
CHAPTER 3

A theory TCF of partial continuous functionals

After getting clear about the domains we intend to reason about, the
partial continuous functionals, we now set up a theory to prove their prop-
erties. The main concepts are those of inductively and coinductively defined
predicates.

3.1. Formulas and their computational content

Formulas will built up from prime formulas P t⃗ by implication → and
universal quantification ∀x; here the ti are terms, x is a variable and P is a
predicate of a certain arity (a list of types). Types and terms are defined as
in Chapter 2. We often write t⃗ ∈ P for P t⃗.

Predicates can be inductively or coinductively defined. An example for
the former is TL(N), which is defined by the clauses (i) [] ∈ TL(N) and (ii)
∀n∈N(ℓ ∈ TL(N) → n :: ℓ ∈ TL(N)). An example for the latter is coTL(N)

defined by a closure axiom saying that every ℓ ∈ coTL(N) is of the form n :: ℓ′

with n ∈ N and ℓ′ ∈ coTL(N) again. According to Kolmogorov (1932) a
formula can be seen as a problem, asking for a solution. In the inductive
example a solution for 4 :: 2 :: 0 :: [] ∈ TL(N) would be the generating (finite)
sequence [], 0 :: [], 2 :: 0 :: [], 4 :: 2 :: 0 :: [], and in the coinductive example
a solution for a prime formula t ∈ coTL(N) would be an (infinite) stream
of natural numbers. Generally, a solution for an inductive predicate is a
finite construction tree, and for a coinductive predicate a finitely branching
possibly infinite destruction tree. Such trees can be seen as ideals of the
closed base types considered in Section 2.2.2. A solution for a problem
posed by the formula A→ B is a computable functional mapping solutions
of A into solutions of B.

Sometimes the solution of a problem does not need all available input.
We therefore mark the sources of such computationally superfluous input –
that is, some (co)inductive predicates – as “non-computational” (n.c.).

Assume an infinite supply of predicate variables, each of its own arity
(a list of types). We distinguish two sorts of predicate variables, “compu-
tationally relevant” ones Xc, Y c, Zc,W c . . . and “non-computational” ones
Xnc, Y nc, Znc, W nc . . . , and use X,Y, Z,W . . . for both.

31

32 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

Let Z be a predicate variable. By Z̄ we denote the result of applying
the predicate variable Z to a list of terms of fitting types, and by Z̃ lists of
those.

Definition (Clauses and predicate forms). Let X be a predicate vari-
able. An X-clause is a formula

K := ∀x⃗(Ỹ c → Z̃nc → (∀y⃗i(W̃
nc
i → X̄i))i<n → X̄)

with all predicate variables Y c
i , Z

nc
i , W nc

i occurring exactly once and distinct
from each other and from X, and all X̄i coming from the fixed X. A premise
of a clause is called a parameter premise if X does not occur in it, and
a recursive premise otherwise. A clause K is non-recursive if it has no
recursive premises.

Let K⃗ be a list of X-clauses. We call Ic := µXcK⃗ and Inc := µXncK⃗

(with K⃗ not empty) predicate forms (and use I for both), and similarly with
coI for I and ν for µ.

Examples. Recall that NilL(α) and Consα→L(α)→L(α) are the two con-
structors of the base type L(α) of lists, written [] and :: (infix).

1. Let Y of arity (α) and X of arity (L(α)) be predicate variables. Then

K0 := ([] ∈ X),

K1 := ∀x(x ∈ Y → ∀ℓ(ℓ ∈ X → x :: ℓ ∈ X))

are clauses and both relative totality TL(Y) (or TL,Y) defined by µX(K0,K1)
and also relative cototality coTL(Y) (or coTL,Y) defined by νX(K0,K1) are
predicate forms with Y a parameter predicate variable. Note that we can
omit the type parameter α, since it can be read off from the arity of Y .

2. Alternatively let Y of arity (α, α) and X of arity (L(α),L(α)) be
predicate variables. Then

K0 := X([], []),

K1 := ∀x,x′(Y (x, x′)→ ∀ℓ,ℓ′(X(ℓ, ℓ′)→ X(x :: ℓ, x′ :: ℓ′)))

are clauses and both similarity ∼L(Y) defined by µX(K0,K1) and bisimila-
rity ≈L(Y) defined by νX(K0,K1) are predicate forms with Y a parameter
predicate variable.

Note that a predicate form I may contain type variables α⃗ and predicate

variables Y⃗ . We write I(ρ⃗, P⃗) for the result of substituting in I the types ρ⃗

for α⃗ and the predicates P⃗ for Y⃗ .

