
CHAPTER 4

Computational content of proofs

We have already mentioned that (co)inductive predicates can be de-
clared as either computationally relevant (c.r.) or non-computational (n.c.).
But what is the computational content in the c.r. case? We first address
this question for (co)inductive predicates, and then extend it to arbitrary
formulas. Next we study in what sense a proof of a c.r. formula A provides
us with concrete computational content. This can be seen as a “witness”
for the validity of A, or – in the sense of Kolmogorov (1932) – a “solution”
to problem A.

Finally we take a step back and reflect on what we have done. We
formally define what it means for a term to “realize” the c.r. formula A. We
extract from a proof M of A a term et(M) and (again formally) prove that
it is a realizer of A. In this proof we need “invariance axioms” stating that
every c.r. formula not involving realizability is invariant under realizability,
formally A↔ ∃z(z r A), where z r A means “z realizes A”.

4.1. Realizers

Assume that we have a global assignment giving for every c.r. predicate
variable X of arity ρ⃗ an n.c. predicate variable Xr of arity (ρ⃗, ξ) where ξ
is the type variable associated with X. We will also introduce Ir/coIr for
(co)inductive predicates I/coI. A formula or predicate C is called r-free if it
does not contain any of these Xr, Ir or coIr. A derivation M is called r-free
if it contains r-free formulas only.

Definition (Cr for r-free predicates and formulas C). For every r-free
predicate or formula C we define a predicate or formula Cr. For n.c. C let
Cr := C. In case C is c.r. Cr is an n.c. predicate of arity (σ⃗, τ(C)) with σ⃗
the arity of C. We often write z r C for Crz in case C is a c.r. formula. For
c.r. predicates X let Xr be the n.c. predicate variable provided, and

{ x⃗ | A }r := { x⃗, z | z r A }.

Now consider a c.r. (co)inductive predicate

I/coI := (µ/ν)X((Ki(X))i<k
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50 4. COMPUTATIONAL CONTENT OF PROOFS

with associated base type ιI given by the constructor types (κi(ξ))i<k where
κi(ξ) := τ(Ki(X)). The i-th constructor of ιI is Ci : κi(ιI). Let s be a
variable of type τ(I) and ϑ the substitution ξ 7→ τ(I), Xr 7→ { x⃗, s | Y x⃗s }.
We define n.c. predicates Ir and coIr by

Ir/coIr := (µ/ν)Y ((Ci r Ki(X))ϑ)i<k.

The substitution ϑ is necessary since the arity of Y (and hence of Ir/coIr)
must be (ρ⃗, τ(I)) and not (ρ⃗, ξ). For c.r. formulas let

z r P t⃗ := P rt⃗z,

z r (A→ B) :=

{
∀w(w r A→ zw r B) if A is c.r.

A→ z r B if A is n.c.

z r ∀xA := ∀x(z r A).

Example. As an easy example for the construction of Ir consider the
predicate Even, defined by µX(K0(X),K1(X)) with K0(X) := (0 ∈ X) and
K1(X) := ∀n(n ∈ X → S(Sn) ∈ X). The associated base type ιEven is
given by the constructor types κ0(ξ) := ξ and κ1(ξ) := ξ → ξ, i.e., ιEven = N
with constructors C0 := 0 and C1 := S. Let ϑ be the substitution ξ 7→ N,
Xr 7→ {n,m | Y nm }. Since S r K1(X) is ∀n,m(Xrnm → Xr(S(Sn), Sm))
we obtain

Ir := µY (Y 00,∀n,m(Y nm→ Y (S(Sn), Sm)).

We express Kolmogorov’s view of formulas as problems by means of
invariance axioms:

Axiom (Invariance under realizability). For r-free c.r. formulas A we
require as axioms

InvAllA : ∀z(z r A→ A).(16)

InvExA : A→ ∃z(z r A).(17)

Realizers of totality and cototality predicates will be of special interest
for us. Notice that the types τ(Tι) and τ(coTι) are both ι. Moreover we
have

Lemma 4.1.1 (Realizers of totality). For closed base types ι the following
are equivalent.

