
CHAPTER 2

Partial continuous functionals

The objects studied in mathematics have types, which in many cases are
function types, possibly of a higher type. Such objects in most cases are infi-
nite, and we intend to describe them in terms of their finite approximations.
An appropriate framework for such an approach are the partial continuous
functionals of Scott (1982) and Ershov (1977). Continuity of a function f
here means that for every approximation V of the value f(x) there is an
approximation U of the argument x such that f [U] has more information
than V . We define the partial continuous functionals via Scott’s information
systems.

2.1. Information systems

The basic idea of information systems is to provide an axiomatic setting
to describe approximations of abstract objects by concrete, finite ones. We
take an arbitrary countable set A of “bits of data” or “tokens” as a basic
notion to be explained axiomatically. In order to use such data to build
approximations of abstract objects, we need a notion of “consistency”, which
determines when the elements of a finite set of tokens are consistent with
each other. We also need an “entailment relation” between consistent sets
U of data and single tokens a, which intuitively expresses the fact that the
information contained in U is sufficient to compute the bit of information a.
The axioms below are a minor modification of Scott’s (1982), due to Larsen
and Winskel (1991).

2.1.1. Ideals.

Definition. An information system is a structure (A,Con,⊢) where A
is an at most countable non-empty set (the tokens), Con is a set of finite
subsets of A (the consistent sets) and ⊢ is a subset of Con×A (the entailment

5

6 2. PARTIAL CONTINUOUS FUNCTIONALS

relation), which satisfy

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ⊢ a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ⊢ a,

U ∈ Con→ ∀a∈V (U ⊢ a)→ V ⊢ b→ U ⊢ b.

The elements of Con are called formal neighborhoods. We use U, V,W
to denote finite sets, and write

U ⊢ V for U ∈ Con ∧ ∀a∈V (U ⊢ a),

a ↑ b for {a, b} ∈ Con (a, b are consistent),

U ↑ V for ∀a∈U,b∈V (a ↑ b).

Definition. The ideals (also called objects) of an information system
A = (A,Con,⊢) are defined to be those subsets x of A which satisfy

U ⊆ x→ U ∈ Con (x is consistent),

U ⊢ a→ U ⊆ x→ a ∈ x (x is deductively closed).

We write x ∈ |A| to mean that x is an ideal of A.

Examples. The deductive closure U := { a ∈ A | U ⊢ a } of U ∈ Con is
an ideal.

Every countable set A can be turned into a “flat” information system by
letting the set of tokens be A, Con := {∅} ∪ { {a} | a ∈ A } and U ⊢ a mean
a ∈ U . In this case the ideals are just the elements of Con. For A = N we
have the following picture of the Con-sets.

∅
•

•
{0}

�
��
•
{1}

���
��•
{2}

. . .

A rather important example is the following, which concerns approxi-
mations of functions from a countable set A into a countable set B. The
tokens are the pairs (a, b) with a ∈ A and b ∈ B, and

Con := { { (ai, bi) | i < k } | ∀i,j<k(ai = aj → bi = bj) },
U ⊢ (a, b) := (a, b) ∈ U.

It is easy to verify that this defines an information system whose ideals are
(the graphs of) all partial functions from A to B.

2.1. INFORMATION SYSTEMS 7

2.1.2. Function spaces. We define the “function space” A → B be-
tween two information systems A and B.

Definition. Let A = (A,ConA,⊢A) and B = (B,ConB,⊢B) be infor-
mation systems. Define A→ B = (C,Con,⊢) by

C := ConA ×B,

{ (Ui, bi) | i ∈ I } ∈ Con := ∀J⊆I

(⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB

)
.

For the definition of the entailment relation ⊢ it is helpful to first define the
notion of an application of W := { (Ui, bi) | i ∈ I } ∈ Con to U ∈ ConA:

{ (Ui, bi) | i ∈ I }U := { bi | U ⊢A Ui }.

From the definition of Con we know that this set is in ConB. Now define
W ⊢ (U, b) by WU ⊢B b.

Remark. Clearly application is monotone in the second argument, in
the sense that U ⊢A U ′ implies (WU ′ ⊆WU , hence also) WU ⊢B WU ′. In
fact, application is also monotone in the first argument, i.e.,

W ⊢W ′ implies WU ⊢B W ′U.

To see this let W = { (Ui, bi) | i ∈ I } and W ′ = { (U ′
j , b

′
j) | j ∈ J }. By

definition W ′U = { b′j | U ⊢A U ′
j }. Now fix j such that U ⊢A U ′

j ; we must

show WU ⊢B b′j . By assumption W ⊢ (U ′
j , b

′
j), hence WU ′

j ⊢B b′j . Because

of WU ⊇WU ′
j the claim follows.

Lemma 2.1.1. If A and B are information systems, then so is A→ B
defined as above.

Proof. Let A = (A,ConA,⊢A) and B = (B,ConB,⊢B). The first,
second and fourth property of the definition are clearly satisfied. For the
third, suppose

{(U1, b1), . . . , (Un, bn)} ⊢ (U, b), i.e., { bj | U ⊢A Uj } ⊢B b.

We have to show that {(U1, b1), . . . , (Un, bn), (U, b)} ∈ Con. So let I ⊆
{1, . . . , n} and suppose

U ∪
⋃
i∈I

Ui ∈ ConA.

We must show that {b} ∪ { bi | i ∈ I } ∈ ConB. Let J ⊆ {1, . . . , n} consist
of those j with U ⊢A Uj . Then also

U ∪
⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA.

8 2. PARTIAL CONTINUOUS FUNCTIONALS

Since ⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA,

from the consistency of {(U1, b1), . . . , (Un, bn)} we can conclude that

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∈ ConB.

But { bj | j ∈ J } ⊢B b by assumption. Hence

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∪ {b} ∈ ConB.

For the final property, suppose

W ⊢W ′ and W ′ ⊢ (U, b).

We have to show W ⊢ (U, b), i.e., WU ⊢B b. We obtain WU ⊢B W ′U by
monotonicity in the first argument, and W ′U ⊢B b by definition. □

We shall now give an alternative characterization of the ideals inA→ B,
as “approximable maps”. The basic idea for approximable maps is the desire
to study “information respecting” maps from A into B. Such a map is given
by a relation r between ConA and B, where (U, b) ∈ r intuitively means that
whenever we are given the information U ∈ ConA, then we know that at
least the token b appears in the value.

Definition. Let A = (A,ConA,⊢A) and B = (B,ConB,⊢B) be infor-
mation systems. A relation r ⊆ ConA × B is an approximable map if it
satisfies the following:

(a) if (U, b1), . . . , (U, bn) ∈ r, then {b1, . . . , bn} ∈ ConB;
(b) if (U, b1), . . . , (U, bn) ∈ r and {b1, . . . , bn} ⊢B b, then (U, b) ∈ r;
(c) if (U ′, b) ∈ r and U ⊢A U ′, then (U, b) ∈ r.

Theorem 2.1.2. Let A and B be information systems. Then the ideals
of A→ B are exactly the approximable maps from A to B.

Proof. Let A = (A,ConA,⊢A) and B = (B,ConB,⊢B). Assume r ∈
|A → B|. Then r ⊆ ConA × B is consistent and deductively closed. We
have to show that r satisfies the axioms for approximable maps.