Definition (Constructor types of a predicate form). From every clause
K we obtain a constructor type by

• omitting quantifiers,

3.1. FORMULAS AND THEIR COMPUTATIONAL CONTENT 33

• dropping all n.c. predicates and from the c.r. predicates their argu-
ments, and
• replacing the remaining predicate variables by type variables.

That is, from the clause

∀x⃗(Ỹ c → Z̃nc → (∀y⃗i(W̃
nc
i → X̄i))i<n → X̄)

we obtain the constructor type α⃗→ (ξ)i<n → ξ. With every predicate form

Ic := (µ/ν)XcK⃗ we associate the list κ⃗ of constructor types.

Definition (Predicates and formulas).

P,Q ::= X | { x⃗ | A } | I(ρ⃗, P⃗) | coI(ρ⃗, P⃗) (predicates),

A,B ::= P t⃗ | A→ B | ∀xA (formulas)

with I/coI a predicate form. To take care of the difference between Xc and
Xnc we define the final predicate of a predicate or formula by

fp(X) := X,

fp({ x⃗ | A }) := fp(A),

fp((I/coI)(ρ⃗, P⃗)) := I/coI,

fp(P t⃗) := fp(P),

fp(A→ B) := fp(B),

fp(∀xA) := fp(A).

We call a predicate or formula C non-computational (n.c., or Harrop) if its
final predicate fp(C) is of the form Xnc or Inc, else computationally relevant

(c.r.). We require that all predicate substitutions involved in (I/coI)(ρ⃗, P⃗)
substitute c.r. predicates for c.r. predicate variables and n.c. predicates for
n.c. predicate variables. Such predicate substitutions are called sharp.

Predicates of the form I(ρ⃗, P⃗) are called inductive, and predicates of

the form coI(ρ⃗, P⃗) coinductive.
The terms t⃗ are those introduced in Section 2.3.1, i.e., typed terms built

from typed variables and constants by abstraction and application, and (im-
portantly) those with a common reduct are identified.

A predicate of the form { x⃗ | C } is called a comprehension term. We
identify { x⃗ | C(x⃗) }t⃗ with C (⃗t). For a predicate C of arity (ρ, σ⃗) we write
Ct for { y⃗ | Cty⃗ }.

It is a natural question to ask what the type of a “realizer” or “witness”
of a c.r. predicate or formula C should be.

34 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

Definition (Type τ(C) of a c.r. predicate or formula C). Assume a
global injective assignment of type variables ζ to c.r. predicate variables Xc.

τ(Xc) := ζ,

τ({ x⃗ | A }) := τ(A),

τ(I(ρ⃗, P⃗)) := ικ⃗(ρ⃗,τ(P⃗ c)),

τ(P t⃗) := τ(P),

τ(A→ B) :=

{
τ(A)→ τ(B) (A c.r.)

τ(B) (A n.c.),

τ(∀xA) := τ(A).

In the I-case we have assumed I = (µ/ν)XK⃗ with X-clauses K⃗. Every Ki

has an assigned constructor type κi. Free in κ⃗ are the type variables α⃗ from

K⃗ and the type variables ζ⃗ globally assigned to the c.r. predicate variables

Y⃗ c in K⃗. Now κ⃗(ρ⃗, τ(P⃗ c)) is the result of substituting ρ⃗ for α⃗ and of the
(already generated) types τ(P c

i) for ζi in κ⃗.

3.2. Examples of inductive predicates

A simple example of an inductive predicate is totality TN of the natural
numbers. It is defined as

TN := µX(K0,K1)

with

K0 := (0 ∈ X),

K1 := ∀n(n ∈ X → Sn ∈ X).

Depending on whether the predicate variable X is n.c. or c.r. we have an
n.c. or a c.r. totality predicate.

Recall that a variable of type τ ranges over arbitrary objects of type τ ,
which may be partial. However, in practice we ofter want to argue on total
objects only. To make such a restriction easy to read we introduce two sorts
of variable names: a general one written x̂ ranging over arbitrary (possibly
partial) objects, and a special one written x ranging over total objects only.
Then we use the abbreviation

∀xA(x) := ∀x̂(x̂ ∈ Tτ → A(x̂)).

We will follow this convention from now on. Hence the clause K1 above
should now be written

K1 := ∀n̂(n̂ ∈ X → Sn̂ ∈ X).

