
Introduction

Mathematics differs from all other sciences by the fact that it provides
proofs for its claims. In this course we study what proofs are, and what we
can do with them apart from assuring us of the truth of what they state.

Present technology makes it feasible to generate even large formal proofs
with “proof assistants”. These proof objects can be checked for logical
correctness, independently of the used proof assistant: one only needs to
check that the logical rules have been applied correctly.

Our underlying “minimal” logic is “constructive” in the sense that a
“computationally relevant” (c.r.) predicate (for instance an existential state-
ment ∃xA or a disjunction A∨B) can only be proved by providing an exam-
ple. Then from a proof of a c.r. statement we can extract a term which can
be seen as a program representing the computational content of the proof.
We will develop the theoretical concepts used to formulate and prove this
“Soundness theorem”.

Usage of a proof assistant makes it possible to automate this extraction
process, and also to automatically generate a formal proof that the extracted
term “realizes” the original statement. Several applications will be given.

The following list describes some relevant issues. Possibly cryptic notions
used above or in these descriptions will be defined in the course.

(1) Concrete vs. abstract. To study extraction of programs from
proofs it seems best to start with concrete rather than abstract
mathematics.

(2) Types. Mathematical objects have “types”. Examples are “base
types” N, Q of natural or rational numbers, and the “function type”
N → N of unary functions f on N. The iteration operator I with
I(f, n,m) := f (n)(m) has type (N→ N)→ N→ N→ N.

(3) Approximations. Infinite objects are viewed as given by their
(finite) approximations. Examples are real numbers, or functions
f : N→ N.

(4) Model. Objects of type τ are the “partial continuous functionals”
of Scott (1982) and Ershov (1977). Continuity of a function f here
means that for every approximation V of the value f(x) there is
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an approximation U of the argument x such that f [U ] has more
information than V .

(5) Constants of type τ are given by “computation rules”. Example:
Double : N→ N is defined by

Double(0) = 0, Double(S(n)) = S(S(Double(n))).

(6) Predicates of arity ~τ (a list of types) are either variables or con-
stants. A predicate variable is a place holder for a formula with
some object variables bound (for example {n,m | n ≤ m }). A pre-
dicate constant is inductively or coinductively defined. This means
that it is the least or greatest fixed point of some “clauses”. An
example of an inductive predicate is Even, the least fixed point of
the clauses

Even(0), ∀n(Even(n)→ Even(S(S(n)))).

An example of a coinductive predicate is coEven, the greatest fixed
point of the “closure axiom”

∀n(coEven(n)→ n = 0 ∨ ∃m(coEven(m) ∧ n = S(S(m)))).

The logical connectives ∃, ∨ and ∧ are viewed as inductively defined
predicates with parameters.

(7) Proof trees. To generate proofs we think of them as trees with
“holes” to be filled. Each hole carries a formula (called “goal”) and
a “context” consisting of object and assumption variables. The
task then is to “refine” the proof by filling a hole with a logical
rule, which may bind one of the object or assumption variables.
This process is well supported by an interactive proof assistant.
Guidance by a previous proof idea is of course essential here.

We shall use the proof assistant Minlog http://www.minlog-system.de

(under development at LMU), which is suitable for the tasks described
above. It is implemented in the programming language Scheme (cf. Abelson
et al. (1996))