(a) Let (U, b1), . . . , (U, bn) ∈ r. We must show that {b1, . . . , bn} ∈ ConB.
But this clearly follows from the consistency of r.

(b) Let (U, b1), . . . , (U, bn) ∈ r and {b1, . . . , bn} ⊢B b. We must show
that (U, b) ∈ r. But

{(U, b1), . . . , (U, bn)} ⊢ (U, b)

by the definition of the entailment relation ⊢ in A → B, hence (U, b) ∈ r
since r is deductively closed.

2.1. INFORMATION SYSTEMS 9

(c) Let U ⊢A U ′ and (U ′, b) ∈ r. We must show that (U, b) ∈ r. But

{(U ′, b)} ⊢ (U, b)

since {(U ′, b)}U = {b} (which follows from U ⊢A U ′), hence (U, b) ∈ r, again
since r is deductively closed.

For the other direction suppose that r ⊆ ConA × B is an approximable
map. We must show that r ∈ |A→ B|.

Consistency of r. Suppose (U1, b1), . . . , (Un, bn) ∈ r and U =
⋃
{Ui | i ∈

I } ∈ ConA for some I ⊆ {1, . . . , n}. We must show that { bi | i ∈ I } ∈
ConB. Now from (Ui, bi) ∈ r and U ⊢A Ui we obtain (U, bi) ∈ r by axiom
(c) for all i ∈ I, and hence { bi | i ∈ I } ∈ ConB by axiom (a).

Deductive closure of r. Suppose (U1, b1), . . . , (Un, bn) ∈ r and

W := {(U1, b1), . . . , (Un, bn)} ⊢ (U, b).

We must show (U, b) ∈ r. By definition of ⊢ for A→ B we have WU ⊢B b,
which is { bi | U ⊢A Ui } ⊢B b. Further by our assumption (Ui, bi) ∈ r we
know (U, bi) ∈ r by axiom (c) for all i with U ⊢A Ui. Hence (U, b) ∈ r by
axiom (b). □

2.1.3. Continuous functions. We can also characterize approxima-
ble maps in a different way, which is closer to usual characterizations of
continuity1:

Lemma 2.1.3. Let A and B be information systems and f : |A| → |B|
monotone (i.e., x ⊆ y implies f(x) ⊆ f(y)). Then the following are equiva-
lent.

(a) f satisfies the “principle of finite support” PFS: If b ∈ f(x), then b ∈
f(U) for some U ⊆ x.

(b) f commutes with directed unions: for every directed D ⊆ |A| (i.e., for
any x, y ∈ D there is a z ∈ D such that x, y ⊆ z)

f
(⋃

x∈D
x
)
=

⋃
x∈D

f(x).

Note that in (b) the set { f(x) | x ∈ D } is directed by monotonicity of
f ; hence its union is indeed an ideal in |B|. Note also that from PFS and
monotonicity of f it follows immediately that if V ⊆ f(x), then V ⊆ f(U)
for some U ⊆ x.

Proof. Let f satisfy PFS, and D ⊆ |A| be directed. f(
⋃

x∈D x) ⊇⋃
x∈D f(x) follows from monotonicity. For the reverse inclusion let b ∈

f(
⋃

x∈D x). Then by PFS b ∈ f(U) for some U ⊆
⋃

x∈D x. From the

1In fact, approximable maps are exactly the continuous functions w.r.t. the so-called
Scott topology. However, we will not enter this subject here.

10 2. PARTIAL CONTINUOUS FUNCTIONALS

directedness and the fact that U is finite we obtain U ⊆ z for some z ∈ D.
From b ∈ f(U) and monotonicity infer b ∈ f(z). Conversely, let f commute
with directed unions, and assume b ∈ f(x). Then

b ∈ f(x) = f(
⋃
U⊆x

U) =
⋃
U⊆x

f(U),

hence b ∈ f(U) for some U ⊆ x. □

We call a function f : |A| → |B| continuous if it satifies the conditions
in Lemma 2.1.3. Hence continuous maps f : |A| → |B| are those that can
be completely described from the point of view of finite approximations of
the abstract objects x ∈ |A| and f(x) ∈ |B|: whenever we are given a finite
approximation V to the value f(x), then there is a finite approximation U
to the argument x such that already f(U) contains the information in V ;
note that by monotonicity f(U) ⊆ f(x).

Clearly the identity and constant functions are continuous, and also the
composition g ◦ f of continuous functions f : |A| → |B| and g : |B| → |C|.

Theorem 2.1.4. Let A = (A,ConA,⊢A), B = (B,ConB,⊢B) be in-
formation systems. Then the ideals of A → B are in a natural bijective
correspondence with the continuous functions from |A| to |B|, as follows.

(a) With any approximable map r ⊆ ConA×B we can associate a continuous
function |r| : |A| → |B| by

|r|(z) := { b ∈ B | (U, b) ∈ r for some U ⊆ z }.

We call |r|(z) the application of r to z.
(b) Conversely, with any continuous function f : |A| → |B| we can associate

an approximable map f̂ ⊆ ConA ×B by

f̂ := { (U, b) | b ∈ f(U) }.

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|.

Proof. Let r be an ideal of A → B; then by Theorem 2.1.2 we know
that r is an approximable map. We first show that |r| is well-defined. So let
z ∈ |A|.
|r|(z) is consistent: let b1, . . . , bn ∈ |r|(z). Then there are U1, . . . , Un ⊆ z

such that (Ui, bi) ∈ r. Hence U := U1 ∪ · · · ∪ Un ⊆ z and (U, bi) ∈ r by
axiom (c) of approximable maps. Now from axiom (a) we can conclude that
{b1, . . . , bn} ∈ ConB.
|r|(z) is deductively closed: let b1, . . . , bn ∈ |r|(z) and {b1, . . . , bn} ⊢B b.

We must show b ∈ |r|(z). As before we find U ⊆ z such that (U, bi) ∈ r.
Now from axiom (b) we can conclude (U, b) ∈ r and hence b ∈ |r|(z).

2.1. INFORMATION SYSTEMS 11

Continuity of |r| follows immediately from part (a) of Lemma 2.1.3
above, since by definition |r| is monotone and satisfies PFS.

Now let f : |A| → |B| be continuous. It is easy to verify that f̂ is indeed
an approximable map. Furthermore one can easily show

b ∈ |f̂ |(z)↔ b ∈ f(z)

Furthermore

b ∈ |f̂ |(z)↔ (U, b) ∈ f̂ for some U ⊆ z

↔ b ∈ f(U) for some U ⊆ z

↔ b ∈ f(z) by monotonicity and PFS.

Finally, for any approximable map r ⊆ ConA ×B we have

(U, b) ∈ r ↔ ∃V⊆U (V, b) ∈ r by axiom (c) for approximable maps

↔ b ∈ |r|(U)

↔ (U, b) ∈ |̂r|,

hence r = |̂r|. □

Consequently we can (and will) view approximable maps r ⊆ ConA×B
as continuous functions from |A| to |B|.

Equality of two subsets r, s ⊆ ConA × B means that they consist of
the same tokens (U, b). We can characterize equality r = s by extensional
equality of the associated functions |r|, |s|. It even suffices that |r| and |s|
coincide on all compact elements U for U ∈ ConA.

