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CHAPTER 1

Logic

1.1. Computational content of proofs

Mathematics differs from all other sciences by the fact that it provides
proofs for its claims. In this course we study what proofs are, and what we
can do with them apart from assuring us of the truth of what they state.

Let us start with simple example of a proof. Assume that we already
know that

√
2 is irrational.

Theorem. There are irrational numbers x, y such that xy is rational.

Proof. By cases.

Case
√
2
√
2
is rational. Choose x :=

√
2 and y :=

√
2. Then x, y are

irrational and by assumption xy is rational.

Case
√
2
√
2
is irrational. Choose x :=

√
2
√
2
and y :=

√
2. Then by

assumption x, y are irrational and

xy =
(√

2

√
2
)√

2
=

(√
2
)2

= 2

is rational. □

A problem with this proof is that it does not give us an example for what
its statement claims to exist. Which pair of real numbers to take depends

on whether
√
2
√
2
is rational or not. As long as we do not know whether

this is the case we do not have an example.
An obvious solution to this problem is to extend the standard use of the

existential quantifier in mathematics by a new one written ∃xA(x), whose
proof requires an explicit construction of an object x satisfying the property
A(x). This in in addition to the standard use of the existential quantifier,

which we now write as ∃̃xA(x) and understand it as ¬∀x¬A(x). The former
is called the strong (or constructive) existential quantifier, and the latter
the weak (or “classical”) one.

Similarly there is a strong (or constructive) disjunction written A ∨ B,
which is in addition to the standard weak (or classical) one. The latter is
written A ∨̃ B and understood as ¬A→ (¬B → ⊥).
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2 1. LOGIC

Derivation Term

u : A uA

[u : A]

|M
B →+uA→ B

(λuAMB)A→B

|M
A→ B

| N
A →−

B

(MA→BNA)B

|M
A ∀+x (with var.cond.)∀xA

(λxM
A)∀xA (with var.cond.)

|M
∀xA(x) t

∀−
A(t)

(M∀xA(x)t)A(t)

Table 1. Derivation terms for → and ∀

1.2. Natural deduction

Proofs are done in natural deduction style, following Gentzen (1935).
Using the Curry-Howard correspondence we write them as proof terms.

We give an inductive definition of such derivation terms for the →,∀-
rules in Table 1 where for clarity we have written the corresponding deriva-
tions to the left. This can be extended to the rules for ∃, ∨ and ∧, but we
will not do this here. The reason is that these connectives will be viewed as
inductively defined (nullary) predicates with parameters.

Every derivation term carries a formula as its type. However, we shall
usually leave these formulas implicit and write derivation terms without
them.
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Every derivation term can be written uniquely in one of the forms

uM⃗ | λvM | (λvM)NL⃗,

where u is an assumption variable or constant, v is an assumption or object
variable, and M , N , L are derivation or object terms.

1.3. Normal form

An important property of proof terms is that they have a unique normal
form. It arises as follows.

A conversion removes an elimination immediately following an introduc-
tion. We consider the following conversions, for derivations written in tree
notation and also as derivation terms.
→-conversion.

[u : A]

|M
B →+uA→ B

| N
A →−

B

7→β

| N
A
|M
B

or written as derivation terms

(λuM(uA)B)A→BNA 7→β M(NA)B.

The reader familiar with λ-calculus should note that this is nothing other
than β-conversion.
∀-conversion.

|M
A(x)

∀+x∀xA(x) t
∀−

A(t)

7→β
|M ′

A(t)

or written as derivation terms

(λxM(x)A(x))∀xA(x)t 7→β M(t).

The closure of the conversion relation 7→β is defined by

(a) If M 7→β M ′, then M 7→M ′.
(b) If M 7→ M ′, then also MN 7→ M ′N , NM 7→ NM ′, λvM 7→ λvM

′

(inner reductions).

Therefore M 7→ N means that M reduces in one step to N , i.e., N is
obtained from M by replacement of (an occurrence of) a redex M ′ of M by
a conversum M ′′ of M ′, i.e., by a single conversion.

A term M is in normal form, or M is normal , if M does not contain a
redex. A reduction sequence is a (finite or infinite) sequence M0 7→ M1 7→
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M2 . . . such that Mi 7→ Mi+1, for all i. Finite reduction sequences are par-
tially ordered under the initial part relation; the collection of finite reduction
sequences starting from a term M forms a tree, the reduction tree of M . The
branches of this tree may be identified with the collection of all infinite and
all terminating finite reduction sequences. A term is strongly normalizing if
its reduction tree is finite.

Theorem 1.3.1. Every derivation term is strongly normalizing, and the
final element of each reduction sequence is uniquely determined.

A proof can be found for instance in Troelstra and van Dalen (1988).



CHAPTER 2

Partial continuous functionals

The objects studied in mathematics have types, which in many cases are
function types, possibly of a higher type. Such objects in most cases are infi-
nite, and we intend to describe them in terms of their finite approximations.
An appropriate framework for such an approach are the partial continuous
functionals of Scott (1982) and Ershov (1977). Continuity of a function f
here means that for every approximation V of the value f(x) there is an
approximation U of the argument x such that f [U ] has more information
than V . We define the partial continuous functionals via Scott’s information
systems.

2.1. Information systems

The basic idea of information systems is to provide an axiomatic setting
to describe approximations of abstract objects by concrete, finite ones. We
take an arbitrary countable set A of “bits of data” or “tokens” as a basic
notion to be explained axiomatically. In order to use such data to build
approximations of abstract objects, we need a notion of “consistency”, which
determines when the elements of a finite set of tokens are consistent with
each other. We also need an “entailment relation” between consistent sets
U of data and single tokens a, which intuitively expresses the fact that the
information contained in U is sufficient to compute the bit of information a.
The axioms below are a minor modification of Scott’s (1982), due to Larsen
and Winskel (1991).

2.1.1. Ideals.

Definition. An information system is a structure (A,Con,⊢) where A
is an at most countable non-empty set (the tokens), Con is a set of finite
subsets of A (the consistent sets) and ⊢ is a subset of Con×A (the entailment

5



6 2. PARTIAL CONTINUOUS FUNCTIONALS

relation), which satisfy

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ⊢ a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ⊢ a,

U ∈ Con→ ∀a∈V (U ⊢ a)→ V ⊢ b→ U ⊢ b.

The elements of Con are called formal neighborhoods. We use U, V,W
to denote finite sets, and write

U ⊢ V for U ∈ Con ∧ ∀a∈V (U ⊢ a),

a ↑ b for {a, b} ∈ Con (a, b are consistent),

U ↑ V for ∀a∈U,b∈V (a ↑ b).

Definition. The ideals (also called objects) of an information system
A = (A,Con,⊢) are defined to be those subsets x of A which satisfy

U ⊆ x→ U ∈ Con (x is consistent),

U ⊢ a→ U ⊆ x→ a ∈ x (x is deductively closed).

We write x ∈ |A| to mean that x is an ideal of A.

Examples. The deductive closure U := { a ∈ A | U ⊢ a } of U ∈ Con is
an ideal.

Every countable set A can be turned into a “flat” information system by
letting the set of tokens be A, Con := {∅} ∪ { {a} | a ∈ A } and U ⊢ a mean
a ∈ U . In this case the ideals are just the elements of Con. For A = N we
have the following picture of the Con-sets.

∅
•

•
{0}

�
��
•
{1}

���
��•
{2}

. . .

A rather important example is the following, which concerns approxi-
mations of functions from a countable set A into a countable set B. The
tokens are the pairs (a, b) with a ∈ A and b ∈ B, and

Con := { { (ai, bi) | i < k } | ∀i,j<k(ai = aj → bi = bj) },
U ⊢ (a, b) := (a, b) ∈ U.

It is easy to verify that this defines an information system whose ideals are
(the graphs of) all partial functions from A to B.
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2.1.2. Function spaces. We define the “function space” A → B be-
tween two information systems A and B.

Definition. Let A = (A,ConA,⊢A) and B = (B,ConB,⊢B) be infor-
mation systems. Define A→ B = (C,Con,⊢) by

C := ConA ×B,

{ (Ui, bi) | i ∈ I } ∈ Con := ∀J⊆I

( ⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB

)
.

For the definition of the entailment relation ⊢ it is helpful to first define the
notion of an application of W := { (Ui, bi) | i ∈ I } ∈ Con to U ∈ ConA:

{ (Ui, bi) | i ∈ I }U := { bi | U ⊢A Ui }.

From the definition of Con we know that this set is in ConB. Now define
W ⊢ (U, b) by WU ⊢B b.

Remark. Clearly application is monotone in the second argument, in
the sense that U ⊢A U ′ implies (WU ′ ⊆WU , hence also) WU ⊢B WU ′. In
fact, application is also monotone in the first argument, i.e.,

W ⊢W ′ implies WU ⊢B W ′U.

To see this let W = { (Ui, bi) | i ∈ I } and W ′ = { (U ′
j , b

′
j) | j ∈ J }. By

definition W ′U = { b′j | U ⊢A U ′
j }. Now fix j such that U ⊢A U ′

j ; we must

show WU ⊢B b′j . By assumption W ⊢ (U ′
j , b

′
j), hence WU ′

j ⊢B b′j . Because

of WU ⊇WU ′
j the claim follows.

Lemma 2.1.1. If A and B are information systems, then so is A→ B
defined as above.

Proof. Let A = (A,ConA,⊢A) and B = (B,ConB,⊢B). The first,
second and fourth property of the definition are clearly satisfied. For the
third, suppose

{(U1, b1), . . . , (Un, bn)} ⊢ (U, b), i.e., { bj | U ⊢A Uj } ⊢B b.

We have to show that {(U1, b1), . . . , (Un, bn), (U, b)} ∈ Con. So let I ⊆
{1, . . . , n} and suppose

U ∪
⋃
i∈I

Ui ∈ ConA.

We must show that {b} ∪ { bi | i ∈ I } ∈ ConB. Let J ⊆ {1, . . . , n} consist
of those j with U ⊢A Uj . Then also

U ∪
⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA.
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Since ⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA,

from the consistency of {(U1, b1), . . . , (Un, bn)} we can conclude that

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∈ ConB.

But { bj | j ∈ J } ⊢B b by assumption. Hence

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∪ {b} ∈ ConB.

For the final property, suppose

W ⊢W ′ and W ′ ⊢ (U, b).

We have to show W ⊢ (U, b), i.e., WU ⊢B b. We obtain WU ⊢B W ′U by
monotonicity in the first argument, and W ′U ⊢B b by definition. □

We shall now give an alternative characterization of the ideals inA→ B,
as “approximable maps”. The basic idea for approximable maps is the desire
to study “information respecting” maps from A into B. Such a map is given
by a relation r between ConA and B, where (U, b) ∈ r intuitively means that
whenever we are given the information U ∈ ConA, then we know that at
least the token b appears in the value.

Definition. Let A = (A,ConA,⊢A) and B = (B,ConB,⊢B) be infor-
mation systems. A relation r ⊆ ConA × B is an approximable map if it
satisfies the following:

(a) if (U, b1), . . . , (U, bn) ∈ r, then {b1, . . . , bn} ∈ ConB;
(b) if (U, b1), . . . , (U, bn) ∈ r and {b1, . . . , bn} ⊢B b, then (U, b) ∈ r;
(c) if (U ′, b) ∈ r and U ⊢A U ′, then (U, b) ∈ r.

Theorem 2.1.2. Let A and B be information systems. Then the ideals
of A→ B are exactly the approximable maps from A to B.

Proof. Let A = (A,ConA,⊢A) and B = (B,ConB,⊢B). Assume r ∈
|A → B|. Then r ⊆ ConA × B is consistent and deductively closed. We
have to show that r satisfies the axioms for approximable maps.

(a) Let (U, b1), . . . , (U, bn) ∈ r. We must show that {b1, . . . , bn} ∈ ConB.
But this clearly follows from the consistency of r.

(b) Let (U, b1), . . . , (U, bn) ∈ r and {b1, . . . , bn} ⊢B b. We must show
that (U, b) ∈ r. But

{(U, b1), . . . , (U, bn)} ⊢ (U, b)

by the definition of the entailment relation ⊢ in A → B, hence (U, b) ∈ r
since r is deductively closed.
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(c) Let U ⊢A U ′ and (U ′, b) ∈ r. We must show that (U, b) ∈ r. But

{(U ′, b)} ⊢ (U, b)

since {(U ′, b)}U = {b} (which follows from U ⊢A U ′), hence (U, b) ∈ r, again
since r is deductively closed.

For the other direction suppose that r ⊆ ConA × B is an approximable
map. We must show that r ∈ |A→ B|.

Consistency of r. Suppose (U1, b1), . . . , (Un, bn) ∈ r and U =
⋃
{Ui | i ∈

I } ∈ ConA for some I ⊆ {1, . . . , n}. We must show that { bi | i ∈ I } ∈
ConB. Now from (Ui, bi) ∈ r and U ⊢A Ui we obtain (U, bi) ∈ r by axiom
(c) for all i ∈ I, and hence { bi | i ∈ I } ∈ ConB by axiom (a).

Deductive closure of r. Suppose (U1, b1), . . . , (Un, bn) ∈ r and

W := {(U1, b1), . . . , (Un, bn)} ⊢ (U, b).

We must show (U, b) ∈ r. By definition of ⊢ for A→ B we have WU ⊢B b,
which is { bi | U ⊢A Ui } ⊢B b. Further by our assumption (Ui, bi) ∈ r we
know (U, bi) ∈ r by axiom (c) for all i with U ⊢A Ui. Hence (U, b) ∈ r by
axiom (b). □

2.1.3. Continuous functions. We can also characterize approxima-
ble maps in a different way, which is closer to usual characterizations of
continuity1:

Lemma 2.1.3. Let A and B be information systems and f : |A| → |B|
monotone (i.e., x ⊆ y implies f(x) ⊆ f(y)). Then the following are equiva-
lent.

(a) f satisfies the “principle of finite support” PFS: If b ∈ f(x), then b ∈
f(U) for some U ⊆ x.

(b) f commutes with directed unions: for every directed D ⊆ |A| (i.e., for
any x, y ∈ D there is a z ∈ D such that x, y ⊆ z)

f
( ⋃

x∈D
x
)
=

⋃
x∈D

f(x).

Note that in (b) the set { f(x) | x ∈ D } is directed by monotonicity of
f ; hence its union is indeed an ideal in |B|. Note also that from PFS and
monotonicity of f it follows immediately that if V ⊆ f(x), then V ⊆ f(U)
for some U ⊆ x.

Proof. Let f satisfy PFS, and D ⊆ |A| be directed. f(
⋃

x∈D x) ⊇⋃
x∈D f(x) follows from monotonicity. For the reverse inclusion let b ∈

f(
⋃

x∈D x). Then by PFS b ∈ f(U) for some U ⊆
⋃

x∈D x. From the

1In fact, approximable maps are exactly the continuous functions w.r.t. the so-called
Scott topology. However, we will not enter this subject here.
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directedness and the fact that U is finite we obtain U ⊆ z for some z ∈ D.
From b ∈ f(U) and monotonicity infer b ∈ f(z). Conversely, let f commute
with directed unions, and assume b ∈ f(x). Then

b ∈ f(x) = f(
⋃
U⊆x

U) =
⋃
U⊆x

f(U),

hence b ∈ f(U) for some U ⊆ x. □

We call a function f : |A| → |B| continuous if it satifies the conditions
in Lemma 2.1.3. Hence continuous maps f : |A| → |B| are those that can
be completely described from the point of view of finite approximations of
the abstract objects x ∈ |A| and f(x) ∈ |B|: whenever we are given a finite
approximation V to the value f(x), then there is a finite approximation U
to the argument x such that already f(U) contains the information in V ;
note that by monotonicity f(U) ⊆ f(x).

Clearly the identity and constant functions are continuous, and also the
composition g ◦ f of continuous functions f : |A| → |B| and g : |B| → |C|.

Theorem 2.1.4. Let A = (A,ConA,⊢A), B = (B,ConB,⊢B) be in-
formation systems. Then the ideals of A → B are in a natural bijective
correspondence with the continuous functions from |A| to |B|, as follows.

(a) With any approximable map r ⊆ ConA×B we can associate a continuous
function |r| : |A| → |B| by

|r|(z) := { b ∈ B | (U, b) ∈ r for some U ⊆ z }.

We call |r|(z) the application of r to z.
(b) Conversely, with any continuous function f : |A| → |B| we can associate

an approximable map f̂ ⊆ ConA ×B by

f̂ := { (U, b) | b ∈ f(U) }.

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|.

Proof. Let r be an ideal of A → B; then by Theorem 2.1.2 we know
that r is an approximable map. We first show that |r| is well-defined. So let
z ∈ |A|.
|r|(z) is consistent: let b1, . . . , bn ∈ |r|(z). Then there are U1, . . . , Un ⊆ z

such that (Ui, bi) ∈ r. Hence U := U1 ∪ · · · ∪ Un ⊆ z and (U, bi) ∈ r by
axiom (c) of approximable maps. Now from axiom (a) we can conclude that
{b1, . . . , bn} ∈ ConB.
|r|(z) is deductively closed: let b1, . . . , bn ∈ |r|(z) and {b1, . . . , bn} ⊢B b.

We must show b ∈ |r|(z). As before we find U ⊆ z such that (U, bi) ∈ r.
Now from axiom (b) we can conclude (U, b) ∈ r and hence b ∈ |r|(z).
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Continuity of |r| follows immediately from part (a) of Lemma 2.1.3
above, since by definition |r| is monotone and satisfies PFS.

Now let f : |A| → |B| be continuous. It is easy to verify that f̂ is indeed
an approximable map. Furthermore one can easily show

b ∈ |f̂ |(z)↔ b ∈ f(z)

Furthermore

b ∈ |f̂ |(z)↔ (U, b) ∈ f̂ for some U ⊆ z

↔ b ∈ f(U) for some U ⊆ z

↔ b ∈ f(z) by monotonicity and PFS.

Finally, for any approximable map r ⊆ ConA ×B we have

(U, b) ∈ r ↔ ∃V⊆U (V, b) ∈ r by axiom (c) for approximable maps

↔ b ∈ |r|(U)

↔ (U, b) ∈ |̂r|,

hence r = |̂r|. □

Consequently we can (and will) view approximable maps r ⊆ ConA×B
as continuous functions from |A| to |B|.

Equality of two subsets r, s ⊆ ConA × B means that they consist of
the same tokens (U, b). We can characterize equality r = s by extensional
equality of the associated functions |r|, |s|. It even suffices that |r| and |s|
coincide on all compact elements U for U ∈ ConA.

Lemma 2.1.5 (Extensionality). Assume that A = (A,ConA,⊢A) and
B = (B,ConB,⊢B) are information systems and r, s ⊆ ConA × B approxi-
mable maps. Then the following are equivalent.

(a) r = s,
(b) |r|(z) = |s|(z) for all z ∈ |A|,
(c) |r|(U) = |s|(U) for all U ∈ ConA.

Proof. It suffices to prove (c) → (a). As above this follows from

(U, b) ∈ r ↔ ∃V⊆U (V, b) ∈ r by axiom (c) for approximable maps

↔ b ∈ |r|(U). □

Moreover, one can easily check that

s ◦ r := { (U, c) | ∃V ((V, c) ∈ s ∧ (U, V ) ⊆ r) }
is an approximable map (where (U, V ) := { (U, b) | b ∈ V }), and

|s ◦ r| = |s| ◦ |r|, ĝ ◦ f = ĝ ◦ f̂ .
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We usually write r(z) for |r|(z), and similarly (U, b) ∈ f for (U, b) ∈ f̂ .
It should always be clear from the context where the mods and hats should
be inserted.

2.2. Objects of a given type

We now use information systems to define the objects of the Scott-Ershov
model of partial continuous functionals, each of a given “type”.

2.2.1. Types. If τ and σ are types, we clearly want that τ → σ is a
type as well, to be called “function type”. But we have to start somewhere.
The basic idea is that we consider finite lists of (named) “constructor types”.

Types may involve type variables α, β, γ, ξ, ζ. Iterated arrows are un-
derstood as associated to the right. For example, α → β → γ means
α→ (β → γ), not (α→ β)→ γ.

Definition. Constructor types κ have the form

α⃗→ (ξ)i<n → ξ

with all type variables αi distinct from each other and from ξ. An argument
type of a constructor type is called a parameter argument type if it is differ-
ent from ξ, and a recursive argument type otherwise. A constructor type is
recursive if it has a recursive argument type. Each list of named constructor
types with all of its parameter argument types distinct determines a base
type ικ⃗. Base types given by a list of named constructors are called algebras.

For some common lists of named constructor types there are standard
names for the corresponding base types:

Dummy: ξ U (unit),

tt : ξ, ff : ξ B (booleans),

SdL: ξ,SdM: ξ,SdR: ξ D (signed digits),

Zero: ξ,Succ: ξ → ξ N (natural numbers, unary),

One: ξ,S0 : ξ → ξ,S1 : ξ → ξ P (positive numbers, binary),

L: ξ,B: ξ → ξ → ξ Y (binary trees)
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and with parameter types

Id: α→ ξ I(α) (identity),

Nil : ξ,Cons: α→ ξ → ξ L(α) (lists),

SCons: α→ ξ → ξ S(α) (streams),

Pair : α→ β → ξ α× β (product),

InL: α→ ξ, InR: β → ξ α+ β (sum),

DummyL: ξ, Inr : α→ ξ uysum(α) (for U + α),

Inl : α→ ξ,DummyR: ξ ysumu(α) (for α+ U).

Definition. Types are inductively defined by

(a) Every type variable α is a type.
(b) If κ⃗(α⃗ ) is a list of named constructor types and τ⃗ are types where the

length of τ⃗ is the number of parameters in κ⃗, then ικ⃗(τ⃗ ) is a type.
(c) It τ and σ are types, then so is τ → σ.

Types of the form τ → σ are called function types, and types of the form
ικ⃗(τ⃗ ) base types.

If the base type corresponding to a list of named constructor types has
a standard name, then we use this name to denote the base type.

A type is closed it it has no parameters. Let τ(α⃗ ) be a type with α⃗ its
parameters, and let ρ⃗ be closed types. We define the level of τ(ρ⃗ ) by

lev(ικ⃗(ρ⃗ )) :=max(lev(ρ⃗ )),

where the length of ρ⃗ is the number of parameters in κ⃗(α⃗ ),

lev(τ → σ) :=max(lev(σ)), 1 + lev(τ)).

Examples of base types:

• L(α), L(L(α)), α× β are base types of level 0.
• L(L(N)), N + B, Z := P + U + P, Q := Z× P are closed base types
of level 0.
• R := (N→ Q)× (P→ N) is a closed base type of level 1.

2.2.2. The information system of a given type. For every closed
type τ we define the information system Aτ = (Aτ ,Conτ ,⊢τ ). The ideals
x ∈ |Aτ | are the partial continuous functionals of type τ . Since we will have
Aτ→σ = Aτ → Aσ, the partial continuous functionals of type τ → σ will
correspond to the continuous functions from |Aτ | to |Aσ|.

Definition (Information system of a closed type τ). We simultaneously
define Aικ⃗(τ⃗ )

, Aτ→σ, Conικ⃗(τ⃗ )
and Conτ→σ.
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(a) The tokens a ∈ Aικ⃗(τ⃗ )
are the type correct constructor expressions

CU1 . . . Uma∗1 . . . a
∗
n

with C the name of a constructor type α⃗ → (ξ)i<n → ξ from κ⃗, all Uj

(1 ≤ j ≤ m) from Conτj and each a∗i (1 ≤ i ≤ n) an extended token,
i.e., a token or the special symbol ∗ which carries no information.

(b) The tokens in Aτ→σ are the pairs (U, b) with U ∈ Conτ and b ∈ Aσ.
(c) A finite set U of tokens in Aικ⃗(τ⃗ )

is consistent (i.e., U ∈ Conικ⃗(τ⃗ )
) if

(i) all its elements start with the same constructor C, say of arity
τ⃗ → (ικ⃗(τ⃗ ))i<n → ικ⃗(τ⃗ ),

(ii) the union Vj of all Con-sets at the j-th (1 ≤ j ≤ m) argument
position of some token in U is in Conτj , and

(iii) all Ui ∈ Conικ⃗(τ⃗ )
(1 ≤ i ≤ n), where Ui consists of all (proper)

tokens at the (m+ i)-th argument position of some token in U .
(d) { (Ui, bi) | i ∈ I } ∈ Conτ→σ is defined to mean

∀J⊆I(
⋃
j∈J

Uj ∈ Conτ → { bj | j ∈ J } ∈ Conσ).

Building on this definition, we define U ⊢τ a for U ∈ Conτ and a ∈ Aτ .

(e) {CU⃗1a⃗∗1, . . . ,CU⃗la⃗
∗
l } ⊢ικ⃗(τ⃗ )

C′W⃗ a⃗∗ is defined to mean C = C′, l ≥ 1,

Vj ⊢ Wj with Vj as in (c) above and Ui ⊢ a∗i with Ui as in (c) above
(and U ⊢ ∗ defined to be true).