Another particularly important example of an inductive predicate is
Leibniz equality , defined simply by

EqD := µXnc(∀x̂Xncx̂x̂) (D for “inductively defined”).

3.2. EXAMPLES OF INDUCTIVE PREDICATES 35

We will use the abbreviation

(t ≡ s) := EqD(t, s).

The missing logical connectives existence, disjunction and conjunction
can also be defined inductively. Existence is defined inductively by

ExY c := µXc(∀x̂(x̂ ∈ Y c → Xc)),

ExNcY := µXnc(∀x̂(x̂ ∈ Y → Xnc)).

Then by definition

τ(Ex) = µξ(β → ξ) = I(β).

We use the abbreviation

∃x̂A := Ex{x̂|A},

∃ncx̂ A := ExNc{x̂|A},

and again since the decoration is determined by the c.r./n.c. status of the
parameter predicate we usually leave out the decoration and just write ∃.

For a context where only total objects are of interest we have

ExDTY c := µXc(∀x̂(x̂ ∈ T c → x̂ ∈ Y c → Xc)),

ExLTY c := µXc(∀x̂(x̂ ∈ T c → x̂ ∈ Y nc → Xc)),

ExRTY c := µXc(∀x̂(x̂ ∈ T nc → x̂ ∈ Y c → Xc)),

ExNcTY := µXnc(∀x̂(x̂ ∈ T → x̂ ∈ Y → Xnc)).

Here D is for “double”, L for “left” and R for “right”. Then by definition

τ(ExDT) = µξ(τ → β → ξ) = τ × β

τ(ExLT) = µξ(τ → ξ) = I(τ),

τ(ExRT) = µξ(β → ξ) = I(β).

To make these formulas more readable we can again use our convention
concerning the two sorts x̂ and x of variable names. Then the inductive
predicates above are written as

ExDTY c := µXc(∀x(x ∈ Y c → Xc)),

ExLTY c := µXc(∀x(x ∈ Y nc → Xc)),

ExRTY c := µXc(∀ncx (x ∈ Y c → Xc)),

ExNcTY := µXnc(∀x(x ∈ Y → Xnc)).

36 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

We use the abbreviations

∃dxA := ExDT{x|A} if A is c.r.,

∃lxA := ExLT{x|A} if A is n.c.,

∃rxA := ExRT{x|A} if A is c.r.,

∃ncx A := ExNcT{x|A} for arbitrary A.

Disjunction is a special case of union

CupY,Z := µXc(∀x⃗(Y x⃗→ Xcx⃗), ∀x⃗(Zx⃗→ Xcx⃗)).

Since the parameter predicates Y, Z can be chosen as either c.r. or n.c. we
obtain the variants

CupDY c,Zc := µXc(∀x⃗(Y cx⃗→ Xcx⃗), ∀x⃗(Zcx⃗→ Xcx⃗)),

CupLY c,Znc := µXc(∀x⃗(Y cx⃗→ Xcx⃗), ∀x⃗(Zncx⃗→ Xcx⃗)),

CupRY nc,Zc := µXc(∀x⃗(Y ncx⃗→ Xcx⃗), ∀x⃗(Zcx⃗→ Xcx⃗)),

CupUY nc,Znc := µXc(∀x⃗(Y ncx⃗→ Xcx⃗), ∀x⃗(Zncx⃗→ Xcx⃗)),

CupNcY,Z := µXnc(∀x⃗(Y x⃗→ Xncx⃗), ∀x⃗(Zx⃗→ Xncx⃗)).

Here D is for “double”, L for “left”, R for “right” and U for “uniform”.
Then by definition

τ(CupD) = µξ(β0 → ξ, β1 → ξ) = β0 + β1,

τ(CupL) = µξ(β → ξ, ξ) = β + U = ysumu(β),

τ(CupR) = µξ(ξ, β → ξ) = U + β = uysum(β),

τ(CupU) = µξ(ξ, ξ) = B.

We use the abbreviations

P ∪d Q := CupDP,Q,

P ∪l Q := CupLP,Q,

P ∪r Q := CupRP,Q,

P ∪u Q := CupUP,Q,

P ∪nc Q := CupNcP,Q.

3.2. EXAMPLES OF INDUCTIVE PREDICATES 37

In case of nullary predicates we use

A ∨d B := CupD{|A},{|B},

A ∨l B := CupL{|A},{|B},

A ∨r B := CupR{|A},{|B},

A ∨u B := CupU{|A},{|B},

A ∨nc B := CupNc{|A},{|B}.