Lemma 2.1.5 (Extensionality). Assume that A = (A,ConA,⊢A) and
B = (B,ConB,⊢B) are information systems and r, s ⊆ ConA × B approxi-
mable maps. Then the following are equivalent.

(a) r = s,
(b) |r|(z) = |s|(z) for all z ∈ |A|,
(c) |r|(U) = |s|(U) for all U ∈ ConA.

Proof. It suffices to prove (c) → (a). As above this follows from

(U, b) ∈ r ↔ ∃V⊆U (V, b) ∈ r by axiom (c) for approximable maps

↔ b ∈ |r|(U). □

Moreover, one can easily check that

s ◦ r := { (U, c) | ∃V ((V, c) ∈ s ∧ (U, V) ⊆ r) }
is an approximable map (where (U, V) := { (U, b) | b ∈ V }), and

|s ◦ r| = |s| ◦ |r|, ĝ ◦ f = ĝ ◦ f̂ .

12 2. PARTIAL CONTINUOUS FUNCTIONALS

We usually write r(z) for |r|(z), and similarly (U, b) ∈ f for (U, b) ∈ f̂ .
It should always be clear from the context where the mods and hats should
be inserted.

2.2. Objects of a given type

We now use information systems to define the objects of the Scott-Ershov
model of partial continuous functionals, each of a given “type”.

2.2.1. Types. If τ and σ are types, we clearly want that τ → σ is a
type as well, to be called “function type”. But we have to start somewhere.
The basic idea is that we consider finite lists of (named) “constructor types”.

Types may involve type variables α, β, γ, ξ, ζ. Iterated arrows are un-
derstood as associated to the right. For example, α → β → γ means
α→ (β → γ), not (α→ β)→ γ.

Definition. Constructor types κ have the form

α⃗→ (ξ)i<n → ξ

with all type variables αi distinct from each other and from ξ. An argument
type of a constructor type is called a parameter argument type if it is differ-
ent from ξ, and a recursive argument type otherwise. A constructor type is
recursive if it has a recursive argument type. Each list of named constructor
types with all of its parameter argument types distinct determines a base
type ικ⃗. Base types given by a list of named constructors are called algebras.

For some common lists of named constructor types there are standard
names for the corresponding base types:

Dummy: ξ U (unit),

tt : ξ, ff : ξ B (booleans),

SdL: ξ,SdM: ξ,SdR: ξ D (signed digits),

Zero: ξ,Succ: ξ → ξ N (natural numbers, unary),

One: ξ,S0 : ξ → ξ,S1 : ξ → ξ P (positive numbers, binary),

L: ξ,B: ξ → ξ → ξ Y (binary trees)

2.2. OBJECTS OF A GIVEN TYPE 13

and with parameter types

Id: α→ ξ I(α) (identity),

Nil : ξ,Cons: α→ ξ → ξ L(α) (lists),

SCons: α→ ξ → ξ S(α) (streams),

Pair : α→ β → ξ α× β (product),

InL: α→ ξ, InR: β → ξ α+ β (sum),

DummyL: ξ, Inr : α→ ξ uysum(α) (for U + α),

Inl : α→ ξ,DummyR: ξ ysumu(α) (for α+ U).

Definition. Types are inductively defined by

(a) Every type variable α is a type.
(b) If κ⃗(α⃗) is a list of named constructor types and τ⃗ are types where the

length of τ⃗ is the number of parameters in κ⃗, then ικ⃗(τ⃗) is a type.
(c) It τ and σ are types, then so is τ → σ.

Types of the form τ → σ are called function types, and types of the form
ικ⃗(τ⃗) base types.

If the base type corresponding to a list of named constructor types has
a standard name, then we use this name to denote the base type.

A type is closed it it has no parameters. Let τ(α⃗) be a type with α⃗ its
parameters, and let ρ⃗ be closed types. We define the level of τ(ρ⃗) by

lev(ικ⃗(ρ⃗)) :=max(lev(ρ⃗)),

where the length of ρ⃗ is the number of parameters in κ⃗(α⃗),

lev(τ → σ) :=max(lev(σ)), 1 + lev(τ)).

Examples of base types:

• L(α), L(L(α)), α× β are base types of level 0.
• L(L(N)), N + B, Z := P + U + P, Q := Z× P are closed base types
of level 0.
• R := (N→ Q)× (P→ N) is a closed base type of level 1.

2.2.2. The information system of a given type. For every closed
type τ we define the information system Aτ = (Aτ ,Conτ ,⊢τ). The ideals
x ∈ |Aτ | are the partial continuous functionals of type τ . Since we will have
Aτ→σ = Aτ → Aσ, the partial continuous functionals of type τ → σ will
correspond to the continuous functions from |Aτ | to |Aσ|.

Definition (Information system of a closed type τ). We simultaneously
define Aικ⃗(τ⃗)

, Aτ→σ, Conικ⃗(τ⃗)
and Conτ→σ.

14 2. PARTIAL CONTINUOUS FUNCTIONALS

(a) The tokens a ∈ Aικ⃗(τ⃗)
are the type correct constructor expressions

CU1 . . . Uma∗1 . . . a
∗
n

with C the name of a constructor type α⃗ → (ξ)i<n → ξ from κ⃗, all Uj

(1 ≤ j ≤ m) from Conτj and each a∗i (1 ≤ i ≤ n) an extended token,
i.e., a token or the special symbol ∗ which carries no information.

(b) The tokens in Aτ→σ are the pairs (U, b) with U ∈ Conτ and b ∈ Aσ.
(c) A finite set U of tokens in Aικ⃗(τ⃗)

is consistent (i.e., U ∈ Conικ⃗(τ⃗)
) if

(i) all its elements start with the same constructor C, say of arity
τ⃗ → (ικ⃗(τ⃗))i<n → ικ⃗(τ⃗),

(ii) the union Vj of all Con-sets at the j-th (1 ≤ j ≤ m) argument
position of some token in U is in Conτj , and

(iii) all Ui ∈ Conικ⃗(τ⃗)
(1 ≤ i ≤ n), where Ui consists of all (proper)

tokens at the (m+ i)-th argument position of some token in U .
(d) { (Ui, bi) | i ∈ I } ∈ Conτ→σ is defined to mean

∀J⊆I(
⋃
j∈J

Uj ∈ Conτ → { bj | j ∈ J } ∈ Conσ).

Building on this definition, we define U ⊢τ a for U ∈ Conτ and a ∈ Aτ .

(e) {CU⃗1a⃗∗1, . . . ,CU⃗la⃗
∗
l } ⊢ικ⃗(τ⃗)

C′W⃗ a⃗∗ is defined to mean C = C′, l ≥ 1,

Vj ⊢ Wj with Vj as in (c) above and Ui ⊢ a∗i with Ui as in (c) above
(and U ⊢ ∗ defined to be true).

(f) W ⊢τ→σ (U, b) is defined to mean WU ⊢σ b, where application WU
of W = { (Ui, bi) | i ∈ I } ∈ Conτ→σ to U ∈ Conτ is defined to be
{ bi | U ⊢τ Ui }.