(f) W ⊢τ→σ (U, b) is defined to mean WU ⊢σ b, where application WU
of W = { (Ui, bi) | i ∈ I } ∈ Conτ→σ to U ∈ Conτ is defined to be
{ bi | U ⊢τ Ui }.

Note that the present definition is by recursion on the height of the syntactic
expressions involved, defined by

|α| := 0,

|ικ⃗(τ⃗ )| := 1 + max{ |τi| | τi ∈ τ⃗ },
|τ → σ| := max{1 + |τ |, |σ|},

|CU1 . . . Uma∗1 . . . a
∗
n| := 1 + max({ |Uj | | 1 ≤ j ≤ m } ∪ { |a∗i | | 1 ≤ i ≤ n }),
| ∗ | := 0,

|(U, b)| := 1 + max{|U |, |b|},
|{ ai | i ∈ I }| := 1 + max{ |ai| | i ∈ I },

|U ⊢ a| := 1 + max{|U |, |a|}.

It is easy to see that (Aτ ,Conτ ,⊢τ ) is an information system. Observe
that all the notions involved are computable: a ∈ Aτ , U ∈ Conτ and U ⊢τ a.
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•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Figure 1. Tokens and entailment for N

Definition (Partial continuous functionals). For every closed type τ let
Aτ be the information system (Aτ ,Conτ ,⊢τ ). The set |Aτ | of ideals in Aτ

is the set of partial continuous functionals of type τ . A partial continuous
functional x ∈ |Aτ | is computable if it is recursively enumerable when viewed
as a set of tokens.

Notice that Aτ→σ = Aτ → Aσ as defined generally for information
systems.

For example, the tokens for the base type N are shown in Figure 1 (with
0 for Zero and S for Succ). For tokens a, b we have {a} ⊢ b if and only if
there is a path from a (up) to b (down). As another example, consider the
base type Y of binary trees with a nullary constructor L (for Leaf) and a
binary B (for Branch). Then {B(L, ∗), B(∗, L)} is consistent, and it entails
B(L,L).

2.2.3. Cototal and total ideals of a closed base type. Let τ be a
closed base type, for simplicity without parameters. An example is the type
Y of binary trees. We want to take a closer look at the elements of |Aτ |, i.e.,
the ideals in Aτ . Among them it seems natural to single out those with the
following property, to be called “cototality”:

Definition (Cototal ideal). Consider a token in the ideal, and in this
token (a constructor expression) a position occupied by the symbol ∗ (indi-
cating “no information”). Then it must be possible to further analyze the
ideal, in the following sense. There must be another token in the ideal where
this symbol ∗ is replaced by a constructor expression C∗⃗ with C the name
of a constructor of the underlying base type.

Clearly cototal ideals may be infinite. However, they can be analyzed (or
“destructed”) up to an arbitrary depth. It may also happen that a cototal
ideal is finite. In this case it is called “total”.

Hence in our model of partial continuous functionals already at base
types we have ideals (i.e., objects) which are either

• cototal and infinite, or
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• total (i.e., cototal and finite), or
• neither.

We give some examples for the base type Y, with a more pictorial repre-
sentation. Tokens in AY (omitting B):

L
L L

H
HH���

@@�� L
∗ L

H
HH���

@@��

Consistency in AY:

L ∗
HHH��� ↑

∗ L
HHH���

Moreover

L L
HHH��� ̸↑

L
∗ ∗

HHH���
@@��

but

L ∗
HHH��� ↑

L
∗ ∗

HHH���
@@��

Entailment in AY:

{
L ∗
HHH��� ,

∗ L
HHH��� } ⊢Y

L L
HHH���

and also

∗
∗ L

HHH���
@@��

⊢Y

∗
∗ ∗

HHH���
@@��

and

∗ ∗
HHH���

Ideals in AY:

(i) 1 := closure of all

0

L
1
2

L
3
4

L

L ∗

(ii) −1 is defined similarly
(iii) −1 ∪ 1
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(iv) 1
2 := closure of all

0

L
1
2

3
4

L L

L ∗ L

L ∗

(v) Closure of

L
L L

H
HH���

@@��

(vi) Closure of

L
∗ L

HHH���
@@��

Among these

(i)− (iv) are infinite cototal ideals,

(v) is a total ideal, and

(vi) is an ideal but not cototal.

Cototality and totality of ideals in AY can also be characterized differ-
ently. We can represent the set of total ideals in AY as a predicate “induc-
tively defined” by the two “clauses”

(TY)
+
0 : L ∈ TY,

(TY)
+
1 : ∀x1,x2(x1, x2 ∈ TY → Bx1x2 ∈ TY)

(1)

To state that TY is the least set satisfying the two clauses we use the elimi-
nation or least fixed point property

(2) T−
Y : L ∈ X → ∀x1,x2(x1, x2 ∈ TY ∩X → Bx1x2 ∈ X)→ TY ⊆ X.

It says that every “competitor” X satisfying the same clauses contains TY.
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We now want to represent the set of cototal binary trees by a “coinduc-
tively” defined predicate coTY. Note that the conjunction of the two clauses
of TY is equivalent to

∀x((x ≡ L) ∨ ∃x1,x2(x1, x2 ∈ TY ∧ x ≡ Bx1x2)→ x ∈ TY).

Since TY is the least predicate with this property we even have the equiva-
lence

∀x(x ∈ TY ↔ (x ≡ L) ∨ ∃x1,x2(x1, x2 ∈ TY ∧ x ≡ Bx1x2))

(called inversion property). How can we formally represent cototality of
a binary tree? The idea is to define coTY as the largest set satisfying the
equivalence. Formulated differently, cototal ideals are not built from initial
objects by construction (synthesized), but rather defined by the property
that they can always be destructed (analysed). Therefore we require the
“closure property”

(3) coT−
Y : ∀x(x ∈ coTY → (x ≡ L) ∨ ∃x1,x2(x1, x2 ∈ coTY ∧ x ≡ Bx1x2)).

A set built by construction steps (synthesis) is meant to be the least set
closed under these steps. Similary, a set described by destruction (analysis)
is meant to be the largest set closed under destruction. Hence we require
the “greatest fixed point” property

coT+
Y : ∀x(x ∈ X → (x ≡ L) ∨ ∃x1,x2(x1, x2 ∈ coTY ∪X ∧ x ≡ Bx1x2))→

X ⊆ coTY.

(4)

coT+
Y expresses that every competitor X satisfying the closure property is

below coTY.
We also consider binary versions of TY and coTY, called similarity ∼Y

and bisimilarity ≈Y. The clauses for ∼Y are

(∼Y)
+
0 : L ∼Y L,

(∼Y)
+
1 : ∀x1,x′

1
(x1 ∼Y x′1 → ∀x2,x′

2
(x2 ∼Y x′2 → Bx1x2 ∼Y Bx′1x

′
2))

(5)

and the elimination or least-fixed-point property is

∼−
Y : X(L,L)→ ∀x1,x2((x1 ∼Y x2 ∧Xx1x2)→

∀x′
1,x

′
2
((x′1 ∼Y x′2 ∧Xx′1x

′
2)→

X(Bx1x2, Bx′1x
′
2)))→

∼Y ⊆ X.

(6)
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The elimination (or closure) property for ≈Y is

≈−
Y : ∀x,x′(x ≈Y x′ → ((x ≡ L) ∧ (x′ ≡ L)) ∨

∃x1,x2,x′
1,x

′
2
(x1 ≈Y x′1 ∧ x2 ≈Y x′2 ∧
x ≡ Bx1x2 ∧ x′ ≡ Bx′1x

′
2))

(7)

and the introduction (or greatest-fixed-point or coinduction) property is

≈+
Y : ∀x,x′(Xxx′ → ((x ≡ L) ∧ (x′ ≡ L)) ∨

∃x1,x2,x′
1,x

′
2
((x1 ≈Y x′1 ∨Xx1x

′
1) ∧ (x2 ≈Y x′2 ∨Xx2x

′
2) ∧

x ≡ Bx1x2 ∧ x′ ≡ Bx′1x
′
2))→

X ⊆ ≈Y.

(8)

We show that x ≈Y x′ implies x ≡ x′. Generally we have

Lemma 2.2.1 (Bisimilarity). For every closed base type bisimilarity im-
plies equality.

Proof. As an example we prove this for Y. Let a range over tokens for
Y. By induction on the height |a∗| of extended tokens a∗ we prove that for
all ideals x, x′ and extended tokens a∗ from a∗ ∈ x we can infer a∗ ∈ x′. It
suffices to consider the case Ba∗1a

∗
2. From x ≈Y x′ we obtain by the closure

property x1, x2, x
′
1, x

′
2 with

x1 ≈ x′1 ∧ x2 ≈ x′2 ∧ x ≡ Bx1x2 ∧ x′ ≡ Bx′1x
′
2.

Then a∗i ∈ xi (for i = 1, 2), and by IH a∗i ∈ x′i. Thus Ba∗1a
∗
2 ∈ x′. □

From the Bisimilarity Lemma we obtain

Proposition 2.2.2 (Characterization of ≈Y).

x ≈Y x′ ↔ x, x′ ∈ coTY ∧ x ≡ x′.

Proof. “→”. By Lemma 2.2.1 it remains to prove x ≈Y x′ → x ∈ coTY.
To this end we apply coT+

Y with competitor X := {x | ∃x′(x ≈Y x′) }. It
suffices to prove the premise. Fix x, x′ with x ≈Y x′. The goal is

(x ≡ L) ∨ ∃x1,x2((x1 ∈ coTY ∨ ∃x′
1
(x1 ≈ x′1)) ∧

(x2 ∈ coTY ∨ ∃x′
2
(x2 ≈ x′2)) ∧ x ≡ Bx1x2).

By the closure property ≈−
Y we have

(x ≡ L∧x′ ≡ L)∨∃x1,x2,x′
1,x

′
2
(x1 ≈ x′1∧x2 ≈ x′2∧x ≡ Bx1x2∧x′ ≡ Bx′1x

′
2)).

In the first case we have x ≡ L and are done. In the second case we have
x1, x2, x

′
1, x

′
2 with x1 ≈ x′1, x2 ≈ x′2 and x ≡ Bx1x2, and are done as well.
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“←”. We prove x ∈ coTY → x ≡ x′ → x ≈Y x′ by the greatest-fixed-
point property ≈+

Y with competitor X := {x, x′ | x ∈ coTY ∧ x ≡ x′ }. It
suffices to prove the premise. Fix x, x′ with x ∈ coTY ∧ x ≡ x′. The goal is

(x ≡ L ∧ x′ ≡ L) ∨ ∃x1,x2,x′
1,x

′
2
((x1 ≈ x′1 ∨ (x1 ∈ coTY ∧ x1 ≡ x′1)) ∧
(x2 ≈ x′2 ∨ (x2 ∈ coTY ∧ x2 ≡ x′2)) ∧
x ≡ Bx1x2 ∧ x′ ≡ Bx′1x

′
2)).

By the closure property coT−
Y applied to x ∈ coTY we have

(x ≡ L) ∨ ∃x1,x2(x1 ∈ coTY ∧ x2 ∈ coTY ∧ x ≡ Bx1x2).

In the first case we have x ≡ L and are done, since x ≡ x′. In the second
case we have x1, x2 ∈ coTY with x ≡ Bx1x2. Then we are done as well with
x′1 := x1 and x′2 := x2, since again x ≡ x′. □

2.2.4. Constructors as continuous functions. Let ι be a closed
base type. Every constructor C generates the following ideal in the function
space determined by the type of the constructor:

rC := { (U⃗ ,Ca⃗∗ ) | U⃗ ⊢ a⃗∗ },

where (U⃗ , a) abbreviates (U1, (U2, . . . (Un, a) . . . )).
According to the general definition of a continuous function associated

to an ideal in a function space the continuous map |rC| satisfies

|rC|(x⃗ ) = {Ca⃗∗ | ∃U⃗⊆x⃗(U⃗ ⊢ a⃗∗) }.

(For N we have |rS |({0}) = {S0, S∗} and |rS |({S0, S∗}) = {SS0, SS∗, S∗}.)
An immediate consequence is that the (continuous maps corresponding to)
constructors are injective and their ranges are disjoint.

Lemma 2.2.3 (Constructors are injective and have disjoint ranges). Let
ι be a closed base type and C be a constructor of ι. Then

|rC|(x⃗ ) ⊆ |rC|(y⃗ )↔ x⃗ ⊆ y⃗.

If C1,C2 are distinct constructors of ι, then |rC1 |(x⃗ ) ̸= |rC2 |(y⃗ ), since the
two ideals are non-empty and disjoint.

Proof. Immediate from the definitions. □

Lemma (Ideals of a closed base type). Every non-empty ideal in the
information system associated to a closed base type has the form |rC|(x⃗ )
with a constructor C and ideals x⃗.

Proof. Let z be a non-empty ideal and Ca∗0b
∗
0 ∈ z, where for simplicity

we assume that C is a binary constructor. Let x := { a | Ca∗ ∈ z } and
y := { b | C∗b ∈ z }; clearly x, y are ideals. We claim that z = |rC|(x, y).
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For ⊇ consider Ca∗b∗ with a∗ ∈ x ∪ {∗} and b∗ ∈ y ∪ {∗}. Then by defini-
tion {Ca∗∗,C∗b∗} ⊆ z, hence Ca∗b∗ ∈ z by deductive closure. Conversely,
notice that an arbitrary element of z must have the form Ca∗b∗, because
of consistency. Then {Ca∗∗,C∗b∗} ⊆ z again by deductive closure. Hence
a∗ ∈ x ∪ {∗} and b∗ ∈ y ∪ {∗}, and therefore Ca∗b∗ ∈ |rC|(x, y). □

It is in this proof that we need entailment to be a relation between finite
sets of tokens and single tokens, not just a binary relation between tokens.
Information systems with the latter property are called atomic.

The information systems Cτ enjoy the pleasant property of coherence,
which amounts to the possibility to locate inconsistencies in two-element
sets of data objects. Generally, an information system A = (A,Con,⊢) is
coherent if it satisfies: U ⊆ A is consistent if and only if all of its two-element
subsets are.

Lemma 2.2.4. Let A and B be information systems. If B is coherent,
then so is A→ B.

Proof. Let A = (A,ConA,⊢A) and B = (B,ConB,⊢B) be information
systems, and consider {(U1, b1), . . . , (Un, bn)} ⊆ ConA ×B. Assume

∀1≤i<j≤n({(Ui, bi), (Uj , bj)} ∈ Con).

We have to show {(U1, b1), . . . , (Un, bn)} ∈ Con. Let I ⊆ {1, . . . , n} and⋃
i∈I Ui ∈ ConA. We must show { bi | i ∈ I } ∈ ConB. Now since B

is coherent by assumption, it suffices to show that {bi, bj} ∈ ConB for all
i, j ∈ I. So let i, j ∈ I. By assumption we have Ui ∪ Uj ∈ ConA, and hence
{bi, bj} ∈ ConB. □

2.3. Terms

We now set up a term language to denote partial continuous functionals.
It can be seen as a as a common extension of Gödel’s T (1958) and Plotkin’s
PCF (1977); we call it T+.

2.3.1. A common extension T+ of Gödel’s T and Plotkin’s PCF.

Definition (Terms). Terms of T+ are built from (typed) variables and
(typed) constants (constructors C or defined constants D; see the definition
below) by application and abstraction:

M,N ::= xτ | Cτ | Dτ | (λxτMσ)τ→σ | (M τ→σN τ )σ.

The set FV(M) of free variables of a term M is defined by

FV(x) := {x}, FV(C),FV(D) := ∅,
FV(λxM) := FV(M) \ {x}, FV(MN) := FV(M) ∪ FV(N).
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Definition (Conversion). We define a conversion relation 7→β for terms
similarly to what we did for derivation terms:

(λxM(x))τ→σN τ 7→β M(N)σ.

In addition we will employ another conversion relation 7→η defined by

λx(Mx) 7→η M if x /∈ FV(M), and M is not an abstraction.

Definition (Computation rule). Every defined constant D comes with
a system of computation rules, consisting of finitely many equations

(9) DP⃗i(y⃗i) := Mi (i = 1, . . . , n where n ≥ 0)

with free variables of P⃗i(y⃗i) and Mi among y⃗i, where the arguments on the
left hand side must be “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables. To ensure consistency of the

defining equations, we require that for i ̸= j P⃗i and P⃗j have disjoint free vari-

ables, and either P⃗i and P⃗j are non-unifiable2 (i.e., there is no substitution

which identifies them), or else for the “most general unifier” ϑ of P⃗i and P⃗j

we have Miϑ = Mjϑ. Notice that the substitution ϑ assigns to the variables

y⃗i in Mi constructor patterns R⃗k(z⃗ ) (k = i, j). A further requirement on a

system of computation rules DP⃗i(y⃗i) := Mi is that the lengths of all P⃗i(y⃗i)
are the same; this number is called the arity of D, denoted by ar(D). A
substitution instance of a left hand side of (9) is called a D-redex .

More formally, constructor patterns are defined inductively by (we write

P⃗ (x⃗ ) to indicate all variables in P⃗ ):

(a) x is a constructor pattern.
(b) The empty list is a constructor pattern.

(c) If P⃗ (x⃗ ) and Q(y⃗ ) are constructor patterns whose variables x⃗ and y⃗ are

disjoint, then (P⃗ , Q)(x⃗, y⃗ ) is a constructor pattern.

(d) If C is a constructor and P⃗ a constructor pattern, then so is CP⃗ .

Remark. The requirement of disjoint variables in constructor patterns

P⃗i and P⃗j used in computation rules of a defined constant D is needed to
ensure that applying the most general unifier produces constructor patterns
again. However, for readability we take this as an implicit convention, and
write computation rules with possibly non-disjoint variables.

Examples of constants D defined by computation rules are abundant.
In particular, the (structural) recursion and corecursion operators will be
defined by computation rules.

2A detailed treatment of unification is in Appendix A
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The simplest example is the constant ⊥ι of type ι with no computation
rules. The boolean connectives andb, impb and orb are defined by

tt andb y := y,

x andb tt := x,

ff andb y := ff,

x andb ff := ff,

ff impb y := tt,

tt impb y := y,

x impb tt := tt,

tt orb y := tt,

x orb tt := tt,

ff orb y := y,

x orb ff := x.

Notice that when two such rules overlap, their right hand sides are equal
under any unifier of the left hand sides.

Decidable equality =ι : ι→ ι→ B for a closed base type ι can be defined
easily by computation rules. For example,

(0 =N 0) := tt,

(0 =N Sm) := ff,

(Sn =N 0) := ff,

(Sn =N Sm) := (n =N m)

and similarly for Y with constructors L (leaf) and B (branch)

(L =Y L) := tt,

(L =Y Bxy) := ff,

(Bxy =Y L) := ff,

(Bxy =Y Bx′y′) := (x =Y x′ andb y =Y y′).

For L(ι) with ι a closed base type we define =L(ι) : L(ι)→ L(ι)→ B by

([] =L(ι) []) := tt,

([] =L(ι) a::ℓ) := ff,

(a::ℓ =L(ι) []) := ff,

(a::ℓ =L(ι) a
′::ℓ′) := (a =ι a

′ andb ℓ =L(ι) ℓ
′).

For the base type N of natural numbers we have the doubling function

Double(0) := 0,

Double(S(n)) := S(S(Double(n))).

Addition (written infix) is defined similarly, this time with a parameter m:

m+ 0 := m,

m+ S(n) := S(m+ n).

Multiplication (again written infix) is defined using addition by

m · 0 := 0,

m · S(n) := (m · n) +m.

Similarly we can define all primitive recursive functions.
Up to now we have mainly considered examples of total functions, in

the sense that total arguments are mapped to total values. But recall that
in our setting functions need not be total. To give an example consider the
closed base type S(D) of streams defined by the single constructor type

SCons: D→ S(D)→ S(D).
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We write Cdu or d :: u for SCons(d, u). This base type differs from the ones
previously considered by not having a nullary constructor. As a consequence
it does not have non-empty total ideals, but clearly cototal ones. An example
is {Cn

d (∗) | n ≥ 1 }.
We define Map of type (τ → σ) → S(τ) → S(σ) mapping its function

argument h : τ → σ over a stream u of type S(τ) by the computation rule

Maph(a :: u) := (ha) :: Maph(u).

As an example of how to define standard arithmetical functions in T+

we consider the quotient-and-remainder function qr of type N→ N→ N×N.
Its defining equarions are

qr(0,m) := (0, 0),

qr(n+ 1,m) :=

{
(q, r + 1) if r + 1 < m,

(q + 1, 0) else
with (q, r) := qr(n,m).

Lemma 2.3.1 (NatQRProp). Given n,m with 0 < m. Let (q, r) :=
qr(n,m). Then n = q ∗m+ r and r < m.

Proof. By induction on n. The base case is clear. In the step we
distinguish cases. Case r + 1 < m. Then qr(n + 1,m) = (q, r + 1). The
claim follows by induction hypothesis. Case m ≤ r + 1. Then m = r + 1
since r < m (by induction hypothesis) and m ≤ r+1 (by case assumption).
By definition we have qr(n+ 1,m) = (q + 1, 0). We obtain

n+ 1 = q ∗m+ r + 1 = q ∗m+m = (q + 1) ∗m+ 0. □

2.3.2. Recursion operators. Important examples of such constants
D are the (structural) higher type recursion operators Rτ

ι introduced by
Hilbert (1925) and Gödel (1958). They are used to construct maps from the
base type ι to the value type τ , by recursion on the structure of ι.

For instance, Rτ
N has type N→ τ → (N→ τ → τ)→ τ . It is defined by

the computation rules

Rτ
N0af := a,

Rτ
N(Sn)af := fn(Rτ

Nnaf).

The first argument is the recursion argument, the second one gives the base
value, and the third one gives the step function, mapping the recursion argu-
ment and the previous value to the next value. For example, RN

Nnmλn,l(Sl)
defines addition m+n by recursion on n. For λn,l(Sl) we often write λ ,l(Sl)
since the bound variable n is not used.

It will be convenient to write a list of constructor types

(α⃗i → (ξ)ν<ni → ξ)i<k as ((ρiν(ξ))ν<ni → ξ)i<k.
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Definition (Type of Rτ
ι ). Let a base type ι be given by a list of con-

structor types ((ρiν(ξ))ν<ni → ξ)i<k. Let τ be a type. We define the type
of the recursion operator Rτ

ι to be

ι→ ((ρiν(ι× τ))ν<ni → τ)i<k → τ.

Here ι is the type of the recursion argument, and each (ρiν(ι×τ))ν<ni → τ is
called a step type. Usage of ι× τ rather than τ in the step types can be seen
as a “strengthening”, since then one has more data available to construct
the value of type τ . Moreover, for recursive argument types we avoid the
product type in ι × τ and take the two argument types ι and τ instead
(“duplication”).

Definition (Computation rules for Rτ
ι ). Let

α0 → . . .→ αm−1 → (ξ)i<n → ξ

be the type of the i-th constructor Ci of ι and consider a term Cix⃗ of type
ι. We write x⃗P = xP0 , . . . , x

P
m−1 for the parameter arguments xα0

0 , . . . , x
αm−1

m−1

and x⃗R = xR0 , . . . , x
R
n−1 for the recursive arguments xιm, . . . , xιm+n−1. Wri-

ting R for Rτ
ι we take as its computation rules

R(Cix⃗)f⃗ := fix⃗(RxR0 f⃗ ) . . . (RxRn−1f⃗ ).

Examples.

Rτ
B : B→ τ → τ → τ,

Rτ
N : N→ τ → (N→ τ → τ)→ τ,

Rτ
P : P→ τ → (P→ τ → τ)→ (P→ τ → τ)→ τ,

Rτ
Y : Y→ τ → (Y→ τ → Y→ τ → τ)→ τ,

Rτ
L(ρ) : L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ,

Rτ
ρ+σ : ρ+ σ → (ρ→ τ)→ (σ → τ)→ τ,

Rτ
ρ×σ : ρ× σ → (ρ→ σ → τ)→ τ.

It is a helpful exercise to write out the computation rules for these particular
recursion operators.

There is an important variant of recursion, where no recursive calls oc-
cur. This variant is called the cases operator ; it distinguishes cases according
to the outer constructor form. For a base type ι given by a list of construc-
tor types ((ρiν(ξ))ν<ni → ξ)i<k and a result type τ the type of the cases
operator Cτι is

ι→ ((ρiν(ι))ν<ni → τ)i<k → τ.

The simplest example (for type B) is if-then-else. Another example is

CτN : N→ τ → (N→ τ)→ τ.
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It could be used to define the predecessor function on N by the term

Pm := CN
Nm0(λnn).

However, it is easier to define the predecessor function by the computation
rules P0 := 0 and P(Sn) := n.

Remark. When computing the value of a cases term, we do not want
to (eagerly) evaluate all arguments, but rather compute the test argument
first and depending on the result (lazily) evaluate at most one of the other
arguments. This phenomenon is well known in functional languages; for
instance, in Scheme the if-construct is called a special form (as opposed
to an operator). Therefore instead of taking the cases operator applied to a
full list of arguments, one rather uses a case-construct to build this term;
it differs from the former only in that it employs lazy evaluation. Hence
the predecessor function is [if m 0 λnn] (which is often written in the form
[case m of 0 | λnn]).