(a) T r
ι xy,

(b) x ∼nc
ι y,

(c) x ∈ T nc
ι ∧ x ≡ y.

Proof. (a)↔ (b). Both T r
ι xy and x ∼nc

ι y satify the same clauses. Use
the respective elimination axiom in each of the two directions.

(b) ↔ (c). Use Corollary 3.4.2 (page 45). □
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Lemma 4.1.2 (Realizers of cototality). For closed base types ι the fol-
lowing are equivalent.

(a) coT r
ι xy,

(b) x ≈nc
ι y,

(c) x ∈ coT nc
ι ∧ x ≡ y.

Proof. As an example we give the proof for N. Since we have n.c. goals
only, decorations are omitted.

(a) → (b). We use the greatest-fixed-point axiom for ≈N:

∀n,m(Xnm→ (n ≡ 0 ∧m ≡ 0) ∨
∃n′,m′((n′ ≈N m′ ∨Xn′m′) ∧ n ≡ Sn′ ∧m ≡ Sm′))→ X ⊆ ≈N

and apply it with coT r
N for X. It suffices to prove the premise. Assume

coT r
Nnm; the goal is

C := (n ≡ 0∧m ≡ 0)∨∃n′,m′((n′ ≈N m′ ∨ coT r
Nn

′m′)∧n ≡ Sn′ ∧m ≡ Sm′).

By the closure axiom (coT r
N)

− we have

(n ≡ 0 ∧m ≡ 0) ∨ ∃n′,m′(coT r
Nn

′m′ ∧ n ≡ Sn′ ∧m ≡ Sm′).

We argue by cases (i.e., use ∨−).
Case 1. n ≡ 0 ∧m ≡ 0. Go for the l.h.s. of the disjunction C.
Case 2. ∃n′,m′(coT r

Nn
′m′ ∧ n ≡ Sn′ ∧m ≡ Sm′). Go for the r.h.s. of C.

(b) → (a). Recall coTN := νX(0 ∈ X, ∀n∈X(Sn ∈ X)), hence by defini-
tion

coT r
N := νXr(Xr00, ∀n,m(Xrnm→ Xr(Sn)(Sm))).

We need to show n ≈N m→ coT r
Nnm. To this end we use the greatest-fixed-

point axiom for coT r
N:

∀n,m(Xnm→ (n ≡ 0 ∧m ≡ 0) ∨
∃n′,m′(n′,m′ ∈ (coT r

N ∪X) ∧ n ≡ Sn′ ∧m ≡ Sm′))→ X ⊆ coT r
N

and apply it with ≈N for X. It suffices to prove the premise. Assume
n ≈N m; the goal is

C := (n ≡ 0∧m ≡ 0)∨∃n′,m′((n′,m′ ∈ (coT r
N ∪≈N)∧n ≡ Sn′ ∧m ≡ Sm′)).

By the closure axiom (≈N)
− we have

n ≈N m→ (n ≡ 0 ∧m ≡ 0) ∨ ∃n′,m′(n′ ≈N m′ ∧ n ≡ Sn′ ∧m ≡ Sm′).

We argue by cases (i.e., use ∨−).
Case 1. n ≡ 0 ∧m ≡ 0. Go for the l.h.s. of the disjunction C.
Case 2. ∃n′,m′(n′ ≈N m′ ∧ n ≡ Sn′ ∧m ≡ Sm′). Go for the r.h.s. of C.
(b) ↔ (c). Use the Bisimilarity axiom and Proposition 3.4.1 (page 44).

□
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Next we study what our general definition says about realizers for the
c.r. inductively defined decorated connectives.

Recall that for the sum type ρ+σ we had the constructors (InLρσ)
ρ→ρ+σ

and (InRρσ)
σ→ρ+σ. In the special situation that one of the two parameter

types is the unit type U it is common to view the sum type U + σ as a
unary algebra form, with constructors DummyL of type U + σ and Inr of
type σ → U + σ. Similarly ρ + U is viewed as a unary algebra form, with
constructors Inl of type ρ→ ρ+ U and DummyR of type ρ+ U.

