
MINLOG REFERENCE MANUAL

HELMUT SCHWICHTENBERG

Contents

1. Introduction 5
1.1. Simultaneous free algebras 6
1.2. Partial continuous functionals 7
1.3. Primitive recursion, computable functionals 7
1.4. Decidable predicates, axioms for predicates 8
1.5. Minimal logic, proof transformation 8
1.6. Comparison with Coq and Isabelle 8
2. Types, with simultaneous free algebras as base types 10
2.1. Generalities for substitutions, type substitutions 10
2.2. Type unification and matching 14
2.3. Algebras and types 14
2.4. Coercion 21
3. Variables 22
4. Constants 24
4.1. Structural recursion operators and Gödel’s T 25
4.2. Conversion 26
4.3. Corecursion 30
4.4. A common extension T+ of Gödel’s T and Plotkin’s PCF 35
4.5. Implementation 37
5. Predicates 43
5.1. Predicate variables 43
5.2. Predicate constants 45
5.3. Inductively defined predicate constants 46
5.4. Examples of inductive predicates 49
5.5. Totality and induction 53
5.6. Coinductive definitions 56
5.7. Implementation 57
6. Terms and objects 60
6.1. Constructors and accessors 60
6.2. Normalization 63

Date: April 8, 2024.

1

2 HELMUT SCHWICHTENBERG

6.3. Substitution 68
6.4. Unification and matching 69
7. Formulas and comprehension terms 69
7.1. Constructors and accessors 69
7.2. Decoration 76
7.3. Normalization 77
7.4. Alpha-equality 77
7.5. Display 77
7.6. Check 77
7.7. Substitution 78
8. Assumption variables 78
9. Assumption constants 79
9.1. Axioms 81
9.2. Theorems 84
9.3. Global assumptions 85
10. Proofs 86
10.1. Constructors and accessors 86
10.2. Normalization by evaluation 92
10.3. Substitution 94
10.4. Display 95
10.5. Check 96
10.6. Classical logic 96
10.7. Existence formulas 99
10.8. Basic proof constructions 100
11. Interactive theorem proving with partial proofs 100
11.1. set-goal 102
11.2. normalize-goal 102
11.3. assume 102
11.4. use 102
11.5. use-with 103
11.6. inst-with 104
11.7. inst-with-to 104
11.8. cut 104
11.9. assert 104
11.10. strip 104
11.11. drop 104
11.12. name-hyp 104
11.13. split, msplit 105
11.14. get 105
11.15. undo 105
11.16. ind 105

MINLOG REFERENCE MANUAL 3

11.17. simind 105
11.18. gind 105
11.19. intro 105
11.20. elim 105
11.21. inversion, simplified-inversion 106
11.22. coind 106
11.23. ex-intro 107
11.24. ex-elim 107
11.25. by-assume 107
11.26. cases 108
11.27. casedist 108
11.28. simp 108
11.29. simp-with 109
11.30. simphyp, simphyp-to 109
11.31. simphyp-with, simphyp-with-to 109
11.32. min-pr 110
11.33. by-assume-minimal-wrt 110
11.34. exc-intro 110
11.35. exc-elim 110
11.36. pair-elim 111
11.37. admit 111
11.38. search 111
11.39. auto 111
11.40. prop 111
11.41. efproof 111
11.42. def, defnc 112
12. Unification and proof search 112
12.1. Huet’s unification algorithm 112
12.2. The pattern unification algorithm 114
12.3. Proof search 117
12.4. Extension by ∧ and ∃ 120
12.5. Implementation 121
12.6. Notes 121
13. Extracted terms 122
13.1. The type of a formula 122
13.2. Extracted terms 122
13.3. Soundness 124
14. Computational content of classical proofs 125
14.1. Refined A-translation 125
14.2. Gödel’s Dialectica interpretation 128
15. Reading formulas in external form 130

4 HELMUT SCHWICHTENBERG

15.1. Lexical analysis 130
15.2. Parsing 131
16. Natural numbers 136
References 138
Index 141

Acknowledgement. The Minlog system has been under development since
around 1990; its first appearance in print is in [29]. My sincere thanks go
to the many contributors:

• Freiric Barral (reflection),
• Holger Benl (Dijkstra algorithm, inductive data types),
• Ulrich Berger (very many contributions),
• Michael Bopp (program development by proof transformation),
• Wilfried Buchholz (translation of classical proofs into intuitionistic

ones),
• Luca Chiarabini (program development by proof transformation),
• Laura Crosilla (tutorial),
• Matthias Eberl (normalization by evaluation),
• Fredrik Nordvall Forsberg (Haskell translation),
• Valentin Herrmann (Minlogpad),
• Simon Huber (many contributions, in particular guarded recursion,

general induction),
• Dan Hernest (functional interpretation),
• Felix Joachimski (many contributions, in particular translation of

classical proofs into intuitionistic ones, producing Tex output, doc-
umentation),
• Nils Köpp (many contributions, in particular corecursion, coinduc-

tion, lookahead for stream-represented real numbers),
• Ralph Matthes (documentation),
• Kenji Miyamoto (corecursion, coinduction),
• Karl-Heinz Niggl (program development by proof transformation),
• Jaco van de Pol (experiments concerning monotone functionals),
• Florian Ranzi (matching),
• Diana Ratiu (decoration),
• Martin Ruckert (many contributions, in particular grammar and the

MPC tool),
• Stefan Schimanski (pretty printing),
• Robert Stärk (alpha equivalence),
• Monika Seisenberger (many contributions, including inductive defi-

nitions and translation of classical proofs into intuitionistic ones),

MINLOG REFERENCE MANUAL 5

• Trifon Trifonov (functional interpretation),
• Klaus Weich (proof search, the Fibonacci numbers example),
• Franziskus Wiesnet (constructive analysis with exact real numbers,

documentation),
• Wolfgang Zuber (documentation).

1. Introduction

Proofs in mathematics generally deal with abstract, “higher type” ob-
jects. Therefore an analysis of computational aspects of such proofs must
be based on a theory of computation in higher types. A mathematically
satisfactory such theory has been provided by Scott [38] and Ershov [12].
The basic concept is that of a partial continuous functional. Since each such
can be seen as a limit of its finite approximations, we get for free the notion
of a computable functional: it is given by a recursive enumeration of finite
approximations. The price to pay for this simplicity is that functionals are
now partial, in stark contrast to the view of Gödel [14]. However, the total
functionals can be defined as a subset of partial ones. In fact, as observed by
Kreisel, they form a dense subset w.r.t. the Scott topology. The next step
is to build a theory, with the partial continuous functionals as the intended
range of its (typed) variables. The constants of this “theory of computable
functionals” TCF denote computable functionals. It suffices to restrict the
prime formulas to those built with inductively defined predicates. For in-
stance, falsity can be defined by F := ff ≡ tt, where EqD is the inductively
defined Leibniz equality. The only logical connectives are implication and
universal quantification: existence, conjunction and disjunction can be seen
as inductively defined (with parameters). TCF is well suited to reflect on
the computational content of proofs, along the lines of the Brouwer-Heyting-
Kolmogorov interpretation, or more technically a realizability interpretation
in the sense of Kleene and Kreisel. Moreover the computational content of
classical (or “weak”) existence proofs can be analyzed in TCF, in the sense
of Gödel’s [14] Dialectica interpretation and the so-called A-translation of
Friedman [13] and Dragalin [10]. The difference of TCF to well-established
theories like Martin-Löf’s [23] intuitionistic type theory or the theory of
constructions underlying the Coq proof assistant is that TCF treats partial
continuous functionals as first class citizens. Since they are the mathema-
tically correct domain of computable functionals, it seems that this is a
reasonable step to take.

Minlog is intended to reason about computable functionals, using minimal
logic. It is an interactive prover with the following features.

6 HELMUT SCHWICHTENBERG

(i) Proofs are treated as first class objects: they can be normalized and
then used for reading off an instance if the proven formula is existential,
or changed for program development by proof transformation.

(ii) To keep control over the complexity of extracted programs, we follow
Kreisel’s proposal and aim at a theory with a strong language and
weak existence axioms. It should be conservative over (a fragment of)
arithmetic.

(iii) Minlog is based on minimal rather than classical or intuitionistic logic.
This more general setting makes it possible to implement program
extraction from classical proofs, via a refined A-translation (cf. [4]).

(iv) Constants are intended to denote computable functionals. Since their
(mathematically correct) domains are the Scott-Ershov partial conti-
nuous functionals, this is the intended range of the quantifiers.

(v) Variables carry (simple) types, with free algebras as base types. The
latter need not be finitary (we allow, e.g., countably branching trees),
and can be simultaneously generated. Type and predicate parame-
ters are allowed; they are thought of as being implicitly universally
quantified (“ML polymorphism”).

(vi) To simplify equational reasoning, the system identifies terms with the
same normal form. A rich collection of rewrite rules is provided, which
can be extended by the user. Decidable predicates are implemented
via boolean valued functions, hence the rewrite mechanism applies to
them as well.

We now describe in more details some of these features.

1.1. Simultaneous free algebras. A free algebra is given by constructors,
for instance zero and successor for the natural numbers. We want to treat
other data types as well, like lists and binary trees. When dealing with
inductively defined sets, it will also be useful to explicitly refer to the gen-
eration tree. Such trees are quite often countably branching, and hence we
allow infinitary free algebras from the outset.

The freeness of the constructors is expressed by requiring that their ranges
are disjoint and that they are injective. Moreover, we view the free algebra
as a domain and require that its bottom element is not in the range of
the constructors. Hence the constructors are total and non-strict. For the
notion of totality cf. [39, Chapter 8.3].

In our intended semantics we do not require that every semantic object is
the denotation of a closed term, not even for finitary algebras. One reason is
that for normalization by evaluation (cf. [5]) we want to allow term families
in our semantics.

To make a free algebra into a domain and still have the constructors injec-
tive and with disjoint ranges, we model, e.g., the natural numbers as shown

MINLOG REFERENCE MANUAL 7

•⊥@
@@
•0

�
��
• S⊥@

@@
•S0

�
��
• S(S⊥)@

@@
•S(S0)

�
��
• S(S(S⊥))@

@@
•S(S(S0))

�
��

..
. • ∞

Figure 1. The domain of natural numbers

in Figure 1. Notice that for more complex algebras we usually need many
more “infinite” elements; this is a consequence of the closure of domains un-
der suprema. To make dealing with such complex structures less annoying,
we will normally restrict attention to the total elements of a domain, in this
case – as expected – the elements labelled 0, S0, S(S0) etc.

1.2. Partial continuous functionals. As already mentioned, the (mathe-
matically correct) domains of computable functionals have been identified
by Scott and Ershov as the partial continuous functionals; cf. [39]. Since we
want to deal with computable functionals in our theory, we consider it as
mandatory to accommodate their domains. This is also true if one is inter-
ested in total functionals only; they have to be treated as particular partial
continuous functionals. We will make use of inductively defined predicates
Tρ with the total functionals of type ρ as their intended meaning. To make
formal arguments with quantifiers relativized to total objects more man-
agable, we use a special sort of variables intended to range over such objects
only. For example, n, n0, n1, n2, . . . range over total natural numbers, and
n^, n^0, n^1, n^2, . . . are general variables. This amounts to an abbreviation
of

∀x̂(Tρx̂→ A) by ∀xA,
∃x̂(Tρx̂ ∧A) by ∃xA.

1.3. Primitive recursion, computable functionals. The elimination
constants corresponding to the constructors are called primitive recursion
operators R. They are described in detail in section 4. In this setup, every
closed term reduces to a numeral.

However, we shall also use constants for rather arbitrary computable func-
tionals, and axiomatize them according to their intended meaning by means
of rewrite rules. An example is the general fixed point operator Y , which

8 HELMUT SCHWICHTENBERG

is axiomatized by Y F = F (Y F). Clearly then it cannot be true any more
that every closed term reduces to a numeral. We may have non-terminating
terms, but this just means that not always it is a good idea to try to nor-
malize a term.

An important consequence of admitting non-terminating terms is that our
notion of proof is not decidable: when checking, e.g., whether two terms are
equal we may run into a non-terminating computation. But we still have
semi-decidability of proofs, i.e., an algorithm to check the correctness of a
proof that can only give correct results, but may not terminate. In practice
this is sufficient.

To avoid this somewhat unpleasant undecidability phenomenon, we may
also view our proofs as abbreviated forms of full proofs, with certain equality
arguments left implicit. If some information sufficient to recover the full
proof (e.g., for each node a bound on the number of rewrite steps needed to
verify it) is stored as part of the proof, then we retain decidability of proofs.

1.4. Decidable predicates, axioms for predicates. As already men-
tioned, decidable predicates are represented by means of boolean valued
functions, hence the rewrite mechanism applies to them as well. Equality
is decidable for finitary algebras only; for infinitary algebras one uses the
inductively defined Leibniz equality instead.

1.5. Minimal logic, proof transformation. For generalities about min-
imal logic cf. [41] or [40]. A description of the theory behind the present
implementation can be found in [35].

1.6. Comparison with Coq and Isabelle. Coq [9] has evolved from a
calculus of constructions defined by Huet and Coquand. It is a constructive,
but impredicative system based on type theory. More recently it has been
extended by Paulin-Mohring to also include inductively defined predicates.
Program extraction from proofs has been implemented by Paulin-Mohring,
Filliatre and Letouzey, in the sense that Ocaml programs are extracted from
proofs.

The Isabelle/HOL system of Paulson and Nipkow has its roots in Church’s
theory of simple types and Hilbert’s Epsilon calculus. It is an inherently clas-
sical system; however, since many proofs in fact use constructive arguments,
in is conceivable that program extraction can be done there as well. This
has been explored by Berghofer in his thesis [7].

Compared with the Minlog system, the following points are of interest.