General recursion with respect to a measure. In practice it often hap-
pens that one needs to recur to an argument which is not an immediate
component of the present constructor object; this is not allowed in struc-
tural recursion. Of course, in order to ensure that the recursion terminates
we have to assume that the recurrence is w.r.t. a given well-founded set; for
simplicity we restrict ourselves to the algebra N. However, we do allow that
the recurrence is with respect to a measure function µ, with values in N.
The operator F of general recursion then is defined by

(10) FµxG = Gx(λy[if µy < µx then FµyG else ε]),

where ε denotes a canonical inhabitant of the range. We leave it as an
exercise to prove that F is definable from an appropriate structural recursion
operator.

As an example for the use of F we define a function NatToPos converting
a natural number ≥ 1 written in unary (i.e., built from the constructors 0
and S) into the same natural number written in binary (i.e., built from the
constructors 1, S0 and S1). This uses the auxiliary functions Even: N→ B
defined by

Even(0) := tt,

Even(S(0)) := ff,

Even(S(S(n))) := Even(n)
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and Half : N→ N defined by

Half(0) := 0,

Half(S(0)) := 0,

Half(S(S(n))) := S(Half(n)).

Then NatToPos: N→ P is defined by

NatToPos(n) = F(id, n,G)

with id(n) = n and G : N→ (N→ P)→ P defined by

G(n, f) =


S0(f(Half(n))) if Even(n),

1 if n = S(0),

S1(f(Half(n))) otherwise.

2.3.3. Corecursion. The computation rules forR work from the leaves
towards the root, and terminate because total ideals are finite. If, however,
we deal with cototal ideals, then a similar operator is available to define
functions with cototal ideals as values, namely “corecursion”.

To understand the type of a corecursion operator let a base type ι be
given by a list of constructor types

(ρiν(ι))ν<ni → ι (i < k).

The product of these k constructor types is isomorphic to∑
i<k

∏
ν<ni

ρiν(ι)→ ι

and the type of the recursion operator Rτ
ι is isomorphic to

ι→
(∑

i<k

∏
ν<ni

ρiν(ι× τ)→ τ
)
→ τ.

This way of subsuming the types of all constructors of a base type into
a single type suggests the following definition of the destructor Dι of a base
type ι.

Definition (Destructor). For a base type ι given by a list of constructor
types ((ρiν(ξ))ν<ni → ξ)i<k we define the type of the destructor Dι to be

ι→
∑
i<k

∏
ν<ni

ρiν(ι).

The computation rules for Dι disassemble a constructor-built pattern into
its parts. For instance, the computation rules for DN of type N→ uysum(N)
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(or U + N) are

DN(0) := DummyL,

DN(S(n)) := Inr(n).

The computation rules for DP of type P→ uysum(P + P) (or U + (P + P))
are

DP(1) := DummyL,

DP(S0(p)) := Inr(InLP→P+P(p)),

DP(S1(p)) := Inr(InRP→P+P(p)).

The corecursion operator coRτ
ι is used to construct a map from τ to ι

by “corecursion” on the structure of ι. Its type is

(11) τ →
(
τ →

∑
i<k

∏
ν<ni

ρiν(ι+ τ)
)
→ ι.

Examples (Types and computation rules of corecursion operators).

coRτ
B : τ → (τ → U + U)→ B,

coRτ
N : τ → (τ → U + (N + τ))→ N,

coRτ
P : τ → (τ → U + ((P + τ) + (P + τ)))→ P,

coRτ
Y : τ → (τ → U + (Y + τ)× (Y + τ))→ Y,

coRτ
L(ρ) : τ → (τ → U + ρ× (L(ρ) + τ))→ L(ρ),

coRτ
S(ρ) : τ → (τ → ρ× (S(ρ) + τ))→ S(ρ).

The computation rule for each of these is defined below. For f : ρ→ τ and
g : σ → τ we denote λx(Rτ

ρ+σxfg) of type ρ+ σ → τ by [f, g], and similary
for ternary sumtypes etcetera. The identity functions id below are of type
ι→ ι with ι the respective base type.

coRτ
Bxf := [λ tt, λ ff](fx),

coRτ
Nxf := [λ 0, λy(S([id

N→N, PN]y))](fx),
coRτ

Pxf := [λ 1, λy(S0([id, PP]y)), λy(S1([id, PP]y))](fx),
coRτ

Yxf := [λ L, λy0,y1(B([id, PY]y0)([id, PY]y1))](fx),
coRτ

L(ρ)xf := [λ [], λy0,y1(y0 :: [id, PL(ρ)]y1)](fx),
coRτ

S(ρ)xf := (fx)0 :: [id, PS(ρ)](fx)1

with (fx)i the i-th component of the pair fx, and Pα := λx(
coRτ

αxf) for
α ∈ {N,P,Y,L(ρ),S(ρ)}.
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Definition. The (single) computation rule for coRτ
ι of type (11) is

coRτ
ι xf := [g0, . . . , gk−1](fx)

where gi of type
∏

ν<ni
ρiν(ι+ τ)→ ι is defined as

gi := λx⃗(Ci(Nν)ν<ni) with xν : ρiν(ι+ τ),

Nν :=

{
xν if ρiν(ξ) is a parameter arg. type,

[idι→ι, P τ→ι]xι+τ
ν otherwise,

and P := λx(
coRτ

ι xf) contains the corecursive call.

Remark. It can be difficult to read the computation rules for corecur-
sion operators. However, it helps if we know some properties of the “step”
function f . For instance we have

coRτ
Nxf =


0 if fx = DummyLU+(N+τ)

Sn if fx = Inr(InLN→N+τn)

S(coRτ
Nx

′f) if fx = Inr(InRτ→N+τx′)

coRτ
Yxf =



L if fx = DummyLU+(Y+τ)×(Y+τ)

Buv if fx = Inr⟨InLY→Y+τu, InLY→Y+τv⟩
Bu(coRτ

Yyf) if fx = Inr⟨InLY→Y+τu, InRτ→Y+τy⟩
B(coRτ

Yyf)v if fx = Inr⟨InRτ→Y+τy, InLY→Y+τv⟩
B(coRτ

Yyf)(
coRτ

Yzf) if fx = Inr⟨InRτ→Y+τy, InRτ→Y+τz⟩

coRτ
S(ρ)xf =

{
a :: u if fx = ⟨a, InLS(ρ)→S(ρ)+τu⟩
a :: coRτ

S(ρ)x
′f if fx = ⟨a, InRτ→S(ρ)+τx′⟩.

Recall that Map of type (τ → σ) → S(τ) → S(σ) maps its function
argument h : τ → σ over a stream u of type S(τ) (see Section 2.3.1, page 24).
It is an easy exercise to give an alternative definition of the function Map
by means of the corecursion operator.

Remark. It is possible to define interesting cototal objects by means of
corecursion operators. For instance the rightmost infinite path in the type
Y of binary trees is tR := coRτ

Yx0f0 with τ, x0 arbitrary (for instance τ := U,

x0 := DummyU) and

f0x
τ := Inr⟨InLY→Y+τ0, InRτ→Y+τx⟩.

For the leftmost path we similary have tL.
Another example is a function converting a real number given as a

Cauchy sequence of rationals together a Cauchy modulus into an infinite
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stream of signed digits {−1, 0, 1}. Such a function can be defined by a sim-
ple corecursion. One can extract it from a proof (using “coinduction”) of
the fact that such a conversion exists.

2.4. Denotational semantics

We now set up a connection between the model (|Aρ|)ρ of partial con-
tinuous functionals described in Section 2.1 and the term system T+ from
Section 2.3. The main point is to clarify how we can use computation rules
to define an ideal z in a function space. The general idea is to inductively
define the set of tokens (U, a) that make up z. It is convenient to define the
value [[λx⃗M ]], where M is a term with free variables among x⃗. Since this

value is a token set, we can define inductively the relation (U⃗ , a) ∈ [[λx⃗M ]].

For a constructor pattern P⃗ (x⃗ ) and a list V⃗ of the same length and

types as x⃗ we define a list P⃗ (V⃗ ) of formal neighborhoods of the same length

and types as P⃗ (x⃗ ), by induction on P⃗ (x⃗ ). x(V ) is the singleton list V ,

and for ⟨⟩ we take the empty list. (P⃗ , Q)(V⃗ , w⃗ ) is covered by the induction
hypothesis. Finally

(CP⃗ )(V⃗ ) := {Ca⃗∗ | a∗i ∈ Pi(V⃗i) if Pi(V⃗i) ̸= ∅, and a∗i = ∗ otherwise }.

We use the following notation. (U⃗ , a) means (U1, (U2, . . . (Un, a)) . . . ),

and (U⃗ , V ) ⊆ [[λx⃗M ]] means (U⃗ , a) ∈ [[λx⃗M ]] for all (finitely many) a ∈ V .

Definition (Inductive, of (U⃗ , a) ∈ [[λx⃗M ]]).

Ui ⊢ a

(U⃗ , a) ∈ [[λx⃗xi]]
(V ),

(U⃗ , V, a) ∈ [[λx⃗M ]] (U⃗ , V ) ⊆ [[λx⃗N ]]

(U⃗ , a) ∈ [[λx⃗(MN)]]
(A).

For every constructor C and defined constant D we have

V⃗ ⊢ a⃗∗

(U⃗ , V⃗ ,Ca⃗∗) ∈ [[λx⃗C]]
(C),

(U⃗ , V⃗ , a) ∈ [[λx⃗,y⃗M ]] W⃗ ⊢ P⃗ (V⃗ )

(U⃗ , W⃗ , a) ∈ [[λx⃗D]]
(D)

with one such rule (D) for every computation rule DP⃗ (y⃗ ) = M .

This “denotational semantics” has good properties; however, we do not
carry out the proofs here but rather refer to the literature. Some of these
proofs are given in Appendix B. First of all, one can prove that [[λx⃗M ]]
is an ideal. Moreover, our definition above of the denotation of a term
is reasonable in the sense that it is not changed by an application of the
standard (β- and η-) conversions or a computation rule.



CHAPTER 3

A theory TCF of partial continuous functionals

After getting clear about the domains we intend to reason about, the
partial continuous functionals, we now set up a theory to prove their prop-
erties. The main concepts are those of inductively and coinductively defined
predicates.

3.1. Formulas and their computational content

Formulas will built up from prime formulas P t⃗ by implication → and
universal quantification ∀x; here the ti are terms, x is a variable and P is a
predicate of a certain arity (a list of types). Types and terms are defined as
in Chapter 2. We often write t⃗ ∈ P for P t⃗.

Predicates can be inductively or coinductively defined. An example for
the former is TL(N), which is defined by the clauses (i) [] ∈ TL(N) and (ii)
∀n∈N(ℓ ∈ TL(N) → n :: ℓ ∈ TL(N)). An example for the latter is coTL(N)

defined by a closure axiom saying that every ℓ ∈ coTL(N) is of the form n :: ℓ′

with n ∈ N and ℓ′ ∈ coTL(N) again. According to Kolmogorov (1932) a
formula can be seen as a problem, asking for a solution. In the inductive
example a solution for 4 :: 2 :: 0 :: [] ∈ TL(N) would be the generating (finite)
sequence [], 0 :: [], 2 :: 0 :: [], 4 :: 2 :: 0 :: [], and in the coinductive example
a solution for a prime formula t ∈ coTL(N) would be an (infinite) stream
of natural numbers. Generally, a solution for an inductive predicate is a
finite construction tree, and for a coinductive predicate a finitely branching
possibly infinite destruction tree. Such trees can be seen as ideals of the
closed base types considered in Section 2.2.2. A solution for a problem
posed by the formula A→ B is a computable functional mapping solutions
of A into solutions of B.

Sometimes the solution of a problem does not need all available input.
We therefore mark the sources of such computationally superfluous input –
that is, some (co)inductive predicates – as “non-computational” (n.c.).

Assume an infinite supply of predicate variables, each of its own arity
(a list of types). We distinguish two sorts of predicate variables, “compu-
tationally relevant” ones Xc, Y c, Zc,W c . . . and “non-computational” ones
Xnc, Y nc, Znc, W nc . . . , and use X,Y, Z,W . . . for both.

31
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Let Z be a predicate variable. By Z̄ we denote the result of applying
the predicate variable Z to a list of terms of fitting types, and by Z̃ lists of
those.

Definition (Clauses and predicate forms). Let X be a predicate vari-
able. An X-clause is a formula

K := ∀x⃗(Ỹ c → Z̃nc → (∀y⃗i(W̃
nc
i → X̄i))i<n → X̄)

with all predicate variables Y c
i , Z

nc
i , W nc

i occurring exactly once and distinct
from each other and from X, and all X̄i coming from the fixed X. A premise
of a clause is called a parameter premise if X does not occur in it, and
a recursive premise otherwise. A clause K is non-recursive if it has no
recursive premises.

Let K⃗ be a list of X-clauses. We call Ic := µXcK⃗ and Inc := µXncK⃗

(with K⃗ not empty) predicate forms (and use I for both), and similarly with
coI for I and ν for µ.

Examples. Recall that NilL(α) and Consα→L(α)→L(α) are the two con-
structors of the base type L(α) of lists, written [] and :: (infix).

1. Let Y of arity (α) and X of arity (L(α)) be predicate variables. Then

K0 := ([] ∈ X),

K1 := ∀x(x ∈ Y → ∀ℓ(ℓ ∈ X → x :: ℓ ∈ X))

are clauses and both relative totality TL(Y ) (or TL,Y ) defined by µX(K0,K1)
and also relative cototality coTL(Y ) (or coTL,Y ) defined by νX(K0,K1) are
predicate forms with Y a parameter predicate variable. Note that we can
omit the type parameter α, since it can be read off from the arity of Y .

2. Alternatively let Y of arity (α, α) and X of arity (L(α),L(α)) be
predicate variables. Then

K0 := X([], []),

K1 := ∀x,x′(Y (x, x′)→ ∀ℓ,ℓ′(X(ℓ, ℓ′)→ X(x :: ℓ, x′ :: ℓ′)))

are clauses and both similarity ∼L(Y ) defined by µX(K0,K1) and bisimila-
rity ≈L(Y ) defined by νX(K0,K1) are predicate forms with Y a parameter
predicate variable.

Note that a predicate form I may contain type variables α⃗ and predicate

variables Y⃗ . We write I(ρ⃗, P⃗ ) for the result of substituting in I the types ρ⃗

for α⃗ and the predicates P⃗ for Y⃗ .

Definition (Constructor types of a predicate form). From every clause
K we obtain a constructor type by

• omitting quantifiers,
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• dropping all n.c. predicates and from the c.r. predicates their argu-
ments, and
• replacing the remaining predicate variables by type variables.

That is, from the clause

∀x⃗(Ỹ c → Z̃nc → (∀y⃗i(W̃
nc
i → X̄i))i<n → X̄)

we obtain the constructor type α⃗→ (ξ)i<n → ξ. With every predicate form

Ic := (µ/ν)XcK⃗ we associate the list κ⃗ of constructor types.

Definition (Predicates and formulas).

P,Q ::= X | { x⃗ | A } | I(ρ⃗, P⃗ ) | coI(ρ⃗, P⃗ ) (predicates),

A,B ::= P t⃗ | A→ B | ∀xA (formulas)

with I/coI a predicate form. To take care of the difference between Xc and
Xnc we define the final predicate of a predicate or formula by

fp(X) := X,

fp({ x⃗ | A }) := fp(A),

fp((I/coI)(ρ⃗, P⃗ )) := I/coI,

fp(P t⃗ ) := fp(P ),

fp(A→ B) := fp(B),

fp(∀xA) := fp(A).

We call a predicate or formula C non-computational (n.c., or Harrop) if its
final predicate fp(C) is of the form Xnc or Inc, else computationally relevant

(c.r.). We require that all predicate substitutions involved in (I/coI)(ρ⃗, P⃗ )
substitute c.r. predicates for c.r. predicate variables and n.c. predicates for
n.c. predicate variables. Such predicate substitutions are called sharp.

Predicates of the form I(ρ⃗, P⃗ ) are called inductive, and predicates of

the form coI(ρ⃗, P⃗ ) coinductive.
The terms t⃗ are those introduced in Section 2.3.1, i.e., typed terms built

from typed variables and constants by abstraction and application, and (im-
portantly) those with a common reduct are identified.

A predicate of the form { x⃗ | C } is called a comprehension term. We
identify { x⃗ | C(x⃗ ) }t⃗ with C (⃗t ). For a predicate C of arity (ρ, σ⃗ ) we write
Ct for { y⃗ | Cty⃗ }.

It is a natural question to ask what the type of a “realizer” or “witness”
of a c.r. predicate or formula C should be.
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Definition (Type τ(C) of a c.r. predicate or formula C). Assume a
global injective assignment of type variables ζ to c.r. predicate variables Xc.

τ(Xc) := ζ,

τ({ x⃗ | A }) := τ(A),

τ(I(ρ⃗, P⃗ )) := ικ⃗(ρ⃗,τ(P⃗ c)),

τ(P t⃗ ) := τ(P ),

τ(A→ B) :=

{
τ(A)→ τ(B) (A c.r.)

τ(B) (A n.c.),

τ(∀xA) := τ(A).

In the I-case we have assumed I = (µ/ν)XK⃗ with X-clauses K⃗. Every Ki

has an assigned constructor type κi. Free in κ⃗ are the type variables α⃗ from

K⃗ and the type variables ζ⃗ globally assigned to the c.r. predicate variables

Y⃗ c in K⃗. Now κ⃗(ρ⃗, τ(P⃗ c)) is the result of substituting ρ⃗ for α⃗ and of the
(already generated) types τ(P c

i ) for ζi in κ⃗.

3.2. Examples of inductive predicates

A simple example of an inductive predicate is totality TN of the natural
numbers. It is defined as

TN := µX(K0,K1)

with

K0 := (0 ∈ X),

K1 := ∀n(n ∈ X → Sn ∈ X).

Depending on whether the predicate variable X is n.c. or c.r. we have an
n.c. or a c.r. totality predicate.

Recall that a variable of type τ ranges over arbitrary objects of type τ ,
which may be partial. However, in practice we ofter want to argue on total
objects only. To make such a restriction easy to read we introduce two sorts
of variable names: a general one written x̂ ranging over arbitrary (possibly
partial) objects, and a special one written x ranging over total objects only.
Then we use the abbreviation

∀xA(x) := ∀x̂(x̂ ∈ Tτ → A(x̂)).

We will follow this convention from now on. Hence the clause K1 above
should now be written

K1 := ∀n̂(n̂ ∈ X → Sn̂ ∈ X).

Another particularly important example of an inductive predicate is
Leibniz equality , defined simply by

EqD := µXnc(∀x̂Xncx̂x̂) (D for “inductively defined”).
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We will use the abbreviation

(t ≡ s) := EqD(t, s).

The missing logical connectives existence, disjunction and conjunction
can also be defined inductively. Existence is defined inductively by

ExY c := µXc(∀x̂(x̂ ∈ Y c → Xc)),

ExNcY := µXnc(∀x̂(x̂ ∈ Y → Xnc)).

Then by definition

τ(Ex) = µξ(β → ξ) = I(β).

We use the abbreviation

∃x̂A := Ex{x̂|A},

∃ncx̂ A := ExNc{x̂|A},

and again since the decoration is determined by the c.r./n.c. status of the
parameter predicate we usually leave out the decoration and just write ∃.

For a context where only total objects are of interest we have

ExDTY c := µXc(∀x̂(x̂ ∈ T c → x̂ ∈ Y c → Xc)),

ExLTY c := µXc(∀x̂(x̂ ∈ T c → x̂ ∈ Y nc → Xc)),

ExRTY c := µXc(∀x̂(x̂ ∈ T nc → x̂ ∈ Y c → Xc)),

ExNcTY := µXnc(∀x̂(x̂ ∈ T → x̂ ∈ Y → Xnc)).

Here D is for “double”, L for “left” and R for “right”. Then by definition

τ(ExDT) = µξ(τ → β → ξ) = τ × β

τ(ExLT) = µξ(τ → ξ) = I(τ),

τ(ExRT) = µξ(β → ξ) = I(β).

To make these formulas more readable we can again use our convention
concerning the two sorts x̂ and x of variable names. Then the inductive
predicates above are written as

ExDTY c := µXc(∀x(x ∈ Y c → Xc)),

ExLTY c := µXc(∀x(x ∈ Y nc → Xc)),

ExRTY c := µXc(∀ncx (x ∈ Y c → Xc)),

ExNcTY := µXnc(∀x(x ∈ Y → Xnc)).
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We use the abbreviations

∃dxA := ExDT{x|A} if A is c.r.,

∃lxA := ExLT{x|A} if A is n.c.,

∃rxA := ExRT{x|A} if A is c.r.,

∃ncx A := ExNcT{x|A} for arbitrary A.

Disjunction is a special case of union

CupY,Z := µXc(∀x⃗(Y x⃗→ Xcx⃗ ), ∀x⃗(Zx⃗→ Xcx⃗ )).

Since the parameter predicates Y, Z can be chosen as either c.r. or n.c. we
obtain the variants

CupDY c,Zc := µXc(∀x⃗(Y cx⃗→ Xcx⃗ ), ∀x⃗(Zcx⃗→ Xcx⃗ )),

CupLY c,Znc := µXc(∀x⃗(Y cx⃗→ Xcx⃗ ), ∀x⃗(Zncx⃗→ Xcx⃗ )),

CupRY nc,Zc := µXc(∀x⃗(Y ncx⃗→ Xcx⃗ ), ∀x⃗(Zcx⃗→ Xcx⃗ )),

CupUY nc,Znc := µXc(∀x⃗(Y ncx⃗→ Xcx⃗ ), ∀x⃗(Zncx⃗→ Xcx⃗ )),

CupNcY,Z := µXnc(∀x⃗(Y x⃗→ Xncx⃗ ), ∀x⃗(Zx⃗→ Xncx⃗ )).

Here D is for “double”, L for “left”, R for “right” and U for “uniform”.
Then by definition

τ(CupD) = µξ(β0 → ξ, β1 → ξ) = β0 + β1,

τ(CupL) = µξ(β → ξ, ξ) = β + U = ysumu(β),

τ(CupR) = µξ(ξ, β → ξ) = U + β = uysum(β),

τ(CupU) = µξ(ξ, ξ) = B.

We use the abbreviations

P ∪d Q := CupDP,Q,

P ∪l Q := CupLP,Q,

P ∪r Q := CupRP,Q,

P ∪u Q := CupUP,Q,

P ∪nc Q := CupNcP,Q.
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In case of nullary predicates we use

A ∨d B := CupD{|A},{|B},

A ∨l B := CupL{|A},{|B},

A ∨r B := CupR{|A},{|B},

A ∨u B := CupU{|A},{|B},

A ∨nc B := CupNc{|A},{|B}.

Since the “decoration” is determined by the c.r./n.c. status of the two pa-
rameter predicates we usually leave it out in ∨d,∨l,∨r,∨u and just write
∨. However in the final nc-variant we suppress even the information which
clause has been used, and hence must keep the notation ∨nc.

Similarly conjunction is a special case of intersection

CapY,Z := µXc(∀x⃗(Y x⃗→ Zx⃗→ Xcx⃗ )),

and we obtain the variants

CapDY c,Zc := µXc(∀x⃗(Y cx⃗→ Zcx⃗→ Xcx⃗ )),

CapLY c,Znc := µXc(∀x⃗(Y cx⃗→ Zncx⃗→ Xcx⃗ )),

CapRY nc,Zc := µXc(∀x⃗(Y ncx⃗→ Zcx⃗→ Xcx⃗ )),

CapNcY,Z := µXnc(∀x⃗(Y x⃗→ Zx⃗→ Xncx⃗ )).

Then by definition

τ(CapD) = µξ(β0 → β1 → ξ) = β0 × β1

τ(CapL) = τ(CapR) = µξ(β → ξ) = I(β).

We use the abbreviations

P ∩d Q := CapDP,Q,

P ∩l Q := CapLP,Q,

P ∩r Q := CapRP,Q,

P ∩nc Q := CapNcP,Q.

In case of nullary predicates we use

A ∧d B := CapD{|A},{|B},

A ∧l B := CapL{|A},{|B},

A ∧r B := CapR{|A},{|B},

A ∧nc B := CapNc{|A},{|B}.

Again since the decoration is determined by the c.r./n.c. status of the two
parameter predicates we usually leave out the decoration and just write ∧.
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3.3. Axioms of TCF

We define a theory of continuous functionals, called TCF. Formulas are
the ones defined above, involving typed variables. Derivations use the rules
of minimal logic for → and ∀, and the axioms introduced below. However,
because of the distinction between n.c. and c.r. predicates and formulas we
have an extra degree of freedom. By an n.c. part of a derivation we mean a
subderivation with an n.c. end formula. Such n.c. parts will not contribute
to the computational content of the whole derivation, and hence we can
ignore all decorations in those parts (i.e., use a modified notion of equality
of formulas there).

3.3.1. Axioms for inductive predicates. For each inductive predi-
cate there are “clauses” or introduction axioms, together with a “least-fixed-
point” or elimination axiom. To grasp the general form of these axioms it
is convenient to write a clause

∀x⃗(Ỹ c → Z̃nc → (∀y⃗i(W̃
nc
i → X̄i))i<n → X̄) as ∀x⃗((Aν(X))ν<n → Xt⃗ ).