Lemma 4.1.3 (Realizers for ∨). z r (A ∨B) is equivalent to

∃x(x r A ∧ z ≡ InL(x)) ∨nc ∃y(y r B ∧ z ≡ InR(y)) for A,B c.r.

∃x(x r A ∧ z ≡ Inl(x)) ∨nc (B ∧ z ≡ DummyR) for A c.r. and B n.c.

(A ∧ z ≡ DummyL) ∨nc ∃y(y r B ∧ z ≡ Inr(y)) for A n.c. and B c.r.

(A ∧ z ≡ tt) ∨nc (B ∧ z ≡ ff) for A,B n.c.

Proof. As an example we consider the case A n.c. and B c.r. Recall
OrRXnc,Y c := µZ(X

nc → Z, Y c → Z). Then

OrRr
Xnc,Y r := µZr(Xnc → DummyL ∈ Zr,∀y(y r Y → Inr(y) ∈ Zr)).

Now substituting Xnc by A and Y r by { y | y r B } in the introduction
axioms gives

(OrRr
A,{y|yrB})

+
0 : A→ DummyL r (A ∨B),

(OrRr
A,{y|yrB})

+
1 : ∀y(y r B → Inr(y) r (A ∨B)).

This suffices for “←”: if A ∧ z ≡ DummyL, then from (OrRr
A,{y|yrB})

+
0 we

obtain z r (A ∨ B), and if we have y with y r B and z ≡ Inr(y), then from
(OrRr

A,{y|yrB})
+
1 we again obtain z r (A ∨B).

Conversely, the elimination axiom (OrRr
Xnc,Y r)− is

(Xnc → DummyL ∈ Z)→ ∀y(y r Y → Inr(y) ∈ Z)→ OrRr
Xnc,Y r ⊆ Z.

Substitute Z by { z | (A∧ z ≡ DummyL)∨nc ∃y(y r B ∧ z ≡ Inr(y)) }. Then
with A for Xnc and { y | y r B } for Y r the two premises become provable
and we obtain

∀z(z r (A ∨B)→ (A ∧ z ≡ DummyL) ∨nc ∃y(y r B ∧ z ≡ Inr(y))). □

Similarly we have

Lemma 4.1.4 (Realizers for ∧). z r (A ∧B) is equivalent to

z ≡ ⟨lft(z), rht(z)⟩ ∧ (lft(z) r A) ∧ (rht(z) r B) for A c.r. and B c.r.

(z r A) ∧B for A c.r. and B n.c.

A ∧ (z r B) for A n.c. and B c.r.
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Proof. Exercise.
□

Lemma 4.1.5 (Realizers for ∃). z r ∃xA↔ ∃x(z r A) for A c.r.

Proof. Recall ExY := µX(∀x(x ∈ Y → X)). Then

ExrY r := µXr(∀x,z(Y rxz → Xrz)).

Now substituting Y r by {x, z | z r A } in the introduction axiom gives

(Exr{x,z|zrA})
+
0 : ∀x,z(z r A→ z r ∃xA)

Conversely, the elimination axiom (ExrY r)− is

∀z(z ∈ ExrY r → ∀x,z(Y rxz → z ∈ X)→ z ∈ X).

which is equivalent to

∀z(z ∈ ExrY r → ∀z(∃xY rxz → z ∈ X)→ z ∈ X).

Substituting X by { z | ∃x(Y rxz) } makes the middle part provable. Thus
with {x, z | z r A } for Y r we obtain ∀z(z r ∃xA → ∃x(z r A)) from
(Exr{x,z|zrA})

−. □

4.2. Extracted terms, soundness

Let M be a proof in TCF of a c.r. formula A. Assume M is an r-free
proof, i.e., M contains no realizability predicates Ir or coIr. We define its
extracted term et(M), of type τ(A), with the aim to express M ’s compu-
tational content. It will be a term built up from variables, constructors,
recursion operators, destructors and corecursion operators by λ-abstraction
and application.

