
CHAPTER 3

A theory TCF of partial continuous functionals

After getting clear about the domains we intend to reason about, the
partial continuous functionals, we now set up a theory to prove their prop-
erties. The main concepts are those of inductively and coinductively defined
predicates.

3.1. Formulas and their computational content

Formulas will built up from prime formulas P t⃗ by implication → and
universal quantification ∀x; here the ti are terms, x is a variable and P is a
predicate of a certain arity (a list of types). Types and terms are defined as
in Chapter 2. We often write t⃗ ∈ P for P t⃗.

Predicates can be inductively or coinductively defined. An example for
the former is TL(N), which is defined by the clauses (i) [] ∈ TL(N) and (ii)
∀n∈N(ℓ ∈ TL(N) → n :: ℓ ∈ TL(N)). An example for the latter is coTL(N)

defined by a closure axiom saying that every ℓ ∈ coTL(N) is of the form n :: ℓ′

with n ∈ N and ℓ′ ∈ coTL(N) again. According to Kolmogorov (1932) a
formula can be seen as a problem, asking for a solution. In the inductive
example a solution for 4 :: 2 :: 0 :: [] ∈ TL(N) would be the generating (finite)
sequence [], 0 :: [], 2 :: 0 :: [], 4 :: 2 :: 0 :: [], and in the coinductive example
a solution for a prime formula t ∈ coTL(N) would be an (infinite) stream
of natural numbers. Generally, a solution for an inductive predicate is a
finite construction tree, and for a coinductive predicate a finitely branching
possibly infinite destruction tree. Such trees can be seen as ideals of the
closed base types considered in Section 2.2.2. A solution for a problem
posed by the formula A→ B is a computable functional mapping solutions
of A into solutions of B.

Sometimes the solution of a problem does not need all available input.
We therefore mark the sources of such computationally superfluous input –
that is, some (co)inductive predicates – as “non-computational” (n.c.).

Assume an infinite supply of predicate variables, each of its own arity
(a list of types). We distinguish two sorts of predicate variables, “compu-
tationally relevant” ones Xc, Y c, Zc,W c . . . and “non-computational” ones
Xnc, Y nc, Znc, W nc . . . , and use X,Y, Z,W . . . for both.

31

32 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

Let Z be a predicate variable. By Z̄ we denote the result of applying
the predicate variable Z to a list of terms of fitting types, and by Z̃ lists of
those.

Definition (Clauses and predicate forms). Let X be a predicate vari-
able. An X-clause is a formula

K := ∀x⃗(Ỹ c → Z̃nc → (∀y⃗i(W̃
nc
i → X̄i))i<n → X̄)

with all predicate variables Y c
i , Z

nc
i , W nc

i occurring exactly once and distinct
from each other and from X, and all X̄i coming from the fixed X. A premise
of a clause is called a parameter premise if X does not occur in it, and
a recursive premise otherwise. A clause K is non-recursive if it has no
recursive premises.

Let K⃗ be a list of X-clauses. We call Ic := µXcK⃗ and Inc := µXncK⃗

(with K⃗ not empty) predicate forms (and use I for both), and similarly with
coI for I and ν for µ.

Examples. Recall that NilL(α) and Consα→L(α)→L(α) are the two con-
structors of the base type L(α) of lists, written [] and :: (infix).

1. Let Y of arity (α) and X of arity (L(α)) be predicate variables. Then

K0 := ([] ∈ X),

K1 := ∀x(x ∈ Y → ∀ℓ(ℓ ∈ X → x :: ℓ ∈ X))

are clauses and both relative totality TL(Y) (or TL,Y) defined by µX(K0,K1)
and also relative cototality coTL(Y) (or coTL,Y) defined by νX(K0,K1) are
predicate forms with Y a parameter predicate variable. Note that we can
omit the type parameter α, since it can be read off from the arity of Y .

2. Alternatively let Y of arity (α, α) and X of arity (L(α),L(α)) be
predicate variables. Then

K0 := X([], []),

K1 := ∀x,x′(Y (x, x′)→ ∀ℓ,ℓ′(X(ℓ, ℓ′)→ X(x :: ℓ, x′ :: ℓ′)))

are clauses and both similarity ∼L(Y) defined by µX(K0,K1) and bisimila-
rity ≈L(Y) defined by νX(K0,K1) are predicate forms with Y a parameter
predicate variable.

Note that a predicate form I may contain type variables α⃗ and predicate

variables Y⃗ . We write I(ρ⃗, P⃗) for the result of substituting in I the types ρ⃗

for α⃗ and the predicates P⃗ for Y⃗ .

Definition (Constructor types of a predicate form). From every clause
K we obtain a constructor type by

• omitting quantifiers,

3.1. FORMULAS AND THEIR COMPUTATIONAL CONTENT 33

• dropping all n.c. predicates and from the c.r. predicates their argu-
ments, and
• replacing the remaining predicate variables by type variables.