Definition (Introduction and elimination axioms for inductive predi-
cates). For an inductive predicate µX(∀x⃗i

((Aiν(X))ν<ni → Xt⃗i))i<k =: I
we have k introduction axioms I+i (i < k) and one elimination axiom I−:

I+i : ∀x⃗i
((Aiν(I))ν<ni → It⃗i),(12)

I− : (∀x⃗i
((Aiν(I ∩X))ν<ni → Xt⃗i))i<k → I ⊆ X(13)

(I ∩X was inductively defined above). (13) expresses that every competitor
X satisfying the same clauses contains I. We take all substitution instances
of I+i , I− (w.r.t. substitutions for type and predicate variables) as axioms.

Remarks. (i) We use a “strengthened” form of the “step formula”,
namely ∀x⃗i

(Aiν(I ∩X))ν<ni → Xt⃗i rather than ∀x⃗i
(Aiν(X))ν<ni → Xt⃗i. In

applications of the least-fixed-point axiom this simplifies the proof of the
“step”, since we have an additional I-hypothesis available.

(ii) Notice that there is no circularity here for the inductive predicate
Y ∩Z := CapY,Z , since there are no recursive calls in this particular inductive
definition and hence ∩ does not occur in

Cap−Y,Z : ∀x⃗(Y x⃗→ Zx⃗→ Xx⃗)→ CapY,Z ⊆ X.

(iii) The elimination axiom (13) could equivalently be written as

I− : ∀x⃗(Ix⃗→ (∀x⃗i
((Aiν(I ∩X))ν<ni → Xt⃗i))i<k → Xx⃗ )

In this form it fits better with our (i.e., Gentzen’s) way to write the logical
elimination rules, where the main premise comes first. More importantly,
its type (cf. Section 3.1) will then be the type of the recursion operator Rτ

ι
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taken as the “computational content” (cf. Section 4.1) of the elimination
axiom for I. Therefore in the implementation of TCF this form is used.
However, for readability we often prefer the form (13) in the present notes.

In Section 3.2 we considered several basic examples of inductive pre-
dicates. Their introduction and elimination axioms have important conse-
quences, which we shall study now.

Totality TN for the natural numbers has the introduction axioms

(TN)
+
0 : 0 ∈ TN,

(TN)
+
1 : ∀n̂(n̂ ∈ TN → Sn̂ ∈ TN).

Its elimination axiom is

(TN)
− : 0 ∈ X → ∀n̂(n̂ ∈ TN → n̂ ∈ X → Sn̂ ∈ X)→ ∀n̂(n̂ ∈ TN → n̂ ∈ X)

or in abbreviated form (recall our convention on using both n̂ and n as
variable names)

(TN)
− : 0 ∈ X → ∀n(n ∈ X → Sn ∈ X)→ ∀n(n ∈ X).

This is the usual induction axiom for (total) natural numbers.
The n.c. Leibniz equality has the introduction axiom

(EqD)+0 : ∀x̂(x̂ ≡ x̂).

Its elimination axiom is

(EqD)− : ∀x̂Xx̂x̂→ ∀x̂,ŷ(x̂ ≡ ŷ → Xx̂ŷ).

From this definition we can deduce the property Leibniz used as a definition.

Lemma 3.3.1 (Compatibility of EqD). ∀x̂,ŷ(x̂ ≡ ŷ → A(x̂)→ A(ŷ)).

Proof. By the elimination axiom withX := { x̂, ŷ | A(x̂)→ A(ŷ) }. □

Using compatibility of EqD one easily proves symmetry and transitivity.
An important usage of EqD in TCF is that it allows to introduce falsity

and hence negation. Recall that the language of TCF contains constructors
for base types. For the base type B of booleans we have as constructors
Frege’s “Wahrheitswerte” tt and ff. Using these we can define

Definition (Falsity, Negation). (a) Falsity F is defined by

F := (ff ≡ tt).

(b) The negation ¬A of a formula A is defined by

¬A := (A→ F).

Now using the fact that we identify terms with a common reduct and
that we have recursion operators in our language we can prove “ex-falso-
quodlibet” for formulas It⃗ with I a predicate form. Easy examples are
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Lemma 3.3.2 (Ex-falso for EqD and TN). TCF proves

(a) F→ ∀x̂,ŷ(x̂ ≡ ŷ),
(b) F→ ∀n̂(n̂ ∈ TN).

Proof. (a) We show EfEqD : F→ x̂τ ≡ ŷτ . To see this, we first obtain
Rτ

Bffx̂ŷ ≡ Rτ
Bffx̂ŷ from the introduction axiom. Then from ff ≡ tt we get

Rτ
Bttx̂ŷ ≡ Rτ

Bffx̂ŷ by compatibility. Now Rτ
Bttx̂ŷ converts to x̂ and Rτ

Bffx̂ŷ
converts to ŷ. Hence x̂ ≡ ŷ, since we identify terms with a common reduct.

(b) We show EfTN : F→ n̂ ∈ TN. Assume F. Then n̂ ≡ 0 by (a), hence
n̂ ∈ TN by 0 ∈ TN and compatibility. □

A similar result holds for arbitrary predicates and formulas. We post-
pone it until the axioms for coinductive predicates have been introduced.

An important use of Leibniz equality EqD is that it allows to turn a
term t of type B into a formula atom(t), defined by

Definition (Boolean terms as formulas).

atom(t) := (t ≡ tt).

This opens up a convenient way to deal with equality on closed base
types. The computation rules ensure that, for instance, the boolean term
St =N Ss, or more precisely =N(St, Ss), is identified with t =N s. We can
now turn this boolean term into the formula (St =N Ss) ≡ tt, which again
is abbreviated by St =N Ss, but this time with the understanding that it is
a formula. Then (importantly) the two formulas St =N Ss and t =N s are
identified because the latter is a reduct of the first. Consequently there is
no need to prove the implication St =N Ss→ t =N s explicitly.

Recall the inductive definitions of the logical connectives existence, dis-
junction and conjunction given above. For nullary predicates P = { | A }
and Q = { | B } we write A∨B for P ∪Q and A∧B for P ∩Q. For simplicity
we only consider the “double” versions. Then the introduction axioms are

∀x(A→ ∃dxA),

A→ A ∨d B, B → A ∨d B,

A→ B → A ∧d B,

and the elimination axioms are (now written in the equivalent form men-
tioned above, where the main premise comes first)

∃dxA→ ∀x(A→ B)→ B (x /∈ FV(B)),

A ∨d B → (A→ C)→ (B → C)→ C,

A ∧d B → (A→ B → C)→ C.
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3.3.2. Axioms for coinductive predicates. For each coinductive
predicate there is a closure axiom, together with a “greatest-fixed-point”
axiom. For example, for the base type Y of of binary trees

• the cototality predicate coTY is defined by the closure axiom (3)
(page 18) and the greatest-fixed-point axiom by (4) (page 18), and
• the bisimilarity predicate ≈Y by the closure axiom (7) (page 19)
and the greatest-fixed-point axiom (8) (page 19).

To understand the general axioms for coinductive predicates note that
the conjunction of the k clauses (12) of an inductive predicate I is equivalent
to

∀x⃗(
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(I) ∧ x⃗ ≡ t⃗i)→ Ix⃗ ).

Definition (Closure and greatest-fixed-point axioms). For an inductive
predicate µX(∀x⃗i

((Aiν(X))ν<ni → Xt⃗i))i<k =: I we define its dual coI (with
ν for µ) by the closure axiom coI− and the greatest-fixed-point axiom coI+:

coI− : ∀x⃗(coIx⃗→
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(
coI) ∧ x⃗ ≡ t⃗i)),(14)

coI+ : ∀x⃗(Xx⃗→
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(
coI ∪X) ∧ x⃗ ≡ t⃗i))→ X ⊆ coI.(15)

(coI ∪ X was inductively defined above). The axiom expresses that every
“competitor” X satisfying the closure axiom is contained in coI. We take
all substitution instances of coI+, coI− (w.r.t. substitutions for type and
predicate variables) as axioms.

Again we have used a “strengthened” form of the “step formula”, with
Aiν(

coI ∪X) rather than Aiν(X). In applications of the greatest-fixed-point
axiom this simplifies the proof of the “step”, since its conclusion is weaker.

Remark. The greatest-fixed-point axiom (15) could be written as

∀x⃗(Xx⃗→ ∀x⃗(Xx⃗→
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(
coI ∪X) ∧ x⃗ ≡ t⃗i))→ coIx⃗).

Then its type will be the type of the corecursion operator coRτ
ι taken as the

“computational content” (cf. Section 4.1) of the greatest-fixed-point axiom
for coI. Therefore in the implementation of TCF this form is used. However,
for readability we prefer the form (15) in the present notes.

Remark. Instead of Leibniz equality ≡ in (14) and (15) we could also
use a different equality relation, for instance the n.c. variant

.
=nc of pointwise

equality to be introduced in Section 3.4. This leads to a new variant of coI.
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Examples. (1) To show how to construct the dual coI of an inductive
predicate I we consider the predicate Even, which is defined by the clauses

(Even)+0 : 0 ∈ Even,

(Even)+1 : ∀n(n ∈ Even→ S(Sn) ∈ Even).

The conjunction of its two clauses is equivalent to

∀n(n ≡ 0 ∨ ∃n′(n′ ∈ Even ∧ n ≡ S(Sn′))→ n ∈ Even).

Now the dual coEven of Even is defined by its closure axiom coEven−:

∀n(n ∈ coEven→ n ≡ 0 ∨ ∃n′(n′ ∈ coEven ∧ n ≡ S(Sn′)))

and its greatest-fixed-point axiom coEven+:

∀n(Xn→ n ≡ 0 ∨ ∃n′(n′ ∈ (coEven ∪X) ∧ n ≡ S(Sn′)))→ X ⊆ coEven.

(2) Consider the inductive predicate I of arity (R) defined by the clause

∀d,x′,x(d ∈ D ∧ x′ ∈ R ∧ |x′| ≤R 1 ∧ x′ ∈ I ∧ x =R
x′ + d

2
→ x ∈ I).

Here it is assumed that the real numbers R together with the relations =R

and ≤R are available. D is the base type of signed digits {−1, 0, 1}. The
dual coI is defined by its closure axiom coI−:

∀x(x ∈ coI →

∃rd,x′,y(d ∈ D ∧ x′ ∈ R ∧ |x′| ≤R 1 ∧ x′ ∈ coI ∧ y =R
x′ + d

2
∧ x =R y)

and its greatest-fixed-point (or coinduction) axiom coI+:

∀x(x ∈ X → ∃rd,x′,y(

d ∈ D ∧ x′ ∈ R ∧ |x′| ≤R 1 ∧ (x′ ∈ coI ∪X) ∧ y =R
x′ + d

2
∧ x =R y))→

X ⊆ coI).

Remark. For n.c. inductive or coinductive predicates the axioms are
formed as in the c.r. case, using ∨nc for the closure axiom of coInc. But
there is an important restriction: for Inc with more than one clause the
elimination axiom (Inc)− can only be used with a non-computational com-
petitor predicate. This is needed in the proof of the soundness theorem.
However, this restriction does not apply to Inc defined by one clause only.
Important examples of such one-clause-nc inductive predicates are Leibniz
equality and the non-computational variants of the existential quantifier and
of conjunction.

Generally, an inductive predicate is always contained in its dual.

Lemma 3.3.3. I ⊆ coI, Inc ⊆ coInc.
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Proof. The least-fixed-point axiom (13) for I (i.e., I−) is equivalent to

∀x⃗(
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(I ∩X) ∧ x⃗ ≡ t⃗i)→ Xx⃗ )→ I ⊆ X.

It suffices that its premise holds with coI for X. This follows from the
greatest-fixed-point axiom (15) (i.e., coI+), with the competitor predicate

X := { x⃗ |
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(I ∩ coI) ∧ x⃗ ≡ t⃗i) }.

This means that we have to show the premise of (15) with this X, i.e.,

∀x⃗(Xx⃗→
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(
coI ∪X) ∧ x⃗ ≡ t⃗i)).

But if we unfold the premise Xx⃗, this follows from I ∩ coI ⊆ coI ∪ X. For
Inc the proof is similar. □

Remark. In case of an inductive predicate with non-recursive clauses
only also the reverse inclusions coI ⊆ I, coInc ⊆ Inc. Hence it is not necessary
to consider coI. Examples are the inductively defined logical connectives ∃,
∨, ∧ and Leibniz equality.

Lemma 3.3.4. I ⊆ Inc, coI ⊆ coInc.

Proof. Let I := µX(∀x⃗i
((Aiν(X))ν<ni → Xt⃗i))i<k.

For I ⊆ Inc we use the elimination axiom (13) with Inc as competitor
predicate:

(∀x⃗i
((Aiν(I ∩ Inc))ν<ni → Inct⃗i))i<k → I ⊆ Inc.

It suffices to prove the premises. Let i < k, fix x⃗i and assume Aiν(I ∩ Inc)
for all ν < ni. Since Aiν(X) is strictly positive in X we obtain Aiν(I

nc) for
all ν < ni and hence Incx⃗i by (Inc)+i .

For coI ⊆ coInc we use the greatest-fixed-point axiom for coInc with coI
as competitor predicate:

∀x⃗(coIx⃗→
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(
coInc ∪ coI) ∧ x⃗ ≡ t⃗i))→ coI ⊆ coInc.

It suffices to prove the premise, which again follows from the fact thatAiν(X)
is strictly positive in X. □

Now we are ready to generalize Lemma 3.3.2 on Ex-falso for EqD and
TN to arbitrary predicates and formulas. However, we have to take care of
the following issues:

• Predicate variables might occur as non “strictly positive parts”.
• (Co)inductive predicates as strictly positive parts might not have
a nullary clause.



44 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

Definition. The notion of a strictly positive part (s.p.p) of a predicate
or formula C is defined inductively.

(a) C is a strictly positive part of C.
(b) If I is a strictly positive part of C and A a premise of a non-recursive

clause of I then A is a strictly positive part of C.

(c) If { ⃗̂x | A(⃗̂x ) } is a strictly positive part of C then so is A(⃗t ).
(d) If A→ B is a strictly positive part of C then so is B.
(e) If ∀x̂A(x̂) is a strictly positive part of C then so is A(t).

Theorem 3.3.5 (Ex-falso-quodlibet). Let C be a predicate or formula.
TCF proves {

∀⃗̂x(F→ P⃗̂x ) if C is a predicate P

F→ A if C is a formula A

from assumptions{
∀⃗̂x(F→ Y ⃗̂x ) if Y is a predicate variable strictly positive in C

∀⃗̂x(F→ I⃗̂x ) if I has no non-recursive clause and is a s.p.p. of C

Proof. By Lemma 3.3.2 we have EfEqD : F→ x̂τ ≡ ŷτ . The claim can
now be proved by induction on C.

Case Is⃗. If I has no non-recursive clause we can use the assumption

∀⃗̂x(F → I⃗̂x ). Otherwise let Ki be a non-recursive clause, with final con-

clusion It⃗. By induction hypothesis from F we can derive all parameter
premises. Hence It⃗. From F we also obtain si ≡ ti, by the remark above.
Hence Is⃗ by compatibility.

Case coIs⃗. Use Lemma 3.3.3. The cases Y s⃗, A → B and ∀x̂A are
obvious. □

3.4. Equality and extensionality

Equality at closed base types of level 0 is easy to handle. For simplicity
we only consider the type Y of binary trees. Recall that our theory TCF has
an intended model, determined by the ideals of the information systems Aτ .
We have seen in the Bisimilarity Lemma 2.2.1 (on page 19) that for closed
base types bisimilarity implies equality, which in TCF is formalized by the
inductively defined Leibniz equality EqD. Therefore we take as an axiom:

Axiom (Bisimilarity). For every closed base type bisimilarity implies
Leibniz equality.

This axiom is justified by the fact that it holds in our intended model.
As a consequence we can prove in TCF

Proposition 3.4.1 (Characterization of equality at TY and coTY).
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(a) ∀x,x′(x ∼Y x′ ↔ x, x′ ∈ TY ∧ x ≡ x′).
(b) ∀x,x′(x ≈Y x′ ↔ x, x′ ∈ coTY ∧ x ≡ x′).

Proof. (b). The proof of Proposition 2.2.2 relies on Lemma 2.2.1,
which we just added as an axiom. The rest of the proof uses poperties
of coTY and ≈Y available in TCF.

(a). Similar to (b), using T±
Y , ∼±

Y instead. For the proof of x ∼Y x′ →
x ≡ x′ use (b) and ∼Y ⊆ ≈Y (which follows from Lemma 3.3.3). □

This characterization of equality at TY and coTY is useful because it gives
us a tool (induction, coinduction) to prove equalities t ≡ t′, which otherwise
would be difficult.

Corollary 3.4.2.

(a) ∀x(x ∼Y x↔ x ∈ TY).
(b) ∀x(x ≈Y x↔ x ∈ coTY).

Proof. Immediate from Proposition 3.4.1. □

Corollary 3.4.3.

(a) ∼Y is an equivalence relation on TY.
(b) ≈Y is an equivalence relation on coTY.

Proof. Immediate from Proposition 3.4.1. □

Remark. For closed base types like Y we can also relate ∼Y to the
binary boolean-valued function =Y : Y → Y → B defined in Section 2.3.1.
One easily proves that

∀x(x ∈ TY → x = x),

∀x(x ∈ TY → ∀y(y ∈ TY → x = y → x ∼Y y)).

Usage of =Y has the advantage that proofs may become shorter, since we
identify terms with a common reduct. Pointwise equality

.
=Y is defined to

be ∼Y.

Up to now we have mainly dealt with base types. However, our theory
TCF allows function types as well. We extend the notions of totality and
pointwise equality from base types to function types. For simplicity we only
consider parameter-free types.

Definition (Totality and pointwise equality for function types).

(f ∈ Tτ→σ) := ∀x(x ∈ Tτ → fx ∈ Tσ),

(f
.
=τ→σ g) := f, g ∈ Tτ→σ ∧ ∀x,y(x

.
=τ y → fx

.
=σ gy).

Extensionality is defined as diagonalization of pointwise equality:
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Definition (Extensionality).

(x ∈ Extτ ) := (x
.
=τ x).

Example (A non-extensional functional). Define f, g of type N→ N by
the computation rules fn = 0 and g0 = 0, g(Sn) = gn. Then f⊥N = 0
because of the computation rules for f . For g⊥N no computation rule fits,

but because of the inductive definition of (U⃗ , a) ∈ [[λx⃗M ]] in Section 2.4
(page 77) [[g⊥N]] is the empty ideal [[⊥N]]. Hence f

.
= g, i.e., f, g ∈ TN→N

and ∀n,m(n
.
=N m → fn

.
=N gm). The latter holds since n

.
=N m implies

n ∈ TN and n ≡ m. Therefore the functional F defined by Fh = h⊥N maps
the pointwise equal f, g to different values.

By Corollary 3.4.2 (page 45) we know the equivalence of ExtY and TY;
this also holds for arbitrary closed base types. This equivalence can be
extended to closed types of level 1:

Lemma 3.4.4. The predicates Extτ and Tτ are equivalent for closed types
of level ≤1.

Proof. For closed base types this has been proved in Corollary 3.4.2
(for the special case of the base type Y). In case of level 1 we use induction
on the height of the type, defined by

|τ → σ| := 1 + max{|τ |, |σ|}
Let τ → σ be a closed type of level 1. The following are equivalent.

f ∈ Extτ→σ

f
.
=τ→σ f

∀x,y(x
.
=τ y → fx

.
=σ fy)

∀x∈Tτ (fx
.
=σ fx) by Corollary 3.4.2, since lev(τ) = 0

∀x∈Tτ (fx ∈ Extσ).

By induction hypothesis the final formula is equivalent to f ∈ Tτ→σ. □

For arbitrary closed types τ the relation
.
=τ is a “partial equivalence

relation”, which means the following.

Lemma 3.4.5. For every closed type τ the relation
.
=τ is an equivalence

relation on Extτ .

Proof. By induction on the height |τ | of τ . Case ι. Use Corollary 3.4.3.
Case τ → σ. We first prove symmetry of

.
=τ→σ. Let f

.
=τ→σ g. The

goal is g
.
=τ→σ f . Assume x

.
=τ y. The goal now is gx

.
=σ fy. From x

.
=τ y

we obtain y
.
=τ x by symmetry of

.
=τ , hence fy

.
=σ gx from f

.
=τ→σ g,

hence gx
.
=σ fy by symmetry of

.
=σ.
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We finally prove transitivity of
.
=τ→σ. Let f

.
=τ→σ g and g

.
=τ→σ h.

The goal is f
.
=τ→σ h. Assume x

.
=τ y. The goal now is fx

.
=σ hy. From

x
.
=τ y we obtain y

.
=τ x by symmetry of

.
=τ , hence x

.
=τ x by transitivity

of
.
=τ . Then fx

.
=σ gx follows from f

.
=τ→σ g. We also have gx

.
=σ hy from

g
.
=τ→σ h. Using transitivity of

.
=σ we obtain fx

.
=σ hy. □

Lemma 3.4.6 (Compatibility of terms). For every term t(x⃗ ) with exten-
sional constants and free variables among x⃗ we have

∀x⃗,y⃗(x⃗
.
=ρ⃗ y⃗ → t(x⃗ )

.
=τ t(y⃗ )).

Proof. This is proved by induction on t. Case x. Immediate. Case
c. By assumption c

.
=τ c. Case λxt(x, x⃗ ). Let x⃗

.
=ρ⃗ y⃗. The goal is

λxt(x, x⃗ )
.
=τ→σ λxt(x, y⃗ ), which by definition means

∀x,y(x
.
=τ y → t(x, x⃗ )

.
=σ t(y, y⃗ )).

Assume x
.
=τ y. With x⃗

.
=ρ⃗ y⃗ the claim t(x, x⃗ )

.
=σ t(y, y⃗ ) holds by the IH.

Case t(x⃗ )s(x⃗ ). Let x⃗
.
=ρ⃗ y⃗. By IH we have t(x⃗ )

.
=τ→σ t(y⃗ ), i.e.,

∀x,y(x
.
=τ y → t(x⃗ )x

.
=σ t(y⃗ )y).

Again by IH we have s(x⃗ )
.
=τ s(y⃗ ). Hence t(x⃗ )s(x⃗ )

.
=σ t(y⃗ )s(y⃗ ). □

Lemma 3.4.7 (Extensionality of terms). For every term t(x⃗ ) with ex-
tensional constants and free variables among x⃗ we have

∀x⃗(x⃗ ∈ Extρ⃗ → t(x⃗ ) ∈ Extτ ).

Proof. Let t(x⃗ ) with free variables among x⃗ be given, and assume
x⃗ ∈ Extρ⃗. By Lemma 3.4.6 applied to x⃗, x⃗ we obtain t(x⃗ )

.
=τ t(x⃗ ), hence

t(x⃗ ) ∈ Extτ . □





CHAPTER 4

Computational content of proofs

We have already mentioned that (co)inductive predicates can be de-
clared as either computationally relevant (c.r.) or non-computational (n.c.).
But what is the computational content in the c.r. case? We first address
this question for (co)inductive predicates, and then extend it to arbitrary
formulas. Next we study in what sense a proof of a c.r. formula A provides
us with concrete computational content. This can be seen as a “witness”
for the validity of A, or – in the sense of Kolmogorov (1932) – a “solution”
to problem A.

Finally we take a step back and reflect on what we have done. We
formally define what it means for a term to “realize” the c.r. formula A. We
extract from a proof M of A a term et(M) and (again formally) prove that
it is a realizer of A. In this proof we need “invariance axioms” stating that
every c.r. formula not involving realizability is invariant under realizability,
formally A↔ ∃z(z r A), where z r A means “z realizes A”.

4.1. Realizers

Assume that we have a global assignment giving for every c.r. predicate
variable X of arity ρ⃗ an n.c. predicate variable Xr of arity (ρ⃗, ξ) where ξ
is the type variable associated with X. We will also introduce Ir/coIr for
(co)inductive predicates I/coI. A formula or predicate C is called r-free if it
does not contain any of these Xr, Ir or coIr. A derivation M is called r-free
if it contains r-free formulas only.

Definition (Cr for r-free predicates and formulas C). For every r-free
predicate or formula C we define a predicate or formula Cr. For n.c. C let
Cr := C. In case C is c.r. Cr is an n.c. predicate of arity (σ⃗, τ(C)) with σ⃗
the arity of C. We often write z r C for Crz in case C is a c.r. formula. For
c.r. predicates X let Xr be the n.c. predicate variable provided, and

{ x⃗ | A }r := { x⃗, z | z r A }.

Now consider a c.r. (co)inductive predicate

I/coI := (µ/ν)X((Ki(X))i<k
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with associated base type ιI given by the constructor types (κi(ξ))i<k where
κi(ξ) := τ(Ki(X)). The i-th constructor of ιI is Ci : κi(ιI). Let s be a
variable of type τ(I) and ϑ the substitution ξ 7→ τ(I), Xr 7→ { x⃗, s | Y x⃗s }.
We define n.c. predicates Ir and coIr by

Ir/coIr := (µ/ν)Y ((Ci r Ki(X))ϑ)i<k.