Since the “decoration” is determined by the c.r./n.c. status of the two pa-
rameter predicates we usually leave it out in ∨d,∨l,∨r,∨u and just write
∨. However in the final nc-variant we suppress even the information which
clause has been used, and hence must keep the notation ∨nc.

Similarly conjunction is a special case of intersection

CapY,Z := µXc(∀x⃗(Y x⃗→ Zx⃗→ Xcx⃗)),

and we obtain the variants

CapDY c,Zc := µXc(∀x⃗(Y cx⃗→ Zcx⃗→ Xcx⃗)),

CapLY c,Znc := µXc(∀x⃗(Y cx⃗→ Zncx⃗→ Xcx⃗)),

CapRY nc,Zc := µXc(∀x⃗(Y ncx⃗→ Zcx⃗→ Xcx⃗)),

CapNcY,Z := µXnc(∀x⃗(Y x⃗→ Zx⃗→ Xncx⃗)).

Then by definition

τ(CapD) = µξ(β0 → β1 → ξ) = β0 × β1

τ(CapL) = τ(CapR) = µξ(β → ξ) = I(β).

We use the abbreviations

P ∩d Q := CapDP,Q,

P ∩l Q := CapLP,Q,

P ∩r Q := CapRP,Q,

P ∩nc Q := CapNcP,Q.

In case of nullary predicates we use

A ∧d B := CapD{|A},{|B},

A ∧l B := CapL{|A},{|B},

A ∧r B := CapR{|A},{|B},

A ∧nc B := CapNc{|A},{|B}.

Again since the decoration is determined by the c.r./n.c. status of the two
parameter predicates we usually leave out the decoration and just write ∧.

38 3. A THEORY TCF OF PARTIAL CONTINUOUS FUNCTIONALS

3.3. Axioms of TCF

We define a theory of continuous functionals, called TCF. Formulas are
the ones defined above, involving typed variables. Derivations use the rules
of minimal logic for → and ∀, and the axioms introduced below. However,
because of the distinction between n.c. and c.r. predicates and formulas we
have an extra degree of freedom. By an n.c. part of a derivation we mean a
subderivation with an n.c. end formula. Such n.c. parts will not contribute
to the computational content of the whole derivation, and hence we can
ignore all decorations in those parts (i.e., use a modified notion of equality
of formulas there).

3.3.1. Axioms for inductive predicates. For each inductive predi-
cate there are “clauses” or introduction axioms, together with a “least-fixed-
point” or elimination axiom. To grasp the general form of these axioms it
is convenient to write a clause

∀x⃗(Ỹ c → Z̃nc → (∀y⃗i(W̃
nc
i → X̄i))i<n → X̄) as ∀x⃗((Aν(X))ν<n → Xt⃗).

Definition (Introduction and elimination axioms for inductive predi-
cates). For an inductive predicate µX(∀x⃗i

((Aiν(X))ν<ni → Xt⃗i))i<k =: I
we have k introduction axioms I+i (i < k) and one elimination axiom I−:

I+i : ∀x⃗i
((Aiν(I))ν<ni → It⃗i),(12)

I− : (∀x⃗i
((Aiν(I ∩X))ν<ni → Xt⃗i))i<k → I ⊆ X(13)

(I ∩X was inductively defined above). (13) expresses that every competitor
X satisfying the same clauses contains I. We take all substitution instances
of I+i , I− (w.r.t. substitutions for type and predicate variables) as axioms.

Remarks. (i) We use a “strengthened” form of the “step formula”,
namely ∀x⃗i

(Aiν(I ∩X))ν<ni → Xt⃗i rather than ∀x⃗i
(Aiν(X))ν<ni → Xt⃗i. In

applications of the least-fixed-point axiom this simplifies the proof of the
“step”, since we have an additional I-hypothesis available.

(ii) Notice that there is no circularity here for the inductive predicate
Y ∩Z := CapY,Z , since there are no recursive calls in this particular inductive
definition and hence ∩ does not occur in

Cap−Y,Z : ∀x⃗(Y x⃗→ Zx⃗→ Xx⃗)→ CapY,Z ⊆ X.

(iii) The elimination axiom (13) could equivalently be written as

I− : ∀x⃗(Ix⃗→ (∀x⃗i
((Aiν(I ∩X))ν<ni → Xt⃗i))i<k → Xx⃗)

In this form it fits better with our (i.e., Gentzen’s) way to write the logical
elimination rules, where the main premise comes first. More importantly,
its type (cf. Section 3.1) will then be the type of the recursion operator Rτ

ι