That is, from the clause

∀x⃗(Ỹ c → Z̃nc → (∀y⃗i(W̃
nc
i → X̄i))i<n → X̄)

we obtain the constructor type α⃗→ (ξ)i<n → ξ. With every predicate form

Ic := (µ/ν)XcK⃗ we associate the list κ⃗ of constructor types.

Definition (Predicates and formulas).

P,Q ::= X | { x⃗ | A } | I(ρ⃗, P⃗) | coI(ρ⃗, P⃗) (predicates),

A,B ::= P t⃗ | A→ B | ∀xA (formulas)

with I/coI a predicate form. To take care of the difference between Xc and
Xnc we define the final predicate of a predicate or formula by

fp(X) := X,

fp({ x⃗ | A }) := fp(A),

fp((I/coI)(ρ⃗, P⃗)) := I/coI,

fp(P t⃗) := fp(P),

fp(A→ B) := fp(B),

fp(∀xA) := fp(A).

We call a predicate or formula C non-computational (n.c., or Harrop) if its
final predicate fp(C) is of the form Xnc or Inc, else computationally relevant

(c.r.). We require that all predicate substitutions involved in (I/coI)(ρ⃗, P⃗)
substitute c.r. predicates for c.r. predicate variables and n.c. predicates for
n.c. predicate variables. Such predicate substitutions are called sharp.

Predicates of the form I(ρ⃗, P⃗) are called inductive, and predicates of

the form coI(ρ⃗, P⃗) coinductive.
The terms t⃗ are those introduced in Section 2.3.1, i.e., typed terms built

from typed variables and constants by abstraction and application, and (im-
portantly) those with a common reduct are identified.

A predicate of the form { x⃗ | C } is called a comprehension term. We
identify { x⃗ | C(x⃗) }t⃗ with C (⃗t). For a predicate C of arity (ρ, σ⃗) we write
Ct for { y⃗ | Cty⃗ }.

It is a natural question to ask what the type of a “realizer” or “witness”
of a c.r. predicate or formula C should be.

34 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

Definition (Type τ(C) of a c.r. predicate or formula C). Assume a
global injective assignment of type variables ζ to c.r. predicate variables Xc.

τ(Xc) := ζ,

τ({ x⃗ | A }) := τ(A),

τ(I(ρ⃗, P⃗)) := ικ⃗(ρ⃗,τ(P⃗ c)),

τ(P t⃗) := τ(P),

τ(A→ B) :=

{
τ(A)→ τ(B) (A c.r.)

τ(B) (A n.c.),

τ(∀xA) := τ(A).

In the I-case we have assumed I = (µ/ν)XK⃗ with X-clauses K⃗. Every Ki

has an assigned constructor type κi. Free in κ⃗ are the type variables α⃗ from

K⃗ and the type variables ζ⃗ globally assigned to the c.r. predicate variables

Y⃗ c in K⃗. Now κ⃗(ρ⃗, τ(P⃗ c)) is the result of substituting ρ⃗ for α⃗ and of the
(already generated) types τ(P c

i) for ζi in κ⃗.

3.2. Examples of inductive predicates

A simple example of an inductive predicate is totality TN of the natural
numbers. It is defined as

TN := µX(K0,K1)

with

K0 := (0 ∈ X),

K1 := ∀n(n ∈ X → Sn ∈ X).

Depending on whether the predicate variable X is n.c. or c.r. we have an
n.c. or a c.r. totality predicate.

Recall that a variable of type τ ranges over arbitrary objects of type τ ,
which may be partial. However, in practice we ofter want to argue on total
objects only. To make such a restriction easy to read we introduce two sorts
of variable names: a general one written x̂ ranging over arbitrary (possibly
partial) objects, and a special one written x ranging over total objects only.
Then we use the abbreviation

∀xA(x) := ∀x̂(x̂ ∈ Tτ → A(x̂)).

We will follow this convention from now on. Hence the clause K1 above
should now be written

K1 := ∀n̂(n̂ ∈ X → Sn̂ ∈ X).

Another particularly important example of an inductive predicate is
Leibniz equality , defined simply by

EqD := µXnc(∀x̂Xncx̂x̂) (D for “inductively defined”).

3.2. EXAMPLES OF INDUCTIVE PREDICATES 35

We will use the abbreviation

(t ≡ s) := EqD(t, s).

The missing logical connectives existence, disjunction and conjunction
can also be defined inductively. Existence is defined inductively by

ExY c := µXc(∀x̂(x̂ ∈ Y c → Xc)),

ExNcY := µXnc(∀x̂(x̂ ∈ Y → Xnc)).

Then by definition

τ(Ex) = µξ(β → ξ) = I(β).

We use the abbreviation

∃x̂A := Ex{x̂|A},

∃ncx̂ A := ExNc{x̂|A},

and again since the decoration is determined by the c.r./n.c. status of the
parameter predicate we usually leave out the decoration and just write ∃.

