
CHAPTER 1

Logic

1.1. Computational content of proofs

Mathematics differs from all other sciences by the fact that it provides
proofs for its claims. In this course we study what proofs are, and what we
can do with them apart from assuring us of the truth of what they state.

Let us start with simple example of a proof. Assume that we already
know that

√
2 is irrational.

Theorem. There are irrational numbers x, y such that xy is rational.

Proof. By cases.

Case
√
2
√
2
is rational. Choose x :=

√
2 and y :=

√
2. Then x, y are

irrational and by assumption xy is rational.

Case
√
2
√
2
is irrational. Choose x :=

√
2
√
2
and y :=

√
2. Then by

assumption x, y are irrational and

xy =
(√

2

√
2
)√

2
=

(√
2
)2

= 2

is rational. □

A problem with this proof is that it does not give us an example for what
its statement claims to exist. Which pair of real numbers to take depends

on whether
√
2
√
2
is rational or not. As long as we do not know whether

this is the case we do not have an example.
An obvious solution to this problem is to extend the standard use of the

existential quantifier in mathematics by a new one written ∃xA(x), whose
proof requires an explicit construction of an object x satisfying the property
A(x). This in in addition to the standard use of the existential quantifier,

which we now write as ∃̃xA(x) and understand it as ¬∀x¬A(x). The former
is called the strong (or constructive) existential quantifier, and the latter
the weak (or “classical”) one.

Similarly there is a strong (or constructive) disjunction written A ∨ B,
which is in addition to the standard weak (or classical) one. The latter is
written A ∨̃ B and understood as ¬A→ (¬B → ⊥).
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Derivation Term

u : A uA

[u : A]

|M
B →+uA→ B

(λuAMB)A→B

|M
A→ B

| N
A →−

B

(MA→BNA)B

|M
A ∀+x (with var.cond.)∀xA

(λxM
A)∀xA (with var.cond.)

|M
∀xA(x) t

∀−
A(t)

(M∀xA(x)t)A(t)

Table 1. Derivation terms for → and ∀

1.2. Natural deduction

Proofs are done in natural deduction style, following Gentzen (1935).
Using the Curry-Howard correspondence we write them as proof terms.

We give an inductive definition of such derivation terms for the →,∀-
rules in Table 1 where for clarity we have written the corresponding deriva-
tions to the left. This can be extended to the rules for ∃, ∨ and ∧, but we
will not do this here. The reason is that these connectives will be viewed as
inductively defined (nullary) predicates with parameters.

Every derivation term carries a formula as its type. However, we shall
usually leave these formulas implicit and write derivation terms without
them.
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Every derivation term can be written uniquely in one of the forms

uM⃗ | λvM | (λvM)NL⃗,

where u is an assumption variable or constant, v is an assumption or object
variable, and M , N , L are derivation or object terms.

1.3. Normal form

An important property of proof terms is that they have a unique normal
form. It arises as follows.

A conversion removes an elimination immediately following an introduc-
tion. We consider the following conversions, for derivations written in tree
notation and also as derivation terms.
→-conversion.

[u : A]

|M
B →+uA→ B

| N
A →−

B

7→β

| N
A
|M
B

or written as derivation terms

(λuM(uA)B)A→BNA 7→β M(NA)B.

The reader familiar with λ-calculus should note that this is nothing other
than β-conversion.
∀-conversion.

|M
A(x)

∀+x∀xA(x) t
∀−

A(t)

7→β
|M ′

A(t)

or written as derivation terms

(λxM(x)A(x))∀xA(x)t 7→β M(t).

The closure of the conversion relation 7→β is defined by

(a) If M 7→β M ′, then M 7→M ′.
(b) If M 7→ M ′, then also MN 7→ M ′N , NM 7→ NM ′, λvM 7→ λvM

′

(inner reductions).

Therefore M 7→ N means that M reduces in one step to N , i.e., N is
obtained from M by replacement of (an occurrence of) a redex M ′ of M by
a conversum M ′′ of M ′, i.e., by a single conversion.

A term M is in normal form, or M is normal , if M does not contain a
redex. A reduction sequence is a (finite or infinite) sequence M0 7→ M1 7→
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M2 . . . such that Mi 7→ Mi+1, for all i. Finite reduction sequences are par-
tially ordered under the initial part relation; the collection of finite reduction
sequences starting from a term M forms a tree, the reduction tree of M . The
branches of this tree may be identified with the collection of all infinite and
all terminating finite reduction sequences. A term is strongly normalizing if
its reduction tree is finite.

Theorem 1.3.1. Every derivation term is strongly normalizing, and the
final element of each reduction sequence is uniquely determined.

A proof can be found for instance in Troelstra and van Dalen (1988).