Note that the present definition is by recursion on the height of the syntactic
expressions involved, defined by

|α| := 0,

|ικ⃗(τ⃗)| := 1 + max{ |τi| | τi ∈ τ⃗ },
|τ → σ| := max{1 + |τ |, |σ|},

|CU1 . . . Uma∗1 . . . a
∗
n| := 1 + max({ |Uj | | 1 ≤ j ≤ m } ∪ { |a∗i | | 1 ≤ i ≤ n }),
| ∗ | := 0,

|(U, b)| := 1 + max{|U |, |b|},
|{ ai | i ∈ I }| := 1 + max{ |ai| | i ∈ I },

|U ⊢ a| := 1 + max{|U |, |a|}.

It is easy to see that (Aτ ,Conτ ,⊢τ) is an information system. Observe
that all the notions involved are computable: a ∈ Aτ , U ∈ Conτ and U ⊢τ a.

2.2. OBJECTS OF A GIVEN TYPE 15

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Figure 1. Tokens and entailment for N

Definition (Partial continuous functionals). For every closed type τ let
Aτ be the information system (Aτ ,Conτ ,⊢τ). The set |Aτ | of ideals in Aτ

is the set of partial continuous functionals of type τ . A partial continuous
functional x ∈ |Aτ | is computable if it is recursively enumerable when viewed
as a set of tokens.

Notice that Aτ→σ = Aτ → Aσ as defined generally for information
systems.

For example, the tokens for the base type N are shown in Figure 1 (with
0 for Zero and S for Succ). For tokens a, b we have {a} ⊢ b if and only if
there is a path from a (up) to b (down). As another example, consider the
base type Y of binary trees with a nullary constructor L (for Leaf) and a
binary B (for Branch). Then {B(L, ∗), B(∗, L)} is consistent, and it entails
B(L,L).

2.2.3. Cototal and total ideals of a closed base type. Let τ be a
closed base type, for simplicity without parameters. An example is the type
Y of binary trees. We want to take a closer look at the elements of |Aτ |, i.e.,
the ideals in Aτ . Among them it seems natural to single out those with the
following property, to be called “cototality”:

Definition (Cototal ideal). Consider a token in the ideal, and in this
token (a constructor expression) a position occupied by the symbol ∗ (indi-
cating “no information”). Then it must be possible to further analyze the
ideal, in the following sense. There must be another token in the ideal where
this symbol ∗ is replaced by a constructor expression C∗⃗ with C the name
of a constructor of the underlying base type.

Clearly cototal ideals may be infinite. However, they can be analyzed (or
“destructed”) up to an arbitrary depth. It may also happen that a cototal
ideal is finite. In this case it is called “total”.

Hence in our model of partial continuous functionals already at base
types we have ideals (i.e., objects) which are either

• cototal and infinite, or

16 2. PARTIAL CONTINUOUS FUNCTIONALS

• total (i.e., cototal and finite), or
• neither.

We give some examples for the base type Y, with a more pictorial repre-
sentation. Tokens in AY (omitting B):

L
L L

H
HH���

@@�� L
∗ L

H
HH���

@@��

Consistency in AY:

L ∗
HHH��� ↑

∗ L
HHH���

Moreover

L L
HHH��� ̸↑

L
∗ ∗

HHH���
@@��

but

L ∗
HHH��� ↑

L
∗ ∗

HHH���
@@��

Entailment in AY:

{
L ∗
HHH��� ,

∗ L
HHH��� } ⊢Y

L L
HHH���

and also

∗
∗ L

HHH���
@@��

⊢Y

∗
∗ ∗

HHH���
@@��

and

∗ ∗
HHH���

Ideals in AY:

(i) 1 := closure of all

0

L
1
2

L
3
4

L

L ∗

(ii) −1 is defined similarly
(iii) −1 ∪ 1

2.2. OBJECTS OF A GIVEN TYPE 17

(iv) 1
2 := closure of all

0

L
1
2

3
4

L L

L ∗ L

L ∗

(v) Closure of

L
L L

H
HH���

@@��

(vi) Closure of

L
∗ L

HHH���
@@��

Among these

(i)− (iv) are infinite cototal ideals,

(v) is a total ideal, and

(vi) is an ideal but not cototal.

Cototality and totality of ideals in AY can also be characterized differ-
ently. We can represent the set of total ideals in AY as a predicate “induc-
tively defined” by the two “clauses”

(TY)
+
0 : L ∈ TY,

(TY)
+
1 : ∀x1,x2(x1, x2 ∈ TY → Bx1x2 ∈ TY)

(1)

To state that TY is the least set satisfying the two clauses we use the elimi-
nation or least fixed point property

(2) T−
Y : L ∈ X → ∀x1,x2(x1, x2 ∈ TY ∩X → Bx1x2 ∈ X)→ TY ⊆ X.

It says that every “competitor” X satisfying the same clauses contains TY.

18 2. PARTIAL CONTINUOUS FUNCTIONALS

We now want to represent the set of cototal binary trees by a “coinduc-
tively” defined predicate coTY. Note that the conjunction of the two clauses
of TY is equivalent to

∀x((x ≡ L) ∨ ∃x1,x2(x1, x2 ∈ TY ∧ x ≡ Bx1x2)→ x ∈ TY).

Since TY is the least predicate with this property we even have the equiva-
lence

∀x(x ∈ TY ↔ (x ≡ L) ∨ ∃x1,x2(x1, x2 ∈ TY ∧ x ≡ Bx1x2))

(called inversion property). How can we formally represent cototality of
a binary tree? The idea is to define coTY as the largest set satisfying the
equivalence. Formulated differently, cototal ideals are not built from initial
objects by construction (synthesized), but rather defined by the property
that they can always be destructed (analysed). Therefore we require the
“closure property”

(3) coT−
Y : ∀x(x ∈ coTY → (x ≡ L) ∨ ∃x1,x2(x1, x2 ∈ coTY ∧ x ≡ Bx1x2)).

A set built by construction steps (synthesis) is meant to be the least set
closed under these steps. Similary, a set described by destruction (analysis)
is meant to be the largest set closed under destruction. Hence we require
the “greatest fixed point” property

coT+
Y : ∀x(x ∈ X → (x ≡ L) ∨ ∃x1,x2(x1, x2 ∈ coTY ∪X ∧ x ≡ Bx1x2))→

X ⊆ coTY.

(4)

coT+
Y expresses that every competitor X satisfying the closure property is

below coTY.
We also consider binary versions of TY and coTY, called similarity ∼Y

and bisimilarity ≈Y. The clauses for ∼Y are

(∼Y)
+
0 : L ∼Y L,

(∼Y)
+
1 : ∀x1,x′

1
(x1 ∼Y x′1 → ∀x2,x′

2
(x2 ∼Y x′2 → Bx1x2 ∼Y Bx′1x

′
2))

(5)

and the elimination or least-fixed-point property is

∼−
Y : X(L,L)→ ∀x1,x2((x1 ∼Y x2 ∧Xx1x2)→

∀x′
1,x

′
2
((x′1 ∼Y x′2 ∧Xx′1x

′
2)→

X(Bx1x2, Bx′1x
′
2)))→

∼Y ⊆ X.