The substitution ϑ is necessary since the arity of Y (and hence of Ir/coIr)
must be (ρ⃗, τ(I)) and not (ρ⃗, ξ). For c.r. formulas let

z r P t⃗ := P rt⃗z,

z r (A→ B) :=

{
∀w(w r A→ zw r B) if A is c.r.

A→ z r B if A is n.c.

z r ∀xA := ∀x(z r A).

Example. As an easy example for the construction of Ir consider the
predicate Even, defined by µX(K0(X),K1(X)) with K0(X) := (0 ∈ X) and
K1(X) := ∀n(n ∈ X → S(Sn) ∈ X). The associated base type ιEven is
given by the constructor types κ0(ξ) := ξ and κ1(ξ) := ξ → ξ, i.e., ιEven = N
with constructors C0 := 0 and C1 := S. Let ϑ be the substitution ξ 7→ N,
Xr 7→ {n,m | Y nm }. Since S r K1(X) is ∀n,m(Xrnm → Xr(S(Sn), Sm))
we obtain

Ir := µY (Y 00,∀n,m(Y nm→ Y (S(Sn), Sm)).

We express Kolmogorov’s view of formulas as problems by means of
invariance axioms:

Axiom (Invariance under realizability). For r-free c.r. formulas A we
require as axioms

InvAllA : ∀z(z r A→ A).(16)

InvExA : A→ ∃z(z r A).(17)

Realizers of totality and cototality predicates will be of special interest
for us. Notice that the types τ(Tι) and τ(coTι) are both ι. Moreover we
have

Lemma 4.1.1 (Realizers of totality). For closed base types ι the following
are equivalent.

(a) T r
ι xy,

(b) x ∼nc
ι y,

(c) x ∈ T nc
ι ∧ x ≡ y.

Proof. (a)↔ (b). Both T r
ι xy and x ∼nc

ι y satify the same clauses. Use
the respective elimination axiom in each of the two directions.

(b) ↔ (c). Use Corollary 3.4.2 (page 45). □
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Lemma 4.1.2 (Realizers of cototality). For closed base types ι the fol-
lowing are equivalent.

(a) coT r
ι xy,

(b) x ≈nc
ι y,

(c) x ∈ coT nc
ι ∧ x ≡ y.

Proof. As an example we give the proof for N. Since we have n.c. goals
only, decorations are omitted.

(a) → (b). We use the greatest-fixed-point axiom for ≈N:

∀n,m(Xnm→ (n ≡ 0 ∧m ≡ 0) ∨
∃n′,m′((n′ ≈N m′ ∨Xn′m′) ∧ n ≡ Sn′ ∧m ≡ Sm′))→ X ⊆ ≈N

and apply it with coT r
N for X. It suffices to prove the premise. Assume

coT r
Nnm; the goal is

C := (n ≡ 0∧m ≡ 0)∨∃n′,m′((n′ ≈N m′ ∨ coT r
Nn

′m′)∧n ≡ Sn′ ∧m ≡ Sm′).

By the closure axiom (coT r
N)

− we have

(n ≡ 0 ∧m ≡ 0) ∨ ∃n′,m′(coT r
Nn

′m′ ∧ n ≡ Sn′ ∧m ≡ Sm′).

We argue by cases (i.e., use ∨−).
Case 1. n ≡ 0 ∧m ≡ 0. Go for the l.h.s. of the disjunction C.
Case 2. ∃n′,m′(coT r

Nn
′m′ ∧ n ≡ Sn′ ∧m ≡ Sm′). Go for the r.h.s. of C.

(b) → (a). Recall coTN := νX(0 ∈ X, ∀n∈X(Sn ∈ X)), hence by defini-
tion

coT r
N := νXr(Xr00, ∀n,m(Xrnm→ Xr(Sn)(Sm))).

We need to show n ≈N m→ coT r
Nnm. To this end we use the greatest-fixed-

point axiom for coT r
N:

∀n,m(Xnm→ (n ≡ 0 ∧m ≡ 0) ∨
∃n′,m′(n′,m′ ∈ (coT r

N ∪X) ∧ n ≡ Sn′ ∧m ≡ Sm′))→ X ⊆ coT r
N

and apply it with ≈N for X. It suffices to prove the premise. Assume
n ≈N m; the goal is

C := (n ≡ 0∧m ≡ 0)∨∃n′,m′((n′,m′ ∈ (coT r
N ∪≈N)∧n ≡ Sn′ ∧m ≡ Sm′)).

By the closure axiom (≈N)
− we have

n ≈N m→ (n ≡ 0 ∧m ≡ 0) ∨ ∃n′,m′(n′ ≈N m′ ∧ n ≡ Sn′ ∧m ≡ Sm′).

We argue by cases (i.e., use ∨−).
Case 1. n ≡ 0 ∧m ≡ 0. Go for the l.h.s. of the disjunction C.
Case 2. ∃n′,m′(n′ ≈N m′ ∧ n ≡ Sn′ ∧m ≡ Sm′). Go for the r.h.s. of C.
(b) ↔ (c). Use the Bisimilarity axiom and Proposition 3.4.1 (page 44).

□
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Next we study what our general definition says about realizers for the
c.r. inductively defined decorated connectives.

Recall that for the sum type ρ+σ we had the constructors (InLρσ)
ρ→ρ+σ

and (InRρσ)
σ→ρ+σ. In the special situation that one of the two parameter

types is the unit type U it is common to view the sum type U + σ as a
unary algebra form, with constructors DummyL of type U + σ and Inr of
type σ → U + σ. Similarly ρ + U is viewed as a unary algebra form, with
constructors Inl of type ρ→ ρ+ U and DummyR of type ρ+ U.

Lemma 4.1.3 (Realizers for ∨). z r (A ∨B) is equivalent to

∃x(x r A ∧ z ≡ InL(x)) ∨nc ∃y(y r B ∧ z ≡ InR(y)) for A,B c.r.

∃x(x r A ∧ z ≡ Inl(x)) ∨nc (B ∧ z ≡ DummyR) for A c.r. and B n.c.

(A ∧ z ≡ DummyL) ∨nc ∃y(y r B ∧ z ≡ Inr(y)) for A n.c. and B c.r.

(A ∧ z ≡ tt) ∨nc (B ∧ z ≡ ff) for A,B n.c.

Proof. As an example we consider the case A n.c. and B c.r. Recall
OrRXnc,Y c := µZ(X

nc → Z, Y c → Z). Then

OrRr
Xnc,Y r := µZr(Xnc → DummyL ∈ Zr,∀y(y r Y → Inr(y) ∈ Zr)).

Now substituting Xnc by A and Y r by { y | y r B } in the introduction
axioms gives

(OrRr
A,{y|yrB})

+
0 : A→ DummyL r (A ∨B),

(OrRr
A,{y|yrB})

+
1 : ∀y(y r B → Inr(y) r (A ∨B)).

This suffices for “←”: if A ∧ z ≡ DummyL, then from (OrRr
A,{y|yrB})

+
0 we

obtain z r (A ∨ B), and if we have y with y r B and z ≡ Inr(y), then from
(OrRr

A,{y|yrB})
+
1 we again obtain z r (A ∨B).

Conversely, the elimination axiom (OrRr
Xnc,Y r)− is

(Xnc → DummyL ∈ Z)→ ∀y(y r Y → Inr(y) ∈ Z)→ OrRr
Xnc,Y r ⊆ Z.

Substitute Z by { z | (A∧ z ≡ DummyL)∨nc ∃y(y r B ∧ z ≡ Inr(y)) }. Then
with A for Xnc and { y | y r B } for Y r the two premises become provable
and we obtain

∀z(z r (A ∨B)→ (A ∧ z ≡ DummyL) ∨nc ∃y(y r B ∧ z ≡ Inr(y))). □

Similarly we have

Lemma 4.1.4 (Realizers for ∧). z r (A ∧B) is equivalent to

z ≡ ⟨lft(z), rht(z)⟩ ∧ (lft(z) r A) ∧ (rht(z) r B) for A c.r. and B c.r.

(z r A) ∧B for A c.r. and B n.c.

A ∧ (z r B) for A n.c. and B c.r.



4.1. REALIZERS 53

Proof. Case A,B c.r. Recall AndDXc,Y c := µZc(Xc → Y c → Zc).
Then

AndDr
Xr,Y r := µZr(∀x(x ∈ Xr → ∀y(y ∈ Y r → ⟨x, y⟩ ∈ Zr))).

Now substituting Xr by {x | x r A } and Y r by { y | y r B } in the
introduction axiom gives

(AndDr
{x|xrA},{y|yrB})

+
0 : ∀x((x r A)→ ∀y(y r B → ⟨x, y⟩ r (A ∧B))).

This suffices for “←”. Conversely, the elimination axiom (AndDr
Xr,Y r)− is

∀x(x ∈ Xr → ∀y(y ∈ Y r → ⟨x, y⟩ ∈ Z))→ AndDr
Xr,Y r ⊆ Z.

Substitute Z by { z | z ≡ ⟨lft(z), rht(z)⟩ ∧ (lft(z) r A)∧ (rht(z) r B) }. Then
with {x | x r A } for Xr and { y | y r B } for Y r the premise is provable and
we obtain

∀z(z r (A ∧B)→ z ≡ ⟨lft(z), rht(z)⟩ ∧ (lft(z) r A) ∧ (rht(z) r B)).

Case A c.r. and B n.c. Recall AndLXc,Y nc := µZc(Xc → Y nc → Zc).
Then

AndLr
Xr,Y nc := µZr(∀z(z r X → Y nc → z ∈ Zr)).

Now substituting Xr by { z | z r A } and Y nc by B in the introduction
axiom gives

(AndLr
{z|zrA},B)

+
0 : ∀z((z r A)→ B → z r (A ∧B)).

This suffices for “←”. Conversely, the elimination axiom (AndLr
X,Y nc)− is

∀z(z r X → Y nc → z ∈ Z)→ AndLr
X,Y nc ⊆ Z.

Substitute Z by { z | (z r A) ∧B }. Then with { z | z r A } for X and B for
Y nc the premise is provable and we obtain

∀z(z r (A ∧B)→ (z r A) ∧B). □

Lemma 4.1.5 (Realizers for ∃). z r ∃xA↔ ∃x(z r A) for A c.r.

Proof. Recall ExY := µX(∀x(x ∈ Y → X)). Then

ExrY r := µXr(∀x,z(Y rxz → Xrz)).

Now substituting Y r by {x, z | z r A } in the introduction axiom gives

(Exr{x,z|zrA})
+
0 : ∀x,z(z r A→ z r ∃xA)

Conversely, the elimination axiom (ExrY r)− is

∀z(z ∈ ExrY r → ∀x,z(Y rxz → z ∈ X)→ z ∈ X).

which is equivalent to

∀z(z ∈ ExrY r → ∀z(∃xY rxz → z ∈ X)→ z ∈ X).
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Substituting X by { z | ∃x(Y rxz) } makes the middle part provable. Thus
with {x, z | z r A } for Y r we obtain ∀z(z r ∃xA → ∃x(z r A)) from
(Exr{x,z|zrA})

−. □

4.2. Extracted terms, soundness

Let M be a proof in TCF of a c.r. formula A. Assume M is an r-free
proof, i.e., M contains no realizability predicates Ir or coIr. We define its
extracted term et(M), of type τ(A), with the aim to express M ’s compu-
tational content. It will be a term built up from variables, constructors,
recursion operators, destructors and corecursion operators by λ-abstraction
and application.

Definition (Extracted term). For an r-free proof M of a c.r. formula
A we define its extracted term et(M) by

et(uA) := zτ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAMB)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).

It remains to define extracted terms for the axioms. Consider a (c.r.) in-
ductively defined predicate I. For its introduction and elimination axioms
define

et(I+i ) := Ci,

et(I−) := R,

where both the constructor Ci and the recursion operatorR refer to the base
type ιI associated with I. For the closure and greatest-fixed-point axioms
of coI define

et(coI−) := D,
et(coI+i ) := coR,

where again both the destructor D and the corecursion operator coR refer
to the base type ιI associated with I. For the elimination axiom (Inc)−

of a one-clause-nc inductive predicate with a c.r. competitor predicate the
extracted term is the identity.
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From the Soundness Theorem 4.2.1 below it will follow that the term
extracted from a closed r-free proof of a c.r. formula A realizes A. As a
preparation we first attend the axioms. Let I be an inductive predicate and
ιI its associated base type. One can show that the extracted term of I±,
coI± realizes the respective axiom1. Proofs of these facts are automatically
generated in Minlog.

Theorem 4.2.1 (Soundness). Let M be an r-free derivation of a formula
A from assumptions ui : Ci ( i < n). Then we can derive{

et(M) r A if A is c.r.

A if A is n.c.

from assumptions {
zui r Ci if Ci is c.r.

Ci if Ci is n.c.

Proof. Case u : A. Subcase A c.r. Then et(u) = zu. Subcase A n.c.
Immediate.

Case c : A. Subcase A c.r. The axioms have been treated above. Subcase
A n.c. Immediate.

Case (λuAMB)A→B with B c.r. We must derive et(λuM) r (A → B).
To this end we distinguish subcases. Subcase A c.r. Then the goal

∀z(z r A→ et(M)(z) r B)

follows from the induction hypothesis by →+ and ∀+.
Subcase A n.c. Then the goal is

A→ et(λuM) r B.

Recall that et(λuM) = et(M). By induction hypothesis we have a derivation
of et(M) r B from A, which is what we want.

Case (λuAMB)A→B with B n.c. We need a derivation of A→ B.
Subcase A c.r. By induction hypothesis we have a derivation of B from

z r A. Using the invariance axiom A → ∃z(z r A) we obtain the required
derivation of B from A as follows.

A→ ∃z(z r A) A

∃z(z r A)

[z r A]

| IH
B
∃−B

Subcase A n.c. By induction hypothesis we have a derivation of B from A,
which is what we want.

1In Appendix C such proofs for some (co)inductive predicates are written out.
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Case (MA→BNA)B with B c.r. We need a derivation of et(MN) r
B. To this end we distinguish subcases. Subcase A c.r. Then et(MN) =
et(M)et(N). By induction hypothesis we have derivations of et(M) r (A→
B) and hence of

∀z(z r A → et(M)z r B)

and of et(N) r A. This gives the claim. Subcase A n.c. Then et(MN) =
et(M). By induction hypothesis we have derivations of et(M) r (A → B)
and hence of

A → et(M) r B

and of A. Applying the former to the latter gives et(M) r B.
Case (MA→BNA)B with B n.c. The goal is to find a derivation of B.

Subcase A c.r. By induction hypothesis we have derivations of A → B and
of et(N) r A. Now using the invariance axiom ∀z(z r A→ A) we obtain the
required derivation of B by →− from the derivation of A→ B and

∀z(z r A→ A) et(N)

et(N) r A→ A

| IH
et(N) r A

A
Subcase A n.c. By induction hypothesis we have derivations of A→ B and
of A, hence also a derivation of B.

Case (λxM
A)∀xA with ∀xA c.r. We need a derivation of et(λxM) r ∀xA.

By definition et(λxM) = et(M). Hence we must derive

et(M) r ∀xA, which is ∀x(et(M) r A).

This follows from the induction hypothesis.
Case (λxM

A)∀xA with ∀xA n.c. By induction hypothesis we have a
derivation of A. Apply ∀+.

Case (M∀xA(x)t)A(t) with A(t) c.r. We must derive et(Mt) r A(t). By
definition et(Mt) = et(M), and by induction hypothesis we can derive

et(M) r ∀xA(x), which is ∀x(et(M) r A(x)).

Case (M∀xA(x)t)A(t) with A(t) n.c. By induction hypothesis we have a
derivation of ∀xA(x). Apply ∀−. □



CHAPTER 5

Real analysis

We are interested in exact real numbers, as opposed to floating point
numbers. The final goal is to develop the basics of real analysis in such a
way that from a proof of an existence formula one can extract a program. For
instance, from a proof of the intermediate value theorem we want to extract
a program that, given an arbitrary error bound 1

2p , computes a rational x
where the given function is zero up to the error bound.

5.1. Exact real arithmetic

5.1.1. Cauchy sequences, equality. We shall view a real as a Cauchy
sequence of rationals with a separately given modulus.

Definition 5.1.1. A real number x is a pair ((an)n∈N,M) with an ∈ Q
and M : P→ N such that (an)n is a Cauchy sequence with modulus M , that
is

|an − am| ≤
1

2p
for n,m ≥M(p)

and M is weakly increasing (that is M(p) ≤ M(q) for p ≤ q). M is called
Cauchy modulus of x.

We shall loosely speak of a real (an)n if the Cauchy modulus M is clear
from the context or inessential. Every rational a is tacitly understood as the
real represented by the constant sequence an = a with the constant modulus
M(p) = 0.

Definition 5.1.2. Two reals x := ((an)n,M), y := ((bn)n, N) are called
equivalent (or equal and written x = y, if the context makes clear what is
meant), if

|aM(p+1) − bN(p+1)| ≤
1

2p
for all p ∈ P.

We want to show that this is an equivalence relation. Reflexivity and
symmetry are clear. For transitivity we use the following lemma:

Lemma 5.1.3 (RealEqChar). For reals x := ((an)n,M), y := ((bn)n, N)
the following are equivalent:

(a) x = y;

57
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(b) ∀p∃n0∀n≥n0(|an − bn| ≤ 1
2p ).

Proof. (a) implies (b). For n ≥M(p+ 2), N(p+ 2) we have

|an − bn| ≤ |an − aM(p+2)|+ |aM(p+2) − bN(p+2)|+ |bN(p+2) − bn|

≤ 1

2p+2
+

1

2p+1
+

1

2p+2
.

(b) implies (a). Let q ∈ P, and n ≥ n0,M(p + 1), N(p + 1) with n0

provided for q by (b). Then

|aM(p+1) − bN(p+1)| ≤ |aM(p+1) − an|+ |an − bn|+ |bn − bN(p+1)|

≤ 1

2p+1
+

1

2q
+

1

2p+1
.

The claim follows, because this holds for every q ∈ P. □

Remark 5.1.4 (RealSeqEqToEq). An immediate consequence is that
any two reals with the same Cauchy sequence (but possibly different moduli)
are equal.

Lemma 5.1.5 (RealEqTrans). Equality between reals is transitive.

Proof. Let (an)n, (bn)n, (cn)n be the Cauchy sequences for x, y, z. As-
sume x = y, y = z and pick n1, n2 for p+ 1 according to the lemma above.
Then |an − cn| ≤ |an − bn|+ |bn − cn| ≤ 1

2p+1 + 1
2p+1 for n ≥ n1, n2. □

5.1.2. The Archimedian property. For every function on the reals
we certainly want compatibility with equality. This however is not always
the case; here is an important example.

Lemma 5.1.6 (RealBound). For every real x := ((an)n,M) we can find
px such that |an| ≤ 2px for all n.

Proof. Let n0 := M(1) and px be such that max{ |an| | n ≤ n0 }+ 1
2 ≤

2px . Then |an| ≤ 2px for all n. □

Clearly this assignment of px to x is not compatible with equality.

5.1.3. Nonnegative and positive reals. A real x := ((an)n,M) is
called nonnegative (written x ∈ R0+) if

− 1

2p
≤ aM(p) for all p ∈ P.

It is p-positive (written x ∈p R+, or x ∈ R+ if p is not needed) if

1

2p
≤ aM(p+1).

We want to show that both properties are compatible with equality.
First we prove a useful characterization of nonnegative reals.
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Lemma 5.1.7 (RealNNegChar). For a real x := ((an)n,M) the following
are equivalent:

(a) x ∈ R0+;
(b) ∀p∃n0∀n≥n0(− 1

2p ≤ an).

Proof. (a) implies (b). For n ≥M(p+ 1) we have

− 1

2p
≤ − 1

2p+1
+ aM(p+1)

= − 1

2p+1
+ (aM(p+1) − an) + an

≤ − 1

2p+1
+

1

2p+1
+ an.

(b) implies (a). Let q ∈ P and n ≥ n0,M(p) with n0 provided by (b)
(for q). Then

− 1

2p
− 1

2q
≤ − 1

2p
+ an

= − 1

2p
+ (an − aM(p)) + aM(p)

≤ − 1

2p
+

1

2p
+ aM(p).

The claim follows, because this holds for every q. □

Lemma 5.1.8 (RealNNegCompat). If x = y and x ∈ R0+, then y ∈ R0+.

Proof. Let x := ((an)n,M) and y := ((bn)n, N). Assume x ∈ R0+

and x = y, and let p be given. Pick n0 according to the lemma above
and n1 according to the characterization of equality of reals in Lemma 5.1.3
(RealEqChar) (both for p+ 1). Then for n ≥ n0, n1

− 1

2p
≤ − 1

2p+1
+ an ≤ (bn − an) + an.

Hence y ∈ R0+ by definition. □

Lemma 5.1.9 (RealPosChar). For a real x := ((an)n,M) the following
are equivalent:

(a) x ∈p R+ → ∀n(M(p+ 1) ≤ n→ 1
2p+1 ≤ an).

(b) ∀n≥n0(
1
2q ≤ an)→ x ∈q+1 R+.

Proof. (a) implies (b). Assume x ∈p R+, that is 1
2p ≤ aM(p+1). Then

for M(p+ 1) ≤ n we have

1

2p+1
≤ − 1

2p+1
+ aM(p+1) = −

1

2p+1
+ (aM(p+1) − an) + an ≤ an.
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(b) implies (a). Assume ∀n≥n0(
1
2q ≤ an).

1

2q+1
< − 1

2q+2
+

1

2q

≤ − 1

2q+2
+ an for n0 ≤ n

≤ (aM(q+2) − an) + an for M(q + 2) ≤ n.

Hence x ∈q+1 R+. □

5.1.4. Arithmetical functions. Given real numbers x := ((an)n,M)
and y := ((bn)n, N), we define x + y, −x, |x|, x · y, and 1

x (the latter only
provided that |x| ∈q R+) as represented by the respective sequence (cn) of
rationals with modulus L:

cn L(p)

x+ y an + bn max
(
M(p+ 1), N(p+ 1)

)
−x −an M(p)
|x| |an| M(p)
x · y an · bn max

(
M(p+ 1 + py), N(p+ 1 + px)

)
1
x for |x| ∈q R+

{
1
an

if an ̸= 0

0 if an = 0
M(2(q + 1) + p)

where 2px is the upper bound provided by Lemma 5.1.6 (RealBound).

Lemma 5.1.10. For reals x, y also x+y, −x, |x|, x ·y and (provided that
|x| ∈q R+) also 1/x are reals.

Proof. We restrict ourselves to the cases x · y and 1/x.

|anbn − ambm| = |an(bn − bm) + (an − am)bm|
≤ |bn − bm| · |an|+ |an − am| · |bm|

≤ |bn − bm| · 2px + |an − am| · 2py ≤
1

2p

for n,m ≥ max
(
M(p+ 1 + py), N(p+ 1 + px)

)
.

For 1/x assume |x| ∈q R+. Then by the (proof of our) characterization
of positivity in Lemma 5.1.9 (RealPosChar), 1

2q+1 ≤ |an| for n ≥ M(q + 1).
Hence ∣∣∣ 1

an
− 1

am

∣∣∣ = |am − an|
|anam|

≤ 22(q+1)|am − an| for n,m ≥M(q + 1)

≤ 1

2p
for n,m ≥M(2(q + 1) + p).

The claim now follows from the assumption that M is weakly increasing. □
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Lemma 5.1.11. For reals x, y, z

x+ (y + z) = (x+ y) + z

x+ 0 = x

x+ (−x) = 0

x+ y = y + x

x · (y · z) = (x · y) · z
x · 1 = x

0 < |x| → x · 1
x
= 1

x · y = y · x
x · (y + z) = x · y + x · z

Proof. For 0 < |x| → x · 1x = 1 the Cauchy sequences are finally the
same, which suffices. In all other cases both the Cauchy sequences and the
moduli are the same, hence both sides are actually identical. □

Lemma 5.1.12. The functions x + y, −x, |x|, x · y and (provided that
|x| ∈q R+) also 1/x are compatible with equality.

Proof. Routine. For instance in case x + y because of the commuta-
tivity of + it suffices to prove x = y → x + z = y + z. But this follows
immediately from Lemma 5.1.3 (RealEqChar): the n0 for the conclusion
can be the same as for the premise. □

Lemma 5.1.13. For reals x, y from x · y = 1 we can infer 0 < |x|.

Proof. Pick p such that |bn| ≤ 2p for all n. Pick n0 such that n0 ≤ n
implies 1

2 ≤ an ·bn. Then 1
2 ≤ |an| ·2

p for n0 ≤ n, and hence 1
2p+1 ≤ |an|. □

Lemma 5.1.14. For reals x, y,

(a) x, y ∈ R0+ → x+ y, x · y ∈ R0+,
(b) x, y ∈ R+ → x+ y, x · y ∈ R+,
(c) x ∈ R0+ → −x ∈ R0+ → x = 0.