For a context where only total objects are of interest we have

ExDTY c := µXc(∀x̂(x̂ ∈ T c → x̂ ∈ Y c → Xc)),

ExLTY c := µXc(∀x̂(x̂ ∈ T c → x̂ ∈ Y nc → Xc)),

ExRTY c := µXc(∀x̂(x̂ ∈ T nc → x̂ ∈ Y c → Xc)),

ExNcTY := µXnc(∀x̂(x̂ ∈ T → x̂ ∈ Y → Xnc)).

Here D is for “double”, L for “left” and R for “right”. Then by definition

τ(ExDT) = µξ(τ → β → ξ) = τ × β

τ(ExLT) = µξ(τ → ξ) = I(τ),

τ(ExRT) = µξ(β → ξ) = I(β).

To make these formulas more readable we can again use our convention
concerning the two sorts x̂ and x of variable names. Then the inductive
predicates above are written as

ExDTY c := µXc(∀x(x ∈ Y c → Xc)),

ExLTY c := µXc(∀x(x ∈ Y nc → Xc)),

ExRTY c := µXc(∀ncx (x ∈ Y c → Xc)),

ExNcTY := µXnc(∀x(x ∈ Y → Xnc)).

36 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

We use the abbreviations

∃dxA := ExDT{x|A} if A is c.r.,

∃lxA := ExLT{x|A} if A is n.c.,

∃rxA := ExRT{x|A} if A is c.r.,

∃ncx A := ExNcT{x|A} for arbitrary A.

Disjunction is a special case of union

CupY,Z := µXc(∀x⃗(Y x⃗→ Xcx⃗), ∀x⃗(Zx⃗→ Xcx⃗)).

Since the parameter predicates Y, Z can be chosen as either c.r. or n.c. we
obtain the variants

CupDY c,Zc := µXc(∀x⃗(Y cx⃗→ Xcx⃗), ∀x⃗(Zcx⃗→ Xcx⃗)),

CupLY c,Znc := µXc(∀x⃗(Y cx⃗→ Xcx⃗), ∀x⃗(Zncx⃗→ Xcx⃗)),

CupRY nc,Zc := µXc(∀x⃗(Y ncx⃗→ Xcx⃗), ∀x⃗(Zcx⃗→ Xcx⃗)),

CupUY nc,Znc := µXc(∀x⃗(Y ncx⃗→ Xcx⃗), ∀x⃗(Zncx⃗→ Xcx⃗)),

CupNcY,Z := µXnc(∀x⃗(Y x⃗→ Xncx⃗), ∀x⃗(Zx⃗→ Xncx⃗)).

Here D is for “double”, L for “left”, R for “right” and U for “uniform”.
Then by definition

τ(CupD) = µξ(β0 → ξ, β1 → ξ) = β0 + β1,

τ(CupL) = µξ(β → ξ, ξ) = β + U = ysumu(β),

τ(CupR) = µξ(ξ, β → ξ) = U + β = uysum(β),

τ(CupU) = µξ(ξ, ξ) = B.

We use the abbreviations

P ∪d Q := CupDP,Q,

P ∪l Q := CupLP,Q,

P ∪r Q := CupRP,Q,

P ∪u Q := CupUP,Q,

P ∪nc Q := CupNcP,Q.

3.2. EXAMPLES OF INDUCTIVE PREDICATES 37

In case of nullary predicates we use

A ∨d B := CupD{|A},{|B},

A ∨l B := CupL{|A},{|B},

A ∨r B := CupR{|A},{|B},

A ∨u B := CupU{|A},{|B},

A ∨nc B := CupNc{|A},{|B}.

Since the “decoration” is determined by the c.r./n.c. status of the two pa-
rameter predicates we usually leave it out in ∨d,∨l,∨r,∨u and just write
∨. However in the final nc-variant we suppress even the information which
clause has been used, and hence must keep the notation ∨nc.

Similarly conjunction is a special case of intersection

CapY,Z := µXc(∀x⃗(Y x⃗→ Zx⃗→ Xcx⃗)),

and we obtain the variants

CapDY c,Zc := µXc(∀x⃗(Y cx⃗→ Zcx⃗→ Xcx⃗)),

CapLY c,Znc := µXc(∀x⃗(Y cx⃗→ Zncx⃗→ Xcx⃗)),

CapRY nc,Zc := µXc(∀x⃗(Y ncx⃗→ Zcx⃗→ Xcx⃗)),

CapNcY,Z := µXnc(∀x⃗(Y x⃗→ Zx⃗→ Xncx⃗)).

Then by definition

τ(CapD) = µξ(β0 → β1 → ξ) = β0 × β1

τ(CapL) = τ(CapR) = µξ(β → ξ) = I(β).