(i) The fact that in Coq a formula is just a map into the type Prop (and
in Isabelle into the type bool) can be used to define such a function
by what is called strong elimination, say by f(tt) := A and f(ff) := B
with fixed formulas A and B. The problem is that then it is impossible

MINLOG REFERENCE MANUAL 9

to assign an ordinary type (say in the sense of ML) to a proof. It is
not clear how this problem for program extraction can be avoided (in
a clean way) for both Coq and Isabelle. In Minlog it does not exist
due to the separation of terms and formulas.

(ii) The impredicativity (in the sense of quantification over predicate vari-
ables) built into Coq and Isabelle has as a consequence that extracted
programs need to abstract over type variables, which is not allowed
in program languages of the ML family. Therefore one can only al-
low outer universal quantification over type and predicate variables in
proofs to be used for program extraction; this is done in the Minlog
system from the outset. However, many uses of quantification over
predicate variables (like defining the logical connectives apart from →
and ∀) can be achieved by means of inductively defined predicates.
This feature is available in all three systems.

(iii) The distinction between properties with and without computational
content seems to be crucial for a reasonable program extraction envi-
ronment; this feature is available in all three systems. However, it also
seems to be necessary to distinguish between universal quantifiers with
and without computational content, as in [2]. At present this feature
is available in the Minlog system only.

(iv) Coq has records, whose fields may contain proofs and may depend on
earlier fields. This can be useful, but does not seem to be really es-
sential. If desired, in Minlog one can use products for this purpose;
however, proof objects have to be introduced explicitly via assump-
tions.

(v) Minlog’s automated proof search search tool is based on [25]; it pro-
duces proofs in minimal logic. In addition, Coq has many strong tac-
tics, for instance Omega for quantifier free Presburger arithmetic, Arith
for proving simple arithmetic properties and Ring for proving conse-
quences of the ring axioms. Similar tactics exist in Isabelle. These
tactics tend to produce rather long proofs, which is due to the fact
that equality arguments are carried out explicitly. This is avoided in
Minlog by relativizing every proof to a set of rewrite rules, and iden-
tifyling terms and formulas with the same normal form w.r.t. these
rules.

(vi) In Isabelle as well as in Minlog the extracted programs are provided
as terms within the language, and a soundness proof can be generated
automatically. For Coq (and similarly for Nuprl) such a feature could
at present only be achieved by means of some form of reflection.

10 HELMUT SCHWICHTENBERG

2. Types, with simultaneous free algebras as base types

Generally we consider typed theories only. Types are built from type
variables and type constants by algebra type formation (alg ρ1 . . . ρn) and
arrow type formation ρ → σ. Product types ρ × σ and sum types ρ + σ
can be seen as algebras with parameters. However, for efficiency reasons1

Minlog also has a primitive product type formation.
We have type constants atomic, existential, prop and nulltype. They

will be used to assign types to formulas. E.g., ∀n(n = 0) receives the type
nat → atomic, and ∀n,m∃k(n + m = k) receives the type nat → nat →
existential. The type prop is used for predicate variables, e.g., R of arity
nat,nat -> prop. Types of formulas will be necessary for normalization
by evaluation of proof terms. The type nulltype (written ◦ in text and
displayed eps in Minlog) will be useful when assigning to a formula the
type of a program to be extracted from a proof of this formula. Types not
involving the types atomic, existential, prop and nulltype are called
object types.

Type variable names are alpha, beta . . . ; alpha is provided by default.
To have infinitely many type variables available, we allow appended indices:
alpha1, alpha2, alpha3 . . . will be type variables. The only type constants
are atomic, existential, prop and nulltype.

2.1. Generalities for substitutions, type substitutions. Generally, a
substitution is a list ((x1 t1) . . . (xn tn)) of lists of length two, with distinct
variables xi and such that for each i, xi is different from ti. It is understood
as simultaneous substitution. The default equality is equal?; however, in
the versions ending with -wrt (for “with respect to”) one can provide special
notions of equality. To construct substitutions we have

(make-substitution args vals),

(make-substitution-wrt arg-val-equal? args vals),

(make-subst arg val),

(make-subst-wrt arg-val-equal? arg val),

empty-subst.

1Usage of a primitive product will increase efficiency when normalizing proofs via
normalization-by-evaluation. This is done by first translating a proof into a term, then
normalizing the term and finally translating it back into a proof. When translating a
proof into a term, for instance at existence introduction a term of product type is formed,
whose components need to be accessed. Such computations will be done at the object
level (since we use normalization-by-evaluation) and therefore be faster when primitive
pairing is used(pp.

MINLOG REFERENCE MANUAL 11

Accessing a substitution is done via the usual access operations for associa-
tion list: assoc and assoc-wrt. We also provide

(restrict-substitution-wrt subst test?),

(restrict-substitution-to-args subst args),

(substitution-equal? subst1 subst2),

(substitution-equal-wrt? arg-equal? val-equal? subst1 subst2),

(subst-item-equal-wrt? arg-equal? val-equal? item1 item2),

(consistent-substitutions-wrt?

arg-equal? val-equal? subst1 subst2).

Composition ϑη of two substitutions

ϑ = ((x1 s1) . . . (xm sm)),

η = ((y1 t1) . . . (yn tn))

is defined as follows. In the list ((x1 s1η) . . . (xm smη) (y1 t1) . . . (yn tn))
remove all bindings (xi siη) with siη = xi, and also all bindings (yj tj) with
yj ∈ {x1, . . . , xn}. It is easy to see that composition is associative, with the
empty substitution as unit. We provide

(compose-substitutions-wrt substitution-proc arg-equal?

arg-val-equal? subst1 subst2).

We shall have occasion to use these general substitution procedures for
the following kinds of substitutions

for called domain equality arg-val-equality
type variables tsubst equal? equal?

object variables osubst equal? var-term-equal?

predicate variables psubst equal? pvar-cterm-equal?

assumption variables asubst avar=? avar-proof-equal?

The following substitutions will make sense for a

type tsubst

term tsubst and osubst

formula tsubst and osubst and psubst

proof tsubst and osubst and psubst and asubst

In particular, for type substitutions tsubst we have

(type-substitute type tsubst),

(type-subst type tvar type1),

(compose-t-substitutions tsubst1 tsubst2).

12 HELMUT SCHWICHTENBERG

As display function for type substitutions one can use the general pp-subst
or the special

(display-t-substitution tsubst),

We add here some notions and observations on substitutions ϑ for type,
object, predicate and assumption variables (or topa-substitutions). Our
treatment is based on (unpublished) work of Buchholz, who introduced the
concept we call “admissibility” for substitutions.

Let
rρ := ρ, P (~σ) := { ~x~σ | A } := (~σ), MA := A.

Consider a substitution ϑ whose domain consists of type variables α, object
variables x and predicate variables P . Let

αϑ :=

{
ϑ(α) if α ∈ dom(ϑ),

α otherwise,
xϑ :=

{
ϑ(x) if x ∈ dom(ϑ),

x otherwise,

Pϑ :=

{
ϑ(P) if P ∈ dom(ϑ),

{ ~x | P~x } otherwise.

Call ϑ admissible for x if xϑ = xϑ, and for P if Pϑ = Pϑ. We define
the result rϑ of carrying out a substitution ϑ in a term r, provided ϑ is
admissible for all x ∈ FV(r) (in short: ϑ is admissible for r). The definition
is by induction on r. xϑ has been defined above, and

cϑ := c,

(λxr)ϑ := λy(rϑ
y
x) with y new, y = xϑ,

(rs)ϑ := (rϑ)(sϑ).

To see that this definition makes sense we have to prove

Lemma. If ϑ is admissible for λxr, then ϑyx is admissible for r.

Proof. Let z ∈ FV(r). We show zϑyx = zϑyx. Case z 6= x.

zϑyx = zϑ = zϑ = zϑyx since ϑ is admissible for r.

Case z = x.

xϑyx = y = xϑ = xϑyx by assumption on y. �

Lemma. Let ϑ be admissible for the term r. Then rϑ = rϑ.

Proof. Case x. xϑ = ϑ(x) holds since ϑ is assumed to be admissible for x.
Case λxr.

(λxr)ϑ = λy(rϑ
y
x) = y → rϑyx = xϑ→ rϑyx = xϑ→ rϑ = (λxr)ϑ. �

Lemma. Assume that ϑ is admissible for r and η is admissible for rϑ. Then

MINLOG REFERENCE MANUAL 13

(a) η ◦ ϑ is admissible for r, and
(b) rϑη = r(η ◦ ϑ).

Proof. (a). Let x ∈ FV(r). We show x(η ◦ ϑ) = x(η ◦ ϑ), i.e., xϑη = xϑη.
Consider xϑ. Since η is admissible for rϑ, it is also admissible for the subterm
xϑ. Hence by the previous lemma xϑη = xϑη.

(b). We only consider the abstraction case. By definition

(λxr)ϑ = λy(rϑ
y
x) with y new, y = xϑ.

(λxr)ϑη = λy(rϑ
y
x)η = λz(rϑ

y
xη

z
y) with z new, z = yη.

(λxr)(η ◦ ϑ) = λu(r(η ◦ ϑ)ux) with u new, u = x(η ◦ ϑ) = xϑη = yη = z.

Hence we may assume u = z. But λu(r(η ◦ ϑ)ux) = λz(r(η
z
y ◦ ϑ

y
x)), since

y /∈ FV(r) and

(η ◦ ϑ)uxv = v = (ηzy ◦ ϑyx)v for v 6= x, y,

(η ◦ ϑ)uxx = u = z = (ηzy ◦ ϑyx)x.

By induction hypothesis λz(r(η
z
y ◦ ϑ

y
x)) = λz(rϑ

y
xηzy). Hence the claim. �

The result Aϑ and { ~x | A }ϑ of carrying out a substitution ϑ in a formula
A or a comprehension term { ~x | A } is defined similarly, provided ϑ is
admissible for the respective expression, and similar lemmata can be proven.

Now consider a type-object-predicate-assumption substitution ϑ with type
variables α, object variables x, predicate variables P and assumption vari-
ables u in its domain. Again we allow that the type σ of x and the arity
(~σ) of P depend on type variables α ∈ dom(ϑ), but we require ϑ(x) = xϑ

and ϑ(P) = Pϑ. Moreover we allow that the formula A of u depends on

α, x, P ∈ dom(ϑ), but we require ϑ(u) = uϑ. Let

uϑ :=

{
ϑ(u) if u ∈ dom(ϑ),

u otherwise.

Call a type-object-predicate-assumption substitution admissible for a deriva-
tion M if for all x, P, u ∈ FV(M) we have xϑ = xϑ, Pϑ = Pϑ and uϑ = uϑ.
The result Mϑ of carrying out a substitution ϑ in a derivation M is defined
as follows, provided ϑ is admissible for M . We define Mϑ by induction on
M .

cϑ := c,

(λxM)ϑ := λy(Mϑyx) with y new, y = xϑ,

(Mr)ϑ := (Mϑ)(rϑ),

(λuM)ϑ := λv(Mϑvu) with v new, v = uϑ,

(MN)ϑ := (Mϑ)(Nϑ).

14 HELMUT SCHWICHTENBERG

Again lemmata similar to those above can be proven.
As test for the admissibility of a substitution we provide

(admissible-substitution? topasubst expr).

2.2. Type unification and matching. We need type unification for object
types only, that is, types built from type variables and algebra types by
arrow and star. However, the type constants atomic, existential, prop
and nulltype do not do any harm and can be included.

type-unify checks whether two terms can be unified. It returns #f, if
this is impossible, and a most general unifier otherwise. type-unify-list

does the same for lists of terms. We provide

(type-unify type1 type2),

(type-unify-list types1 types2).

Notice that the algorithm we use (via disagreement pairs) does not yield
idempotent unifiers (as opposed to the Martelli-Montanari algorithm [21] in
modules/type-inf.scm):

(pp-subst (type-unify (py "alpha1=>alpha2=>boole")

(py "alpha2=>alpha1=>alpha1")))

;; alpha2 -> boole

;; alpha1 -> alpha2

type-match checks whether a given pattern can be transformed by a
substitution into a given instance. It returns #f, if this is impossible, and
the substitution otherwise. type-match-list does the same for lists of
terms. We provide

(type-match pattern instance),

(type-match-list patterns instances).

2.3. Algebras and types. We now consider concrete information systems,
our basis for continuous functionals.

Types will be built from base types by the formation of function types,
ρ → σ. As domains for the base types we choose non-flat and possibly
infinitary free algebras, given by their constructors. The main reason for
taking non-flat base domains is that we want the constructors to be injective
and with disjoint ranges. This generally is not the case for flat domains.

In our constructors of an algebra we allow a certain “nesting” w.r.t. al-
ready generated algebras ῑ. Then the cototal ideals of this algebra will
“incorporate” total ideals of type ῑ. An example are finitely branching non-
wellfounded trees, where ῑ is the list type. Such cototal ideals will be useful
as witnesses of “nested coinductive/inductive definitions”.

MINLOG REFERENCE MANUAL 15

We inductively define type forms

ρ, σ ::= α | ρ→ σ | µξ((ρiν)ν<ni → ξ)i<k

with α, ξ type variables and k ≥ 1 (since we want our algebras to be inhab-
ited). Note that (ρν)ν<n → σ means ρ0 → . . . → ρn−1 → σ, associated to
the right.

Let FV(ρ) denote the set of type variables free in ρ. We define SP(α, ρ)
“α occurs at most strictly positive in ρ” by induction on ρ.

SP(α, β)
α /∈ FV(ρ) SP(α, σ)

SP(α, ρ→ σ)

SP(α, ρiν) for all i < k, ν < ni
SP(α, µξ((ρiν)ν<ni → ξ)i<k)

Now we can define Ty(ρ) “ρ is a type”, again by induction on ρ.