(6)

2.2. OBJECTS OF A GIVEN TYPE 19

The elimination (or closure) property for ≈Y is

≈−
Y : ∀x,x′(x ≈Y x′ → ((x ≡ L) ∧ (x′ ≡ L)) ∨

∃x1,x2,x′
1,x

′
2
(x1 ≈Y x′1 ∧ x2 ≈Y x′2 ∧
x ≡ Bx1x2 ∧ x′ ≡ Bx′1x

′
2))

(7)

and the introduction (or greatest-fixed-point or coinduction) property is

≈+
Y : ∀x,x′(Xxx′ → ((x ≡ L) ∧ (x′ ≡ L)) ∨

∃x1,x2,x′
1,x

′
2
((x1 ≈Y x′1 ∨Xx1x

′
1) ∧ (x2 ≈Y x′2 ∨Xx2x

′
2) ∧

x ≡ Bx1x2 ∧ x′ ≡ Bx′1x
′
2))→

X ⊆ ≈Y.

(8)

We show that x ≈Y x′ implies x ≡ x′. Generally we have

Lemma 2.2.1 (Bisimilarity). For every closed base type bisimilarity im-
plies equality.

Proof. As an example we prove this for Y. Let a range over tokens for
Y. By induction on the height |a∗| of extended tokens a∗ we prove that for
all ideals x, x′ and extended tokens a∗ from a∗ ∈ x we can infer a∗ ∈ x′. It
suffices to consider the case Ba∗1a

∗
2. From x ≈Y x′ we obtain by the closure

property x1, x2, x
′
1, x

′
2 with

x1 ≈ x′1 ∧ x2 ≈ x′2 ∧ x ≡ Bx1x2 ∧ x′ ≡ Bx′1x
′
2.

Then a∗i ∈ xi (for i = 1, 2), and by IH a∗i ∈ x′i. Thus Ba∗1a
∗
2 ∈ x′. □

From the Bisimilarity Lemma we obtain

Proposition 2.2.2 (Characterization of ≈Y).

x ≈Y x′ ↔ x, x′ ∈ coTY ∧ x ≡ x′.

Proof. “→”. By Lemma 2.2.1 it remains to prove x ≈Y x′ → x ∈ coTY.
To this end we apply coT+

Y with competitor X := {x | ∃x′(x ≈Y x′) }. It
suffices to prove the premise. Fix x, x′ with x ≈Y x′. The goal is

(x ≡ L) ∨ ∃x1,x2((x1 ∈ coTY ∨ ∃x′
1
(x1 ≈ x′1)) ∧

(x2 ∈ coTY ∨ ∃x′
2
(x2 ≈ x′2)) ∧ x ≡ Bx1x2).

By the closure property ≈−
Y we have

(x ≡ L∧x′ ≡ L)∨∃x1,x2,x′
1,x

′
2
(x1 ≈ x′1∧x2 ≈ x′2∧x ≡ Bx1x2∧x′ ≡ Bx′1x

′
2)).

In the first case we have x ≡ L and are done. In the second case we have
x1, x2, x

′
1, x

′
2 with x1 ≈ x′1, x2 ≈ x′2 and x ≡ Bx1x2, and are done as well.

20 2. PARTIAL CONTINUOUS FUNCTIONALS

“←”. We prove x ∈ coTY → x ≡ x′ → x ≈Y x′ by the greatest-fixed-
point property ≈+

Y with competitor X := {x, x′ | x ∈ coTY ∧ x ≡ x′ }. It
suffices to prove the premise. Fix x, x′ with x ∈ coTY ∧ x ≡ x′. The goal is

(x ≡ L ∧ x′ ≡ L) ∨ ∃x1,x2,x′
1,x

′
2
((x1 ≈ x′1 ∨ (x1 ∈ coTY ∧ x1 ≡ x′1)) ∧
(x2 ≈ x′2 ∨ (x2 ∈ coTY ∧ x2 ≡ x′2)) ∧
x ≡ Bx1x2 ∧ x′ ≡ Bx′1x

′
2)).

By the closure property coT−
Y applied to x ∈ coTY we have

(x ≡ L) ∨ ∃x1,x2(x1 ∈ coTY ∧ x2 ∈ coTY ∧ x ≡ Bx1x2).

In the first case we have x ≡ L and are done, since x ≡ x′. In the second
case we have x1, x2 ∈ coTY with x ≡ Bx1x2. Then we are done as well with
x′1 := x1 and x′2 := x2, since again x ≡ x′. □

2.2.4. Constructors as continuous functions. Let ι be a closed
base type. Every constructor C generates the following ideal in the function
space determined by the type of the constructor:

rC := { (U⃗ ,Ca⃗∗) | U⃗ ⊢ a⃗∗ },

where (U⃗ , a) abbreviates (U1, (U2, . . . (Un, a) . . .)).
According to the general definition of a continuous function associated

to an ideal in a function space the continuous map |rC| satisfies

|rC|(x⃗) = {Ca⃗∗ | ∃U⃗⊆x⃗(U⃗ ⊢ a⃗∗) }.

(For N we have |rS |({0}) = {S0, S∗} and |rS |({S0, S∗}) = {SS0, SS∗, S∗}.)
An immediate consequence is that the (continuous maps corresponding to)
constructors are injective and their ranges are disjoint.

Lemma 2.2.3 (Constructors are injective and have disjoint ranges). Let
ι be a closed base type and C be a constructor of ι. Then

|rC|(x⃗) ⊆ |rC|(y⃗)↔ x⃗ ⊆ y⃗.

If C1,C2 are distinct constructors of ι, then |rC1 |(x⃗) ̸= |rC2 |(y⃗), since the
two ideals are non-empty and disjoint.

Proof. Immediate from the definitions. □

Lemma (Ideals of a closed base type). Every non-empty ideal in the
information system associated to a closed base type has the form |rC|(x⃗)
with a constructor C and ideals x⃗.

Proof. Let z be a non-empty ideal and Ca∗0b
∗
0 ∈ z, where for simplicity

we assume that C is a binary constructor. Let x := { a | Ca∗ ∈ z } and
y := { b | C∗b ∈ z }; clearly x, y are ideals. We claim that z = |rC|(x, y).

2.3. TERMS 21

For ⊇ consider Ca∗b∗ with a∗ ∈ x ∪ {∗} and b∗ ∈ y ∪ {∗}. Then by defini-
tion {Ca∗∗,C∗b∗} ⊆ z, hence Ca∗b∗ ∈ z by deductive closure. Conversely,
notice that an arbitrary element of z must have the form Ca∗b∗, because
of consistency. Then {Ca∗∗,C∗b∗} ⊆ z again by deductive closure. Hence
a∗ ∈ x ∪ {∗} and b∗ ∈ y ∪ {∗}, and therefore Ca∗b∗ ∈ |rC|(x, y). □

It is in this proof that we need entailment to be a relation between finite
sets of tokens and single tokens, not just a binary relation between tokens.
Information systems with the latter property are called atomic.

The information systems Cτ enjoy the pleasant property of coherence,
which amounts to the possibility to locate inconsistencies in two-element
sets of data objects. Generally, an information system A = (A,Con,⊢) is
coherent if it satisfies: U ⊆ A is consistent if and only if all of its two-element
subsets are.

Lemma 2.2.4. Let A and B be information systems. If B is coherent,
then so is A→ B.

