
CHAPTER 5

Real analysis

We are interested in exact real numbers, as opposed to floating point
numbers. The final goal is to develop the basics of real analysis in such a
way that from a proof of an existence formula one can extract a program. For
instance, from a proof of the intermediate value theorem we want to extract
a program that, given an arbitrary error bound 1

2p , computes a rational x
where the given function is zero up to the error bound.

5.1. Exact real arithmetic

5.1.1. Cauchy sequences, equality. We shall view a real as a Cauchy
sequence of rationals with a separately given modulus.

Definition 5.1.1. A real number x is a pair ((an)n∈N,M) with an ∈ Q
and M : P→ N such that (an)n is a Cauchy sequence with modulus M , that
is

|an − am| ≤
1

2p
for n,m ≥M(p)

and M is weakly increasing (that is M(p) ≤ M(q) for p ≤ q). M is called
Cauchy modulus of x.

We shall loosely speak of a real (an)n if the Cauchy modulus M is clear
from the context or inessential. Every rational a is tacitly understood as the
real represented by the constant sequence an = a with the constant modulus
M(p) = 0.

Definition 5.1.2. Two reals x := ((an)n,M), y := ((bn)n, N) are called
equivalent (or equal and written x = y, if the context makes clear what is
meant), if

|aM(p+1) − bN(p+1)| ≤
1

2p
for all p ∈ P.

We want to show that this is an equivalence relation. Reflexivity and
symmetry are clear. For transitivity we use the following lemma:

Lemma 5.1.3 (RealEqChar). For reals x := ((an)n,M), y := ((bn)n, N)
the following are equivalent:

(a) x = y;
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(b) ∀p∃n0∀n≥n0(|an − bn| ≤ 1
2p ).

Proof. (a) implies (b). For n ≥M(p+ 2), N(p+ 2) we have

|an − bn| ≤ |an − aM(p+2)|+ |aM(p+2) − bN(p+2)|+ |bN(p+2) − bn|

≤ 1

2p+2
+

1

2p+1
+

1

2p+2
.

(b) implies (a). Let q ∈ P, and n ≥ n0,M(p + 1), N(p + 1) with n0

provided for q by (b). Then

|aM(p+1) − bN(p+1)| ≤ |aM(p+1) − an|+ |an − bn|+ |bn − bN(p+1)|

≤ 1

2p+1
+

1

2q
+

1

2p+1
.

The claim follows, because this holds for every q ∈ P. □

Remark 5.1.4 (RealSeqEqToEq). An immediate consequence is that
any two reals with the same Cauchy sequence (but possibly different moduli)
are equal.

Lemma 5.1.5 (RealEqTrans). Equality between reals is transitive.

Proof. Let (an)n, (bn)n, (cn)n be the Cauchy sequences for x, y, z. As-
sume x = y, y = z and pick n1, n2 for p+ 1 according to the lemma above.
Then |an − cn| ≤ |an − bn|+ |bn − cn| ≤ 1

2p+1 + 1
2p+1 for n ≥ n1, n2. □

5.1.2. The Archimedian property. For every function on the reals
we certainly want compatibility with equality. This however is not always
the case; here is an important example.

Lemma 5.1.6 (RealBound). For every real x := ((an)n,M) we can find
px such that |an| ≤ 2px for all n.

Proof. Let n0 := M(1) and px be such that max{ |an| | n ≤ n0 }+ 1
2 ≤

2px . Then |an| ≤ 2px for all n. □

Clearly this assignment of px to x is not compatible with equality.

5.1.3. Nonnegative and positive reals. A real x := ((an)n,M) is
called nonnegative (written x ∈ R0+) if

− 1

2p
≤ aM(p) for all p ∈ P.

It is p-positive (written x ∈p R+, or x ∈ R+ if p is not needed) if

1

2p
≤ aM(p+1).

We want to show that both properties are compatible with equality.
First we prove a useful characterization of nonnegative reals.
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Lemma 5.1.7 (RealNNegChar). For a real x := ((an)n,M) the following
are equivalent:

(a) x ∈ R0+;
(b) ∀p∃n0∀n≥n0(− 1

2p ≤ an).

Proof. (a) implies (b). For n ≥M(p+ 1) we have

− 1

2p
≤ − 1

2p+1
+ aM(p+1)

= − 1

2p+1
+ (aM(p+1) − an) + an

≤ − 1

2p+1
+

1

2p+1
+ an.

(b) implies (a). Let q ∈ P and n ≥ n0,M(p) with n0 provided by (b)
(for q). Then

− 1

2p
− 1

2q
≤ − 1

2p
+ an

= − 1

2p
+ (an − aM(p)) + aM(p)

≤ − 1

2p
+

1

2p
+ aM(p).

The claim follows, because this holds for every q. □

Lemma 5.1.8 (RealNNegCompat). If x ∈ R0+ and x = y, then y ∈ R0+.

Proof. Let x := ((an)n,M) and y := ((bn)n, N). Assume x ∈ R0+

and x = y, and let p be given. Pick n0 according to the lemma above
and n1 according to the characterization of equality of reals in Lemma 5.1.3
(RealEqChar) (both for p+ 1). Then for n ≥ n0, n1

− 1

2p
≤ − 1

2p+1
+ an ≤ (bn − an) + an.

Hence y ∈ R0+ by definition. □

Lemma 5.1.9 (RealPosChar). For a real x := ((an)n,M) with x ∈p R+

we have
1

2p+1
≤ an for M(p+ 1) ≤ n.

Conversely, from ∀n≥n0(
1
2q ≤ an) we can infer x ∈q+1 R+.

Proof. Assume x ∈p R+, that is 1
2p ≤ aM(p+1). Then

1

2p+1
≤ − 1

2p+1
+ aM(p+1) = −

1

2p+1
+ (aM(p+1) − an) + an ≤ an


