composition and unbounded minimization. Note that
it is through unbounded minimization that partial functions may arise.

LEMMA. Every elementary function is p-recursive.

ProOOF. By simply removing the bounds on g in the lemmas in 2.3
one obtains y-recursive definitions of the pairing functions =, 71, o and of
Godel’s S-function. Then by removing all mention of bounds from Theorem
in 2.4 one sees that the u-recursive functions are closed under (unlimited)
primitive recursive definitions: f(7,0) = g(m), f(m,n+1) = h(n, f(m,n)).
Thus one can p-recursively define bounded sums and bounded products, and
hence all elementary functions.]

3.4. Computable Functions.

DEFINITION. The while-programs are those programs which can be built
up from assignment statements z := 0, z :==y, x :=y+ 1, z :=y = 1, by
Conditionals, Composition, For-Loops and While-Loops as in the subsection
on program constructs in Section 1.

THEOREM. The following are equivalent:

(a) @ is register machine computable,
(b) ¢ is XV-definable,

(c) ¢ is p-recursive,

(d) ¢ is computable by a while program.

PROOF. The Normal Form Theorem shows immediately that every re-

gister machine computable function <p<(f) is %.9-definable since

O(7) =m <= 3s.T(e,it,s) ANUle,i,s) =m

—

and the relation T'(e,7,s) A U(e,,s) = m is clearly elementary. If ¢ is
Y9-definable, say

(p(’ﬁ:) =m < 3k1...HklE(ﬁ,m,kl,...,kl)

68 3. COMPUTABILITY

then ¢ can be defined u-recursively by
(P(ﬁ) = (,u‘mE(ﬁa (m)(b (m)17 R (m)l))0)

using the fact (above) that elementary functions are p-recursive. The exam-
ples of computable functionals in Section 1 show how the definition of any
p-recursive function translates automatically into a while program. Finally,
the subsection on program constructs in Section 1 shows how to implement
any while program on a register machine. O

Henceforth computable means “register machine computable” or any of
its equivalents.

COROLLARY. The function <p£f)(n1, ...y My) 98 a computable partial func-
tion of the r + 1 variables e,ny,...,n;y.
PROOF. Immediate from the Normal Form. a

LEMMA. A relation R is computable if and only if both R and its com-
plement N* \ R are $9-definable.

PROOF. We can assume that both R and N* \ R are not empty, and (for
simplicity) also n = 1.

=. By the theorem above every computable relation is E(l)—deﬁnable,
and with R clearly its complement is computable.

<. Let f,g € £ enumerate R and N\ R, respectively. Then

h(n) = pi.f(i) =nVg(i)=n
is a total p-recursive function, and R(n) <> f(h(n)) = n. O

3.5. Undecidability of the Halting Problem. The above corollary
says that there is a single “universal” program which, given numbers e and

(r)

i, computes ¢ ' (77) if it is defined. However we cannot decide in advance
whether or not it will be defined. There is no program which, given e and
71, computes the total function

1 if o{)(7) is defi
hie, 7) = 1 <p(r)(fn,) is defined,
0 if e ’(7) is undefined.
For suppose there were such a program. Then the function
P(7i) = pm (h(ny,7) = 0)
would be computable, say with fixed program number ey, and therefore
0 undefined if h(nq,7) =1

But then fixing n1 = ey gives:

gogg) (1) defined <= h(ep,) =0 <— wg’;) (71) undefined
a contradiction. Hence the relation R(e, 77) which holds if and only if @ér) (1)
is defined, is not recursive. It is however %.{-definable.
There are numerous attempts to classify total computable functions ac-
cording to the complexity of their termination proofs.

4. RECURSIVE DEFINITIONS 69

4. Recursive Definitions

4.1. Least Fixed Points of Recursive Definitions. By a recursive
definition of a partial function ¢ of arity r from given partial functions
P1,. ..,y of fixed but unspecified arities, we mean a defining equation of
the form

go(nl,...,nr) = t(,wl?"'a’wma()o;nla"'anT)
where t is any compositional term built up from the numerical variables
T = n1,...,n, and the constant 0 by repeated applications of the successor
and predecessor functions, the given functions 1,..., %y, the function ¢
itself, and the “definition by cases” function :

U if z,y are both defined and equal
de(z, y,u,v) = Qo if 2,y are both defined and unequal
undefined otherwise.

Our notion of recursive definition is essentially a reformulation of the Her-
brand-Gddel-Kleene equation calculus; see Kleene [15].