Proof. Let A = (A,ConA,⊢A) and B = (B,ConB,⊢B) be information
systems, and consider {(U1, b1), . . . , (Un, bn)} ⊆ ConA ×B. Assume

∀1≤i<j≤n({(Ui, bi), (Uj , bj)} ∈ Con).

We have to show {(U1, b1), . . . , (Un, bn)} ∈ Con. Let I ⊆ {1, . . . , n} and⋃
i∈I Ui ∈ ConA. We must show { bi | i ∈ I } ∈ ConB. Now since B

is coherent by assumption, it suffices to show that {bi, bj} ∈ ConB for all
i, j ∈ I. So let i, j ∈ I. By assumption we have Ui ∪ Uj ∈ ConA, and hence
{bi, bj} ∈ ConB. □

2.3. Terms

We now set up a term language to denote partial continuous functionals.
It can be seen as a as a common extension of Gödel’s T (1958) and Plotkin’s
PCF (1977); we call it T+.

2.3.1. A common extension T+ of Gödel’s T and Plotkin’s PCF.

Definition (Terms). Terms of T+ are built from (typed) variables and
(typed) constants (constructors C or defined constants D; see the definition
below) by application and abstraction:

M,N ::= xτ | Cτ | Dτ | (λxτMσ)τ→σ | (M τ→σN τ)σ.

The set FV(M) of free variables of a term M is defined by

FV(x) := {x}, FV(C),FV(D) := ∅,
FV(λxM) := FV(M) \ {x}, FV(MN) := FV(M) ∪ FV(N).

22 2. PARTIAL CONTINUOUS FUNCTIONALS

Definition (Conversion). We define a conversion relation 7→β for terms
similarly to what we did for derivation terms:

(λxM(x))τ→σN τ 7→β M(N)σ.

In addition we will employ another conversion relation 7→η defined by

λx(Mx) 7→η M if x /∈ FV(M), and M is not an abstraction.

Definition (Computation rule). Every defined constant D comes with
a system of computation rules, consisting of finitely many equations

(9) DP⃗i(y⃗i) := Mi (i = 1, . . . , n where n ≥ 0)

with free variables of P⃗i(y⃗i) and Mi among y⃗i, where the arguments on the
left hand side must be “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables. To ensure consistency of the

defining equations, we require that for i ̸= j P⃗i and P⃗j have disjoint free vari-

ables, and either P⃗i and P⃗j are non-unifiable2 (i.e., there is no substitution

which identifies them), or else for the “most general unifier” ϑ of P⃗i and P⃗j

we have Miϑ = Mjϑ. Notice that the substitution ϑ assigns to the variables

y⃗i in Mi constructor patterns R⃗k(z⃗) (k = i, j). A further requirement on a

system of computation rules DP⃗i(y⃗i) := Mi is that the lengths of all P⃗i(y⃗i)
are the same; this number is called the arity of D, denoted by ar(D). A
substitution instance of a left hand side of (9) is called a D-redex .

More formally, constructor patterns are defined inductively by (we write

P⃗ (x⃗) to indicate all variables in P⃗):

(a) x is a constructor pattern.
(b) The empty list is a constructor pattern.

(c) If P⃗ (x⃗) and Q(y⃗) are constructor patterns whose variables x⃗ and y⃗ are

disjoint, then (P⃗ , Q)(x⃗, y⃗) is a constructor pattern.

(d) If C is a constructor and P⃗ a constructor pattern, then so is CP⃗ .

Remark. The requirement of disjoint variables in constructor patterns

P⃗i and P⃗j used in computation rules of a defined constant D is needed to
ensure that applying the most general unifier produces constructor patterns
again. However, for readability we take this as an implicit convention, and
write computation rules with possibly non-disjoint variables.

Examples of constants D defined by computation rules are abundant.
In particular, the (structural) recursion and corecursion operators will be
defined by computation rules.

2A detailed treatment of unification is in Appendix A

2.3. TERMS 23

The simplest example is the constant ⊥ι of type ι with no computation
rules. The boolean connectives andb, impb and orb are defined by

tt andb y := y,

x andb tt := x,

ff andb y := ff,

x andb ff := ff,

ff impb y := tt,

tt impb y := y,

x impb tt := tt,

tt orb y := tt,

x orb tt := tt,

ff orb y := y,

x orb ff := x.

Notice that when two such rules overlap, their right hand sides are equal
under any unifier of the left hand sides.

Decidable equality =ι : ι→ ι→ B for a closed base type ι can be defined
easily by computation rules. For example,

(0 =N 0) := tt,

(0 =N Sm) := ff,

(Sn =N 0) := ff,

(Sn =N Sm) := (n =N m)

and similarly for Y with constructors L (leaf) and B (branch)

(L =Y L) := tt,

(L =Y Bxy) := ff,

(Bxy =Y L) := ff,

(Bxy =Y Bx′y′) := (x =Y x′ andb y =Y y′).

For L(ι) with ι a closed base type we define =L(ι) : L(ι)→ L(ι)→ B by

([] =L(ι) []) := tt,

([] =L(ι) a::ℓ) := ff,

(a::ℓ =L(ι) []) := ff,

(a::ℓ =L(ι) a
′::ℓ′) := (a =ι a

′ andb ℓ =L(ι) ℓ
′).

For the base type N of natural numbers we have the doubling function

Double(0) := 0,

Double(S(n)) := S(S(Double(n))).

Addition (written infix) is defined similarly, this time with a parameter m:

m+ 0 := m,

m+ S(n) := S(m+ n).

Multiplication (again written infix) is defined using addition by

m · 0 := 0,

m · S(n) := (m · n) +m.

Similarly we can define all primitive recursive functions.
Up to now we have mainly considered examples of total functions, in

the sense that total arguments are mapped to total values. But recall that
in our setting functions need not be total. To give an example consider the
closed base type S(D) of streams defined by the single constructor type

SCons: D→ S(D)→ S(D).

24 2. PARTIAL CONTINUOUS FUNCTIONALS

We write Cdu or d :: u for SCons(d, u). This base type differs from the ones
previously considered by not having a nullary constructor. As a consequence
it does not have non-empty total ideals, but clearly cototal ones. An example
is {Cn

d (∗) | n ≥ 1 }.
We define Map of type (τ → σ) → S(τ) → S(σ) mapping its function

argument h : τ → σ over a stream u of type S(τ) by the computation rule

Maph(a :: u) := (ha) :: Maph(u).

As an example of how to define standard arithmetical functions in T+

we consider the quotient-and-remainder function qr of type N→ N→ N×N.
Its defining equarions are

qr(0,m) := (0, 0),

qr(n+ 1,m) :=

{
(q, r + 1) if r + 1 < m,

(q + 1, 0) else
with (q, r) := qr(n,m).

Lemma 2.3.1 (NatQRProp). Given n,m with 0 < m. Let (q, r) :=
qr(n,m). Then n = q ∗m+ r and r < m.

Proof. By induction on n. The base case is clear. In the step we
distinguish cases. Case r + 1 < m. Then qr(n + 1,m) = (q, r + 1). The
claim follows by induction hypothesis. Case m ≤ r + 1. Then m = r + 1
since r < m (by induction hypothesis) and m ≤ r+1 (by case assumption).
By definition we have qr(n+ 1,m) = (q + 1, 0). We obtain

n+ 1 = q ∗m+ r + 1 = q ∗m+m = (q + 1) ∗m+ 0. □

2.3.2. Recursion operators. Important examples of such constants
D are the (structural) higher type recursion operators Rτ

ι introduced by
Hilbert (1925) and Gödel (1958). They are used to construct maps from the
base type ι to the value type τ , by recursion on the structure of ι.