Proof. (a), (b). Routine. (c). Let p be given. Pick n0 such that
− 1

2p ≤ an and − 1
2p ≤ −an for n ≥ n0. Then |an| ≤ 1

2p . □

5.1.5. Comparison of reals. We write x ≤ y for y − x ∈ R0+ and
x < y for y − x ∈ R+. Unwinding the definitions yields that x ≤ y is to
say that for every p, aL(p) ≤ bL(p) +

1
2p with L(p) := max(M(p), N(p)), or

equivalently (using Lemma 5.1.7 (RealNNegChar)) that for every p there
exists n0 such that an ≤ bn + 1

2p for all n ≥ n0. Furthermore, x < y is

a shorthand for the presence of p with aL(p+1) +
1
2p ≤ bL(p+1) with L the

maximum of M and N , or equivalently (using Lemma 5.1.9 (RealPosChar))
for the presence of p, q with an+

1
2p ≤ bn for all n ≥ q; we then write x <p y

(or x <p,q y) whenever we want to call these witnesses.

Lemma 5.1.15 (RealPosLe). If x ≤ y and x ∈p R+, then y ∈p+2 R+.
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Proof. Easy. Demo in Minlog. □

Lemma 5.1.16 (RealPosSemiCompat). If x = y and x ∈p R+, then we
have y ∈p+2 R+.

Proof. Easy consequence of Lemma 5.1.15. Demo in Minlog. □

Lemma 5.1.17 (RealApprox). ∀x,p∃a(|a− x| ≤ 1
2p ).

Proof. Let x = ((an),M). Given p, pick aM(p). We show |aM(p)−x| ≤
1
2p , that is |aM(p) − aM(q)| ≤ 1

2p + 1
2q for every q. But this follows from

|aM(p) − aM(q)| ≤ |aM(p) − aM(p+q)|+ |aM(p+q) − aM(q)| ≤
1

2p
+

1

2q
. □

Lemma 5.1.18. For reals x, y, z,

x ≤ x

x ≤ y → y ≤ x→ x = y

x ≤ y → y ≤ z → x ≤ z

x ≤ y → x+ z ≤ y + z

x ≤ y → 0 ≤ z → x · z ≤ y · z

x ̸< x

x < y → y < z → x < z

x < y → x+ z < y + z

x < y → 0 < z → x · z < y · z

Proof. From Section 5.1.4. □

Here we have left out information on witnesses p for statements proving
a <-formula. Such estimates can easily be given explicitly. Examples:

Lemma 5.1.19 (RealPosPlus). 0 ≤ x→ 0 <p y → 0 <p+3 x+ y.

Proof. From 0 ≤ x we have ∀q∃n0∀n≥n0(− 1
2q ≤ an). From 0 <p y we

have some n1 such that ∀n≥n1(
1

2p+1 ≤ bn). Pick n0 for p+2. Then n0, n1 ≤ n

implies 0 ≤ an + 1
2p+2 and 1

2p+2 ≤ bn − 1
2p+2 , hence

1
2p+2 ≤ an + bn. Now

Lemma 5.1.9 (RealPosChar) gives 0 <p+3 x+ y. □

Lemma 5.1.20. x ≤ y → y <p z → x <p+5 z.

Proof. This follows from Lemma 5.1.19 (RealPosPlus). □

As is to be expected in view of the existential and universal character of
the predicates < and ≤ on the reals, we have:

Lemma 5.1.21 (LeIsNotGt). x ≤ y ↔ y ̸< x.

Proof. →. Assume x ≤ y and y < x. By Lemma 5.1.20 we obtain
x < x, a contradiction.
←. It clearly suffices to show 0 ̸< z → z ≤ 0, for a real z given by (cn)n.

Assume 0 ̸< z. We must show ∀p∃n0∀n≥n0(cn ≤ 1
2p ). Let p be given. By

assumption 0 ̸< z, hence ¬∃q( 1
2q ≤ cM(q+1)). For q := p + 1 this implies

cM(p+2) <
1

2p+1 , hence cn ≤ cM(p+2) +
1

2p+2 < 1
2p for M(p+ 2) ≤ n. □
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Constructively, we cannot compare two reals, but we can compare every
real with a nontrivial interval.

Lemma 5.1.22 (ApproxSplit). Let x, y, z be given and assume x < y.
Then either z ≤ y or x ≤ z.

Proof. Let x := ((an)n,M), y := ((bn)n, N), z := ((cn)n, L). Assume
x <p y, that is (by definition) 1

2p ≤ bn−an for n := max(M(p+2), N(p+2)).
Let m := max(n,L(p+ 2)).

Case cm ≤ an+bn
2 . We show z ≤ y. It suffices to prove cl ≤ bl for l ≥ m.

This follows from

cl ≤ cm +
1

2p+2
≤ an + bn

2
+

bn − an
4

= bn −
bn − an

4
≤ bn −

1

2p+2
≤ bl.

Case cm ̸≤ an+bn
2 . We show x ≤ z. This follows from al ≤ cl for l ≥ m:

al ≤ an +
1

2p+2
≤ an +

bn − an
4

=
an + bn

2
− bn − an

4
≤ cm −

1

2p+2
≤ cl. □

Notice that the boolean object determining whether z ≤ y or x ≤ z
depends on the representation of x, y and z. In particular this assignment
is not compatible with our equality relation.

One might think that the non-available comparison of two reals could
be circumvented by using a maximum function. Indeed, such a function
can easily be defined (component-wise), and it has the expected properties
x, y ≤ max(x, y) and x, y ≤ z → max(x, y) ≤ z. But what is missing is the
knowledge that max(x, y) equals one of its arguments, i.e., we do not have
max(x, y) = x ∨max(x, y) = y.

However, in many cases it is sufficient to pick the up to ε largest real
out of finitely many given ones. This is indeed possible. We give the proof
for two reals; it can be easily generalized.

Lemma 5.1.23 (Maximum of two reals). Let x := ((an)n,M) and y :=
((bn)n, N) be reals, and p ∈ P. Then either x ≤ y + 1

2p or else y ≤ x+ 1
2p .

Proof. Let m := max
(
M(p+ 1), N(p+ 1)

)
.

Case am ≤ bm. Then for m ≤ n

an ≤ am +
1

2p+1
≤ bm +

1

2p+1
≤ bn +

1

2p
.

This holds for all n ≥ m, therefore x ≤ y + 1
2p .

Case bm < am. Then for m ≤ n

bn ≤ bm +
1

2p+1
< am +

1

2p+1
≤ an +

1

2p
.

This holds for all n ≥ m, therefore y ≤ x+ 1
2p . □
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5.2. Continuous functions

We consider real-valued functions defined on open, closed or half-open
intervals I ⊆ R. Let c∞, d∞ range over R ∪ {±∞}.

Definition 5.2.1. A uniformly continuous function f : I → R is given
by

h : (I ∩ Q)→ N→ Q (called approximating map),

together with further data:

(a) A map α : P → N such that for a ∈ I each (h(a, n))n is a Cauchy
sequence with (uniform) modulus α.

(b) A modulus ω : P → P of (uniform) continuity, such that ω(p) satisfies
for all a, b ∈ I

|a− b| ≤ 1

2ω(p)−1
→ |h(a, n)− h(b, n)| ≤ 1

2p
for n ≥ α(p).

(c) Lower and upper bounds µ, ν ∈ Q for all h(a, n) with a ∈ I.

We require α(p) ≤ α(q) and ω(p) ≤ ω(q) for all p ≤ q.

Definition 5.2.2. A continuous function g : (c∞, d∞) → R is given by
an approximating map h : ((c∞, d∞)∩Q)→ N→ Q and a family of uniformly
continuous functions (h↾[c, d], αc.d, ωc.d, µc.d, νc.d) for c

∞ ≤ c < d ≤ d∞. We
require for c∞ < c′ ≤ c < d ≤ d′ < d∞ the monotonicity properties

αc,d(p) ≤ αc′,d′(p), ωc,d(p) ≤ ωc′,d′(p), µc′,d′ ≤ µc,d, νc,d ≤ νc′,d′ .

Example 5.2.3 (Squaring). sq : (−∞,∞)→ R is a continuous function
given by

(a) the approximating map h(a, n) := a2 and modulus αc,d(p) := 0;
(b) the modulus ωc,d(p) := p+ q + 1 of uniform continuity, where q is such

that |a+ b| ≤ 2q for c ≤ a < b ≤ d, because

|a− b| ≤ 1

2p+q
→ |a2 − b2| = |(a− b)(a+ b)| ≤ 1

2p
;

(c) the lower bound µc,d := c2 and upper bound νc,d := d2 in case 1 ≤ c.

Similarly all polynomials with rational coefficients on finite intervals can be
viewed as continuous functions in our sense.

Example 5.2.4 (Inverse). inv : (0,∞) → R inverting its argument is a
continuous function given by the approximating map h(a, n) := 1

a . It is an

easy exercise to define for every compact interval [ 12q , d] its Cauchy modulus
αc,d(p), its modulus ωc,d(p) of uniform continuity and the lower and upper
bounds µc,d and νc,d.
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Definition 5.2.5 (Localization g↾p of a continuous function). Let a
continuous function g be given by c∞, d∞, h, α∞, ω∞, µ∞, ν∞. For p ∈ Z+

we define [c, d] by

[c, d] :=


[−2p, 2p] if c∞ = −∞ and d∞ = +∞
[c∞ + 1

2p , 2
p] if c∞ ∈ R and d∞ = +∞

[−2p, d∞ − 1
2p ] if c∞ = −∞ and d∞ ∈ R

[c∞ + 1
2p , d

∞ − 1
2p ] if c∞, d∞ ∈ R

provided p is large enough to make [c, d] a proper interval. The localization
g↾p is defined to consist of c, d as above, h↾[c, d] and

α(p) := α∞
c,d(p), ω(p) := ω∞

c,d(p), µ(p) := µ∞
c,d(p), ν(p) := ν∞c,d(p).

Since the approximating map operates on rationals only, we need to de-
fine separately what it means to apply a continuous function in our sense to
a real. It suffices to do this for uniformly continuous functions. For continu-
ous ones g we in addition need a witness p for elementhood of the argument
x in g’s open interval (c∞, d∞), i.e., (c, d) (depending on p, as above) such
that x ∈ (c, d). Then we can define the restriction g↾p as a uniformly conti-
nuous function, and use application (g↾p)(x). Notice that (g↾p)(x) does not
depend on p, since the approximating map h of g is independent of inter-
val bounds c, d, and two real numbers are equal if their Cauchy sequences
coincide from one point onwards.

Definition 5.2.6 (Application). Let f : [c, d]→ R be a uniformly conti-
nuous function given by c, d, h, α, ω, µ, ν. Let further x = ((an)n,M) be an
arbitrary real. The application f(x) of f to x is defined to be the Cauchy
sequence (h(πc,d(an), n))n with modulus

λpmax(α(p+ 1),M(ω(p+ 1)− 1)).

Here the projection πc,d is defined by

πc,d(a) :=


c if a < c,

a if c ≤ a ≤ d,

d if d < a.

Lemma 5.2.7 (ContReal). This is a modulus.

Proof. We write a′ for πc,d(a). Under the assumptions of the definition
we have

|h(a′n, n)− h(a′m,m)| ≤ |h(a′n, n)− h(a′n,m)|+ |h(a′n,m)− h(a′m,m)|

≤ 1

2p+1
+

1

2p+1
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if n,m ≥ α(p+1) (this gives the first estimate) and n,m ≥M(ω(p+1)− 1)
(this gives the second estimate). To see the latter observe that because of
a′n, a

′
m ∈ [c, d] and m ≥ α(p+ 1) it suffices to prove

|a′n − a′m| ≤
1

2ω(p+1)−1
.

Because of n,m ≥M(ω(p+ 1)− 1) we have

|an − am| ≤
1

2ω(p+1)−1
.

The claim now follows from |a′ − b′| ≤ |a− b|, which is easy to see. □

5.3. Intermediate value theorem

The standard constructive versions of the intermediate value theorem
read as follows.

Theorem 5.3.1 (Approximate intermediate value theorem). Let f : I →
R be continuous and a < b rational numbers in I such that f(a) ≤ 0 ≤ f(b).
Then for every p we can find c with a < c < b such that |f(c)| ≤ 1

2p .

A problem with these proofs is that the algorithms they provide are
rather bad: in each case one has to partition the interval into as many
pieces as the modulus of the continuous function requires for the given error
bound, and then for each of these (many) pieces perform certain operations.
This problem seems to be unavoidable, since our continuous function may
be rather flat. However, we can do somewhat better if we assume a uniform
modulus of increase (or lower bound on the slope) of f , that is, some q ∈ P
such that for all c, d ∈ Q and all p ∈ P

1

2p
≤ d− c→ 1

2p+q
≤ f(d)− f(c).

Constructively, we cannot compare two reals, but we can compare every
real with a nontrivial interval. We already proved this as Lemma 5.1.22
(page 63) called ApproxSplit.

Notice that the boolean object determining whether z ≤ y or x ≤ z
depends on the representation of x, y and z. In particular this assignment
is not compatible with our equality relation.

We begin with an auxiliary lemma, which from a “correct” interval c < d
(that is, f(c) ≤ 0 ≤ f(d) and 1

2p ≤ d− c) constructs a new one c1 < d1 with

d1 − c1 =
1
2(d− c).

Lemma 5.3.2 (IVTAux). Let f : I → R be continuous, with a uniform
modulus q of increase. Let a < b be rational numbers in I such that a ≤
c < d ≤ b, say 1

2p < d − c, and f(c) ≤ 0 ≤ f(d). Then we can construct
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c1, d1 with d1 − c1 = 1
2(d− c), such that again a ≤ c ≤ c1 < d1 ≤ d ≤ b and

f(c1) ≤ 0 ≤ f(d1).

Proof. Let b0 = c and bn+1 = bn + 1
4(d − c) for n ≤ 3, hence b4 = d.

From 1
2p < d− c we obtain 1

2p+2 ≤ bn+1 − bn, so f(bn) <p+2+q f(bn+1).
First compare 0 with the proper interval f(b1) < f(b2), using Approx-

Split. In case 0 ≤ f(b2) let c1 = b0 = c and d1 = b2. In case f(b1) ≤ 0
compare 0 with the proper interval f(b2) < f(b3), using ApproxSplit again.
In case 0 ≤ f(b3) let c1 = b1 and d1 = b3. In case f(b2) ≤ 0 let c1 = b2 and
d1 = b4 = d. □

Theorem 5.3.3 (IVT). Let f : I → R be continuous, with a uniform
modulus of increase. Let a < b be rational numbers in I such that f(a) ≤
0 ≤ f(b). Then we can find x ∈ [a, b] such that f(x) = 0.

Proof. Iterating the construction in Lemma 5.3.2 (IVTAux), we con-
struct two sequences (cn)n and (dn)n of rationals such that for all n

a = c0 ≤ c1 ≤ · · · ≤ cn < dn ≤ · · · ≤ d1 ≤ d0 = b,

f(cn) ≤ 0 ≤ f(dn),

dn − cn =
1

2n
(b− a).

Let x, y be given by the Cauchy sequences (cn)n and (dn)n with the obvious
modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y. □

5.4. Algorithms on stream-represented real numbers

5.4.1. The predicates I and coI. We model infinite sequences of
signed digits (streams) as objects in the algebra S(D) := µξ(C: D→ ξ → ξ),
where D := µξ(SdR: ξ,SdM: ξ,SdL: ξ) is a 3-element algebra. Such streams
will appear as realizers of an inductive predicate I defined by the single
clause

(18) ∀d,x′,x

(
d ∈ Sd→ x′ ∈ I → x =

x′ + d

2
→ x ∈ I

)
.

Here (and later) x, y, z range over real numbers in [−1, 1] and d over integers.
Sd is a (formally inductive) predicate expressing that its integer argument d
is a signed digit, i.e., |d| ≤ 1. We have chosen (18) rather than the simpler

(19) ∀d,x
(
d ∈ Sd→ x ∈ I → x+ d

2
∈ I

)
,

since we want I to be compatible with the defined equality = on real numbers

(20) ∀x,y(x = y → x ∈ I → y ∈ I),
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which easily follows from (18) (with reflexivity, symmetry and transitivity
of =). Using (20) we then obtain (19) from (18) as a lemma.

The dual coI of I is defined by its closure axiom

x ∈ coI → ∃d,x′,y

(
d ∈ Sd ∧ x′ ∈ coI ∧ y =

x′ + d

2
∧ x = y

)
.

Similar to what was done above it can be simplified to

(21) x ∈ coI → ∃d,x′

(
d ∈ Sd ∧ x′ ∈ coI ∧ x =

x′ + d

2

)
.

5.4.2. Average of real numbers. As an example we consider a proof
that the average of two real numbers in [−1, 1] is in [−1, 1] again:

x, y ∈ coI → x+ y

2
∈ coI.

Following Berger and Seisenberger (2010) we begin with an informal proof.
The computational content of this proof will be the desired algorithm.

Consider two sets of averages, the second one with a “carry” i ∈ Z

P :=

{
x+ y

2

∣∣∣x, y ∈ coI

}
, Q :=

{
x+ y + i

4

∣∣∣x, y ∈ coI, i ∈ Sd2

}
,

where Sd2 is a (formally inductive) predicate expressing that the integer i
is an extended signed digit, i.e., |i| ≤ 2. It suffices to show that Q satisfies

x ∈ Q→ ∃d,x′

(
d ∈ Sd ∧ x′ ∈ Q ∧ x =

x′ + d

2

)
,

for then by the greatest-fixed-point axiom for coI we have Q ⊆ coI. Since we
also have P ⊆ Q we then obtain P ⊆ coI, which is our claim.

Below we will need functions J,K : Z→ Z such that

(22) ∀i(i = J(i) + 4K(i)) (with ∀i(|J(i)| ≤ 2), ∀i(|i| ≤ 6→ |K(i)| ≤ 1)).

We use the following notation for streams u of type S(D):

(u)n := n-th entry in u,

Tu := rest of u after removal of its first entry.

Clearly (Tnu)m = (u)n+m, where Tn denotes the n-th iteration of T .

Lemma 5.4.1 (CoIAvToAvc).

x, y ∈ coI → ∃i,x′,y′

(
i ∈ Sd2 ∧ x′, y′ ∈ coI ∧ x+ y

2
=

x′ + y′ + i

4

)
.

Proof. By the closure axiom (21) for coI we can write x = x′+d
2 and

y = y′+e
2 for some d, e ∈ Sd and x′, y′ ∈ coI. Then

x+ y

2
=

x′ + y′ + d+ e

4
. □
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The computational content of this proof is a function

Avinit : S(D)→ S(D)→ D2 × S(D)× S(D)

Avinit(u, v) := ⟨(u)0 + (v)0, Tu, Tv⟩.

Lemma 5.4.2 (CoIAvcSatCoICl).

i ∈ Sd2 ∧ x, y ∈ coI → ∃d∈Sd∃j∈Sd2∃x′,y′∈coI

(x+y+i

4
=

x′+y′+j
4 + d

2

)
.

Proof. By the closure axiom (21) for coI we can write x = x′+d
2 and

y = y′+e
2 for some d, e ∈ Sd and x′, y′ ∈ coI. Then

x+ y + i

4
=

x′ + y′ + d+ e+ 2i

8
.

Since |d + e + 2i| ≤ 6 we can write d + e + 2i = j + 4k with |j| ≤ 2 and
|k| ≤ 1 by the JK-property (22). Therefore

x+ y + i

4
=

x′ + y′ + j + 4k

8
=

x′+y′+j
4 + k

2
. □

The computational content of this proof is a function

Avstep : D2 × S(D)× S(D)→ D× D2 × S(D)× S(D)

Avstep⟨i, u, v⟩ := ⟨K((u)0 + (v)0 + 2i), J((u)0 + (v)0 + 2i), Tu, Tv⟩.
By coinduction from Lemma 5.4.2 we obtain

Lemma 5.4.3 (CoIAvcToCoI). ∀z(∃i,x,y(i ∈ Sd2 ∧ x, y ∈ coI ∧ z =
x+y+i

4 )→ z ∈ coI).

Theorem 5.4.4 (CoIAverage). The average of two real numbers x, y in
coI is in coI:

x, y ∈ coI → x+ y

2
∈ coI.

Proof. Immediate from Lemma 5.4.1 and Lemma 5.4.3. □

The extracted term is short (19 lines in minlog/examples/analysis/,
file sdavaux.scm), and involves the corecursion operator. It represents the
function

cCoIAverage: S(D)→ S(D)→ S(D)

defined using corecursion, as follows.

(i) From u, v ∈ S(D) form an initial triple Avinit(u, v) ∈ D2×S(D)×S(D).
(ii) Iterate Avstep : D2×S(D)×S(D)→ D×D2×S(D)×S(D) starting with

Avinit(u, v).
(iii) Return the stream of the generated d ∈ D.
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5.5. Lookahead

Recall that real numbers in [−1.1] can be represented in the form
∞∑
n=0

dn
2n+1

(dn ∈ {−1, 0, 1}).

We are interested in algorithms for arithmetical functions on real numbers
operating on such stream representations (dn)n. In particular we want to
verify lookahead properties of such algorithms.

To this end we inductively define a binary predicate L of arity (R,N).
The intended property of L is

a realizer of x ∈ Ln is a list (dm)m<n of signed digits which
approximates x with error bound 1

2n , i.e., such that∣∣∣ n−1∑
m=0

dm
2m+1

− x
∣∣∣ ≤ 1

2n
.

Here we have written x ∈ Ln for L(x, n). Let x, y, z range over real numbers
and d over integers. Sd is a (formally inductive) predicate expressing that
its integer argument d is a signed digit, i.e., |d| ≤ 1. L is defined by the two
clauses

L+
0 : ∀x(|x| ≤ 1→ x ∈ L0),

L+
1 : ∀x,y,n,d

(
d ∈ Sd→ x ∈ Ln → y =

x+ d

2
→ y ∈ Ln+1

)
.

L+
1 says that if we know the first n digits of a representation of x and that

y = x+d
2 , then we know the first n+ 1 digits of a representation of y.

The induction or least-fixed-point (lfp) axiom for L is

∀x(|x| ≤ 1→ Y (x, 0))→

∀x,y,n,d
(
d ∈ Sd→ x ∈ Ln → Y (x, n)→ y=

x+ d

2
→ Y (y, n+ 1)

)
→ L ⊆ Y.

The algebra associated with L is L := µξ(U : ξ, C : D → ξ → ξ), i.e.,
finite lists of signed digits −1, 0, 1. We write u, v for objects of type L, and
d :: u for Cdu.

We will need some properties of L.

Lemma 5.5.1 (LCompat). x = y → x ∈ Ln → y ∈ Ln.

Proof. Use the lfp-axiom for L. □

The term extracted from this proof is the identity on L; it will be omitted
in the sequel.

Lemma 5.5.2 (LToBd). x ∈ Ln → |x| ≤ 1.
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Proof. Use induction on n. □

Parallel to the (simplified) closure axiom (21) for coI (page 68) we have

Lemma 5.5.3 (LClosure). x∈Ln+1 → ∃d,x′(d∈Sd ∧ x′∈Ln ∧ x = x′+d
2 ).

Proof. Use the lfp-axiom for L. □

The extracted term cLClosure has type L→ D× L. It satisfies

cLClosure(d :: u) = ⟨d, u⟩.

We now proceed as before, but with L instead of coI. As in Section 5.4.2
(page 68) we show{

x+ y

2

∣∣∣x, y ∈ Ln+1

}
⊆

{
x+ y + i

4

∣∣∣x, y ∈ Ln, i ∈ Sd2

}
⊆ Ln,

where this time the final conclusion is proved by induction.

Lemma 5.5.4 (LAvToAvc).

x, y ∈ Ln+1 → ∃i,x′,y′

(
i ∈ Sd2 ∧ x′, y′ ∈ Ln ∧

x+ y

2
=

x′ + y′ + i

4

)
.

Proof. By Lemma 5.5.3 we can write x = x′+d
2 and y = y′+e

2 for some
d, e ∈ Sd and x′, y′ ∈ Ln. Then

x+ y

2
=

x′ + y′ + d+ e

4
. □

The extracted term cLAvToAvc has type L → L → D2 × L × L and
satisfies

cLAvToAvc(d :: u, e :: v) = ⟨d+ e, u, v⟩.

Lemma 5.5.5 (LAvcSatLCl).

i ∈ Sd2 ∧ x, y ∈ Ln+1 → ∃d∈Sd∃j∈Sd2∃x′,y′∈Ln

(x+y+i

4
=

x′+y′+j
4 + d

2

)
.

Proof. Let i ∈ Sd2 and x, y ∈ Ln+1. By Lemma 5.5.3 we can write

x = x′+d
2 and y = y′+e

2 for some d, e ∈ Sd and x′, y′ ∈ Ln. Then

x+ y + i

4
=

x′ + y′ + d+ e+ 2i

8
.