Ty(α)
Ty(ρ) Ty(σ)

Ty(ρ→ σ)

Ty(ρiν) and SP(ξ, ρiν) for all i < k, ν < ni ξ /∈ FV(ρ0ν) for all ν < n0
Ty(µξ((ρiν)ν<ni → ξ)i<k)

We call

ι := µξ((ρiν)ν<ni → ξ)i<k

an algebra. Sometimes it is helpful to display the type parameters and write

ι(~α, ~β), where ~α, ~β are all type variables except ξ free in some ρiν , and ~α
are the ones occuring only strictly positive. If we write the i-th component
of ι in the form (ρν(ξ))ν<n → ξ, then we call

(ρν(ι))ν<n → ι

the i-th constructor type of ι.
In (ρν(ξ))ν<n → ξ we call ρν(ξ) a parameter argument type if ξ does not

occur in it, and a recursive argument type otherwise. A recursive argument
type ρν(ξ) is nested if it has an occurrence of ξ in a strictly positive parame-
ter position of another (previously defined) algebra, and unnested otherwise.
An algebra ι is called nested if it has a constructor with at least one nested
recursive argument type, and unnested otherwise.

Every type ρ should have a total inhabitant , i.e., a closed term of this
type built solely from constructors, variables and assumed total inhabitants
of some of its (type) variables. To ensure this we have required that for
every algebra µξ((ρiν)ν<ni → ξ)i<k the initial (ρ0ν)ν<n0 → ξ has no recursive
argument types. Note that it might not be necessary to actually use assumed
total inhabitants for all variables of a type. An example is the list type L(α),
which has the Nil constructor as a total inhabitant. However, for the type
L(α)+ (:= µξ(α → ξ, α → ξ → ξ)) we need to assume a total inhabitant of
α.

16 HELMUT SCHWICHTENBERG

Here are some examples of algebras.

U := µξξ (unit),

B := µξ(ξ, ξ) (booleans),

N := µξ(ξ, ξ → ξ) (natural numbers, unary),

P := µξ(ξ, ξ → ξ, ξ → ξ) (positive numbers, binary),

D := µξ(ξ, ξ → ξ → ξ) (binary trees, or derivations),

O := µξ(ξ, ξ → ξ, (N→ ξ)→ ξ) (ordinals),

T0 := N, Tn+1 := µξ(ξ, (Tn → ξ)→ ξ) (trees).

Examples of algebras strictly positive in their type parameters are

L(α) := µξ(ξ, α→ ξ → ξ) (lists),

α× β := µξ(α→ β → ξ) (product),

α+ β := µξ(α→ ξ, β → ξ) (sum).

An example of a nested algebra is

T := µξ(L(ξ)→ ξ) (finitely branching trees).

Note that T has a total inhabitant since L(α) has one (given by the Nil
constructor).

Remark (Substitution for type parameters). Let ρ ∈ Ty(~α); we write ρ(~α)
for ρ to indicate its dependence on the type parametes ~α. We can substitute
types ~σ for ~α, to obtain ρ(~σ). Examples are L(B), the type of lists of
booleans, and N×N, the type of pairs of natural numbers.

Note that often there are many equivalent ways to define a particular
type. For instance, we could take U + U to be the type of booleans, L(U)
to be the type of natural numbers, and L(B) to be the type of positive
binary numbers.

For every constructor type κi(ξ) of an algebra ι = µξ(~κ) we provide
a (typed) constructor symbol Ci of type κi(ι). In some cases they have
standard names, for instance

ttB, ffB for the two constructors of the type B of booleans,

0N,SN→N for the type N of (unary) natural numbers,

1P, SP→P
0 , SP→P

1 for the type P of (binary) positive numbers,

NilL(ρ),Consρ→L(ρ)→L(ρ) for the type L(ρ) of lists,

(Inlρσ)ρ→ρ+σ, (Inrσρ)
σ→ρ+σ for the sum type ρ+ σ,

Branch: L(T)→ T for the type T of finitely branching trees.

MINLOG REFERENCE MANUAL 17

We denote the constructors of the type D of derivations by 0D (axiom) and
CD→D→D (rule). Another example uses the parametrized algebra

R(α) := µξ(α→ ξ, α→ ξ, α→ ξ, ξ → ξ → ξ → ξ)

(labelled read-and-finally-write-one-digit trees), whose constructors we name

Putd : α→ R(α) (d ∈ {−1, 0, 1}) finally write d and continue,

Get: R(α)→ R(α)→ R(α)→ R(α) read.

Using R(α) we then define

W := µξ(ξ,R(ξ)→ ξ) (nested alternating read-write trees)

with constructors

Stop: W stop,

Cont: R(W)→W branch by applying a read-write instruction,

and continue.

Later we will consider ideals built with finite read-write instructions, but
infinitely many alternations, via a “nested inductive/coinductive” definition.

One can extend the definition of algebras and types to simultaneously

defined algebras. Instead of ξ we consider a list ~ξ = ξ0, . . . , ξN−1 of type-

variables and generate ~ξ, j-constructor types (j < N) by

(ρiν(~β) ∈ Ty(~α, ~β))i<k;ν<ni

((ρiν(~ξ))ν<ni → ξj) ∈ KT~ξ,j
(~α)

.

Let k =
∑

j<N kj with kj ≥ 1 and mj :=
∑

l<j kj , hence mj + kj = mj+1.

For mj ≤ i < mj+1 let κi ∈ KT~ξ,j
(~α). Then all ιj in ~ι := µ~ξ(κ0, . . . , κk−1)

are in Alg(~α). To ensure total inhabitants of the algebra we require that
the initial constructor type for ιj has argument types involving ιi for i < j
only. — Examples of simultaneously defined algebras are

(Ev,Od) := µξ,ζ(ξ, ζ → ξ, ξ → ζ) (even and odd numbers),

(Ts(ρ),T(ρ)) := µξ,ζ(ξ, ζ → ξ → ξ, ρ→ ζ, ξ → ζ) (tree lists and trees).

T(ρ) defines finitely branching trees, and Ts(ρ) finite lists of such trees; the
trees carry objects of a type ρ at their leaves. The constructor symbols and
their types are

EmptyTs(ρ), TconsT(ρ)→Ts(ρ)→Ts(ρ),

Leafρ→T(ρ), BranchTs(ρ)→T(ρ).

However, for simplicity we often consider non-simultaneous algebras only.
An algebra form ι is structure-finitary if in its generation the rule leading

to σ → ρ has not been used. It is finitary if in addition it has no type

18 HELMUT SCHWICHTENBERG

variables. In the examples above U, B, N, P and D are all finitary, but O
and Tn+1 are not. L(ρ), ρ× σ and ρ+ σ are structure-finitary, and finitary
if their parameter types are. The nested algebra T above is finitary. An
algebra is explicit if all its constructor types have parameter argument types
only (i.e., no recursive argument types). In the examples above U, B, ρ×σ
and ρ+ σ are explicit, but N, P, L(ρ), D, O, Tn+1 and T are not.

We will also need the notion of the level of a type, which is defined by

lev(ι) := 0,

lev(ρ→ σ) := max(lev(σ), 1 + lev(ρ)),

lev(ρ× σ) := max(lev(σ), lev(ρ)) for the primitive product.

Base types are types of level 0, and a higher type has level at least 1.
For a type ρ(~α) ∈ Ty(~α) (hence also for an algebra ι(~α) ∈ Alg(~α)) we

define the map operator

M~σ→~τ
λ~αρ(~α) : ρ(~σ)→ (~σ → ~τ)→ ρ(~τ)

(where (~σ → ~τ) → ρ(~τ) means (σ1 → τ1) → . . . → (σn → τn) → ρ(~τ)). If
none of ~α appears free in ρ(~α) let

M~σ→~τ
λ~αρ(~α)x

~f := x.

Otherwise we use an outer recursion on ρ(~α) and if ρ(~α) is ι(~α) an inner
one on x. In case ρ(~α) is ι(~α) we abbreviate M~σ→~τ

λ~αι(~α) by M~σ→~τ
ι or M~τ

ι(~σ).

The immediate cases for the outer recursion are

M~σ→~τ
λ~ααi

x~f := fix, M~σ→~τ
λ~α(σ→ρ)h

~fx :=M~σ→~τ
λ~αρ

(hx)~f.

It remains to consider ι(~π(~α)). In case ~π(~α) is not ~α let

M~σ→~τ
λ~αι(~π(~α))x

~f :=M~π(~σ)→~π(~τ)
ι x(M~σ→~τ

λ~απi(~α) · ~f)i<|~π |

with M~σ→~τ
λ~απi(~α) · ~f := λxM~σ→~τ

λ~απi(~α)x
~f . In case ~π(~α) is ~α we use recursion on

x and define for a constructor Ci : (ρν(~σ, ι(~σ)))ν<n → ι(~σ)

M~σ→~τ
ι (Ci~x)~f

to be the result of applying C′i of type (ρν(~τ , ι(~τ)))ν<n → ι(~τ) (the same
constructor as Ci with only the type changed) to, for each ν < n,

M~σ,ι(~σ)→~τ,ι(~τ)
λ~α,βρν(~α,β)

xν ~f(M~σ→~τ
ι · ~f).

Note that the final function argument provides the recursive call w.r.t. the
recursion on x.

Here are some examples.

Mτ
L(σ)Nilfσ→τ := Nil,

MINLOG REFERENCE MANUAL 19

Mτ
L(σ)(x

σ :: lL(σ))fσ→τ := (fx) :: (M l f),

Mτ
R(σ)(Put

σ→R(σ)
d xσ)fσ→τ := Put

τ→R(τ)
d (fx) (d ∈ {−1, 0, 1}),

Mτ
R(σ)(Get y

R(σ)
1 y

R(σ)
2 y

R(σ)
3)fσ→τ := Get(M y1 f)(M y2 f)(M y3 f).

A slightly more complex example is the nested algebra T(α) with the
single constructor C: L(α+ T(α))→ T(α):

Mτ
T(σ)(Cx

L(σ+T(σ)))f := C′(Mσ,T(σ)→τ,T(τ)
λα,βL(α+β)

xfg)

with g : T(σ)→ T(τ) defined by Mτ
T(σ) · f .

To add and remove names for type variables, we use

(add-tvar-name name1 ...),

(remove-tvar-name name1 ...).

We need a constructor, accessors and a test for type variables.

(make-tvar index name) constructor,

(tvar-to-index tvar) accessor,

(tvar-to-name tvar) accessor,

(tvar? x).

To generate new type variables we use

(new-tvar).

To introduce (possibly simultaneous) free algebras we use

add-algs.

Examples are

(add-algs "nat" ’("Zero" "nat") ’("Succ" "nat=>nat"))

(add-algs "list" ’prefix-typeop

’("list" "Nil")

’("alpha=>list=>list" "Cons"))

(add-algs (list "ltlist" "ltree") ’prefix-typeop

’("ltlist" "LEmpty")

’("ltree=>ltlist=>ltlist" "LTcons")

’("alpha=>ltree" "LLeaf")

’("ltlist=>ltree" "LBranch"))

The final example simultaneously introduces the two free algebras . The con-
structors are introduced as “self-evaluating” constants; they play a special
role in our semantics for normalization by evaluation.

20 HELMUT SCHWICHTENBERG

For already introduced algebras we need constructors and accessors

(make-alg name type1 ...),

(alg-form-to-name alg),

(alg-form-to-types alg),

(alg-name-to-simalg-names alg-name),

(alg-name-to-token-types alg-name),

(alg-name-to-typed-constr-names alg-name),

(alg-name-to-tvars alg-name),

(alg-name-to-arity alg-name).

We also provide the tests

(alg-form? x) incomplete test,

(alg? x) complete test,

(finalg? type) incomplete test,

(sfinalg? type) incomplete test,

(nested-alg-name? name) complete test,

(ground-type? x) incomplete test.

To remove names for algebras we use

(remove-alg-name name1 ...).

Standard examples for finitary free algebras are the type nat of unary
natural numbers, and the algebra of binary trees.

Minlog initially provides the finitary free algebra unit consisting of ex-
actly one element, and boole of booleans; objects of the latter type are
(cf. [5]) true, false and families of terms of this type, and in addition the
bottom object of type boole. Moreover, Minlog initially has the structure-
finitary algebras yprod for product types ρ×σ and ysum for sum types ρ+σ.
For convenience and readability there are also structure-finitary algebras for
sum types where one component is the unit type: uysum for U + σ and
ysumu for ρ+ U.

Tests:

(arrow-form? type),

(star-form? type) for the primitive product,

(object-type? type).

We also need constructors and accessors for arrow types

(make-arrow arg-type val-type) constructor,

MINLOG REFERENCE MANUAL 21

(arrow-form-to-arg-type arrow-type) accessor,

(arrow-form-to-val-type arrow-type) accessor

and star types, i.e., the primitive product,

(make-star type1 type2) constructor,

(star-form-to-left-type star-type) accessor,

(star-form-to-right-type star-type) accessor.

For convenience we also have

(mk-arrow type1 ... type),

(arrow-form-to-arg-types type <n>) all (first n) argument types

(arrow-form-to-final-val-type type) type of final value.

A test function for types is

(type? x).

For displaying types we have

(type-to-string type),

which is defined by

(token-tree-to-string (type-to-token-tree type)).

For better line breaks in the display one can use

(pp type),

which is defined by

(token-tree-to-pp-tree (type-to-token-tree type)).

2.4. Coercion. To develop analysis we use a subtype relation generated
from pos < nat < int < rat < real < cpx. We view pos, nat, int, rat,
real, cpx as algebras with the following constructors and destructors.

pos : One, SZero, SOne (positive numbers written in binary),

nat : Zero, Succ,

int : IntPos, IntZero, IntNeg,

rat : RatConstr (written # infix) and destructors RatN, RatD,

real : RealConstr and destructors RealSeq, RealMod,

cpx : CpxConstr (written ## infix) and destructors RealPart, ImagPart.