There may be many partial functions ¢ satisfying such a recursive def-
inition, but the one we wish to single out is the least defined one, i.e. the
one whose defined values arise inevitably by lazy evaluation of the term ¢
“from the outside in”, making only those function calls which are absolutely
necessary. This presupposes that each of the functions from which ¢ is con-
structed already comes equipped with an evaluation strategy. In particular
if a subterm dc(t1, t2,t3,%4) is called then it is to be evaluated according to
the program construct:

z:=11 ;3 y:=19 ; if z := y then t3 else t4.

Some of the function calls demanded by the term ¢ may be for further values
of ¢ itself, and these must be evaluated by repeated unravellings of ¢ (in other
words by recursion).

This “least solution” ¢ will be referred to as the function defined by that
recursive definition or its least fized point. Its existence and its computabil-
ity are guaranteed by Kleene’s Recursion Theorem below.

4.2. The Principles of Finite Support and Monotonicity, and
the Effective Index Property. Suppose we are given any fixed partial
functions 11, ...,%, and 9, of the appropriate arities, and fixed inputs 7.
If the term t = ¢(4)1,...,%m, ;) evaluates to a defined value k then the
following principles are required to hold:

Finite Support Principle. Only finitely many values of 91, ..., 1, and
1 are used in that evaluation of .

Monotonicity Principle. The same value k£ will be obtained no matter
how the partial functions 1, ...,%,, and 9 are extended.

Note also that any such term ¢ satisfies the

Effective Index Property. There is an elementary function f such that if
P1,...,%y, and ¥ are computable partial functions with program numbers
e1,...,en and e respectively, then according to the lazy evaluation strategy
just described,

t(’lﬁl,. .. ,’l[)m,’l/),ﬁ)

70 3. COMPUTABILITY

defines a computable function of 7 with program number f(ey,...,en,€).
The proof of the Effective Index Property is by induction over the build-
up of the term ¢. The base case is where ¢ is just one of the constants 0,1
or a variable n;, in which case it defines either a constant function 7 — 0
or i — 1, or a projection function % + n;. Each of these is trivially
computable with a fixed program number, and it is this program number
we take as the value of f(ei,...,en,e). Since in this case f is a constant
function, it is clearly elementary. The induction step is where ¢ is built up
by applying one of the given functions: successor, predecessor, definition by
cases or 1 (with or without a subscript) to previously constructed subterms

ti(wla"' ,¢m,¢;ﬁ), 1 =1...1, thus:

t = YP(t,...,).
Inductively we can assume that for each ¢ = 1...[, t; defines a partial
function of %@ = n1,...,n, which is register machine computable by some

program P; with program number given by an already-constructed elemen-
tary function f; = fi(e1, ..., em,e). Therefore if 9 is computed by a program
@ with program number e, we can put Pi,..., P, and @ together to con-
struct a new program obeying the evaluation strategy for ¢. Furthermore,
by the remark on index-constructions near the beginning of Section 3, we
will be able to compute its program number f(e1,...,en,e) from the given
numbers f1,..., f; and e, by some elementary function.

4.3. Recursion Theorem.

THEOREM (Kleene’s Recursion Theorem). For given partial functions
Y1, ... P, every recursive definition

(p(ﬁ) = t(¢1, - a¢ma¢;ﬁ)
has a least fixed point, i.e. a least defined solution, . Moreover if 1, ..., %m
are computable, so is the least fized point .

PRrOOF. Let #1,...,%,, be fixed partial functions of the appropriate

arities. Let ® be the functional from partial functions of arity r to partial
functions of arity r defined by lazy evaluation of the term ¢ as described
above:
Let g, ©1,@2,... be the sequence of partial functions of arity r generated
by ® thus: g is the completely undefined function, and ¢;11 = ®(p;) for
each 4. Then by induction on %, using the Monotonicity Principle above, we
see that each ¢; is a subfunction of ¢;;1. That is, whenever @;(7) is defined
with a value k then ¢;1(7) is defined with that same value. Since their
defined values are consistent with one another we can therefore construct
the “union” ¢ of the @;’s as follows:

p(ii) =k <= Ji(pi() = k).
(1) This ¢ is then the required least fixed point of the recursive definition.
To see that it is a fixed point, i.e. ¢ = ®(y), first suppose (77) is defined
with value k. Then by the definition of ¢ just given, there is an ¢ > 0 such
that ;(77) is defined with value k. But ¢; = ®(p;_1) so ®(p;_1)(7) is
defined with value k. Therefore by the Monotonicity Principle for ®, since

4. RECURSIVE DEFINITIONS 71

©i—1 is a subfunction of ¢, ®(¢)(7) is defined with value k. Hence ¢ is a
subfunction of ®(yp).