For instance, Rτ
N has type N→ τ → (N→ τ → τ)→ τ . It is defined by

the computation rules

Rτ
N0af := a,

Rτ
N(Sn)af := fn(Rτ

Nnaf).

The first argument is the recursion argument, the second one gives the base
value, and the third one gives the step function, mapping the recursion argu-
ment and the previous value to the next value. For example, RN

Nnmλn,l(Sl)
defines addition m+n by recursion on n. For λn,l(Sl) we often write λ ,l(Sl)
since the bound variable n is not used.

It will be convenient to write a list of constructor types

(α⃗i → (ξ)ν<ni → ξ)i<k as ((ρiν(ξ))ν<ni → ξ)i<k.

2.3. TERMS 25

Definition (Type of Rτ
ι). Let a base type ι be given by a list of con-

structor types ((ρiν(ξ))ν<ni → ξ)i<k. Let τ be a type. We define the type
of the recursion operator Rτ

ι to be

ι→ ((ρiν(ι× τ))ν<ni → τ)i<k → τ.

Here ι is the type of the recursion argument, and each (ρiν(ι×τ))ν<ni → τ is
called a step type. Usage of ι× τ rather than τ in the step types can be seen
as a “strengthening”, since then one has more data available to construct
the value of type τ . Moreover, for recursive argument types we avoid the
product type in ι × τ and take the two argument types ι and τ instead
(“duplication”).

Definition (Computation rules for Rτ
ι). Let

α0 → . . .→ αm−1 → (ξ)i<n → ξ

be the type of the i-th constructor Ci of ι and consider a term Cix⃗ of type
ι. We write x⃗P = xP0 , . . . , x

P
m−1 for the parameter arguments xα0

0 , . . . , x
αm−1

m−1

and x⃗R = xR0 , . . . , x
R
n−1 for the recursive arguments xιm, . . . , xιm+n−1. Wri-

ting R for Rτ
ι we take as its computation rules

R(Cix⃗)f⃗ := fix⃗(RxR0 f⃗) . . . (RxRn−1f⃗).

Examples.

Rτ
B : B→ τ → τ → τ,

Rτ
N : N→ τ → (N→ τ → τ)→ τ,

Rτ
P : P→ τ → (P→ τ → τ)→ (P→ τ → τ)→ τ,

Rτ
Y : Y→ τ → (Y→ τ → Y→ τ → τ)→ τ,

Rτ
L(ρ) : L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ,

Rτ
ρ+σ : ρ+ σ → (ρ→ τ)→ (σ → τ)→ τ,

Rτ
ρ×σ : ρ× σ → (ρ→ σ → τ)→ τ.

It is a helpful exercise to write out the computation rules for these particular
recursion operators.

There is an important variant of recursion, where no recursive calls oc-
cur. This variant is called the cases operator ; it distinguishes cases according
to the outer constructor form. For a base type ι given by a list of construc-
tor types ((ρiν(ξ))ν<ni → ξ)i<k and a result type τ the type of the cases
operator Cτι is

ι→ ((ρiν(ι))ν<ni → τ)i<k → τ.

The simplest example (for type B) is if-then-else. Another example is

CτN : N→ τ → (N→ τ)→ τ.

26 2. PARTIAL CONTINUOUS FUNCTIONALS

It could be used to define the predecessor function on N by the term

Pm := CN
Nm0(λnn).

However, it is easier to define the predecessor function by the computation
rules P0 := 0 and P(Sn) := n.

Remark. When computing the value of a cases term, we do not want
to (eagerly) evaluate all arguments, but rather compute the test argument
first and depending on the result (lazily) evaluate at most one of the other
arguments. This phenomenon is well known in functional languages; for
instance, in Scheme the if-construct is called a special form (as opposed
to an operator). Therefore instead of taking the cases operator applied to a
full list of arguments, one rather uses a case-construct to build this term;
it differs from the former only in that it employs lazy evaluation. Hence
the predecessor function is [if m 0 λnn] (which is often written in the form
[case m of 0 | λnn]).

General recursion with respect to a measure. In practice it often hap-
pens that one needs to recur to an argument which is not an immediate
component of the present constructor object; this is not allowed in struc-
tural recursion. Of course, in order to ensure that the recursion terminates
we have to assume that the recurrence is w.r.t. a given well-founded set; for
simplicity we restrict ourselves to the algebra N. However, we do allow that
the recurrence is with respect to a measure function µ, with values in N.
The operator F of general recursion then is defined by

(10) FµxG = Gx(λy[if µy < µx then FµyG else ε]),

where ε denotes a canonical inhabitant of the range. We leave it as an
exercise to prove that F is definable from an appropriate structural recursion
operator.

As an example for the use of F we define a function NatToPos converting
a natural number ≥ 1 written in unary (i.e., built from the constructors 0
and S) into the same natural number written in binary (i.e., built from the
constructors 1, S0 and S1). This uses the auxiliary functions Even: N→ B
defined by

Even(0) := tt,

Even(S(0)) := ff,

Even(S(S(n))) := Even(n)

2.3. TERMS 27

and Half : N→ N defined by

Half(0) := 0,

Half(S(0)) := 0,

Half(S(S(n))) := S(Half(n)).

Then NatToPos: N→ P is defined by

NatToPos(n) = F(id, n,G)

with id(n) = n and G : N→ (N→ P)→ P defined by

G(n, f) =


S0(f(Half(n))) if Even(n),

1 if n = S(0),

S1(f(Half(n))) otherwise.

2.3.3. Corecursion. The computation rules forR work from the leaves
towards the root, and terminate because total ideals are finite. If, however,
we deal with cototal ideals, then a similar operator is available to define
functions with cototal ideals as values, namely “corecursion”.

To understand the type of a corecursion operator let a base type ι be
given by a list of constructor types

(ρiν(ι))ν<ni → ι (i < k).

The product of these k constructor types is isomorphic to∑
i<k

∏
ν<ni

ρiν(ι)→ ι

and the type of the recursion operator Rτ
ι is isomorphic to

ι→
(∑

i<k

∏
ν<ni

ρiν(ι× τ)→ τ
)
→ τ.

This way of subsuming the types of all constructors of a base type into
a single type suggests the following definition of the destructor Dι of a base
type ι.

Definition (Destructor). For a base type ι given by a list of constructor
types ((ρiν(ξ))ν<ni → ξ)i<k we define the type of the destructor Dι to be

ι→
∑
i<k

∏
ν<ni

ρiν(ι).

The computation rules for Dι disassemble a constructor-built pattern into
its parts. For instance, the computation rules for DN of type N→ uysum(N)

28 2. PARTIAL CONTINUOUS FUNCTIONALS

(or U + N) are

DN(0) := DummyL,

DN(S(n)) := Inr(n).

The computation rules for DP of type P→ uysum(P + P) (or U + (P + P))
are

DP(1) := DummyL,

DP(S0(p)) := Inr(InLP→P+P(p)),

DP(S1(p)) := Inr(InRP→P+P(p)).