We use the abbreviations

P ∩d Q := CapDP,Q,

P ∩l Q := CapLP,Q,

P ∩r Q := CapRP,Q,

P ∩nc Q := CapNcP,Q.

In case of nullary predicates we use

A ∧d B := CapD{|A},{|B},

A ∧l B := CapL{|A},{|B},

A ∧r B := CapR{|A},{|B},

A ∧nc B := CapNc{|A},{|B}.

Again since the decoration is determined by the c.r./n.c. status of the two
parameter predicates we usually leave out the decoration and just write ∧.

38 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

3.3. Axioms of TCF

We define a theory of continuous functionals, called TCF. Formulas are
the ones defined above, involving typed variables. Derivations use the rules
of minimal logic for → and ∀, and the axioms introduced below. However,
because of the distinction between n.c. and c.r. predicates and formulas we
have an extra degree of freedom. By an n.c. part of a derivation we mean a
subderivation with an n.c. end formula. Such n.c. parts will not contribute
to the computational content of the whole derivation, and hence we can
ignore all decorations in those parts (i.e., use a modified notion of equality
of formulas there).

3.3.1. Axioms for inductive predicates. For each inductive predi-
cate there are “clauses” or introduction axioms, together with a “least-fixed-
point” or elimination axiom. To grasp the general form of these axioms it
is convenient to write a clause

∀x⃗(Ỹ c → Z̃nc → (∀y⃗i(W̃
nc
i → X̄i))i<n → X̄) as ∀x⃗((Aν(X))ν<n → Xt⃗).

Definition (Introduction and elimination axioms for inductive predi-
cates). For an inductive predicate µX(∀x⃗i

((Aiν(X))ν<ni → Xt⃗i))i<k =: I
we have k introduction axioms I+i (i < k) and one elimination axiom I−:

I+i : ∀x⃗i
((Aiν(I))ν<ni → It⃗i),(12)

I− : (∀x⃗i
((Aiν(I ∩X))ν<ni → Xt⃗i))i<k → I ⊆ X(13)

(I ∩X was inductively defined above). (13) expresses that every competitor
X satisfying the same clauses contains I. We take all substitution instances
of I+i , I− (w.r.t. substitutions for type and predicate variables) as axioms.

Remarks. (i) We use a “strengthened” form of the “step formula”,
namely ∀x⃗i

(Aiν(I ∩X))ν<ni → Xt⃗i rather than ∀x⃗i
(Aiν(X))ν<ni → Xt⃗i. In

applications of the least-fixed-point axiom this simplifies the proof of the
“step”, since we have an additional I-hypothesis available.

(ii) Notice that there is no circularity here for the inductive predicate
Y ∩Z := CapY,Z , since there are no recursive calls in this particular inductive
definition and hence ∩ does not occur in

Cap−Y,Z : ∀x⃗(Y x⃗→ Zx⃗→ Xx⃗)→ CapY,Z ⊆ X.

(iii) The elimination axiom (13) could equivalently be written as

I− : ∀x⃗(Ix⃗→ (∀x⃗i
((Aiν(I ∩X))ν<ni → Xt⃗i))i<k → Xx⃗)

In this form it fits better with our (i.e., Gentzen’s) way to write the logical
elimination rules, where the main premise comes first. More importantly,
its type (cf. Section 3.1) will then be the type of the recursion operator Rτ

ι

3.3. AXIOMS OF TCF 39

taken as the “computational content” (cf. Section 4.1) of the elimination
axiom for I. Therefore in the implementation of TCF this form is used.
However, for readability we often prefer the form (13) in the present notes.

In Section 3.2 we considered several basic examples of inductive pre-
dicates. Their introduction and elimination axioms have important conse-
quences, which we shall study now.

Totality TN for the natural numbers has the introduction axioms

(TN)
+
0 : 0 ∈ TN,

(TN)
+
1 : ∀n̂(n̂ ∈ TN → Sn̂ ∈ TN).

Its elimination axiom is

(TN)
− : 0 ∈ X → ∀n̂(n̂ ∈ TN → n̂ ∈ X → Sn̂ ∈ X)→ ∀n̂(n̂ ∈ TN → n̂ ∈ X)

or in abbreviated form (recall our convention on using both n̂ and n as
variable names)

(TN)
− : 0 ∈ X → ∀n(n ∈ X → Sn ∈ X)→ ∀n(n ∈ X).

This is the usual induction axiom for (total) natural numbers.
The n.c. Leibniz equality has the introduction axiom

(EqD)+0 : ∀x̂(x̂ ≡ x̂).

Its elimination axiom is

(EqD)− : ∀x̂Xx̂x̂→ ∀x̂,ŷ(x̂ ≡ ŷ → Xx̂ŷ).

From this definition we can deduce the property Leibniz used as a definition.

Lemma 3.3.1 (Compatibility of EqD). ∀x̂,ŷ(x̂ ≡ ŷ → A(x̂)→ A(ŷ)).