We provide

(alg-le? alg1 alg2),

(type-le? type1 type2),

22 HELMUT SCHWICHTENBERG

(algebras-to-embedding type1 type2),

(types-to-embedding type1 type2),

(types-lub type . types).

type-match-modulo-coercion checks whether a given pattern can be trans-
formed modulo coercion by a substitution into a given instance. It returns
#f, if this is impossible, and the substitution otherwise. We provide

(type-match-modulo-coercion pattern instance).

3. Variables

A variable of an object type is interpreted by a continuous functional (ob-
ject) of that type. We use the word “variable” and not “program variable”,
since continuous functionals are not necessarily computable. For readable
in- and output, and also for ease in parsing, we may reserve certain strings
as names for variables of a given type, e.g., n, m for variables of type nat.
Then also n0, n1, n2, . . . , m0, . . . can be used for the same purpose.

In most cases we need to argue about existing (i.e., total) objects only.
For the notion of totality we have to refer to [39, Chapter 8.3]; particularly
relevant here is exercise 8.5.7. To make formal arguments with quantifiers
relativized to total objects more managable, we use a special sort of variables
intended to range over such objects only. For example, n, n0, n1, n2, . . . range
over total natural numbers, and n^, n^0, n^1, n^2, . . . are general variables.
We say that the degree of totality for the former is 1, and for the latter 0.

To add and remove names for variables of a given type (e.g., n, m for
variables of type nat), we use

(add-var-name name1 ... type),

(remove-var-name name1 ... type),

(default-var-name type).

The first variable name added for any given type becomes the default vari-
able name. If the system creates new variables of this type, they will carry
that name. For complex types it sometimes is necessary to talk about vari-
ables of a certain type without using a specific name. In this case one can
use the empty string to create a so called numerated variable (see below).
The parser is able to produce this kind of canonical variables from type
expressions.

We need a constructor, accessors and tests for variables.

(make-var type index t-deg name) constructor,

(var-to-type var) accessor,

(var-to-index var) accessor,

MINLOG REFERENCE MANUAL 23

(var-to-t-deg var) accessor,

(var-to-name var) accessor,

(var-form? x) incomplete test,

(var? x). complete test.

It is guaranteed that equal? is a valid test for equality of variables. More-
over, it is guaranteed that parsing a displayed variable reproduces the vari-
able; the converse need not be the case (we may want to convert it into some
canonical form).

For convenience we have the function

(mk-var type <index> <t-deg> <name>).

The type is a required argument; however, the remaining arguments are
optional. The default for the name string is the value returned by

(default-var-name type).

If there is no default name, a numerated variable is created. One can view
the already chosen default variable names for some types by

(display-default-varnames . types).

Using the empty string as the name, we can create so called numerated
variables. We further require that we can test whether a given variable
belongs to those special ones, and that from every numerated variable we
can compute its index:

(numerated-var? var),

(numerated-var-to-index numerated-var).

It is guaranteed that make-var used with the empty name string is a bijec-
tion of the product of Ty, N, and the degrees of totality to the set of numer-
ated variables, with inverses var-to-type, numerated-var-to-index and
var-to-t-deg.

Although these functions look like an ad hoc extension of the interface
that is convenient for normalization by evaluation, there is also a deeper
background: these functions can be seen as the “computational content”
of the well-known phrase “we assume that there are infinitely many vari-
ables of every type”. Giving a constructive proof for this statement would
require to give infinitely many examples of variables for every type. This
of course can only be done by specifying a function (for every type) that
enumerates these examples. To make the specification finite we require the
examples to be given in a uniform way, i.e., by a function of two arguments.
To make sure that all these examples are in fact different, we would have

24 HELMUT SCHWICHTENBERG

to require make-var to be injective. Instead, we require (classically equiva-
lent) make-var to be a bijection on its image, as again, this can be turned
into a computational statement by requiring that a witness (i.e., an inverse
function) is given.

Finally, as often the exact knowledge of infinitely many variables of every
type is not needed we require that, either by using the above functions or
by some other form of definition, functions

(type-to-new-var type),

(type-to-new-partial-var type)

are defined that return a (total or partial) variable of the requested type, dif-
ferent from all variables that have ever been returned by any of the specified
functions so far.

Occasionally we may want to create a new variable with the same name
(and degree of totality) as a given one. This is useful, for instance for bound
renaming. Therefore we supply

(var-to-new-var var),

(var-to-new-partial-var var).

Implementation. Variables are implemented as lists:

(var type index t-deg name).

4. Constants

Every constant (or more precisely, object constant) has a type and de-
notes a computable (hence continuous) functional of that type. We have the
following three kinds of constants:

(i) constructors, kind constr,
(ii) constants with user defined rules (also called program(mable) constant,

or pconst), kind pconst,
(iii) constants whose rules are fixed, kind fixed-rules.

The latter are built into the system: for arbitrary algebras we have recursion,
(guarded) general recursion and corecursion operators and also destructors,
and for finitary algebras equality, existence and structural existence opera-
tors. We also need ex-falso-quodlibet and existence elimination operators.
They are typed in parametrized form, with the actual type (or formula)
given by a type (or type and formula) substitution that is also part of the
constant. For instance, equality is typed by α → α → B and a type sub-
stitution α 7→ ρ. This is done for clarity (and brevity, e.g., for large ρ in
the example above), since one should think of the type of a constant in this
way.

MINLOG REFERENCE MANUAL 25

For constructors and for constants with fixed rules, by efficiency reasons
we want to keep the object denoted by the constant (as needed for norma-
lization by evaluation) as part of it. It depends on the type of the constant,
hence must be updated in a given proof whenever the type changes by a
type substitution.

4.1. Structural recursion operators and Gödel’s T. Recall the defi-
nition of types and constructor types in section 2, and the examples given
there. The (structural) higher type recursion operators Rτι (introduced by
Gödel [14]) are used to construct maps from the algebra ι to τ , by recursion
on the structure of ι. For instance, RτN has type

N→ τ → (N→ τ → τ)→ τ.

The first argument is the recursion argument, the second one gives the base
value, and the third one gives the step function, mapping the recursion argu-
ment and the previous value to the next value. For example, RN

Nnmλn,p(Sp)
defines addition m+ n by recursion on n.

Generally, we define the type of the recursion operator for the algebra
ι = µξ (κ0, . . . , κk−1) and result type τ . Let the i-th ξ-constructor type for
ι be

κi(ξ) = (ρiν(ξ))ν<ni → ξ.

The recursion operator Rτι then has type

ι→ (κi(ι, τ))i<k → τ

with step types (w.r.t. the result type τ)

κi(ι, τ) := (ρiν(ι× τ))ν<ni → τ.

The recursion argument is of type ι.

Remark. Usage of ι × τ rather than τ in the step types can be seen as a
“strengthening”, since then one has more data available to construct the
value of type τ . Moreover, for unnested recursive argument types ~σ → τ we
avoid the product type in ~σ → ι× τ and take the two argument types ~σ → ι
and ~σ → τ instead (“duplication”).

For some common algebras listed in 2.3 we spell out the type of their
recursion operators:

RτB : B→ τ → τ → τ,

RτN : N→ τ → (N→ τ → τ)→ τ,

RτP : P→ τ → (P→ τ → τ)→ (P→ τ → τ)→ τ,

RτO : O→ τ → (O→ τ → τ)→ ((N→ O)→ (N→ τ)→ τ)→ τ,

RτL(ρ) : L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ,

26 HELMUT SCHWICHTENBERG

Rτρ+σ : ρ+ σ → (ρ→ τ)→ (σ → τ)→ τ,

Rτρ×σ : ρ× σ → (ρ→ σ → τ)→ τ,

RτT : T→ (L(T× τ)→ τ)→ τ,

RτW : W→ τ → (R(W × τ)→ τ)→ τ.

One can extend the definition of the (structural) recursion operators to
simultaneously defined algebras ~ι = µ~ξ (κ0, . . . , κk−1) and result types ~τ .

Pick kj ,mj as above (for simultaneously defined algebras). For mj ≤ i <

mj+1 let κi ∈ KT~ξ,j
(~Y) be the ~ξ, j-constructor type

(ρiν(~ξ))ν<ni → ξj .

The j-th simultaneous recursion operator R~ι,~τj has type

ιj → (κi(~ι, ~τ))i<k → τj ,

with step types

κi(~ι, ~τ) := (ρiν(~ι× ~τ))ν<ni → τl (ml ≤ i < ml+1).

Here ~ι× ~τ is the component-wise product. Again for an unnested recursive
argument type ~σ → τi we use duplication to avoid the product type in
~σ → ιi × τi and take the two argument types ~σ → ιi and ~σ → τi instead.

Note that k is the total number of constructors, and that the recursion
argument is of type ιj . We will often omit the upper indices ~ι, ~τ when they
are clear from the context. In case of a non-simultaneous free algebra we
write Rτι for Rι,τ1 . o— An example of a simultaneous recursion on tree lists
and trees will be given below.

Definition. Terms of Gödel’s T for nested algebras are inductively defined
from typed variables xρ and constants for constructors Cι

i, recursion oper-

ators Rτι and map operators M~ρ→~τ
λ~απ

by abstraction λxρM
σ and application

Mρ→σNρ.

4.2. Conversion. We define a conversion relation 7→ρ between terms of
type ρ by

(λxM(x))N 7→M(N),(1)

λx(Mx) 7→M if x /∈ FV(M) (M not an abstraction),(2)

Rτι (Cι
i
~N) ~M 7→Mi(Mι→ι×τ

λαρν(α)
Nνλx〈xι,Rτι x ~M〉)ν<n.(3)

where in (3) for simplicity we have spelled out the non-simultaneous case
only; the i-th ξ-constructor type is assumed to be (ρν(ξ))ν<n → ξ. Note

MINLOG REFERENCE MANUAL 27

that (3) uses the map operator defined above. In the special case ρν(α) = α
we can avoid the product type and instead of the pair

Mι→ι×τ
λαα

Nνλx〈xι,Rτι x ~M〉 i.e., 〈N ι
ν ,RτιNν

~M〉

take its two components N ι
ν and RτιNν

~M as separate arguments of Mi.
The rule (1) is called β-conversion, and (2) η-conversion; their left hand

sides are called β-redexes or η-redexes, respectively. The left hand side of
(3) is calledR-redex ; it is a special case of a redex associated with a constant
D defined by “computation rules” (cf. 4.4), and hence also called a D-redex .

Let us look at some examples of what can be defined in Gödel’s T. We
define the canonical inhabitant ερ of a type ρ ∈ Ty:

ειj := C~ιijε
~ρ(λ~x1ε

ιj1) . . . (λ~xnε
ιjn), ερ→σ := λxε

σ.

The projections of a pair to its components can be defined easily:

M0 := Rρρ×σMρ×σ(λxρ,yσx
ρ), M1 := Rσρ×σMρ×σ(λxρ,yσy

σ).

The append -function ∗ for lists is defined recursively as follows. We write
x :: l as shorthand for Cons(x, l).

Nil ∗ l2 := l2, (x :: l1) ∗ l2 := x :: (l1 ∗ l2).

It can be defined as the term

l1 ∗ l2 := RL(α)→L(α)
L(α) l1(λl2 l2)λx, ,p,l2(x :: (pl2))l2.

Here “ ” is a name for a bound variable which is not used.
Using the append function ∗ we can define list reversal Rev by

Rev(Nil) := Nil, Rev(x :: l) := Rev(l) ∗ (x :: Nil).

The corresponding term is

Rev(l) := RL(α)
L(α)l Nilλx, ,p(p ∗ (x :: Nil)).

Assume we want to define by simultaneous recursion two functions on N,
say even, odd: N→ B. We want

even(0) := tt, odd(0) := ff,

even(Sn) := odd(n), odd(Sn) := even(n).

This can be achieved by using pair types: we recursively define the single
function evenodd: N→ B×B. The step types are

δ0 = B×B, δ1 = N→ B×B→ B×B,

and we can define evenoddm := RB×B
N m〈tt, ff〉λn,p〈p1, p0〉.

28 HELMUT SCHWICHTENBERG

Another example concerns the algebras (Ts(α),T(α)) simultaneously de-
fined in 2.3 (we write them without the parameter α here), whose construc-

tors C
(Ts,T)
i for i ∈ {0, . . . , 3} are

EmptyTs, TconsT→Ts→Ts, LeafN→T, BranchTs→T.

Recall that the elements of the algebra T (i.e., T(α)) are just the finitely
branching trees, which carry objects of type α on their leaves.

Let us compute the types of the recursion operators w.r.t. the result types

σ, τ , i.e., of R(Ts,T),(σ,τ)
Ts and R(Ts,T),(σ,τ)

T , or shortly RTs and RT. The step
types are

δ0 := σ,

δ1 := T→ τ → Ts→ σ → σ,

δ2 := α→ τ,

δ3 := Ts→ σ → τ.

Hence the types of the recursion operators are

RTs : Ts→ δ0 → δ1 → δ2 → δ3 → σ,

RT : T→ δ0 → δ1 → δ2 → δ3 → τ.

The recursion operator RT or explicitly R(Ts,T),(σ,τ)
T is displayed as

(Rec T→ τ Ts→ σ),

where the first arrow type indicates the type of the recursion and its value
type, and the remaining arrow types provide the value types for the simul-
taneously defined algebras.

We now introduce some special cases of structural recursion and also a
generalization; both will be important later on.

Simplified simultaneous recursion. In a recursion on simultaneously defined
algebras one may need to recur on some of those algebras only. Then we
can simplify the type of the recursion operator accordingly, as follows.

(i) Only consider the relevant constructors, i.e., those mapping into rele-
vant algebras.

(ii) Shorten their types by omitting all argument types containing irrele-
vant algebras.

(iii) Let (ρν(~ξ))ν<n → ξj be a shortened ~ξ, j-constructor type. Form its
simplified step type as (ρν(~ι × ~τ))ν<n → τj where ~ι are the relevant
algebras and ~τ the assigned value types.