The corecursion operator coRτ
ι is used to construct a map from τ to ι

by “corecursion” on the structure of ι. Its type is

(11) τ →
(
τ →

∑
i<k

∏
ν<ni

ρiν(ι+ τ)
)
→ ι.

Examples (Types and computation rules of corecursion operators).

coRτ
B : τ → (τ → U + U)→ B,

coRτ
N : τ → (τ → U + (N + τ))→ N,

coRτ
P : τ → (τ → U + ((P + τ) + (P + τ)))→ P,

coRτ
Y : τ → (τ → U + (Y + τ)× (Y + τ))→ Y,

coRτ
L(ρ) : τ → (τ → U + ρ× (L(ρ) + τ))→ L(ρ),

coRτ
S(ρ) : τ → (τ → ρ× (S(ρ) + τ))→ S(ρ).

The computation rule for each of these is defined below. For f : ρ→ τ and
g : σ → τ we denote λx(Rτ

ρ+σxfg) of type ρ+ σ → τ by [f, g], and similary
for ternary sumtypes etcetera. The identity functions id below are of type
ι→ ι with ι the respective base type.

coRτ
Bxf := [λ tt, λ ff](fx),

coRτ
Nxf := [λ 0, λy(S([id

N→N, PN]y))](fx),
coRτ

Pxf := [λ 1, λy(S0([id, PP]y)), λy(S1([id, PP]y))](fx),
coRτ

Yxf := [λ L, λy0,y1(B([id, PY]y0)([id, PY]y1))](fx),
coRτ

L(ρ)xf := [λ [], λy0,y1(y0 :: [id, PL(ρ)]y1)](fx),
coRτ

S(ρ)xf := (fx)0 :: [id, PS(ρ)](fx)1

with (fx)i the i-th component of the pair fx, and Pα := λx(
coRτ

αxf) for
α ∈ {N,P,Y,L(ρ),S(ρ)}.

2.3. TERMS 29

Definition. The (single) computation rule for coRτ
ι of type (11) is

coRτ
ι xf := [g0, . . . , gk−1](fx)

where gi of type
∏

ν<ni
ρiν(ι+ τ)→ ι is defined as

gi := λx⃗(Ci(Nν)ν<ni) with xν : ρiν(ι+ τ),

Nν :=

{
xν if ρiν(ξ) is a parameter arg. type,

[idι→ι, P τ→ι]xι+τ
ν otherwise,

and P := λx(
coRτ

ι xf) contains the corecursive call.

Remark. It can be difficult to read the computation rules for corecur-
sion operators. However, it helps if we know some properties of the “step”
function f . For instance we have

coRτ
Nxf =


0 if fx = DummyLU+(N+τ)

Sn if fx = Inr(InLN→N+τn)

S(coRτ
Nx

′f) if fx = Inr(InRτ→N+τx′)

coRτ
Yxf =



L if fx = DummyLU+(Y+τ)×(Y+τ)

Buv if fx = Inr⟨InLY→Y+τu, InLY→Y+τv⟩
Bu(coRτ

Yyf) if fx = Inr⟨InLY→Y+τu, InRτ→Y+τy⟩
B(coRτ

Yyf)v if fx = Inr⟨InRτ→Y+τy, InLY→Y+τv⟩
B(coRτ

Yyf)(
coRτ

Yzf) if fx = Inr⟨InRτ→Y+τy, InRτ→Y+τz⟩

coRτ
S(ρ)xf =

{
a :: u if fx = ⟨a, InLS(ρ)→S(ρ)+τu⟩
a :: coRτ

S(ρ)x
′f if fx = ⟨a, InRτ→S(ρ)+τx′⟩.

Recall that Map of type (τ → σ) → S(τ) → S(σ) maps its function
argument h : τ → σ over a stream u of type S(τ) (see Section 2.3.1, page 24).
It is an easy exercise to give an alternative definition of the function Map
by means of the corecursion operator.

Remark. It is possible to define interesting cototal objects by means of
corecursion operators. For instance the rightmost infinite path in the type
Y of binary trees is tR := coRτ

Yx0f0 with τ, x0 arbitrary (for instance τ := U,

x0 := DummyU) and

f0x
τ := Inr⟨InLY→Y+τ0, InRτ→Y+τx⟩.

For the leftmost path we similary have tL.
Another example is a function converting a real number given as a

Cauchy sequence of rationals together a Cauchy modulus into an infinite

30 2. PARTIAL CONTINUOUS FUNCTIONALS

stream of signed digits {−1, 0, 1}. Such a function can be defined by a sim-
ple corecursion. One can extract it from a proof (using “coinduction”) of
the fact that such a conversion exists.

2.4. Denotational semantics

We now set up a connection between the model (|Aρ|)ρ of partial con-
tinuous functionals described in Section 2.1 and the term system T+ from
Section 2.3. The main point is to clarify how we can use computation rules
to define an ideal z in a function space. The general idea is to inductively
define the set of tokens (U, a) that make up z. It is convenient to define the
value [[λx⃗M]], where M is a term with free variables among x⃗. Since this

value is a token set, we can define inductively the relation (U⃗ , a) ∈ [[λx⃗M]].

For a constructor pattern P⃗ (x⃗) and a list V⃗ of the same length and

types as x⃗ we define a list P⃗ (V⃗) of formal neighborhoods of the same length

and types as P⃗ (x⃗), by induction on P⃗ (x⃗). x(V) is the singleton list V ,

and for ⟨⟩ we take the empty list. (P⃗ , Q)(V⃗ , w⃗) is covered by the induction
hypothesis. Finally

(CP⃗)(V⃗) := {Ca⃗∗ | a∗i ∈ Pi(V⃗i) if Pi(V⃗i) ̸= ∅, and a∗i = ∗ otherwise }.

We use the following notation. (U⃗ , a) means (U1, (U2, . . . (Un, a)) . . .),

and (U⃗ , V) ⊆ [[λx⃗M]] means (U⃗ , a) ∈ [[λx⃗M]] for all (finitely many) a ∈ V .

Definition (Inductive, of (U⃗ , a) ∈ [[λx⃗M]]).

Ui ⊢ a

(U⃗ , a) ∈ [[λx⃗xi]]
(V),

(U⃗ , V, a) ∈ [[λx⃗M]] (U⃗ , V) ⊆ [[λx⃗N]]

(U⃗ , a) ∈ [[λx⃗(MN)]]
(A).

For every constructor C and defined constant D we have

V⃗ ⊢ a⃗∗

(U⃗ , V⃗ ,Ca⃗∗) ∈ [[λx⃗C]]
(C),

(U⃗ , V⃗ , a) ∈ [[λx⃗,y⃗M]] W⃗ ⊢ P⃗ (V⃗)

(U⃗ , W⃗ , a) ∈ [[λx⃗D]]
(D)

with one such rule (D) for every computation rule DP⃗ (y⃗) = M .

This “denotational semantics” has good properties; however, we do not
carry out the proofs here but rather refer to the literature. Some of these
proofs are given in Appendix B. First of all, one can prove that [[λx⃗M]]
is an ideal. Moreover, our definition above of the denotation of a term
is reasonable in the sense that it is not changed by an application of the
standard (β- and η-) conversions or a computation rule.