Proof. By the elimination axiom withX := { x̂, ŷ | A(x̂)→ A(ŷ) }. □

Using compatibility of EqD one easily proves symmetry and transitivity.
An important usage of EqD in TCF is that it allows to introduce falsity

and hence negation. Recall that the language of TCF contains constructors
for base types. For the base type B of booleans we have as constructors
Frege’s “Wahrheitswerte” tt and ff. Using these we can define

Definition (Falsity, Negation). (a) Falsity F is defined by

F := (ff ≡ tt).

(b) The negation ¬A of a formula A is defined by

¬A := (A→ F).

Now using the fact that we identify terms with a common reduct and
that we have recursion operators in our language we can prove “ex-falso-
quodlibet” for formulas It⃗ with I a predicate form. Easy examples are

40 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

Lemma 3.3.2 (Ex-falso for EqD and TN). TCF proves

(a) F→ ∀x̂,ŷ(x̂ ≡ ŷ),
(b) F→ ∀n̂(n̂ ∈ TN).

Proof. (a) We show EfEqD : F→ x̂τ ≡ ŷτ . To see this, we first obtain
Rτ

Bffx̂ŷ ≡ Rτ
Bffx̂ŷ from the introduction axiom. Then from ff ≡ tt we get

Rτ
Bttx̂ŷ ≡ Rτ

Bffx̂ŷ by compatibility. Now Rτ
Bttx̂ŷ converts to x̂ and Rτ

Bffx̂ŷ
converts to ŷ. Hence x̂ ≡ ŷ, since we identify terms with a common reduct.

(b) We show EfTN : F→ n̂ ∈ TN. Assume F. Then n̂ ≡ 0 by (a), hence
n̂ ∈ TN by 0 ∈ TN and compatibility. □

A similar result holds for arbitrary predicates and formulas. We post-
pone it until the axioms for coinductive predicates have been introduced.

An important use of Leibniz equality EqD is that it allows to turn a
term t of type B into a formula atom(t), defined by

Definition (Boolean terms as formulas).

atom(t) := (t ≡ tt).

This opens up a convenient way to deal with equality on closed base
types. The computation rules ensure that, for instance, the boolean term
St =N Ss, or more precisely =N(St, Ss), is identified with t =N s. We can
now turn this boolean term into the formula (St =N Ss) ≡ tt, which again
is abbreviated by St =N Ss, but this time with the understanding that it is
a formula. Then (importantly) the two formulas St =N Ss and t =N s are
identified because the latter is a reduct of the first. Consequently there is
no need to prove the implication St =N Ss→ t =N s explicitly.

Recall the inductive definitions of the logical connectives existence, dis-
junction and conjunction given above. For nullary predicates P = { | A }
and Q = { | B } we write A∨B for P ∪Q and A∧B for P ∩Q. For simplicity
we only consider the “double” versions. Then the introduction axioms are

∀x(A→ ∃dxA),

A→ A ∨d B, B → A ∨d B,

A→ B → A ∧d B,

and the elimination axioms are (now written in the equivalent form men-
tioned above, where the main premise comes first)

∃dxA→ ∀x(A→ B)→ B (x /∈ FV(B)),

A ∨d B → (A→ C)→ (B → C)→ C,

A ∧d B → (A→ B → C)→ C.

3.3. AXIOMS OF TCF 41

3.3.2. Axioms for coinductive predicates. For each coinductive
predicate there is a closure axiom, together with a “greatest-fixed-point”
axiom. For example, for the base type Y of of binary trees

• the cototality predicate coTY is defined by the closure axiom (3)
(page 18) and the greatest-fixed-point axiom by (4) (page 18), and
• the bisimilarity predicate ≈Y by the closure axiom (7) (page 19)
and the greatest-fixed-point axiom (8) (page 19).

To understand the general axioms for coinductive predicates note that
the conjunction of the k clauses (12) of an inductive predicate I is equivalent
to

∀x⃗(
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(I) ∧ x⃗ ≡ t⃗i)→ Ix⃗).

Definition (Closure and greatest-fixed-point axioms). For an inductive
predicate µX(∀x⃗i

((Aiν(X))ν<ni → Xt⃗i))i<k =: I we define its dual coI (with
ν for µ) by the closure axiom coI− and the greatest-fixed-point axiom coI+:

coI− : ∀x⃗(coIx⃗→
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(
coI) ∧ x⃗ ≡ t⃗i)),(14)

coI+ : ∀x⃗(Xx⃗→
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(
coI ∪X) ∧ x⃗ ≡ t⃗i))→ X ⊆ coI.(15)

(coI ∪ X was inductively defined above). The axiom expresses that every
“competitor” X satisfying the closure axiom is contained in coI. We take
all substitution instances of coI+, coI− (w.r.t. substitutions for type and
predicate variables) as axioms.