If in the (Ts,T)-example we want to recur on Ts only, the step types are

δ0 := σ, δ1 := Ts→ σ → σ.

Hence the type of the simplified recursion operator is

RTs : Ts→ δ0 → δ1 → σ;

MINLOG REFERENCE MANUAL 29

It is displayed as (Rec Ts→ σ), where the missing arrow type T → τ
indicates that we have a simplified simultaneous recursion.

An example is the recursive definition of the length of a tree list. The
recursion equations are

lh(Empty) = 0, lh(Tcons b bs) = lh(bs) + 1.

This length function can be defined by an ordinary (i.e., non-simplified)
simultaneous recursion operator as

λasR(Ts,T),(N,τ)
Ts asTs0(λa,y,bs,nn+ 1)(λxe

τ)(λas,ne
τ).

This simultaneous recursion simplifies to

λasRN
TsasTs0(λbs,nn+ 1).

Cases. There is an important variant of recursion, where no recursive calls
occur. This variant is called the cases operator ; it distinguishes cases ac-
cording to the outer constructor form. Here all step types have the form

δ~ι,~τi := ~ρ→ (~σν → ιjν)ν<n → τj .

The intended meaning of the cases operator is given by the conversion rule

(4) Cj(C~ιi ~N) ~M 7→Mi
~N.

Notice that only those step terms are used whose value type is the present
τj ; this is due to the fact that there are no recursive calls. Therefore the
type of the cases operator is

C~ιιj→τj : ιj → δi0 → . . .→ δiq−1 → τj ,

where δi0 , . . . , δiq−1 consists of all δi with value type τj . We write Cτjιj or even

Cj for C~ιιj→τj .
The simplest example (for type B) is if-then-else. Another example is

CτN : N→ τ → (N→ τ)→ τ.

It can be used to define the predecessor function on N, i.e., P0 := 0 and
P(Sn) := n, by the term

Pm := CNNm0(λnn).

In the (Ts,T)-example we have

Cτ0Ts : Ts→ τ0 → (T→ Ts→ τ0)→ τ0.

When computing the value of a cases term, we do not want to (eagerly)
evaluate all arguments, but rather compute the test argument first and de-
pending on the result (lazily) evaluate at most one of the other arguments.
This phenomenon is well known in functional languages; for instance, in

30 HELMUT SCHWICHTENBERG

Scheme the if-construct is called a special form (as opposed to an oper-
ator). Therefore instead of taking the cases operator applied to a full list
of arguments, one rather uses a if-construct to build this term; it differs
from the former only in that it employs lazy evaluation. Hence the prede-
cessor function is written [if m 0 λnn] (which is often written in the form
[case m of 0 | λnn]).

General recursion with respect to a measure. In practice it often happens
that one needs to recur to an argument which is not an immediate com-
ponent of the present constructor object; this is not allowed in structural
recursion. Of course, in order to ensure that the recursion terminates we
have to assume that the recurrence is w.r.t. a given well-founded set; for
simplicity we restrict ourselves to the algebra N. However, we do allow that
the recurrence is with respect to a measure function µ, with values in N.
The operator F of general recursion then is defined by

(5) FµxG = Gx(λy[if µy < µx then FµyG else ε]),

where ε denotes a canonical inhabitant of the range. One can see easily that
F is definable from an appropriate structural recursion operator.

4.3. Corecursion. It is well known that an arbitrary “reduction sequence”
beginning with a term in Gödel’s T terminates. For this to hold it is essential
that the constants allowed in T are restricted to constructors C and recursion
operators R. A consequence will be that every closed term of a base type
denotes a total ideal. The conversion rules for R (cf. 4.2) work from the
leaves towards the root, and terminate because total ideals are well-founded.
If however we deal with cototal ideals (infinitary derivations for example),
then a similar operator is available to define functions with cototal ideals as
values, namely “corecursion”.

To understand the type of a corecursion operator recall the constructor
types κi(ι) of an algebra ι = µξ(κ0, . . . , κk−1):

(ρiν(ι))ν<ni → ι (i < k).

The product of these k constructor types is isomorphic to∑
i<k

∏
ν<ni

ρiν(ι)→ ι

and the type of the recursion operator Rτι is isomorphic to

ι→ (
∑
i<k

∏
ν<ni

ρiν(ι× τ)→ τ)→ τ.

MINLOG REFERENCE MANUAL 31

Dually for the algebra ι the type of its destructor Dι (defined below) is

ι→
∑
i<k

∏
ν<ni

ρiν(ι).

The corecursion operator coRτι is used to construct a mapping from τ to ι
by “corecursion” on the structure of ι. Its type is

τ → (τ →
∑
i<k

∏
ν<ni

ρiν(ι+ τ))→ ι.

We list the types of the corecursion operators for some algebras:
coRτB : τ → (τ → U + U)→ B,
coRτN : τ → (τ → U + (N + τ))→ N,
coRτP : τ → (τ → U + (P + τ) + (P + τ))→ P,
coRτD : τ → (τ → U + (D + τ)× (D + τ))→ D,
coRτL(ρ) : τ → (τ → U + ρ× (L(ρ) + τ))→ L(ρ),
coRτI : τ → (τ → U + (I + τ) + (I + τ) + (I + τ))→ I.

The conversion relation for each of these is defined below. For f : ρ→ τ and
g : σ → τ we denote λx(Rτρ+σxfg) of type ρ+ σ → τ by [f, g], and similary
for ternary sumtypes etcetera. x1, x2 are shorthand for the two projections
of x of type ρ× σ. The identity functions id below are of type ι→ ι with ι
the respective algebra.

coRτBNM 7→ [λ tt, λ ff](MN),

coRτNNM 7→ [λ 0, λx(S([idN→N, λy(
coRτNyM)]x))](MN),

coRτPNM 7→ [λ 1, λx(S0([id, PP]x)), λx(S1([id, PP]x))](MN),
coRτDNM 7→ [λ 0, λx(C([id, PD]x1)([id, PD]x2))](MN),

coRτL(ρ)NM 7→ [λ Nil, λx(x1 :: [id, λy(
coRτL(ρ)yM)]x2)](MN),

coRτINM 7→ [λ I, λx(C−1([id, PI]x)), λx(C0([id, PI]x)), λx(C1([id, PI]x))]

(MN)

with Pα := λy(
coRταyM) for α ∈ {P,D, I}.

The types of the corecursion operators for T and W are
coRτT : τ → (τ → L(T + τ))→ T,
coRτW : τ → (τ → U + R(W + τ))→W.

The conversion relation for each of these is defined by

coRτTNM 7→ Branch(MT
L(T+τ)[id

T→T, λz
coRτTzM](MN)L(T+τ)),

coRτWNM 7→ [λ W0, λx(W (MW
R(W+τ)[id

W→W, λz
coRτWzM)]x))](MN).

32 HELMUT SCHWICHTENBERG

An alternative notation for the former term is

coRτTNM 7→ Branch(MT
L(T+τ)(λp[case pT+τ of

Inl aT 7→ a |
Inr zτ 7→ coRτTzM])

(MN)L(T+τ))

and for the latter

coRτWNM 7→ [case (MN)U+R(W+τ) of

Inl 7→W0 |
Inr x 7→W (MW

R(W+τ)(λp[case pW+τ of

Inl yW 7→ y |
Inr zτ 7→ coRτWzM])

xR(W+τ)].

The conversion rule for coRτιNM in the general case is defined similarly:
we distinguish cases on MN of type

∑(∏
~ρ(ι+ τ)

)
. Suppose we are in the

case of the i-th injection of a term x of product type
∏
~ρ(ι + τ). Then we

apply the i-th constructor Ci of type ~ρ(ι)→ ι as follows. The ν-th argument
of type ρν(ι) is obtained from the ν-th component xν of x as

Mι+τ→ι
λαρν(α)

xρν(ι+τ)ν (λp[case pι+τ of

Inl yι 7→ y |
Inr zτ 7→ coRτι zM]).

As an example of a function defined by corecursion (due to [3]) consider
the transformation of an “abstract” real in the interval [−1, 1] into a stream
representation using signed digits from {−1, 0, 1}. Assume that we work in
an abstract (axiomatic) theory of reals, having an unspecified type ρ, and
that we have a type σ for rationals as well. Assume that the abstract theory
provides us with a function g : ρ → σ → σ → B comparing a real x with a
proper rational interval p < q:

g(x, p, q) = tt→ x ≤ q,
g(x, p, q) = ff → p ≤ x.

From g we define a function h : ρ→ U + (I + ρ) + (I + ρ) + (I + ρ) by

h(x) :=


2x+ 1 in rhs of left I + ρ if g(x,−1

2 , 0) = tt,

2x in rhs of middle I + ρ if g(x,−1
2 , 0) = ff, g(x, 0, 12) = tt,

2x− 1 in rhs of right I + ρ if g(x, 0, 12) = ff.

MINLOG REFERENCE MANUAL 33

h is definable by a closed term M in Gödel’s T. Then the desired function
f : ρ→ I transforming an abstract real x into a cototal ideal (i.e., a stream)
in I can be defined by

f(x) := coRρIxM.

This f(x) will thus be a stream of digits −1, 0, 1.
We give another example of a function defined by corecursion, this time

on the nested algebra W. It uses coRτW : τ → (τ → U + R(W + τ)) →
W with τ an abstract type of continuous functions. We assume that for
every f τ we have ω(f) : N → N (the uniform modulus of continuity) and
h(f) : N → Q → Q (the approximating function). Our example is the
computational content of the proof of proposition (a) below, assigning to
every continuous f an ideal in W. This ideal is given as coRτWfM with M
of type τ → U + R(W + τ) defined by

Mf := Inr(Φ(ωf2)f(hf0)).

Here Φ: N→ τ → (Q→ Q)→ R(W + τ) is recursively defined by

Φ0fg := Rd(Inr(outd ◦ f)) with d := head(g(1
22

)),

Φlfg := R(Φ(l − 1)(f ◦ ind)(g ◦ ind))d∈{−1,0,1},

where head: Q→ SD is defined by

head(q) :=


−1 if q < −1

4

0 if −1
4 ≤ q ≤

1
4

1 if 1
4 < q.

Φ can be explicitly defined using Rτ→(Q→Q)→R(W+τ)
N : as base term take

λf,gRd(Inr(outd ◦ f)) with d := head(g(1
22

))

and as step term

λ ,p,f,gR(p(f ◦ ind)(g ◦ ind))d∈{−1,0,1}.

Simultaneous corecursion operators can be introduced similarly. For ~ι :=
µ~ξ(κ0, . . . , κk−1) let k =

∑
j<N kj with kj ≥ 1 and mj :=

∑
l<j kj , hence

mj + kj = mj+1. Recall the constructor type

(ρiν(~ι))ν<ni → ιj (mj ≤ i < mj+1).

The product of these k constructor types is isomorphic to∑
mj≤i<mj+1

∏
ν<ni

ρiν(ι)→ ιj

34 HELMUT SCHWICHTENBERG

and the type of the recursion operator R~ι,~τj is isomorphic to

ιj → (
∑

ml≤i<ml+1

∏
ν<ni

ρiν(~ι× ~τ)→ τl)i<k → τj .

Dually for the algebras ~ι the types of the destructor D~ιj (defined below) for
the algebra ιj is

ιj →
∑

mj≤i<mj+1

∏
ν<ni

ρiν(~ι).

The j-th simultaneous corecursion operator coR~ι,~τj is used to construct a
mapping from τj to ιj by “corecursion” on the structure of ι. Its type is

τj → (τl →
∑

ml≤i<ml+1

∏
ν<ni

ρiν(~ι+ ~τ))l<N → ιj .

We give an example of a simultaneous corecursion on tree lists and trees.
Recall the simultaneously defined algebras (Ts(α),T(α)) (we write them

without the parameter α here), whose constructors C
(Ts,T)
i for i ∈ {0, . . . , 3}

are
EmptyTs, TconsT→Ts→Ts, Leafα→T, BranchTs→T.

The elements of the algebra T (i.e., T(α)) are just the finitely branching
trees, which carry objects of type α on their leaves.

We compute the types of the corecursion operators w.r.t. the argument

types σ, τ , i.e., of coR(Ts,T),(σ,τ)
Ts and coR(Ts,T),(σ,τ)

T , or shortly coRTs and
coRT. The step types are

δ0 := σ → U + (T + τ)× (Ts + σ), δ1 := τ → α+ (Ts + σ).

Hence the types of the corecursion operators are
coRTs : σ → δ0 → δ1 → Ts,
coRT : τ → δ0 → δ1 → T.

The corecursion operator coRT or explicitly coR(Ts,T),(σ,τ)
T is displayed as

(CoRec τ → T σ → Ts),

where the first arrow type indicates the type of the corecursion and its
argument type, and the remaining arrow types provide the argument types
for the simultaneously defined algebras.

Simplified simultaneous corecursion. In a corecursion on simultaneously
defined algebras one may need to recur on some of those algebras only. Then
we can simplify the type of the corecursion operator accordingly, as follows.

(i) Only consider the relevant constructors, i.e., those mapping into rele-
vant algebras.

MINLOG REFERENCE MANUAL 35

(ii) Shorten their types by omitting all argument types containing irrele-
vant algebras.

(iii) Out of these shortened relevant constructor types form the dual type

ιj →
∑

mj≤i<mj+1

∏
~ρ(~ι)

with ~ι the relevant algebras. The simplified step type then is

τj →
∑

mj≤i<mj+1

∏
~ρ(~ι+ ~τ)

with ~τ corresponding to ~ι.

In the (Ts,T)-example, if we want to do corecursion on Ts only, then there
is a single step type

δ0 := σ → U + (Ts + σ),

and the type of the simplified corecursion operator is
coRTs : Ts→ δ0 → σ.

Remark. There is yet another situation where one might want to simplify
the type of corecursion, namely when the argument type τ is the unit type
U. For instance for coRτN its type

τ → (τ → U + (N + τ))→ N

can then be simplified to

(U + (N + U))→ N.

