
CHAPTER 2

Partial continuous functionals

The objects studied in mathematics have types, which in many cases are
function types, possibly of a higher type. Such objects in most cases are infi-
nite, and we intend to describe them in terms of their finite approximations.
An appropriate framework for such an approach are the partial continuous
functionals of Scott (1982) and Ershov (1977). Continuity of a function f
here means that for every approximation V of the value f(x) there is an
approximation U of the argument x such that f [U ] has more information
than V . We define the partial continuous functionals via Scott’s information
systems.

2.1. Information systems

The basic idea of information systems is to provide an axiomatic setting
to describe approximations of abstract objects by concrete, finite ones. We
take an arbitrary countable set A of “bits of data” or “tokens” as a basic
notion to be explained axiomatically. In order to use such data to build
approximations of abstract objects, we need a notion of “consistency”, which
determines when the elements of a finite set of tokens are consistent with
each other. We also need an “entailment relation” between consistent sets
U of data and single tokens a, which intuitively expresses the fact that the
information contained in U is sufficient to compute the bit of information a.
The axioms below are a minor modification of Scott’s (1982), due to Larsen
and Winskel (1991).

2.1.1. Ideals.

Definition. An information system is a structure (A,Con,`) where A
is an at most countable non-empty set (the tokens), Con is a set of finite
subsets of A (the consistent sets) and ` is a subset of Con×A (the entailment
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relation), which satisfy

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,
U ∈ Con→ ∀a∈V (U ` a)→ V ` b→ U ` b.

The elements of Con are called formal neighborhoods. We use U, V,W
to denote finite sets, and write

U ` V for U ∈ Con ∧ ∀a∈V (U ` a),

a ↑ b for {a, b} ∈ Con (a, b are consistent),

U ↑ V for ∀a∈U,b∈V (a ↑ b).

Definition. The ideals (also called objects) of an information system
A = (A,Con,`) are defined to be those subsets x of A which satisfy

U ⊆ x→ U ∈ Con (x is consistent),

U ` a→ U ⊆ x→ a ∈ x (x is deductively closed).

We write x ∈ |A| to mean that x is an ideal of A.

Examples. The deductive closure U := { a ∈ A | U ` a } of U ∈ Con is
an ideal.

Every countable set A can be turned into a “flat” information system by
letting the set of tokens be A, Con := {∅} ∪ { {a} | a ∈ A } and U ` a mean
a ∈ U . In this case the ideals are just the elements of Con. For A = N we
have the following picture of the Con-sets.
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��
�
��
•
{2}

. . .

A rather important example is the following, which concerns approxi-
mations of functions from a countable set A into a countable set B. The
tokens are the pairs (a, b) with a ∈ A and b ∈ B, and

Con := { { (ai, bi) | i < k } | ∀i,j<k(ai = aj → bi = bj) },
U ` (a, b) := (a, b) ∈ U.

It is easy to verify that this defines an information system whose ideals are
(the graphs of) all partial functions from A to B.
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2.1.2. Function spaces. We define the “function space” A → B be-
tween two information systems A and B.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be infor-
mation systems. Define A→ B = (C,Con,`) by

C := ConA ×B,

{ (Ui, bi) | i ∈ I } ∈ Con := ∀J⊆I
( ⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB

)
.

For the definition of the entailment relation ` it is helpful to first define the
notion of an application of W := { (Ui, bi) | i ∈ I } ∈ Con to U ∈ ConA:

{ (Ui, bi) | i ∈ I }U := { bi | U `A Ui }.

From the definition of Con we know that this set is in ConB. Now define
W ` (U, b) by WU `B b.

Remark. Clearly application is monotone in the second argument, in
the sense that U `A U ′ implies (WU ′ ⊆WU , hence also) WU `B WU ′. In
fact, application is also monotone in the first argument, i.e.,

W `W ′ implies WU `B W ′U.

To see this let W = { (Ui, bi) | i ∈ I } and W ′ = { (U ′j , b
′
j) | j ∈ J }. By

definition W ′U = { b′j | U `A U ′j }. Now fix j such that U `A U ′j ; we must

show WU `B b′j . By assumption W ` (U ′j , b
′
j), hence WU ′j `B b′j . Because

of WU ⊇WU ′j the claim follows.

Lemma 2.1.1. If A and B are information systems, then so is A→ B
defined as above.

Proof. Let A = (A,ConA,`A) and B = (B,ConB,`B). The first,
second and fourth property of the definition are clearly satisfied. For the
third, suppose

{(U1, b1), . . . , (Un, bn)} ` (U, b), i.e., { bj | U `A Uj } `B b.

We have to show that {(U1, b1), . . . , (Un, bn), (U, b)} ∈ Con. So let I ⊆
{1, . . . , n} and suppose

U ∪
⋃
i∈I

Ui ∈ ConA.

We must show that {b} ∪ { bi | i ∈ I } ∈ ConB. Let J ⊆ {1, . . . , n} consist
of those j with U `A Uj . Then also

U ∪
⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA.
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Since ⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA,

from the consistency of {(U1, b1), . . . , (Un, bn)} we can conclude that

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∈ ConB.

But { bj | j ∈ J } `B b by assumption. Hence

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∪ {b} ∈ ConB.

For the final property, suppose

W `W ′ and W ′ ` (U, b).

We have to show W ` (U, b), i.e., WU `B b. We obtain WU `B W ′U by
monotonicity in the first argument, and W ′U `B b by definition. �

We shall now give an alternative characterization of the ideals in A→ B,
as “approximable maps”. The basic idea for approximable maps is the desire
to study “information respecting” maps from A into B. Such a map is given
by a relation r between ConA and B, where (U, b) ∈ r intuitively means that
whenever we are given the information U ∈ ConA, then we know that at
least the token b appears in the value.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be infor-
mation systems. A relation r ⊆ ConA × B is an approximable map if it
satisfies the following:

(a) if (U, b1), . . . , (U, bn) ∈ r, then {b1, . . . , bn} ∈ ConB;
(b) if (U, b1), . . . , (U, bn) ∈ r and {b1, . . . , bn} `B b, then (U, b) ∈ r;
(c) if (U ′, b) ∈ r and U `A U ′, then (U, b) ∈ r.

Theorem 2.1.2. Let A and B be information systems. Then the ideals
of A→ B are exactly the approximable maps from A to B.

Proof. Exercise.
�

2.1.3. Continuous functions. We can also characterize approxima-
ble maps in a different way, which is closer to usual characterizations of
continuity1:

Lemma 2.1.3. Let A and B be information systems and f : |A| → |B|
monotone (i.e., x ⊆ y implies f(x) ⊆ f(y)). Then the following are equiva-
lent.

1In fact, approximable maps are exactly the continuous functions w.r.t. the so-called
Scott topology. However, we will not enter this subject here.