Again we have used a “strengthened” form of the “step formula”, with
Aiν(

coI ∪X) rather than Aiν(X). In applications of the greatest-fixed-point
axiom this simplifies the proof of the “step”, since its conclusion is weaker.

Remark. The greatest-fixed-point axiom (15) could be written as

∀x⃗(Xx⃗→ ∀x⃗(Xx⃗→
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(
coI ∪X) ∧ x⃗ ≡ t⃗i))→ coIx⃗).

Then its type will be the type of the corecursion operator coRτ
ι taken as the

“computational content” (cf. Section 4.1) of the greatest-fixed-point axiom
for coI. Therefore in the implementation of TCF this form is used. However,
for readability we prefer the form (15) in the present notes.

Remark. Instead of Leibniz equality ≡ in (14) and (15) we could also
use a different equality relation, for instance the n.c. variant

.
=nc of pointwise

equality to be introduced in Section 3.4. This leads to a new variant of coI.

42 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

Examples. (1) To show how to construct the dual coI of an inductive
predicate I we consider the predicate Even, which is defined by the clauses

(Even)+0 : 0 ∈ Even,

(Even)+1 : ∀n(n ∈ Even→ S(Sn) ∈ Even).

The conjunction of its two clauses is equivalent to

∀n(n ≡ 0 ∨ ∃n′(n′ ∈ Even ∧ n ≡ S(Sn′))→ n ∈ Even).

Now the dual coEven of Even is defined by its closure axiom coEven−:

∀n(n ∈ coEven→ n ≡ 0 ∨ ∃n′(n′ ∈ coEven ∧ n ≡ S(Sn′)))

and its greatest-fixed-point axiom coEven+:

∀n(Xn→ n ≡ 0 ∨ ∃n′(n′ ∈ (coEven ∪X) ∧ n ≡ S(Sn′)))→ X ⊆ coEven.

(2) Consider the inductive predicate I of arity (R) defined by the clause

∀d,x′,x(d ∈ D ∧ x′ ∈ R ∧ |x′| ≤R 1 ∧ x′ ∈ I ∧ x =R
x′ + d

2
→ x ∈ I).

Here it is assumed that the real numbers R together with the relations =R

and ≤R are available. D is the base type of signed digits {−1, 0, 1}. The
dual coI is defined by its closure axiom coI−:

∀x(x ∈ coI →

∃rd,x′,y(d ∈ D ∧ x′ ∈ R ∧ |x′| ≤R 1 ∧ x′ ∈ coI ∧ y =R
x′ + d

2
∧ x =R y)

and its greatest-fixed-point (or coinduction) axiom coI+:

∀x(x ∈ X → ∃rd,x′,y(

d ∈ D ∧ x′ ∈ R ∧ |x′| ≤R 1 ∧ (x′ ∈ coI ∪X) ∧ y =R
x′ + d

2
∧ x =R y))→

X ⊆ coI).

Remark. For n.c. inductive or coinductive predicates the axioms are
formed as in the c.r. case, using ∨nc for the closure axiom of coInc. But
there is an important restriction: for Inc with more than one clause the
elimination axiom (Inc)− can only be used with a non-computational com-
petitor predicate. This is needed in the proof of the soundness theorem.
However, this restriction does not apply to Inc defined by one clause only.
Important examples of such one-clause-nc inductive predicates are Leibniz
equality and the non-computational variants of the existential quantifier and
of conjunction.

Generally, an inductive predicate is always contained in its dual.

Lemma 3.3.3. I ⊆ coI, Inc ⊆ coInc.

3.3. AXIOMS OF TCF 43

Proof. The least-fixed-point axiom (13) for I (i.e., I−) is equivalent to

∀x⃗(
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(I ∩X) ∧ x⃗ ≡ t⃗i)→ Xx⃗)→ I ⊆ X.

It suffices that its premise holds with coI for X. This follows from the
greatest-fixed-point axiom (15) (i.e., coI+), with the competitor predicate

X := { x⃗ |
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(I ∩ coI) ∧ x⃗ ≡ t⃗i) }.

This means that we have to show the premise of (15) with this X, i.e.,

∀x⃗(Xx⃗→
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(
coI ∪X) ∧ x⃗ ≡ t⃗i)).

But if we unfold the premise Xx⃗, this follows from I ∩ coI ⊆ coI ∪ X. For
Inc the proof is similar. □

Remark. In case of an inductive predicate with non-recursive clauses
only also the reverse inclusions coI ⊆ I, coInc ⊆ Inc. Hence it is not necessary
to consider coI. Examples are the inductively defined logical connectives ∃,
∨, ∧ and Leibniz equality.

Lemma 3.3.4. I ⊆ Inc, coI ⊆ coInc.

Proof. Let I := µX(∀x⃗i
((Aiν(X))ν<ni → Xt⃗i))i<k.