4.4. A common extension T+ of Gödel’s T and Plotkin’s PCF.
Terms of T+ are built from (typed) variables and (typed) constants (con-
structors C or defined constants D, see below) by (type-correct) application
and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

Definition (Computation rule). Every defined constant D comes with a
system of computation rules, consisting of finitely many equations

(6) D~Pi(~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi(~yi) and Mi among ~yi, where the arguments on the
left hand side must be “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables. To ensure consistency of the

defining equations, we require that for i 6= j either ~Pi and ~Pj are non-

unifiable (i.e., there is no substitution which identifies them), or else ~Pi and
~Pj have disjoint free variables, and for the most general unifier ξ of ~Pi and ~Pj
we have Miξ = Mjξ. Notice that the substitution ξ assigns to the variables

36 HELMUT SCHWICHTENBERG

~yi in Mi constructor patterns ~Rk(~z) (k = i, j). A further requirement on a

system of computation rules D~Pi(~yi) = Mi is that the lengths of all ~Pi(~yi)
are the same; this number is called the arity of D, denoted by ar(D). A
substitution instance of a left hand side of (6) is called a D-redex .

More formally, constructor patterns are defined inductively by (we write
~P (~x) to indicate all variables in ~P)

(a) x is a constructor pattern.
(b) The empty list 〈〉 is a constructor pattern.

(c) If ~P (~x) and Q(~y) are constructor patterns whose variables ~x and ~y are

disjoint, then (~P ,Q)(~x, ~y) is a constructor pattern.

(d) If C is a constructor and ~P a constructor pattern, then so is C~P , provided
it is of ground type.

Remark. The requirement of disjoint variables in unifiable constructor pat-

terns ~Pi and ~Pj used in computation rules of a defined constant D is needed
to ensure that applying the most general unifier produces constructor pat-
terns again. However, for readability we take this as an implicit convention,
and write computation rules with possibly non-disjoint variables.

Examples of constants D defined by computation rules are abundant. The
defining equations in 4.2 can all be seen as computation rules, for

(i) the append-function ∗,
(ii) list reversal Rev,

(iii) the simultaneously defined functions even, odd: N→ B and
(iv) the two simultaneously defined functions ⊕ : Ts → T → Ts and

+: T→ T→ T.

Moreover, the structural recursion operators themselves can be viewed as
defined by computation rules, which in this case are called conversion rules;
cf. 4.2.

The boolean connectives andb, impb and orb are defined by

tt andb y = y,

x andb tt = x,

ff andb y = ff,

x andb ff = ff,

ff impb y = tt,

tt impb y = y,

x impb tt = tt,

tt orb y = tt,

x orb tt = tt,

ff orb y = y,

x orb ff = x.

Notice that when two such rules overlap, their right hand sides are equal
under any unifier of the left hand sides.

Decidable equality =ι : ι→ ι→ B for a finitary algebra ι is defined by

(Ci~x =ι Cj~y) = ff if i 6= j,

(Ci~x =ι Ci~y) = (~xP =~ρ ~y
P andb

∧∧
ν<n

(~xRm+ν =ιjν ~y
R
m+ν)).

MINLOG REFERENCE MANUAL 37

(For a constructor term C~r we denote by ~rP its parameter arguments and
by ~rR its recursive arguments.) For example,

(0 =N 0) = tt,

(0 =N Sn) = ff,

(Sm =N 0) = ff,

(Sm =N Sn) = (m =N n).

The predecessor functions introduced in 4.1 by means of the cases-operator
C can also be viewed as defined constants:

P0 = 0, P(Sn) = n.

Another example is the destructor function, disassembling a constructor-
built argument into its parts. For the type T1 := µξ(ξ, (N → ξ) → ξ) the
destructor DT1 has type

DT1 : T1 → U + (N→ T1)

and is defined by the computation rules

DT10 = Inl(u), DT1(Sup(f)) = Inr(f).

Generally, the type of the destructor Dι function for ι := µξ(κ0, . . . , κk−1)
with κi = ~ρi → ι is

ι→
∑
i<k

∏
ν<ni

ρiν(ι).

Its conversion rules map Dι(Ci~x) to the i-th injection into the sum type of
the product of the ~x.

4.5. Implementation. Every object constant has the internal representa-
tion

(const object-or-arity name kind uninst-type tsubst

t-deg token-type repro-data).

The type of the constant is the result of carrying out the type substitution
tsubst in uninst-type; free type variables may again occur in this type.
The type substitution tsubst must be restricted to the type variables in
uninst-type. An examples for an object constant is

(const Compose (α→β)→(β→γ)→α→γ (α 7→ ρ, β 7→ σ, γ 7→ τ) ...).

object-or-arity is an object if this object cannot be changed, e.g., by al-
lowing user defined rules for the constant; otherwise, the associated object
needs to be updated whenever a new rule is added, and we have the arity of
those rules instead. The rules are of crucial importance for the correctness
of a proof, and should not be invisibly buried in the denoted object taken
as part of the constant (hence of any term involving it). Therefore we keep
the rules of a program constant and also its denoted objects (depending on
type substitutions) at a central place, a global variable PROGRAM-CONSTANTS

38 HELMUT SCHWICHTENBERG

which assigns to every name of such a constant the constant itself (with
uninstantiated type), the rules presently chosen for it, its denoted objects
(as association list with type substitutions as keys) and possibly (as an opti-
nal final entry) the (Scheme) code of an external function mapping a type
substitution and an object list to either an object to be returned immedi-
ately, or else to #f, in which case the rules are tried next. When a new rule
has been added, the new objects for the program constant are computed,
and the new list to be associated with the program constant is written in
PROGRAM-CONSTANTS instead. All information on a program constant except
its denoted object and its computation and rewrite rules (i.e., its type, de-
gree of totality, arity and token type) is stable and hence can be kept as part
of it. The token type can be either const (i.e., constant written as appli-
cation) or one of: postfix-op, prefix-op, binding-op, add-op, mul-op,
rel-op, and-op, or-op, imp-op and pair-op.

Repro-data are (only) necessary in proof.scm, for normalization of proofs:
a (general) induction, efq, introduction or elimination axiom is translated
into an appropriate constant, then normalized, and finally from the con-
stant and its repro data the axiom is reproduced. The repro-data are of the
following forms.

(1) For a recursion constant.
(a) A list of all-formulas. This form only occurs when translating an

axiom for (simultaneous) induction into a recursion constant, in
order to achieve normalization of proofs via term normalization.
We have to consider the free variables in the scheme formulas,
and let the type of the recursion constant depend on them. This
is needed to have the allnc-conversion be represented in term
normalization. The relevant operation is

all-formulas-to-rec-const.

(b) A list of implication formulas I~x^→ A(~x^), where all idpcs are
simultaneously inductively defined. This form only occurs when
translating an elimination axiom into a recursion constant, in
order to achieve normalization of proofs via term normalization.
We again have to consider the free variables in the scheme formu-
las, and let the type of the recursion constant depend on them.
This is needed to have the allnc-conversion be represented in
term normalization. The relevant operation is

imp-formulas-to-rec-const..

(2) For a cases constant. Here a single arrow-type or all-formula suffices.
One uses

all-formula-to-cases-const.

MINLOG REFERENCE MANUAL 39

(3) For a guarded general recursion constant: an all-formula. This
form only occurs when translating a general induction axiom into
a guarded general recursion constant, in order to achieve normaliza-
tion of proofs via term normalization. We have to consider the free
variables in the scheme formulas, and let the type of the guarded
general recursion constant depend on them. This is needed to have
the allnc-conversion be represented in term normalization. One uses

all-formula-and-number-to-grecguard-const.

(4) For an efq-constant (of kind ’fixed-rules): a formula. This form
only occurs when translating an efq-aconst into an efq-constant, in
order to achieve normalization of proofs via term normalization. One
uses

formula-to-efq-const.

(5) For a constructor associated with an “Intro” axiom.
(a) A number i of a clause for an inductively defined predicate con-

stant, and the constant idpc. One uses

number-and-idpredconst-to-intro-const.

(b) An ex-formula for an “ExIntro” axiom. One uses

ex-formula-to-ex-intro-const.

(6) For an ExElim constant (of kind ’fixed-rules): an ex-formula and
a conclusion. One uses

ex-formula-and-concl-to-ex-elim-const.

Constructor, accessors and tests for all kinds of constants:

(make-const obj-or-arity name kind uninst-type tsubst

t-deg token-type . repro-data),

(const-to-object-or-arity const),

(const-to-name const),

(const-to-kind const),

(const-to-uninst-type const),

(const-to-tsubst const),

(const-to-t-deg const),

(const-to-token-type const),

(const-to-repro-data const),

From these we can define

(const-to-type const),

40 HELMUT SCHWICHTENBERG

(const-to-tvars const).

The test functions are

(const-form? x),

(check-const x),

(const? x),

(const=? x y).

check-const assumes that the constant is not one of those used during
proof normalization. Hence repro-data must be empty.

A constructor is a special constant with no rules. We maintain an as-
sociation list CONSTRUCTORS assigning to every name of a constructor an
association list associating with every type substitution (restricted to the
type parameters) the corresponding instance of the constructor. We pro-
vide

(constr-name? string),

(constr-name-to-constr name <tsubst>),

(constr-name-and-tsubst-to-constr name tsubst)

where in (constr-name-to-constr name <tsubst>), name is a string or
else of the form (ExIntro formula). If the optional tsubst is not present,
the empty substitution is used.

For given algebras one can display the associated constructors with their
types by calling

(display-alg alg-name1 ...).

Recall that program constants allow user defined rules, and that we keep
the rules of a program constant and also its denoted objects (depending on
type substitutions) at a central place, a global variable PROGRAM-CONSTANTS.
We have procedures recovering information from the string denoting a pro-
gram constant (via PROGRAM-CONSTANTS):

(pconst-name? string),

(pconst-name-to-pconst name),

(pconst-name-to-comprules name),

(pconst-name-to-rewrules name),

(pconst-name-to-inst-objs name),

(pconst-name-and-tsubst-to-object name tsubst),

(pconst-name-to-object name),

(pconst-name-to-external-code name).

MINLOG REFERENCE MANUAL 41

One can display the program constants together with their current com-
putation and rewrite rules by calling

(display-pconst name1 ...).

To add and remove program constants we use

(add-program-constant name type <rest>),

(remove-program-constant string1 ...);

rest consists of an initial segment of the following list: t-deg (default 0),
token-type (default const) and arity (default maximal number of argu-
ment types).

The degree of totality of a program constant can be changed from 0
to 1 provided we have proved that the program constant is in fact total.
This change is done by calling change-t-deg-to-one with the name of the
program constant.

To make program constants more readable we provide

(add-prefix-display-string name1 name2),

(add-postfix-display-string name1 name2),

(add-infix-display-string name1 name2).

To add and remove computation and rewrite rules and also external code
we have

(add-computation-rule lhs rhs),

(add-rewrite-rule lhs rhs),

(add-external-code name code),

(remove-computation-rules-for lhs),

(remove-rewrite-rules-for lhs),

(remove-external-code name).

To generate our constants with fixed rules we use

(finalg-to-=-const finalg) equality,

(finalg-to-e-const finalg) existence,

(arrow-types-to-rec-const . arrow-types) recursion,

(alg-to-destr-const alg) destructor,

(ex-formula-and-concl-to-ex-elim-const

ex-formula concl).

Corecursion will be treated below.

42 HELMUT SCHWICHTENBERG

Similar to arrow-types-to-rec-const we can also define the procedure
all-formulas-to-rec-const. It will be used to achieve normalization of
proofs via translating them in terms.

Similarly we have arrow-type-to-cases-const and on the proof level
all-formula-to-cases-const. For elimination axioms we have

(imp-formulas-to-rec-const . imp-formulas).

General recursion and induction (work of Simon Huber)

(GRecGuard rhos tau) :

(rhos=>nat)=>rhos=>(rhos=>(rhos=>tau)=>tau)=>boole=>tau

GRecGuard mu xs G True ->

G xs([ys]GRecGuard mu ys G(mu ys<mu xs))

GRecGuard mu xs G False -> Inhab

For convenience we add GRec with

GRec mu xs G -> GRecGuard mu xs G True

There is also a variant with type parameters:

(GRecGuard m alphas rhos tau) :

alphas=>(rhos=>nat)=>rhos=>(rhos=>(rhos=>atomic=>tau)=>tau)=>

boole=>atomic=>tau

GRecGuard ts mu xs G True u ->

G xs ([ys,atomic]GRecGuard ts mu ys G (mu ys<mu xs) atomic)

GRecGuard ts mu xs G False u -> Efq u

Note that this variant is only used to normalize proofs. Here we need that
Efq is a constant. Induction:

GInd : allnc zs all mu,xs(Prog_mu{xs|A(xs)} ->

all boole(atom(boole) -> A(xs))), where

Prog_mu{xs|A(xs)} =

all xs(all ys(mu ys<mu xs -> A(ys)) -> A(xs))

We get the ordinary general induction GInd’ by:

GInd’ ts mu xs M = GInd ts mu xs M True Truth

Internally we have

(type-info-to-grecguard-const type-info),

(type-info-to-grec-const type-info)

all-formula-and-number-to-grecguard-const is used to achieve norma-
lization of proofs via translating them in terms, to translate a gind-aconst.
In addition we need the number m of quantifiers used for the axioms.

Corecursion. To generate the corecursion constants we use

(alg-or-arrow-types-to-corec-consts . arrow-types),

MINLOG REFERENCE MANUAL 43

(alg-or-arrow-types-to-corec-const . arrow-types).

To avoid being trapped in non-termination of the conversion rule for core-
cursion, we now aim at a bounded reduction of corec constants.