It remains to show the converse, that ®(¢) is a subfunction of ¢. So sup-
pose ®(p)(7) is defined with value k. Then by the Finite Support Principle,
only finitely many defined values of ¢ are called for in this evaluation. By
the definition of ¢ there must be some ¢ such that ¢; already supplies all of
these required values, and so already at stage ¢ we have ®(p;)(7) = p;11(7)
defined with value k. Since ;41 is a subfunction of ¢ it follows that ¢(7)
is defined with value k. Hence ®(¢) is a subfunction of .

To see that ¢ is the least such fixed point, suppose ¢’ is any fixed point
of ®. Then ®(¢’') = ¢’ so by the Monotonicity Principle, since g is a
subfunction of ¢’ it follows that ®(pg) = @1 is a subfunction of ®(¢') = ¢'.
Then again by Monotonicity, ®(¢1) = @9 is a subfunction of ®(¢’) = ¢’
etcetera so that for each 4, ; is a subfunction of ¢'. Since ¢ is the union of
the ¢;’s it follows that ¢ itself is a subfunction of ¢’. Hence ¢ is the least
fixed point of ®.

(ii) Finally we have to show that ¢ is computable if the given functions
P1,. ..,y are. For this we need the Effective Index Property of the term
t, which supplies an elementary function f such that if 9 is computable
with program number e then ®(1) is computable with program number
f(e) = f(e1,.--,€em,e). Thus if u is any fixed program number for the
completely undefined function of arity r, f(u) is a program number for
01 = ®(0), f2(u) = f(f(u)) is a program number for po = ®(¢p1), and in
general f%(u) is a program number for ;. Therefore in the notation of the
Normal Form Theorem,

o) = @31, ()
and by the second corollary to the Normal Form Theorem, this is a com-
putable function of i and 7, since f(u) is a computable function of 4 defin-
able (informally) say by a for-loop of the form “for j = 1...7 do f od”.
Therefore by the earlier equivalences, ;(7) is a X9-definable function of i
and 7, and hence so is ¢ itself because

o) =m <= Fi(p;i(t) =m).
So ¢ is computable and this completes the proof. O

NoOTE. The above proof works equally well if ¢ is a vector-valued func-
tion. In other words if, instead of defining a single partial function ¢, the
recursive definition in fact defines a finite list ¢ of such functions simultane-
ously. For example, the individual components of the machine state of any
register machine at step s are clearly defined by a simultaneous recursive
definition, from zero and successor.

4.4. Recursive Programs and Partial Recursive Functions. A
recursive program is a finite sequence of possibly simultaneous recursive
definitions:

Go(n1,---nr0) = to(Pos 11, - - -, Mg
(ﬁl(nla .. ,TLTI) = tl(@()aggl;nla .. ann)

2(11, .., 1ry) = ta2(Po, B1, Poi N1y e - s Tpy)

72 3. COMPUTABILITY

(ﬁk‘(nla .. 7n1‘k) = tk(‘ﬁ()a e a(ﬁk—la (;Bka ni,... anrk)-
A partial function is said to be partial recursive if it is one of the functions

defined by some recursive program as above. A partial recursive function
which happens to be totally defined is called simply a recursive function.

THEOREM. A function is partial recursive if and only if it is computable.

ProOOF. The Recursion Theorem tells us immediately that every partial
recursive function is computable. For the converse we use the equivalence of
computability with u-recursiveness already established in Section 3. Thus
we need only show how to translate any p-recursive definition into a recursive
program:

The constant 0 function is defined by the recursive program

(i) = 0
and similarly for the constant 1 function.

The addition function ¢(m,n) = m + n is defined by the recursive pro-
gram

¢(m,n) = dc(n,0,m, p(m,n = 1) +1)
and the subtraction function ¢(m,n) = m = n is defined similarly but with
the successor function +1 replaced by the predecessor —1. Multiplication is
defined recursively from addition in much the same way. Note that in each
case the right hand side of the recursive definition is an allowed term.

The composition scheme is a recursive definition as it stands.

Finally, given a recursive program defining 1, if we add to it the recursive
definition:

o(it,m) = de(p(7, m),0,m, (i, m + 1))
followed by
¢'(7) = (i,0)
proceeds as follows:

= (i,m) ifp(A,m—1)#0
=m if (i7,m) =0
Thus the recursive program for ¢’ defines unbounded minimization:
() = pm (3(7, m) = 0).
This completes the proof. [l