For I ⊆ Inc we use the elimination axiom (13) with Inc as competitor
predicate:

(∀x⃗i
((Aiν(I ∩ Inc))ν<ni → Inct⃗i))i<k → I ⊆ Inc.

It suffices to prove the premises. Let i < k, fix x⃗i and assume Aiν(I ∩ Inc)
for all ν < ni. Since Aiν(X) is strictly positive in X we obtain Aiν(I

nc) for
all ν < ni and hence Incx⃗i by (Inc)+i .

For coI ⊆ coInc we use the greatest-fixed-point axiom for coInc with coI
as competitor predicate:

∀x⃗(coIx⃗→
∨∨
i<k

∃x⃗i
(
∧∧
ν<ni

Aiν(
coInc ∪ coI) ∧ x⃗ ≡ t⃗i))→ coI ⊆ coInc.

It suffices to prove the premise, which again follows from the fact thatAiν(X)
is strictly positive in X. □

Now we are ready to generalize Lemma 3.3.2 on Ex-falso for EqD and
TN to arbitrary predicates and formulas. However, we have to take care of
the following issues:

• Predicate variables might occur as non “strictly positive parts”.
• (Co)inductive predicates as strictly positive parts might not have
a nullary clause.

44 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

Definition. The notion of a strictly positive part (s.p.p) of a predicate
or formula C is defined inductively.

(a) C is a strictly positive part of C.
(b) If I is a strictly positive part of C and A a premise of a non-recursive

clause of I then A is a strictly positive part of C.

(c) If { ⃗̂x | A(⃗̂x) } is a strictly positive part of C then so is A(⃗t).
(d) If A→ B is a strictly positive part of C then so is B.
(e) If ∀x̂A(x̂) is a strictly positive part of C then so is A(t).

Theorem 3.3.5 (Ex-falso-quodlibet). Let C be a predicate or formula.
TCF proves {

∀⃗̂x(F→ P⃗̂x) if C is a predicate P

F→ A if C is a formula A

from assumptions{
∀⃗̂x(F→ Y ⃗̂x) if Y is a predicate variable strictly positive in C

∀⃗̂x(F→ I⃗̂x) if I has no non-recursive clause and is a s.p.p. of C

Proof. By Lemma 3.3.2 we have EfEqD : F→ x̂τ ≡ ŷτ . The claim can
now be proved by induction on C.

Case Is⃗. If I has no non-recursive clause we can use the assumption

∀⃗̂x(F → I⃗̂x). Otherwise let Ki be a non-recursive clause, with final con-

clusion It⃗. By induction hypothesis from F we can derive all parameter
premises. Hence It⃗. From F we also obtain si ≡ ti, by the remark above.
Hence Is⃗ by compatibility.

Case coIs⃗. Use Lemma 3.3.3. The cases Y s⃗, A → B and ∀x̂A are
obvious. □

3.4. Equality and extensionality

Equality at closed base types of level 0 is easy to handle. For simplicity
we only consider the type Y of binary trees. Recall that our theory TCF has
an intended model, determined by the ideals of the information systems Aτ .
We have seen in the Bisimilarity Lemma 2.2.1 (on page 19) that for closed
base types bisimilarity implies equality, which in TCF is formalized by the
inductively defined Leibniz equality EqD. Therefore we take as an axiom:

Axiom (Bisimilarity). For every closed base type bisimilarity implies
Leibniz equality.

This axiom is justified by the fact that it holds in our intended model.
As a consequence we can prove in TCF

Proposition 3.4.1 (Characterization of equality at TY and coTY).

3.4. EQUALITY AND EXTENSIONALITY 45

(a) ∀x,x′(x ∼Y x′ ↔ x, x′ ∈ TY ∧ x ≡ x′).
(b) ∀x,x′(x ≈Y x′ ↔ x, x′ ∈ coTY ∧ x ≡ x′).

Proof. (b). The proof of Proposition 2.2.2 relies on Lemma 2.2.1,
which we just added as an axiom. The rest of the proof uses poperties
of coTY and ≈Y available in TCF.

(a). Similar to (b), using T±
Y , ∼±

Y instead. For the proof of x ∼Y x′ →
x ≡ x′ use (b) and ∼Y ⊆ ≈Y (which follows from Lemma 3.3.3). □

This characterization of equality at TY and coTY is useful because it gives
us a tool (induction, coinduction) to prove equalities t ≡ t′, which otherwise
would be difficult.

Corollary 3.4.2.

(a) ∀x(x ∼Y x↔ x ∈ TY).
(b) ∀x(x ≈Y x↔ x ∈ coTY).

Proof. Immediate from Proposition 3.4.1. □

Corollary 3.4.3.

(a) ∼Y is an equivalence relation on TY.
(b) ≈Y is an equivalence relation on coTY.