In corec-const-and-bound-to-bcorec-term we begin with constructing
corec-consts (as in corec-const-to-corec-consts above), for the base
case of the bcorec-term. The product of their types is the value type of
the recursion operator (over N). Next the step-term

lambda (n prev)(abstr-if-term1 pair .. pair abstr-if-termN)

is built. We need variables us for the covals and vs for the steps. Each
(vi ui) has type ysum-without-unit-of-product-types. For each prod-
uct type we introduce a product-variable y. The components of the term
corresponding to y are called param-comps and test-comps. Using the in-
stantiated constructors we can build the abstr-constr-terms for the con-
structors of the i-th algebra, and using these the i-th if-term is constructed
via corec-test-and-abstr-constr-terms-to-if-term.

Finally undelay-delayed-corec takes a term and a non-negative integer
(a bound) as arguments. It replaces every corecursion constant in the given
term by the result of applying corec-const-and-bound-to-bcorec-term

to it and the given bound.

5. Predicates

Every predicate has an arity (i.e., a list of types) and denotes a property
of tuples of functionals of these types. We have the following three kinds of
predicates:

(i) predicate variables;
(ii) predicate constants;

(iii) inductively and coinductively defined predicate constants.

(predicate-to-arity predicate) returns the arity of a predicate. A test
for equality is (predicate-equal? pred1 pred2).

5.1. Predicate variables. A predicate variable of arity ρ1, . . . , ρn is a
placeholder for a formulaA with distinguished (different) variables x1, . . . , xn
of types ρ1, . . . , ρn. Such an entity is called a comprehension term, written
{x1, . . . , xn | A }. Totality matters for the abstracted variables of a compre-
hension term, because of the inductively defined existential quantifier. The
default is the use of partial variables.

Predicate variable names are provided in the form of an association list,
which assigns to the names their arities. By default we have the predicate
variable bot of arity (arity), called (logical) falsity. It is viewed as a
predicate variable rather than a predicate constant, since (when translating
a classical proof into a constructive one) we want to substitute for bot.

44 HELMUT SCHWICHTENBERG

Often we will argue about Harrop formulas only, i.e., formulas without
computational content. For convenience we use a special sort of predicate
variables intended to range over comprehension terms with Harrop formulas
only. For example, P^0, P^1, P^2, . . . range over comprehension terms with
Harrop formulas, and P0, P1, P2, . . . , Q0, . . . are general predicate variables.
We say that Harrop degree for the former is 1, and for the latter 0.

In the context of Gödel’s Dialectica intepretation [14] we also need to deal
with “negative” computational content. Therefore we also need a “degree
of negativity” and denote it by n-deg, and we call the Harrop degree the
“degree of positivity” denoted h-deg. We use P’0, P’1, P’2, . . . , Q’0, . . . for
predicate variables of h-deg 0 and n-deg 1, and P^’0, P^’1, P^’2, . . . for
predicate variables whose h-deg and n-deg are both 1.

We need constructors and accessors for arities

(make-arity type1 ...),

(arity-to-types arity).

To display an arity we have

(arity-to-string arity).

We can test whether a string is a name for a predicate variable, and if so
compute its associated arity:

(pvar-name? string),

(pvar-name-to-arity pvar-name).

To add and remove names for predicate variables of a given arity (e.g., Q
for predicate variables of arity nat), we use

(add-pvar-name name1 ... arity),

(remove-pvar-name name1 ...).

We need a constructor, accessors and tests for predicate variables.

(make-pvar arity index h-deg n-deg name) constructor,

(pvar-to-arity pvar) accessor,

(pvar-to-index pvar) accessor,

(pvar-to-h-deg pvar) accessor,

(pvar-to-n-deg pvar) accessor,

(pvar-to-name pvar) accessor,

(pvar? x).

For convenience we have the function

(mk-pvar arity <index> <h-deg> <n-deg> <name>).

MINLOG REFERENCE MANUAL 45

The arity is a required argument; the remaining arguments are optional.
The default for index is −1, for h-deg and n-deg it is 0 and for name it is
given by (default-pvar-name arity).

It is guaranteed that parsing a displayed predicate variable reproduces
the predicate variable; the converse need not be the case (we may want to
convert it into some canonical form).

5.2. Predicate constants. We also allow predicate constants. The general
reason for having them is that sometimes we want axiomatized predicates,
which are not placeholders for formulas. The main example is the totality
predicate constant, intended to denote the set of total objects of a given
type. We will see below (in section 5.3) that in case this type is (i) an
algebra we can define the totality predicate inductively, and (ii) an arrow or
a pair type we can define it explicitly. However, we also allow type variables
α (and substitutions for them), and certainly cannot know what property
the “total” elements of type α should have. Therefore we provide a totality
predicate constant Tρ of arity (ρ) at an arbitrary type ρ; this is necessary
for to allow a type substitution α 7→ ρ in formulas involving Tα. However,
a formula Tρr can be “unfolded” in case ρ is an algebra, an arrow or a pair
type: Tιr unfolds by means of the inductively defined totality predicate for
the algebra ι, and

Tρ→σr := ∀ncx̂ (Tρx̂→ Tσ(rx̂)),

Tρ×σr := Tρr0 ∧ Tσr1.

This unfolding is done by means of (unfold-formula formula) (which also
unfolds classical existential quantifiers). We also provide

(term-to-totality-formula term),

which when applied to a term r of type ρ returns the result of unfolding
Tρr.

The inductively defined totality predicate for an algebra ι is computatio-
nally relevant (c.r.) and has its witnesses in the same algebra ι. Therefore
it is mandatory to consider Tρ as c.r. as well, and let ρ be the type of its
witnesses.

When later (in section 13) we consider realizability it will be necessary to
define what t r Tρs means. Since again Tα is unknown we provide another
predicate constant T r

ρ and define t r Tρs := T r
ρ ts. Clearly T r

ρ has arity
(ρ, ρ) and is computationally irrelevant. Again T r

ρ ts unfolds by means of an
inductively defined predicate for the algebra ι, and

T r
ρ→σts := ∀ncx̂,ŷ(T r

ρ x̂ŷ → T r
σ(tx̂, sŷ)),

T r
ρ×σts := T r

ρ t0s0 ∧ T r
σ t1s1.

46 HELMUT SCHWICHTENBERG

This unfolding is done by calling

(terms-to-mr-totality-formula term1 term2),

which when applied to terms t and s of type ρ returns the result of unfolding
T r
ρ ts.
It is also possible to add (and later remove) further computationally ir-

relevant predicate constants via

(add-predconst-name name1 ... arity),

(remove-predconst-name name1 ...).

We have a constructor, accessors and tests for predicate constants.

(make-predconst uninst-arity tsubst index name) constructor,

(predconst-to-uninst-arity predconst) accessor,

(predconst-to-tsubst predconst) accessor,

(predconst-to-index predconst) accessor,

(predconst-to-name predconst) accessor,

(predconst? x).

Moreover we provide

(predconst-name? name),

(predconst-name-to-arity predconst-name),

(predconst-to-string predconst).

A predicate constant does not change its name under a type substitution;
this is in contrast to predicate (and other) variables. Notice also that the
parser can infer from the arguments the types ρ1 . . . ρn to be substituted for
the type variables in the uninstantiated arity of P .

5.3. Inductively defined predicate constants. When we want to make
propositions about computable functionals and their domains of partial con-
tinuous functionals, it is perfectly natural to take, as initial propositions,
ones formed inductively or coinductively. However, for simplicity we omit
the treatment of coinductive definitions and deal with inductive definitions
only. For example, in the algebra N we can inductively define totality by
the clauses

TN0, ∀n(TNn→ TN(Sn)).

Its least-fixed-point scheme will now be taken in the form

∀n(TNn→ A(0)→ ∀n(TNn→ A(n)→ A(Sn))→ A(n)).

MINLOG REFERENCE MANUAL 47

The reason for writing it in this way is that it fits more conveniently with
the logical elimination rules, which will be useful in the proof of the sound-
ness theorem. It expresses that every “competitor” {n | A(n) } satisfying
the same clauses contains TN. This is the usual induction schema for natu-
ral numbers, which clearly only holds for “total” numbers (i.e., total ideals
in the information system for N). Notice that we have used a “strength-
ened” form of the “step formula”, namely ∀n(TNn→ A(n)→ A(Sn)) rather
than ∀n(A(n)→ A(Sn)). In applications of the least-fixed-point axiom this
simplifies the proof of the “induction step”, since we have the additional
hypothesis TN(n) available. Totality for an arbitrary algebra can be de-
fined similarly. Consider for example the non-finitary algebra O (cf. 2.3),
with constructors 0, successor S of type O→ O and supremum Sup of type
(N→ O)→ O. Its clauses are

TO0, ∀x(TOx→ TO(Sx)), ∀f (∀n∈TNTO(fn)→ TO(Sup(f))),

and its least-fixed-point scheme is

∀x(TOx→ A(0)→
∀x(TOx→ A(x)→ A(Sx))→
∀f (∀n∈TTO(fn)→ ∀n∈TA(fn)→ A(Sup(f)))→
A(x)).

Generally, an inductively defined predicate I is given by k clauses, which
are of the form

Ki := ∀~x((Aν(I))ν<n → I~r) (i < k).

It is not required that all universal quantifiers precede all implications.
Our formulas will be defined by the operations of implication A → B

and universal quantification ∀xρA from inductively defined predicates µX ~K,
where X is a “predicate variable”, and the Ki are “clauses”. Every predicate
has an arity, which is a possibly empty list of types.

Definition (Formulas and predicates). By simultaneous induction we define
formula forms

A,B ::= P~r | A→ B | ∀xA
and predicate forms

P,Q ::= X | { ~x | A } | µX(∀~xi((Aiν)ν<ni → X~ri))i<k

with X a predicate variable, k ≥ 1 and ~xi all free variables in (Aiν)ν<ni →
X~ri (it is not necessary to allow object parameters in inductively defined
predicates, since they can be taken as extra arguments). Let C denote both
formula and predicate forms. Let FPV(C) denote the set of free predicate

48 HELMUT SCHWICHTENBERG

variables in C. We define SP(Y,C) “Y occurs at most strictly positive in
C” by induction on C.

SP(Y, P)

SP(Y, P~r)

Y /∈ FPV(A) SP(Y,B)

SP(Y,A→ B)

SP(Y,A)

SP(Y, ∀xA)

SP(Y,X)
SP(Y,A)

SP(Y, { ~x | A })
SP(Y,Aiν) for all i<k, ν<ni

SP(Y, µX(∀~xi((Aiν)ν<ni → X~ri))i<k)

Now we can define F(A) “A is a formula” and Preds(P) “P is a predicate”,
again by simultaneous induction.

Preds(P)

F(P~r)

F(A) F(B)

F(A→ B)

F(A)

F(∀xA)

Preds(X)
F(A)

Preds({ ~x | A })
F(Aiν) and SP(X,Aiν) for all i<k, ν<ni X /∈ FPV(A0ν) for all ν<n0

Preds(µX(∀~xi((Aiν)ν<ni → X~ri))i<k)

We call

I := µX(∀~xi((Aiν)ν<ni → X~ri))i<k

an inductive (or inductively defined) predicate. Sometimes it is helpful to

display the predicate parameters and write I(~Y , ~Z), where ~Y , ~Z are all pre-

dicate variables free in some Aiν except X, and ~Y are the ones occuring
only strictly positive. If we write the i-th component of I in the form
∀~x((Aν(X))ν<n → X~r), then we call

(7) Ki := ∀~x((Aν(I))ν<n → I~r)

the i-th clause (or introduction axiom) of I, denoted I+i .

Here ~A → B means A0 → · · · → An−1 → B, associated to the right.
The terms ~r are those introduced in section 6, i.e., typed terms built from
variables and constants by abstraction and application, and (importantly)
those with a common reduct are identified. In ∀~x((Aν(X))ν<n → X~r) we
call Aν(X) a parameter premise if X does not occur in it, and a recursive
premise otherwise. A recursive premise Aν(X) is nested if it has an occur-
rence of X in a strictly positive parameter position of another (previously
defined) inductive predicate, and unnested otherwise. An inductive predi-
cate I is called nested if it has a clause with at least one nested recursive
premise, and unnested otherwise.

A predicate of the form { ~x | C } is called a comprehension term. We
identify { ~x | C(~x) }~r with C(~r). An inductively defined predicate is finitary
if its clauses have recursive premises of the form X~s only.

MINLOG REFERENCE MANUAL 49

Definition (Theory of computable functionals, TCF). TCF is the system
in minimal logic for → and ∀, whose formulas are those in F above, and
whose axioms are the following. For each inductively defined predicate, there
are “closure” or introduction axioms, together with a “least-fixed-point” or
elimination axiom. In more detail, consider an inductively defined predicate
I := µX(K0, . . . ,Kk−1). For each of the k clauses we have the introduction
axiom (7). Moreover, we have an elimination axiom I−:

(8) ∀~x(I~x→ (∀~xi((Aiν(I ∩X))ν<ni → X~ri))i<k → X~x)

where I ∩X abbreviates { ~x | I~x∧X~x } with ∧ defined (inductively) below.
Here X can be thought of as a “competitor” predicate.

5.4. Examples of inductive predicates. As an important example we
now give the inductive definition of Leibniz equality. However, a word of
warning is in order here: we need to distinguish four separate, but closely
related equalities.

(i) Firstly, defined function constants D are introduced by computation
rules, written l = r, but intended as left-to-right rewrites.

(ii) Secondly, we have Leibniz equality EqD inductively defined below.
(iii) Thirdly, pointwise equality between partial continuous functionals will

be defined inductively as well.
(iv) Fourthly, if l and r have a finitary algebra as their type, l = r can be

read as a boolean term, where = is the decidable equality defined in
section 6 as a boolean-valued binary function.

Leibniz equality. We define Leibniz equality by

EqD(ρ) := µX(∀xX(xρ, xρ)).

The introduction axiom is
∀x(xρ ≡ xρ)

and the elimination axiom

∀x,y(x ≡ y → ∀xXxx→ Xxy),

where x ≡ y abbreviates EqD(ρ)(xρ, yρ). In Minlog this is displayed as
x eqd y.