Since |d + e + 2i| ≤ 6 we can write d + e + 2i = j + 4k with |j| ≤ 2 and
|k| ≤ 1 by the JK-property (22). Therefore

x+ y + i

4
=

x′ + y′ + j + 4k

8
=

x′+y′+j
4 + k

2
. □
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The extracted term cLAvcSatLCl has type D2×L×L→ D×D2×L×L
and satisfies

cLAvcSatLCl⟨i, d :: u, e :: v⟩ = ⟨K(d+ e+ 2i), J(d+ e+ 2i), u, v⟩.
By induction from Lemma 5.5.5 we obtain

Lemma 5.5.6 (LAvcToL). n ∈ TN → i ∈ Sd2 ∧ x, y ∈ Ln → x+y+i
4 ∈ Ln.

Proof. By induction on n. Base. Assume i ∈ Sd2 and x, y ∈ L0. Then
|x|, |y| ≤ 1 by Lemma 5.5.2, hence x+y+i

4 ∈ L0 by the first clause of L. Step.
Assume i ∈ Sd2 and x, y ∈ Ln+1. By Lemma 5.5.5 we can write

x+ y + i

4
=

x′+y′+j
4 + d

2

with x′, y′ ∈ Ln, j ∈ Sd2 and d ∈ Sd. Now we can apply the second clause
of L, using the IH to obtain x′, y′ ∈ Ln and then compatibility of L. □

The extracted term cLAvcToL has type N → D2 × L × L → L and is
defined by recursion over N. It satisfies

cLAvcToL(0, ⟨i, u, v⟩) = U,

cLAvcToL(n+ 1, ⟨i, u, v⟩) = d :: cLAvcToL(n,w)

where
⟨d,w⟩ = cLAvcSatLCl⟨i, u, v⟩.

Theorem 5.5.7 (LAverage). n ∈ TN → x, y ∈ Ln+1 → x+y
2 ∈ Ln.

Proof. Immediate by Lemma 5.5.4 and Lemma 5.5.6. □

The extracted term cLAverage has type N→ L→ L→ L. It satisfies

cLAverage(n, u, v) = cLAvcToL(n, cLAvToAvc(u, v)).

The way cLAverage operates can be understood as follows.

• From u, v ∈ L form the initial triple cLAvToAvc(u, v) ∈ D2×L×L.
• Recall that cLAvcSatLCl has type D2 × L × L → D × D2 × L × L.
Iterate it n times, starting with cLAvToAvc(u, v).
• Return the list of generated d ∈ D.

The soundness proof is within TCF and can be automatically generated
with add-sound.



APPENDIX A

Unification

We show that for any two constructor terms one can decide whether
there exists a “unifier”, and if so, compute a “most general” one. A solution
of this problem has been given by Robinson (1965). In the formulation of
the algorithm below we follow Martelli and Montanari (1982).

By a constructor term t, s (term for short) we mean a term built from
variables x, y, z and constructors C by application. A substitution is a finite
set ϑ = {t1/x1, . . . , tn/xn} of pairs of variables and terms, such that xi ̸= xj
for i ̸= j, and ti ̸= xi for all i. An element ti/xi of ϑ is called a binding (of xi
to ti). By tϑ we denote the result of simultaneously replacing each variable
xi in t by ti, and call tϑ the instance of t induced by ϑ. We shall use ϑ, η, ζ
for substitutions. Let ε be the empty substitution. For given substitutions

ϑ = {t1/x1, . . . , tn/xn}
η = {s1/y1, . . . , sm/ym},

the composition ϑη of ϑ and η is the substitution obtained by deleting in
the set

{t1η/x1, . . . , tnη/xn, s1/y1, . . . , sm/ym}
all bindings tiη/xi such that tiη = xi, and also all bindings sj/yj such that
yj ∈ {x1, . . . , xn}. A substitution ϑ is idempotent if ϑϑ = ϑ. A substitution
ϑ is called more general than η (written η ≤ ϑ), if there is a substitution ζ
such that η = ϑζ. ϑ and η are equivalent, if ϑ ≤ η ≤ ϑ.

It is easy to see that (tϑ)η = t(ϑη), and that composition is associative.
We now come to the unification problem. By this we mean the question

whether for two given terms t, s there is a substitution ϑ “unifying” the two
terms, i.e., with the property tϑ = sϑ.

Let E denote finite equation systems, i.e., multisets

{t1 = s1, . . . , tn = sn}

of equations between terms (more precisely pairs of terms). Consider {⊥} as
a (contradictory) equation system. A substitution ϑ unifies E, if for every
equation t = s in E we have tϑ = sϑ; no ϑ unifies {⊥}. ϑ is a most general
unifier (mgu) of E, if ϑ is a unifier of E and η ≤ ϑ for every unifier η of E.
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The following characterization of idempotent mgus will be useful in the
proof of the Unification Theorem below.

Lemma A.0.1 (Characterization of idempotent mgu’s). Let ϑ be a unifier
of E. Then ϑ is an idempotent mgu of E iff η = ϑη for all unifiers η of E.

Proof. Assume that ϑ is a unifier of E.
→. Let ϑ be an idempotent mgu of E, and assume that η is a unifier of

E. Since ϑ is a mgu of E, we have η = ϑζ for some substitution ζ. Hence
η = ϑζ = ϑϑζ = ϑη.
←. Assume that η = ϑη for all unifiers η of E. Now let η be a unifier

of E. Then η ≤ ϑ; therefore ϑ is a mgu. Since ϑ is a unifier, by assumption
we have ϑ = ϑϑ. □

Definition (Unification algorithm). E 7→ϑ E′ is defined by

(a) {t = x} ∪ E 7→ε {x = t} ∪ E, if t is not a variable.
(b) {x = x} ∪ E 7→ε E.
(c) {Ct1 . . . tn = Cs1 . . . sn} ∪ E 7→ε {t1 = s1, . . . tn = sn} ∪ E.
(d) {Ct1 . . . tn = C′s1 . . . sn} ∪ E 7→ε {⊥} if C ̸= C′.
(e) {x = t, t1(x) = s1(x), . . . , tn(x) = sn(x)} 7→{t/x}
{t1(t) = s1(t), . . . tn(t) = sn(t)} if x /∈ FV(t).

(f) {x = t} ∪ E 7→ε {⊥}, if x ∈ FV(t) and t ̸= x.

Proposition. Assume E 7→ϑ E′.

(a) If η′ is a unifier of E′, then ϑη′ is a unifier of E.
(b) If η is a unifier of E, then η = ϑη and η is a unifier of E′.

Proof. By cases according to the definition of E 7→ϑ E′. Clearly it
suffices to treat case (e).

Let η′ be a unifier of E′. Then {t/x}η′ is a unifier of E.
Let η be a unifier of E. Then xη = tη, hence η = {t/x}η (since both

substitutions coincide on all variables), and moreover

ti{t/x}η = tiη = siη = si{t/x}η.
Hence η is a unifier of E′. □

Corollary. Assume

E1 7→ϑ1 E2 7→ϑ2 . . . En 7→ϑn En+1.

(a) If ϑ is a unifier of En+1, then ϑ1 . . . ϑnϑ is a unifier of E1.
(b) If η is a unifier of E1, then η = ϑ1 . . . ϑnη and η is a unifier of En+1.

Proof. The first part clearly follows from the first part of the Propo-
sition. The second part is proved by induction on n. For n = 0 there is
nothing to show. In the step we split the assumption into

E1 7→ϑ1 E2 and E2 7→ϑ2 . . . En 7→ϑn En+1.
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By the second part of the Proposition we have that η = ϑ1η is a unifier of
E2. Hence by IH η = ϑ2 · · ·ϑnη is a unifier of En+1. Moreover we have
η = ϑ1η = ϑ1ϑ2 . . . ϑnη. □

Unification Theorem. Let E be a finite equation system. Then every
sequence

E = E1 7→ϑ1 E2 7→ϑ2 . . .

terminates with En+1 = ∅ or En+1 = {⊥}. In the first case E is unifi-
able, and ϑ1 . . . ϑn is an idempotent mgu of E. In the second case E is not
unifiable.

Proof. Termination is proved using the lexicographic ordering of N3.
To every E = {t1 = s1, . . . , tn = sn} assign a triple (n1, n2, n3) ∈ N3 by

n1 := number of variables in E,

n2 := number of occurrences of variables and constructors in E,

n3 := number of equations t = x in E such that t is not a variable. □





APPENDIX B

Denotational semantics

We set up a connection between the model (|Cρ|)ρ of partial continuous
functionals described in Section 2.2.2 and the term system T+ from Sec-
tion 2.3.1. The main point is to clarify how we can use computation rules
to define an ideal z in a function space.

B.1. Ideals as values of terms

The general idea is to inductively define the set of tokens (U, a) that
make up z. It is convenient to define the value [[λx⃗M ]], where M is a term
with free variables among x⃗. Since this value is a token set, we can define

inductively the relation (U⃗ , a) ∈ [[λx⃗M ]].

For a constructor pattern P⃗ (x⃗ ) and a list V⃗ of the same length and

types as x⃗ we define a list P⃗ (V⃗ ) of formal neighborhoods of the same length

and types as P⃗ (x⃗ ), by induction on P⃗ (x⃗ ). x(V ) is the singleton list V ,

and for ⟨⟩ we take the empty list. (P⃗ , Q)(V⃗ , w⃗ ) is covered by the induction
hypothesis. Finally

(CP⃗ )(V⃗ ) := {Ca⃗∗ | a∗i ∈ Pi(V⃗i) if Pi(V⃗i) ̸= ∅, and a∗i = ∗ otherwise }.

We use the following notation. (U⃗ , a) means (U1, (U2, . . . (Un, a)) . . . ),

and (U⃗ , V ) ⊆ [[λx⃗M ]] means (U⃗ , a) ∈ [[λx⃗M ]] for all (finitely many) a ∈ V .

Definition B.1.1 (Inductive, of (U⃗ , a) ∈ [[λx⃗M ]]).

Ui ⊢ a

(U⃗ , a) ∈ [[λx⃗xi]]
(V ),

(U⃗ , V, a) ∈ [[λx⃗M ]] (U⃗ , V ) ⊆ [[λx⃗N ]]

(U⃗ , a) ∈ [[λx⃗(MN)]]
(A).

For every constructor C and defined constant D we have

V⃗ ⊢ a⃗∗

(U⃗ , V⃗ ,Ca⃗∗) ∈ [[λx⃗C]]
(C),

(U⃗ , V⃗ , a) ∈ [[λx⃗,y⃗M ]] W⃗ ⊢ P⃗ (V⃗ )

(U⃗ , W⃗ , a) ∈ [[λx⃗D]]
(D)

with one such rule (D) for every computation rule DP⃗ (y⃗ ) = M .

The height of a derivation of (U⃗ , a) ∈ [[λx⃗M ]] is defined as usual, by
adding 1 at each rule. We define its D-height similarly, where only rules
(D) count.
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We begin with some simple consequences of this definition.

Lemma B.1.2. The following transformations preserve D-height:

V⃗ ⊢ U⃗ → (U⃗ , a) ∈ [[λx⃗M ]]→ (V⃗ , a) ∈ [[λx⃗M ]],(23)

(U⃗ , V, a) ∈ [[λx⃗,yM ]]↔ (U⃗ , a) ∈ [[λx⃗M ]] if y /∈ FV(M),(24)

(U⃗ , V, a) ∈ [[λx⃗,y(My)]]↔ (U⃗ , V, a) ∈ [[λx⃗M ]] if y /∈ FV(M),(25)

(U⃗ , V⃗ , a) ∈ [[λx⃗,y⃗ (M(P⃗ (y⃗ )))]]↔ (U⃗ , P⃗ (V⃗ ), a) ∈ [[λx⃗,z⃗ (M(z⃗ ))]].(26)

Proof. (23) and (24) are both proved by easy inductions on the respec-
tive derivations.

(25). Assume (U⃗ , V, a) ∈ [[λx⃗,y(My)]]. By (A) we then have W such

that (U⃗ , V,W ) ⊆ [[λx⃗,yy]] (i.e., V ⊢W ) and (U⃗ , V,W, a) ∈ [[λx⃗,yM ]]. By (23)

from the latter we obtain (U⃗ , V, V, a) ∈ [[λx⃗,yM ]]. Now since y /∈ FV(M),

(24) yields (U⃗ , V, a) ∈ [[λx⃗M ]], as required. Conversely, assume (U⃗ , V, a) ∈
[[λx⃗M ]]. Since y /∈ FV(M), (24) yields (U⃗ , V, V, a) ∈ [[λx⃗M ]]. Clearly we

have (U⃗ , V, V ) ⊆ [[λx⃗,yy]]. Hence by (A) (U⃗ , V, a) ∈ [[λx⃗,y(My)]], as required.
Notice that the D-height did not change in these transformations.

(26). By induction on P⃗ , with a side induction on M . We distinguish
cases on M . The cases xi, C and D follow immediately from (24). In case
MN the following are equivalent by the side induction hypothesis:

(U⃗ , V⃗ , a) ∈ [[λx⃗,y⃗ ((MN)(P⃗ (y⃗ )))]]

∃W ((U⃗ , V⃗ ,W, a) ∈ [[λx⃗,y⃗ (M(P⃗ (y⃗ )))]] ∧ (U⃗ , V⃗ ,W ) ⊆ [[λx⃗,y⃗ (N(P⃗ (y⃗ )))]])

∃W ((U⃗ , P⃗ (V⃗ ),W, a) ∈ [[λx⃗,z⃗ (M(z⃗ ))]] ∧ (U⃗ , P⃗ (V⃗ ),W ) ⊆ [[λx⃗,z⃗ (N(z⃗ ))]])

(U⃗ , P⃗ (V⃗ ), a) ∈ [[λx⃗,z⃗ ((MN)(z⃗ ))]].

The final case is where M is zi. Then we have to show

(U⃗ , V⃗ , a) ∈ [[λx⃗,y⃗(P (y⃗ ))]]↔ P (V⃗ ) ⊢ a.

We distinguish cases on P (y⃗ ). If P (y⃗ ) is yj , then both sides are equivalent

to Vj ⊢ a. In case P (y⃗ ) is (CQ⃗)(y⃗ ) the following are equivalent:

(U⃗ , V⃗ , a) ∈ [[λx⃗,y⃗((CQ⃗)(y⃗ ))]]

(U⃗ , V⃗ , a) ∈ [[λx⃗,y⃗(CQ⃗(y⃗ ))]]

(U⃗ , Q⃗(V⃗ ), a) ∈ [[λx⃗,u⃗(Cu⃗ )]] by IH for Q⃗(y⃗ )

(U⃗ , Q⃗(V⃗ ), a) ∈ [[λx⃗C]] by (25)

∃a⃗∗(a = Ca⃗∗ ∧ Q⃗(V⃗ ) ⊢ a⃗∗)

CQ⃗(V⃗ ) ⊢ a. □
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Let∼ denote the equivalence relation on formal neighborhoods generated
by entailment, i.e., U ∼ V means (U ⊢ V ) ∧ (V ⊢ U).

Lemma B.1.3.

(27) If U⃗ ⊢ P⃗ (V⃗ ), then there are W⃗ such that U⃗ ∼ P⃗ (W⃗ ) and W⃗ ⊢ V⃗ .

Proof. By induction on P⃗ . The cases x and ⟨⟩ are clear, and in case

P⃗ , Q we can apply the induction hypothesis. It remains to treat the case

CP⃗ (x⃗ ). Since U ⊢ CP⃗ (V⃗ ) there is a b⃗∗0 such that Cb⃗∗0 ∈ U . Let

Ui := { a | ∃a⃗∗(Ca⃗∗ ∈ U ∧ a = a∗i ) }.

For the constructor pattern Cx⃗ consider CU⃗ . By definition

CU⃗ = {Ca⃗∗ | a∗i ∈ Ui if Ui ̸= ∅, and a∗i = ∗ otherwise }.

We first show U ∼ CU⃗ . Assume Ca⃗∗ ∈ CU⃗ . For each i, if Ui ̸= ∅, then there

is an a⃗∗i such that Ca⃗∗i ∈ U and a∗ii = a∗i , and if Ui = ∅ then a∗i = ∗. Hence

U ⊇ {Ca⃗∗i | Ui ̸= ∅ } ∪ {Cb⃗∗0} ⊢ Ca⃗∗.

Conversely assume Ca⃗∗ ∈ U . We define Cb⃗∗ ∈ CU⃗ by b∗i = a∗i if a∗i ̸= ∗,
b∗i = ∗ if Ui = ∅, and otherwise (i.e., if a∗i = ∗ and Ui ̸= ∅) take an arbitrary

b∗i ∈ Ui. Clearly {Cb⃗∗} ⊢ Ca⃗∗.

By definition U⃗ ⊢ P⃗ (V⃗ ). Hence by induction hypothesis there are W⃗

such that U⃗ ∼ P⃗ (W⃗ ) and W⃗ ⊢ V⃗ . Therefore U ∼ CU⃗ ∼ CP⃗ (W⃗ ). □

Lemma B.1.4 (Unification). If P⃗1(V⃗1) ∼ · · · ∼ P⃗n(V⃗n), then P⃗1, . . . , P⃗n

are unifiable with a most general unifier ϑ and there exists W⃗ such that

(P⃗1ϑ)(W⃗ ) = · · · = (P⃗nϑ)(W⃗ ) ∼ P⃗1(V⃗1) ∼ · · · ∼ P⃗n(V⃗n).

Proof. Assume P⃗1(V⃗1) ∼ · · · ∼ P⃗n(V⃗n). Then P⃗1(V⃗1), . . . , P⃗n(V⃗n)

are componentwise consistent and hence P⃗1, . . . , P⃗n are unifiable with a

most general unifier ϑ. We now proceed by induction on P⃗1, . . . , P⃗n. If
they are either all empty or all variables the claim is trivial. In the case

(P⃗1, P1), . . . , (P⃗n, Pn) it follows from the linearity condition on variables that

a most general unifier of (P⃗1, P1), . . . , (P⃗n, Pn) is the union of most general

unifiers of P⃗1, . . . , P⃗n and of P1, . . . , Pn. Hence the induction hypothesis ap-

plies. In the case CP⃗1, . . . ,CP⃗n the assumption CP⃗1(V⃗1) ∼ · · · ∼ CP⃗n(V⃗n)

implies P⃗1(V⃗1) ∼ · · · ∼ P⃗n(V⃗n) and hence again the induction hypothesis
applies. The remaining case is when some are variables and the other ones

of the form CP⃗i, say x,CP⃗2, . . . ,CP⃗n. By assumption

V1 ∼ CP⃗2(V⃗2) ∼ · · · ∼ CP⃗n(V⃗n).
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By induction hypothesis we obtain the required W⃗ such that

(P⃗2ϑ)(W⃗ ) = · · · = (P⃗nϑ)(W⃗ ) ∼ P⃗2(V⃗2) ∼ · · · ∼ P⃗n(V⃗n). □

Lemma B.1.5 (Consistency). [[λx⃗M ]] is consistent.

Proof. Let (U⃗i, ai) ∈ [[λx⃗M ]] for i = 1, 2. By coherence it suffices

to prove that (U⃗1, a1) and (U⃗2, a2) are consistent. We shall prove this by
induction on the maximum of the D-heights and a side induction on the
maximum of the heights.

Case (V). Let (U⃗1, a1), (U⃗2, a2) ∈ [[λx⃗xi]], and assume that U⃗1 and U⃗2 are
componentwise consistent. Then U1i ⊢ a1 and U2i ⊢ a2. Since U1i ∪ U2i is
consistent, a1 and a2 must be consistent as well.

Case (C). For i = 1, 2 we have

V⃗i ⊢ a⃗∗i
(U⃗i, V⃗i,Ca⃗∗i ) ∈ [[λx⃗C]]

.

Assume U⃗1, V⃗1 and U⃗2, V⃗2 are componentwise consistent. The consistency of

Ca⃗∗1 and Ca⃗∗2 follows from V⃗i ⊢ a⃗∗i and the consistency of V⃗1 and V⃗2.
Case (A). For i = 1, 2 we have

(U⃗i, Vi, ai) ∈ [[λx⃗M ]] (U⃗i, Vi) ⊆ [[λx⃗N ]]

(U⃗i, ai) ∈ [[λx⃗(MN)]]
.

Assume U⃗1 and U⃗2 are componentwise consistent. By the side induction
hypothesis for the right premises V1 ∪ V2 is consistent. Hence by the side
induction hypothesis for the left hand sides a1 and a2 are consistent.

Case (D). For i = 1, 2 we have

(U⃗i, V⃗i, ai) ∈ [[λx⃗,y⃗iMi(y⃗i)]] W⃗i ⊢ P⃗i(V⃗i)

(U⃗i, W⃗i, ai) ∈ [[λx⃗D]]
(D)

for computation rules DP⃗i(y⃗i) = Mi(y⃗i). Assume U⃗1, W⃗1 and U⃗2, W⃗2 are
componentwise consistent; we must show that a1 and a2 are consistent.

Since W⃗1 ∪ W⃗2 ⊢ P⃗i(V⃗i) for i = 1, 2, by (27) there are V⃗ ′
1 , V⃗

′
2 such that

V⃗ ′
i ⊢ V⃗i and W⃗1 ∪ W⃗2 ∼ P⃗i(V⃗

′
i ). Then by Lemma B.1.4 (on unification)

there are W⃗ such that (P⃗1ϑ)(W⃗ ) = (P⃗2ϑ)(W⃗ ) ∼ P⃗i(V⃗
′
i ) ⊢ P⃗i(V⃗i) for i = 1, 2,

where ϑ is the most general unifier of P⃗1 and P⃗2. But then also

(y⃗iϑ)(W⃗ ) ⊢ V⃗i,

and hence by (23) we have

(U⃗i, (y⃗iϑ)(W⃗ ), ai) ∈ [[λx⃗,y⃗iMi(y⃗i)]]
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with smaller D-height. Now (26) gives

(U⃗i, W⃗ , ai) ∈ [[λx⃗,z⃗Mi(y⃗i)ϑ]]

without increasing the D-height. Notice that M1(y⃗i)ϑ = M2(y⃗i)ϑ by our
condition on computation rules. Hence the induction hypothesis applied to

(U⃗1, W⃗ , a1), (U⃗2, W⃗ , a2) ∈ [[λx⃗,z⃗M1(y⃗1)ϑ]] implies the consistency of a1 and
a2, as required. □

Lemma B.1.6 (Deductive closure). [[λx⃗M ]] is deductively closed, i.e., if

W ⊆ [[λx⃗M ]] and W ⊢ (V⃗ , b), then (V⃗ , b) ∈ [[λx⃗M ]].

Proof. By induction on the maximum of the D-heights and a side
induction on the maximum of the heights of W ⊆ [[λx⃗M ]]. We distinguish
cases on the last rule of these derivations (which is determined by M).

Case (V). For all (U⃗ , a) ∈W we have

Ui ⊢ a

(U⃗ , a) ∈ [[λx⃗xi]]
.

We must show Vi ⊢ b. By assumption W ⊢ (V⃗ , b), hence WV⃗ ⊢ b. It suffices

to prove Vi ⊢ WV⃗ . Let c ∈ WV⃗ ; we show Vi ⊢ c. There are U⃗ such that

V⃗ ⊢ U⃗ and (U⃗ , c) ∈W . But then by the above Ui ⊢ c, hence Vi ⊢ Ui ⊢ c.

Case (A). Let W = {(U⃗1, a1), . . . , (U⃗n, an)}. For each (U⃗i, ai) ∈W there
is Ui such that

(U⃗i, Ui, ai) ∈ [[λx⃗M ]] (U⃗i, Ui) ⊆ [[λx⃗N ]]

(U⃗i, ai) ∈ [[λx⃗(MN)]]
.

Define U :=
⋃
{Ui | V⃗ ⊢ U⃗i }. We first show that U is consistent. Let

a, b ∈ U . There are i, j such that a ∈ Ui, b ∈ Uj and V⃗ ⊢ U⃗i, U⃗j . Then U⃗i

and U⃗j are consistent; hence since [[λx⃗N ]] is consistent by Lemma B.1.5 a
and b are consistent as well.

Next we show (V⃗ , U) ⊆ [[λx⃗N ]]. Let a ∈ U ; we show (V⃗ , a) ∈ [[λx⃗N ]]. Fix

i such that a ∈ Ui and V⃗ ⊢ Ui, and let Wi := { (U⃗i, b) | b ∈ Ui } ⊆ [[λx⃗N ]].
Since by the side induction hypothesis [[λx⃗N ]] is deductively closed it suffices

to prove Wi ⊢ (V⃗ , a), i.e., { b | b ∈ Ui ∧ V⃗ ⊢ U⃗i } ⊢ a. But the latter set
equals Ui, and a ∈ Ui.

Finally we show (V⃗ , U, b) ⊆ [[λx⃗M ]]. Let

W ′ := {(U⃗1, U1, a1), . . . , (U⃗n, Un, an)} ⊆ [[λx⃗M ]].

By side induction hypothesis it suffices to prove that W ′ ⊢ (V⃗ , U, b), i.e.,

{ ai | V⃗ ⊢ U⃗i ∧ U ⊢ Ui } ⊢ b. But by definition of U the latter set equals

{ ai | V⃗ ⊢ U⃗i }, which in turn entails b because by assumption W ⊢ (V⃗ , b).
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Now we can use (A) to infer (V⃗ , b) ∈ [[λx⃗M ]], as required.