Definition (Extracted term). For an r-free proof M of a c.r. formula
A we define its extracted term et(M) by

et(uA) := zτ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAMB)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).
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It remains to define extracted terms for the axioms. Consider a (c.r.) in-
ductively defined predicate I. For its introduction and elimination axioms
define

et(I+i ) := Ci,

et(I−) := R,
where both the constructor Ci and the recursion operatorR refer to the base
type ιI associated with I. For the closure and greatest-fixed-point axioms
of coI define

et(coI−) := D,
et(coI+i ) := coR,

where again both the destructor D and the corecursion operator coR refer
to the base type ιI associated with I. For the elimination axiom (Inc)−

of a one-clause-nc inductive predicate with a c.r. competitor predicate the
extracted term is the identity.

From the Soundness Theorem 4.2.1 below it will follow that the term
extracted from a closed r-free proof of a c.r. formula A realizes A. As a
preparation we first attend the axioms. Let I be an inductive predicate and
ιI its associated base type. One can show that the extracted term of I±,
coI± realizes the respective axiom1. Proofs of these facts are automatically
generated in Minlog.

Theorem 4.2.1 (Soundness). Let M be an r-free derivation of a formula
A from assumptions ui : Ci ( i < n). Then we can derive{

et(M) r A if A is c.r.

A if A is n.c.

from assumptions {
zui r Ci if Ci is c.r.

Ci if Ci is n.c.

Proof. Case u : A. Subcase A c.r. Then et(u) = zu. Subcase A n.c.
Immediate.

Case c : A. Subcase A c.r. The axioms have been treated above. Subcase
A n.c. Immediate.

Case (λuAMB)A→B with B c.r. We must derive et(λuM) r (A → B).
To this end we distinguish subcases. Subcase A c.r. Then the goal

∀z(z r A→ et(M)(z) r B)

1In Appendix C such proofs for some (co)inductive predicates are written out.
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follows from the induction hypothesis by →+ and ∀+.
Subcase A n.c. Then the goal is

A→ et(λuM) r B.

Recall that et(λuM) = et(M). By induction hypothesis we have a derivation
of et(M) r B from A, which is what we want.

Case (λuAMB)A→B with B n.c. We need a derivation of A→ B.
Subcase A c.r. By induction hypothesis we have a derivation of B from

z r A. Using the invariance axiom A → ∃z(z r A) we obtain the required
derivation of B from A as follows.

A→ ∃z(z r A) A

∃z(z r A)

[z r A]

| IH
B
∃−B

Subcase A n.c. By induction hypothesis we have a derivation of B from A,
which is what we want.

Case (MA→BNA)B with B c.r. We need a derivation of et(MN) r
B. To this end we distinguish subcases. Subcase A c.r. Then et(MN) =
et(M)et(N). By induction hypothesis we have derivations of et(M) r (A→
B) and hence of

∀z(z r A → et(M)z r B)

and of et(N) r A. This gives the claim. Subcase A n.c. Then et(MN) =
et(M). By induction hypothesis we have derivations of et(M) r (A → B)
and hence of

A → et(M) r B

and of A. Applying the former to the latter gives et(M) r B.
Case (MA→BNA)B with B n.c. The goal is to find a derivation of B.

Subcase A c.r. By induction hypothesis we have derivations of A → B and
of et(N) r A. Now using the invariance axiom ∀z(z r A→ A) we obtain the
required derivation of B by →− from the derivation of A→ B and

∀z(z r A→ A) et(N)

et(N) r A→ A

| IH
et(N) r A

A

Subcase A n.c. By induction hypothesis we have derivations of A→ B and
of A, hence also a derivation of B.

Case (λxM
A)∀xA with ∀xA c.r. We need a derivation of et(λxM) r ∀xA.

By definition et(λxM) = et(M). Hence we must derive

et(M) r ∀xA, which is ∀x(et(M) r A).

This follows from the induction hypothesis.
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Case (λxM
A)∀xA with ∀xA n.c. By induction hypothesis we have a

derivation of A. Apply ∀+.
Case (M∀xA(x)t)A(t) with A(t) c.r. We must derive et(Mt) r A(t). By

definition et(Mt) = et(M), and by induction hypothesis we can derive

et(M) r ∀xA(x), which is ∀x(et(M) r A(x)).

Case (M∀xA(x)t)A(t) with A(t) n.c. By induction hypothesis we have a
derivation of ∀xA(x). Apply ∀−. □