Proof. Immediate from Proposition 3.4.1. □

Remark. For closed base types like Y we can also relate ∼Y to the
binary boolean-valued function =Y : Y → Y → B defined in Section 2.3.1.
One easily proves that

∀x(x ∈ TY → x = x),

∀x(x ∈ TY → ∀y(y ∈ TY → x = y → x ∼Y y)).

Usage of =Y has the advantage that proofs may become shorter, since we
identify terms with a common reduct. Pointwise equality

.
=Y is defined to

be ∼Y.

Up to now we have mainly dealt with base types. However, our theory
TCF allows function types as well. We extend the notions of totality and
pointwise equality from base types to function types. For simplicity we only
consider parameter-free types.

Definition (Totality and pointwise equality for function types).

(f ∈ Tτ→σ) := ∀x(x ∈ Tτ → fx ∈ Tσ),

(f
.
=τ→σ g) := f, g ∈ Tτ→σ ∧ ∀x,y(x

.
=τ y → fx

.
=σ gy).

Extensionality is defined as diagonalization of pointwise equality:

46 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

Definition (Extensionality).

(x ∈ Extτ) := (x
.
=τ x).

Example (A non-extensional functional). Define f, g of type N→ N by
the computation rules fn = 0 and g0 = 0, g(Sn) = gn. Then f⊥N = 0
because of the computation rules for f . For g⊥N no computation rule fits,

but because of the inductive definition of (U⃗ , a) ∈ [[λx⃗M]] in Section 2.4
(page 89) [[g⊥N]] is the empty ideal [[⊥N]]. Hence f

.
= g, i.e., f, g ∈ TN→N

and ∀n,m(n
.
=N m → fn

.
=N gm). The latter holds since n

.
=N m implies

n ∈ TN and n ≡ m. Therefore the functional F defined by Fh = h⊥N maps
the pointwise equal f, g to different values.

By Corollary 3.4.2 (page 45) we know the equivalence of ExtY and TY;
this also holds for arbitrary closed base types. This equivalence can be
extended to closed types of level 1:

Lemma 3.4.4. The predicates Extτ and Tτ are equivalent for closed types
of level ≤1.

Proof. For closed base types this has been proved in Corollary 3.4.2
(for the special case of the base type Y). In case of level 1 we use induction
on the height of the type, defined by

|τ → σ| := 1 + max{|τ |, |σ|}
Let τ → σ be a closed type of level 1. The following are equivalent.

f ∈ Extτ→σ

f
.
=τ→σ f

∀x,y(x
.
=τ y → fx

.
=σ fy)

∀x∈Tτ (fx
.
=σ fx) by Corollary 3.4.2, since lev(τ) = 0

∀x∈Tτ (fx ∈ Extσ).

By induction hypothesis the final formula is equivalent to f ∈ Tτ→σ. □

For arbitrary closed types τ the relation
.
=τ is a “partial equivalence

relation”, which means the following.

Lemma 3.4.5. For every closed type τ the relation
.
=τ is an equivalence

relation on Extτ .

Proof. Exercise.
□

Lemma 3.4.6 (Compatibility of terms). For every term t(x⃗) with exten-
sional constants and free variables among x⃗ we have

∀x⃗,y⃗(x⃗
.
=ρ⃗ y⃗ → t(x⃗)

.
=τ t(y⃗)).

3.4. EQUALITY AND EXTENSIONALITY 47

Proof. This is proved by induction on t. Case x. Immediate. Case
c. By assumption c

.
=τ c. Case λxt(x, x⃗). Let x⃗

.
=ρ⃗ y⃗. The goal is

λxt(x, x⃗)
.
=τ→σ λxt(x, y⃗), which by definition means

∀x,y(x
.
=τ y → t(x, x⃗)

.
=σ t(y, y⃗)).

Assume x
.
=τ y. With x⃗

.
=ρ⃗ y⃗ the claim t(x, x⃗)

.
=σ t(y, y⃗) holds by the IH.

Case t(x⃗)s(x⃗). Let x⃗
.
=ρ⃗ y⃗. By IH we have t(x⃗)

.
=τ→σ t(y⃗), i.e.,

∀x,y(x
.
=τ y → t(x⃗)x

.
=σ t(y⃗)y).

Again by IH we have s(x⃗)
.
=τ s(y⃗). Hence t(x⃗)s(x⃗)

.
=σ t(y⃗)s(y⃗). □

Lemma 3.4.7 (Extensionality of terms). For every term t(x⃗) with ex-
tensional constants and free variables among x⃗ we have

∀x⃗(x⃗ ∈ Extρ⃗ → t(x⃗) ∈ Extτ).

Proof. Let t(x⃗) with free variables among x⃗ be given, and assume
x⃗ ∈ Extρ⃗. By Lemma 3.4.6 applied to x⃗, x⃗ we obtain t(x⃗)

.
=τ t(x⃗), hence

t(x⃗) ∈ Extτ . □