Case (C). Assume W ⊆ [[λx⃗C]]. Then W consists of (U⃗ , U⃗ ′,Ca⃗∗) such

that U⃗ ′ ⊢ a⃗∗. Assume further W ⊢ (V⃗ , V⃗ ′, b). Then

{Ca⃗∗ | ∃U⃗ ,U⃗ ′((U⃗ , U⃗ ′,Ca⃗∗) ∈W ∧ V⃗ ⊢ U⃗ ∧ V⃗ ′ ⊢ U⃗ ′) } ⊢ b.

By definition of entailment b has the form Cb⃗∗ such that

Wi := { a | ∃U⃗ ,U⃗ ′,a⃗∗(a = a∗i ∧ (U⃗ , U⃗ ′,Ca⃗∗) ∈W ∧ V⃗ ⊢ U⃗ ∧ V⃗ ′ ⊢ U⃗ ′) } ⊢ b∗i .

We must show (V⃗ , V⃗ ′,Cb⃗∗) ∈ [[λx⃗C]], i.e., V⃗
′ ⊢ b⃗∗. It suffices to show V ′

i ⊢
Wi, for every i. Let a ∈ Wi. Then there are U⃗ , U⃗ ′, a⃗∗ such that a = a∗i ,

(U⃗ , U⃗ ′,Ca⃗∗) ∈W and V⃗ ′ ⊢ U⃗ ′. Hence V ′
i ⊢ U ′

i ⊢ a∗i = a.

Case (D). Let W = {(U⃗1, U⃗
′′
1 , a1), . . . , (U⃗n, U⃗

′′
n , an)}. For every i there is

an U⃗ ′
i such that

(U⃗i, U⃗
′
i , ai) ∈ [[λx⃗,y⃗iMi(y⃗i)]] U⃗ ′′

i ⊢ P⃗i(U⃗
′
i)

(U⃗i, U⃗ ′′
i , ai) ∈ [[λx⃗D]]

for DP⃗i(y⃗i) = Mi(y⃗i) a computation rule. Assume W ⊢ (V⃗ , V⃗ ′′, b). We must

prove (V⃗ , V⃗ ′′, b) ∈ [[λx⃗D]]. Let

I := { i | 1 ≤ i ≤ n ∧ V⃗ ⊢ U⃗i ∧ V⃗ ′′ ⊢ U⃗ ′′
i }.

Then { ai | i ∈ I } ⊢ b, hence I ̸= ∅. For i ∈ I we have V⃗ ′′ ⊢ U⃗ ′′
i ⊢ P⃗i(U⃗

′
i),

hence by (27) there are V⃗ ′
i such that V⃗ ′′ ∼ P⃗i(V⃗

′
i ) and V⃗ ′

i ⊢ U⃗ ′
i . In particular

for i, j ∈ I

V⃗ ′′ ∼ P⃗i(V⃗
′
i ) ∼ P⃗j(V⃗

′
j ).

To simplify notation assume I = {1, . . . ,m}. Hence by the unification lemma

P⃗1, . . . , P⃗m are unifiable with a most general unifier ϑ and there exists W⃗
such that

(P⃗1ϑ)(W⃗ ) = · · · = (P⃗mϑ)(W⃗ ) ∼ P⃗1(V⃗
′
1) ∼ · · · ∼ P⃗m(V⃗ ′

m).

Let i, j ∈ I. Then by the conditions on computation rules Miϑ = Mjϑ. Also

(y⃗iϑ)(W⃗ ) ⊢ V⃗ ′
i ⊢ U⃗ ′

i . Therefore by (23)

(V⃗ , (y⃗iϑ)(W⃗ ), ai) ∈ [[λx⃗,y⃗iMi(y⃗i)]]

and hence by (26)

(V⃗ , W⃗ , ai) ∈ [[λx⃗,y⃗iMi(y⃗iϑ)]].

But Mi(y⃗iϑ) = Miϑ = M1ϑ = M1(y⃗1ϑ) and hence for all i ∈ I

(V⃗ , W⃗ , ai) ∈ [[λx⃗,y⃗iM1(y⃗1ϑ)]].
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Therefore X := { (V⃗ , W⃗ , ai) | i ∈ I } ⊆ [[λx⃗,y⃗iM1(y⃗1ϑ)]]. Since { ai | i ∈
I } ⊢ b, we have X ⊢ (V⃗ , W⃗ , b) and hence the induction hypothesis implies

(V⃗ , W⃗ , b) ∈ [[λx⃗,y⃗iM1(y⃗1ϑ)]]. Using (26) again we obtain (V⃗ , (y⃗iϑ)(W⃗ ), b) ∈
[[λx⃗,y⃗iM1(y⃗1)]]. Since V⃗ ′′ ∼ P⃗1(V⃗

′
1) ∼ P⃗1((y⃗1ϑ)(W⃗ )) we obtain (V⃗ , V⃗ ′′, b) ∈

[[λx⃗D]], by (D). □

Corollary. [[λx⃗M ]] is an ideal.

B.2. Preservation of values

We now prove that Definition B.1.1 of the denotation of a term is rea-
sonable in the sense that this denotation is not changed by an application
of the standard (β- and η-) conversions or a computation rule. For the β-
conversion part of this proof it is helpful to first introduce a more standard
notation, which involves variable environments.

Definition. Assume that all free variables in M are among x⃗. Let

[[M ]]U⃗x⃗ := { b | (U⃗ , b) ∈ [[λx⃗M ]] } and [[M ]]u⃗,V⃗x⃗,y⃗ :=
⋃

U⃗⊆u⃗[[M ]]U⃗ ,V⃗
x⃗,y⃗ .

From (24) we obtain [[M ]]U⃗ ,V
x⃗,y = [[M ]]U⃗x⃗ if y /∈ FV(M), and similarly for

ideals u⃗, v instead of U⃗ , V . We have a useful monotonicity property, which
follows from the deductive closure of [[λx⃗M ]].

Lemma B.2.1. (a) If V⃗ ⊢ U⃗ , a ⊢ b and a ∈ [[M ]]U⃗x⃗ , then b ∈ [[M ]]V⃗x⃗ .

(b) If v⃗ ⊇ u⃗, a ⊢ b and a ∈ [[M ]]u⃗x⃗, then b ∈ [[M ]]v⃗x⃗.

Proof. (a) V⃗ ⊢ U⃗ , a ⊢ b and (U⃗ , a) ∈ [[λx⃗M ]] together imply (V⃗ , b) ∈
[[λx⃗M ]], by the deductive closure of [[λx⃗M ]]. (b) follows from (a). □

Lemma B.2.2. (a) [[xi]]
U⃗
x⃗ = U i and [[xi]]

u⃗
x⃗ = ui.

(b) [[λyM ]]U⃗x⃗ = { (V, b) | b ∈ [[M ]]U⃗ ,V
x⃗,y } and [[λyM ]]u⃗x⃗ = { (V, b) | b ∈ [[M ]]u⃗,Vx⃗,y }.

(c) [[MN ]]U⃗x⃗ = [[M ]]U⃗x⃗ [[N ]]U⃗x⃗ and [[MN ]]u⃗x⃗ = [[M ]]u⃗x⃗[[N ]]u⃗x⃗.

Proof. (b) It suffices to prove the first part. But (V, b) ∈ [[λyM ]]U⃗x⃗ and

b ∈ [[M ]]U⃗ ,V
x⃗,y are both equivalent to (U⃗ , V, b) ∈ [[λx⃗,yM ]].

(c) For the first part we argue as follows.

c ∈ [[M ]]U⃗x⃗ [[N ]]U⃗x⃗ ↔ ∃V⊆[[N ]]U⃗
x⃗

((V, c) ∈ [[M ]]U⃗x⃗ )

↔ ∃V ((U⃗ , V ) ⊆ [[λx⃗N ]] ∧ (U⃗ , V, c) ∈ [[λx⃗M ]])

↔ (U⃗ , c) ∈ [[λx⃗(MN)]] by (A)

↔ c ∈ [[MN ]]U⃗x⃗ .
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The second part is an easy consequence:

c ∈ [[M ]]u⃗x⃗[[N ]]u⃗x⃗ ↔ ∃V⊆[[N ]]u⃗
x⃗
((V, c) ∈ [[M ]]u⃗x⃗)

↔ ∃V⊆[[N ]]u⃗
x⃗
∃U⃗⊆u⃗((V, c) ∈ [[M ]]U⃗x⃗ )

↔ ∃U⃗1⊆u⃗∃V⊆[[N ]]
U⃗1
x⃗

∃U⃗⊆u⃗((V, c) ∈ [[M ]]U⃗x⃗ )

↔(∗) ∃U⃗⊆u⃗∃V⊆[[N ]]U⃗
x⃗

((V, c) ∈ [[M ]]U⃗x⃗ )

↔ ∃U⃗⊆u⃗(c ∈ [[M ]]U⃗x⃗ [[N ]]U⃗x⃗ )

↔ ∃U⃗⊆u⃗(c ∈ [[MN ]]U⃗x⃗ ) by the first part

↔ c ∈ [[MN ]]u⃗x⃗.

Here is the proof of the equivalence marked (∗). The upward direction is

obvious. For the downward direction we use monotonicity. Assume U⃗1 ⊆ u⃗,

V ⊆ [[N ]]U⃗1
x⃗ , U⃗ ⊆ u⃗ and (V, c) ∈ [[M ]]U⃗x⃗ . Let U⃗2 := U⃗1 ∪ U⃗ ⊆ u⃗. Then by

monotonicity V ⊆ [[N ]]U⃗2
x⃗ and (V, c) ∈ [[M ]]U⃗2

x⃗ . □

Corollary. [[λyM ]]u⃗x⃗v = [[M ]]u⃗,vx⃗,y.

Proof.

b ∈ [[λyM ]]u⃗x⃗v ↔ ∃V⊆v((V, b) ∈ [[λyM ]]u⃗x⃗)

↔ ∃V⊆v(b ∈ [[M ]]u⃗,Vx⃗,y ) by the lemma, part (b)

↔ b ∈ [[M ]]u⃗,vx⃗,y. □

Lemma B.2.3 (Substitution). [[M(z)]]
u⃗,[[N ]]u⃗x⃗
x⃗,z = [[M(N)]]u⃗x⃗.

Proof. By induction on M , and cases on the form of M .
Case λyM . For readability we leave out x⃗ and u⃗.

[[λyM(z)]][[N ]]
z = { (V, b) | b ∈ [[M(z)]][[N ]],V

z,y }
= { (V, b) | b ∈ [[M(N)]]Vy } by induction hypothesis

= [[λyM(N)]] by the last lemma, part (b)

= [[(λyM)(N)]].

The other cases are easy. □

Lemma B.2.4 (Preservation of values, β). [[(λyM(y))N ]]u⃗x⃗ = [[M(N)]]u⃗x⃗.

Proof. Again we leave out x⃗, u⃗. By the last two lemmata and the

corollary, [[(λyM(y))N ]] = [[λyM(y)]][[N ]] = [[M(y)]]
[[N ]]
y = [[M(N)]]. □
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Lemma B.2.5 (Preservation of values, η). [[λy(My)]]u⃗x⃗ = [[M ]]u⃗x⃗ if y /∈
FV(M).

Proof.

(V, b) ∈ [[λy(My)]]u⃗x⃗ ↔ ∃U⃗⊆u⃗((U⃗ , V, b) ∈ [[λx⃗,y(My)]])

↔ ∃U⃗⊆u⃗((U⃗ , V, b) ∈ [[λx⃗M ]]) by (25)

↔ (V, b) ∈ [[M ]]u⃗x⃗. □

Lemma B.2.6 (Preservation of values, computation rules). For every

computation rule DP⃗ (y⃗ ) = M of a defined constant D

[[λy⃗DP⃗ (y⃗ )]] = [[λy⃗M ]].

Proof. The following are equivalent:

(V⃗ , b) ∈ [[λy⃗DP⃗ (y⃗ )]]

(P⃗ (V⃗ ), b) ∈ [[D]] = [[λz⃗Dz⃗ ]] by (26)

(V⃗ , b) ∈ [[λy⃗M ]],

where the last step is by definition. □





APPENDIX C

Realizers for axioms

We show that the extracted term of I±, coI± realizes the respective
axiom. For the first two claims we only consider the inductive predicate ∼L

with L the algebra of lists of signed digits.

Lemma C.0.1. The constructors of L realize the clauses of ∼L.

Proof. We only consider the second constructor ::. We must show that
:: realizes the following formula C equivalent to (∼L)

+
1 :

∀s1,s2(s1 ∼D s2 → ∀ℓ1,ℓ2(ℓ1 ∼L ℓ2 → s1 :: ℓ1 ∼L s2 :: ℓ2))

i.e., :: r C. Pick s1, s2. The goal then is

:: r (s1 ∼D s2 → ∀ℓ1,ℓ2(ℓ1 ∼L ℓ2 → s1 :: ℓ1 ∼L s2 :: ℓ2)).

Pick s with ∼r
D(s1, s2, s). The goal then is

:: s r ∀ℓ1,ℓ2(ℓ1 ∼L ℓ2 → s1 :: ℓ1 ∼L s2 :: ℓ2).

Pick ℓ1, ℓ2, ℓ with ∼r
L(ℓ1, ℓ2, ℓ). The goal then is

(s :: ℓ) r (s1 :: ℓ1 ∼L s2 :: ℓ2), i.e.,

∼r
L (s1 :: ℓ1, s2 :: ℓ2, s :: ℓ).

But this follows from what we have by the second clause of ∼r
L:

∀s1,s2,s,ℓ1,ℓ2,ℓ(∼r
D(s1, s2, s)→ ∼r

L(ℓ1, ℓ2, ℓ)→ ∼r
L(s1 :: ℓ1, s2 :: ℓ2, s :: ℓ)). □

Lemma C.0.2. The recursion operator Rα
L realizes the least-fixed-point

axiom ∼−
L .

Proof. We equivalently rewrite ∼−
L as C :=

∀ℓ1,ℓ2(ℓ1 ∼L ℓ2 →
X[][]→
∀s1,s2,ℓ1,ℓ2(s1 ∼D s2 → ℓ1 ∼L ℓ2 → Xℓ1ℓ2 → X(s1 :: ℓ1, s2 :: ℓ2))→
Xℓ1ℓ2)

to make its type the same as the one for Rα
L:

L→ α→ (D→ L→ α→ α)→ α.
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We must show Rα
L r C. Pick ℓ1, ℓ2. The goal then is

Rα
L r (ℓ1 ∼L ℓ2 →

X[][]→
∀s1,s2,ℓ1,ℓ2(s1 ∼D s2 → ℓ1 ∼L ℓ2 → Xℓ1ℓ2 → X(s1 :: ℓ1, s2 :: ℓ2))→
Xℓ1ℓ2).

Pick ℓ with ∼r
L(ℓ1, ℓ2, ℓ). Then the goal is

Rα
Lℓ r (X[][]→

∀s1,s2,ℓ1,ℓ2(s1 ∼D s2 → ℓ1 ∼L ℓ2 → Xℓ1ℓ2 → X(s1 :: ℓ1, s2 :: ℓ2))→
Xℓ1ℓ2).

Pick x with Xr[][]x. Then the goal is

Rα
Lℓx r (∀s1,s2,ℓ1,ℓ2(s1 ∼D s2 → ℓ1 ∼L ℓ2 → Xℓ1ℓ2 → X(s1 :: ℓ1, s2 :: ℓ2))→

Xℓ1ℓ2).

Pick f with

f r ∀s1,s2,ℓ1,ℓ2(s1 ∼D s2 → ℓ1 ∼L ℓ2 → Xℓ1ℓ2 → X(s1 :: ℓ1, s2 :: ℓ2)),

which implies

∀s1,s2,s,ℓ1,ℓ2,ℓ,y(∼r
D(s1, s2, s)→ ∼r

L(ℓ1, ℓ2, ℓ)→ Xrℓ1ℓ2y →
Xr(s1 :: ℓ1, s2 :: ℓ2, fsℓy)).

Our goal is

Xr(ℓ1, ℓ2,Rα
Lℓxf) =: Qℓ1ℓ2ℓ.

To this end we use the elimination axiom for ∼r
L:

∀ℓ1,ℓ2,ℓ(∼r
L(ℓ1, ℓ2, ℓ)→

Q[][][]→
∀s1,s2,s,ℓ1,ℓ2,ℓ(∼r

D(s1, s2, s)→ ∼r
L(ℓ1, ℓ2, ℓ)→ Qℓ1ℓ2ℓ→

Q(s1 :: ℓ1, s2 :: ℓ2, s :: ℓ))→
Qℓ1ℓ2ℓ).

It suffices to prove the premises Q[][][] and ∀s1,s2,s,ℓ1,ℓ2,ℓ(∼r
D(s1, s2, s) →

∼r
L(ℓ1, ℓ2, ℓ) → Qℓ1ℓ2ℓ → Q(s1 :: ℓ1, s2 :: ℓ2, s :: ℓ)). By a computation

rule for Rα
L the former is Xr[][]x, which we have. For the latter assume s1,

s2, s, ℓ1, ℓ2, ℓ and its premises. We show Q(s1 :: ℓ1, s2 :: ℓ2, s :: ℓ), i.e.,

Xr(s1 :: ℓ1, s2 :: ℓ2,Rα
L(s :: ℓ)xf).

By the computation rules for Rα
L this is the same as

Xr(s1 :: ℓ1, s2 :: ℓ2, fsℓ(Rα
Lℓxf)).
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But with y := Rα
Lℓxf this follows from what we have. □

For the final two claims we only consider the coinductive predicate ≈S.

Lemma C.0.3. The destructor DS realizes the closure axiom ≈−
S .

Proof. Recall ≈−
S :

∀u1,u2(u1 ≈S u2 →
∃s1,s2,u′

1,u
′
2
(s1 ∼D s2 ∧ u′1 ≈S u′2 ∧ u1 ≡ s1 :: u

′
1 ∧ u2 ≡ s2 :: u

′
2))

with cotype coS→ D× coS. The goal is DS r ≈−
S , which unfolds into

∀u1,u2,u(≈r
S(u1, u2, u)→ DSu r ∃s1,s2,u′

1,u
′
2
(s1 ∼D s2 ∧ u′1 ≈S u′2 ∧
u1 ≡ s1 :: u

′
1 ∧ u2 ≡ s2 :: u

′
2)).

Assume ≈r
S(u1, u2, u). We need to prove

∃s1,s2,u′
1,u

′
2
(DSu r (s1 ∼D s2 ∧ u′1 ≈S u′2) ∧ u1 ≡ s1 :: u

′
1 ∧ u2 ≡ s2 :: u

′
2).

By (≈r
S)

− from ≈r
S(u1, u2, u) we obtain s1, s2, s, u

′
1, u

′
2, u

′ such that

∼r
D(s1, s2, s) ∧ ≈r

S(u
′
1, u

′
2, u

′) ∧ u1 ≡ s1 :: u
′
1 ∧ u2 ≡ s2 :: u

′
2 ∧ u ≡ s :: u′.

Take s1, s2, u
′
1, u

′
2. It remains to show DSu r (s1 ∼D s2 ∧ u′1 ≈S u′2). By

the computation rule of DS we know DSu ≡ DS(s :: u′) ≡ ⟨s, u′⟩. Hence we
must prove ∼r

D(s1, s2, s) and ≈r
S(u1, u2, u), which we both have. □

Lemma C.0.4. The corecursion operator coRα
S realizes the greatest-fixed-

point axiom ≈+
S .

Proof. We equivalently rewrite ≈+
S as C :=

∀u1,u2(Xu1u2 →
∀u1,u2(Xu1u2 → ∃s1,s2,u′

1,u
′
2
(s1 ∼D s2 ∧ (u′1 ≈S u′2 ∨Xu′1u

′
2) ∧

u1 ≡ s1 :: u
′
1 ∧ u2 ≡ s2 :: u

′
2))→

u1 ≈S u2)

to make its cotype the same as the one for coRα
S:

α→ (α→ D× (coS + α))→ coS.

We must show that coRα
S realizes C, or more formally coRα

S r C. The goal
then is

coRα
S r (Xu1u2 →
∀u1,u2(Xu1u2 → ∃s1,s2,u′

1,u
′
2
(s1 ∼D s2 ∧ (u′1 ≈S u′2 ∨Xu′1u

′
2) ∧

u1 ≡ s1 :: u
′
1 ∧ u2 ≡ s2 :: u

′
2))→

u1 ≈S u2).
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Pick u with Xru1u2u. Then the goal is
coRα

Su r ∀u1,u2(Xu1u2 → ∃s1,s2,u′
1,u

′
2
(s1 ∼D s2 ∧ (u′1 ≈S u′2 ∨Xu′1u

′
2) ∧

u1 ≡ s1 :: u
′
1 ∧ u2 ≡ s2 :: u

′
2))→

u1 ≈S u2).

Pick f such that

f r ∀u1,u2(Xu1u2 → ∃s1,s2,u′
1,u

′
2
(s1 ∼D s2 ∧ (u′1 ≈S u′2 ∨Xu′1u

′
2) ∧

u1 ≡ s1 :: u
′
1 ∧ u2 ≡ s2 :: u

′
2))

i.e.,

∀u1,u2,u(X
ru1u2u→ fu r ∃s1,s2,u′

1,u
′
2
(s1 ∼D s2 ∧ (u′1 ≈S u′2 ∨Xu′1u

′
2) ∧

u1 ≡ s1 :: u
′
1 ∧ u2 ≡ s2 :: u

′
2)).

Our goal is
≈r

S(u1, u2,
coRα

Suf).

To this end we use the greatest-fixed-point axiom for ≈r
S in the form

∀u1,u2,u(Qu1u2u→
∀u1,u2,u(Qu1u2u→

∃s1,s2,s,u′
1,u

′
2,u

′(∼r
D(s1, s2, s) ∧ (≈r

S(u
′
1, u

′
2, u

′) ∨Qu1u2u
′) ∧

u1 ≡ s1::u
′
1 ∧ u2 ≡ s2::u

′
2 ∧ u ≡ s::u′))→

≈r
S(u1, u2, u))

with
∃z′(Xru1u2z

′ ∧ u ≡ coRα
Sz

′f) =: Qu1u2u.

It suffices to prove the closure property of Q. Let u1, u2, u and also u′ be
given such that

Xru1u2u
′ ∧ u ≡ coRα

Su
′f.

We need to show

∃s1,s2,s,u′
1,u

′
2,u

′(

∼r
D(s1, s2, s) ∧ (≈r

S(u
′
1, u

′
2, u

′) ∨ ∃u′′(Xru1u2u
′′ ∧ u ≡ coRα

Su
′′f)) ∧

u1 ≡ s1 :: u
′
1 ∧ u2 ≡ s2 :: u

′
2 ∧ u ≡ s :: u′).

(28)

First note that ∼r
D(s1, s2, s) is equivalent to s1 ≡ s2 ≡ s. Since Xru1u2u

′

we know

fu′ r ∃s1,s2,u′
1,u

′
2
(s1 ∼D s2∧(u′1 ≈S u′2∨Xu′1u

′
2)∧u1 ≡ s1 :: u

′
1∧u2 ≡ s2 :: u

′
2).

Then fu′ ≡ ⟨s, w⟩ with ∼r
D(s1, s2, s) and w r (u′1 ≈S u′2 ∨Xu′1u

′
2), for some

s1, s2, u
′
1, u

′
2 such that u1 ≡ s1 :: u

′
1 and u2 ≡ s2 :: u

′
2. Hence

∃u′(≈r
S(u

′
1, u

′
2, u

′) ∧ w ≡ InL(u′)) ∨ ∃u′′(Xru′1u
′
2u

′′ ∧ w ≡ InR(u′′)).
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We distinguish cases on this disjunction. Recall

coRα
Suf ≡

{
s :: u if fu ≡ ⟨s, InL(u)⟩,
s :: coRα

Su
′f if fu ≡ ⟨s, InR(u′)⟩.

Case L. ≈r
S(u

′
1, u

′
2, u

′)∧w ≡ InL(u′) for some u′. Then (28) holds, since
u ≡ coRα

Su
′f ≡ s :: u′.

Case R. Xru′1u
′
2u

′′ ∧ w ≡ InR(u′′) for some u′′. Then again (28) holds
with u′ := coRα

Su
′′f , since u ≡ coRα

Su
′f ≡ s :: coRα

Su
′′f ≡ s :: u′. □

Lemma C.0.5 (Identities realize I− for one-clause-nc I). For one-clause-
nc inductive predicates the elimination axiom with a c.r. competitor predicate
is realized by the identity.

Proof. For A⃗ n.c. we have

(λzz) r ∀x⃗(Ix⃗→ ∀y⃗(A⃗→ Xt⃗ )→ Xx⃗ )

∀x⃗(Ix⃗→ (λzz) r (∀y⃗(A⃗→ Xt⃗ )→ Xx⃗ ))

∀x⃗(Ix⃗→ ∀z(z r ∀y⃗(A⃗→ Xt⃗ )→ z r Xx⃗ ))

∀x⃗(Ix⃗→ ∀z(∀y⃗(A⃗→ z r Xt⃗ )→ z r Xx⃗ ))

which is an instance of the same elimination axiom. □
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