Lemma (Compatibility of EqD). ∀x,y(x ≡ y → A(x)→ A(y)).

Proof. Use the elimination axiom with Pxy := (A(x)→ A(y)). �

Using compatibility of EqD one easily proves symmetry and transitivity.
Define falsity by F := (ff ≡ tt). Then we have

Theorem (Ex-Falso-Quodlibet). For every formula A without predicate pa-
rameters we can derive F→ A.

50 HELMUT SCHWICHTENBERG

Proof. We first show that F → xρ ≡ yρ. To see this, we first obtain
RρBffxy ≡ R

ρ
Bffxy from the introduction axiom. Then from ff ≡ tt we get

RρBttxy ≡ R
ρ
Bffxy by compatibility. Now RρBttxy converts to x and RρBffxy

converts to y. Hence xρ ≡ yρ, since we identify terms with a common reduct.
The claim can now be proved by induction on A ∈ F. Case I~r. By

definition the clause K0 is “nullary”, i.e., of the form ∀~x((Aν)ν<n → I~s)
with no occurrence of I in the Aν . By induction hypothesis from F we can
derive all premises Aν . Hence I~s. From F we also obtain ri ≡ si, by the
remark above. Hence I~r by compatibility. The cases A → B and ∀xA are
obvious. �

A crucial use of Leibniz equality is that it allows to lift a boolean term rB

to a formula, by considering rB ≡ tt instead. For convenience we introduce
a new predicate constant atom of arity (B) and define atom(rB) as an
abbreviation of rB ≡ tt. Formally, we use the axioms

AtomToEqDTrue : ∀pB(atom(pB)→ pB ≡ tt),

EqDTrueToAtom : ∀pB(pB ≡ tt→ atom(pB)).

This opens up a convenient way to deal with equality on finitary algebras.
The computation rules ensure that for instance the boolean term Sr =N

Ss or more precisely, =N(Sr, Ss), is identified with r =N s. We can now
turn this boolean term into the formula (Sr =N Ss) ≡ tt, which again is
abbreviated by Sr =N Ss, but this time with the understanding that it is
a formula. Then (importantly) the two formulas Sr =N Ss and r =N s are
identified because the latter is a reduct of the first. Consequently there is
no need to prove the implication Sr =N Ss→ r =N s explicitly.

Pointwise equality =ρ. For every constructor Ci of an algebra ι we have an
introduction axiom

∀~y,~z(~yP =~ρ ~z
P → (∀~xν (yRm+ν~xν =ι z

R
m+ν~xν))ν<n → Ci~y

P~yR =ι Ci~z
P~zR).

For an arrow type ρ → σ the introduction axiom is explicit, in the sense
that it has no recursive premise:

∀x1,x2(∀y(x1y =σ x2y)→ x1 =ρ→σ x2).

For example, =N is inductively defined by

0 =N 0,

∀n1,n2(n1 =N n2 → Sn1 =N Sn2),

MINLOG REFERENCE MANUAL 51

and the elimination axiom is

∀n1,n2(n1 =N n2 → X00→
∀n1,n2(n1 =N n2 → Xn1n2 → X(Sn1,Sn2))→
Xn1n2).

The main purpose of pointwise equality is that it allows to formulate the
extensionality axiom: we express the extensionality of our intended model
by stipulating that pointwise equality is equivalent to Leibniz equality.

Axiom (Extensionality). ∀x1,x2(x1 =ρ x2 ↔ x1 ≡ x2).

We write E-TCF when the extensionality axioms are present. — One of
the main points of TCF is that it allows the logical connectives existence,
conjunction and disjunction to be inductively defined as predicates. This
was first discovered by Martin-Löf [22].

Existential quantifier.

ExD(Y) := µX(∀x(Y xρ → X))

(“D” indicates that the existential quantifier is inductively defined; it also
reminds on “double”, since both parts – the variable x and the kernel A –
are of computational significance. Later when considering decorations we
will define other computational variants of the existential quantifier).

The introduction axiom is

∀x(A→ ∃xA),

where ∃xA (displayed exd x A) abbreviates ExD({xρ | A }), and the elimi-
nation axiom is

∃xA→ ∀x(A→ X)→ X.

Conjunction. We define

AndD(Y, Z) := µX(Y → Z → X).

The introduction axiom is

A→ B → A ∧B
where A ∧ B (displayed A andd B) abbreviates AndD({ | A }, { | B }), and
the elimination axiom is

A ∧B → (A→ B → X)→ X.

Remark. In addition to the inductively defined existential quantifier and
conjunction, in Minlog there are also “primitive” variants, displayed ex x A

and A & B. Both make use of a (again “primitive”) version of the product
type (displayed rho@@sigma), which is based on the pairing operation of
the underlying progamming language (Scheme). The reason to have them is

52 HELMUT SCHWICHTENBERG

that sometimes this allows a more efficient evaluation (i.e., normalization)
of extracted terms.

Disjunction. We define

OrD(Y,Z) := µX(Y → X,Z → X).

The introduction axioms are

A→ A ∨B, B → A ∨B,

where A ∨B (displayed A ord B) abbreviates OrD({ | A }, { | B }), and the
elimination axiom is

A ∨B → (A→ X)→ (B → X)→ X.

Remark. Alternatively, disjunction A ∨ B could be defined by the formula
∃p((p→ A)∧(¬p→ B)) with p a boolean variable. However, for an analysis
of the computational content of coinductively defined predicates it is better
to define it inductively.

We give some more familiar examples of inductively defined predicates.

The even numbers. The introduction axioms are

Even(0), ∀n(Even(n)→ Even(S(Sn)))

and the elimination axiom is

∀n(Even(n)→ X0→ ∀n(Even(n)→ Xn→ X(S(Sn)))→ Xn).

Reflexive transitive closure. Let ≺ be a binary relation. The reflexive tran-
sitive closure of ≺ is inductively defined as follows. The introduction axioms
are

∀xTC(x, x)),

∀x,y,z(y ≺ z → TC(x, y)→ TC(x, z))

and the elimination axiom is

∀x,y(TC(x, y)→ ∀xXxx→
∀x,y,z(y ≺ z → TC(x, y)→ Xyz → Xxz)→
Xxy).

MINLOG REFERENCE MANUAL 53

Accessible part. Let ≺ again be a binary relation. The accessible part of ≺
is inductively defined as follows. The introduction axioms are

∀x(F→ Acc(x)),

∀x(∀y≺xAcc(y)→ Acc(x)),

and the elimination axiom is

∀x(Acc(x)→ ∀x(F→ Xx)→
∀x(∀y≺xAcc(y)→ ∀y≺xXy → Xx)→
Xx).

5.5. Totality and induction. We now inductively define general totality
predicates. Let us first look at some examples. The clauses defining totality
for the algebra N are

TN0, ∀n(TNn→ TN(Sn)).

The least-fixed-point axiom is is according to (8)

∀n(TNn→ X0→ ∀n((TN ∧X)n→ X(Sn))→ Xn).

Written differently (with “duplication”) we obtain

∀n(TNn→ X0→ ∀n(TNn→ Xn→ X(Sn))→ Xn).

We call this least-fixed-point axiom an induction axiom, and write Indn,XN or

Indn,X for T−N . The indices n,X are omitted when they can be inferred from
the context. Clearly the partial continuous functionals with TN interpreted
as the total ideals for N provide a model of TCF extended by these axioms.

For the algebra D of derivations totality is inductively defined by the
clauses

TD0D, ∀x(TDx→ ∀y(TDy → TD(CD→D→Dxy))),

with least-fixed-point axiom

∀x(TDx→ X0D →
∀x(TDx→ Xx→ ∀y(TDy → Xy → X(CD→D→Dxy)))→
Xx).

Again, the partial continuous functionals with TD interpreted as the total
ideals for D (i.e., the finite derivations) provide a model.

Generally we define RTρ called relative totality , and its special case Tρ
called (absolute) totality . The definition of RTρ is relative to an assigment
of predicate variables Y of arity (α) to type variables α.

54 HELMUT SCHWICHTENBERG

Definition (Relative totality RT). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α) with
κi = (ρν(~α, ξ))ν<n → ξ. Then RTι := µX(K0, . . . ,Kk−1), with

Ki := ∀~x((RTρν (~Y ,X)xν)ν<n → X(Ci~x))

and

RTαj (
~Y ,X) := Yj ,

RTξ(~Y ,X) := X,

RTσ→ρ(~Y ,X) := { f | ∀~x(RTσ~x→ RTρ(~Y ,X)(f~x)) }.

As an example of a finitary algebra with parameters consider lists L(α).
The clauses for the predicate RTL(α)(Y) expressing relative totality w.r.t.
the predicate variable Y are

RTL(α)(Y)(Nil), ∀x(Y x→ ∀l(RTL(α)(Y)l→ RTL(α)(Y)(x :: l))),

and the least-fixed-point axiom is

∀l(RTL(α)(Y)l→X(Nil)→
∀x(Y x→ ∀l(RTL(α)(Y)l→ Xl→ X(x :: l)))→

XlL(α)).

For important special cases of the parameter predicates ~Y we introduce a
separate notation. Suppose we want to argue about total ideals only. Note
that this only makes sense when when no type variables occur. However, to
allow a certain amount of abstract reasing (involving type variables to be
substituted later by concrete closed types), we introduce special predicate
variables Tα which under a substitution α 7→ ρ with ρ closed turn into the
inductively defined predicate Tρ. Using this convention we define totality
for an arbitrary algebra by specializing Y of arity (ρ) to Tρ.

Definition (Absolute totality T). Let ι = µξ(κ0, . . . , κk−1) ∈ Alg(~α) with
κi = (ρν(~α, ξ))ν<n → ξ. Then Tι := µX(K0, . . . ,Kk−1), with

Ki := ∀~x((Tρν (X)xν)ν<n → X(Ci~x))

and

Tαj (X) := Tαj ,

Tξ(X) := X,

Tσ→ρ(X) := { f | ∀~x(Tσ~x→ Tρ(X)(f~x)) }.

Another important special case occurs when we substitute the predicate
variables Y by truth predicates { y | > }. The resulting totality predi-
cate is called structural totality . For example, the clauses for the predicate

MINLOG REFERENCE MANUAL 55

RTL(α)({ y | > }) =: STL(α) expressing structural totality are

STL(α)(Nil), ∀x({ y | > }x→ ∀l(STL(α)l→ STL(α)(x :: l))),

and the least-fixed-point axiom is

∀l(STL(α)l→X(Nil)→
∀x({ y | > }x→ ∀l(STL(α)l→ Xl→ X(x :: l)))→

XlL(α)).

Here the premises { y | > }x can clearly be omitted, and the least-fixed-point
turns into

∀l(STL(α)l→ X(Nil)→ ∀x,l(STL(α)l→ Xl→ X(x :: l))→ XlL(α)),

called structural induction on lists.
Note that we allow usage of totality predicates for previously introduced

algebras ι′. An example is totality TT for the algebra T of finitely branching
trees. It is defined by the single clause

∀ncas (RTL(T)(TT)(as)→c TT(Branch(as))).

In practice one often wants to reason about total objects only. To make
this more convenient, Minlog distinguishes between general variables (writ-
ten x^) and total variables (written x, without a hat). The latter are (im-
plicitly) restricted to the relative totality predicate of the respective type.
Formally, these conventions appear as abbreviating axioms

∀xPx→ ∀x̂(Tρx̂→ Px̂) AllTotalElim,

∀x̂(Tρx̂→ Px̂)→ ∀xPx AllTotalIntro

where Tρ is the absolute totality predicate defined above, which depends on
the type ρ of x. For instance, TL(N) is RTL(N)(TN), and TL(α) is RTL(α)(Tα).

Parallel to general recursion, one can also consider general induction,
which allows recurrence to all points “strictly below” the present one. For
applications it is best to make the necessary comparisons w.r.t. a “measure
function” µ. Then it suffices to use an initial segment of the ordinals instead
of a well-founded set. For simplicity we here restrict ourselves to the segment
given by ω, so the ordering we refer to is just the standard <-relation on
the natural numbers. The principle of general induction then is

(9) ∀µ,x∈T (ProgµxPx→ Px)

where ProgµxPx expresses “progressiveness” w.r.t. the measure function µ
and the ordering <:

ProgµxPx := ∀x∈T (∀y∈T ;µy<µxPy → Px).

56 HELMUT SCHWICHTENBERG

It is easy to see that in our special case of the <-relation we can prove
(9) from ordinary induction. However, it will be convenient to use general
induction as a primitive axiom.

5.6. Coinductive definitions. We now extend TCF by allowing coinduc-
tive definitions as well as inductive ones. For instance, in the algebra N we
can coinductively define cototality by the clause

coTNn→ n ≡ 0 ∨ ∃m(coTNm ∧ n ≡ Sm).

Its greatest-fixed-point axiom is

Xn→ ∀n(Xn→ n ≡ 0 ∨ ∃m((coTNm ∨Xm) ∧ n ≡ Sm)→ coTNn.

It expresses that every “competitor” X satisfying the same clause is a subset
of coTN. The partial continuous functionals with coTN interpreted as the
cototal ideals for N provide a model of TCF extended by these axioms.
The greatest-fixed-point axiom is called the coinduction axiom for natural
numbers.

Similarly, for the algebra D of derivations with constructors 0D and
CD→D→D cototality is coinductively defined by the clause

coTDx→ x ≡ 0 ∨ ∃y(coTDy ∧ ∃z(coTDz ∧ x ≡ Cyz)).

Its greatest-fixed-point axiom is

Xx→ ∀x(Xx→ x ≡ 0 ∨ ∃y((coTDx ∨Xy) ∧
∃z((coTDx ∨Xz) ∧ x ≡ Cyz)))→ coTDx.

The partial continuous functionals with coTD interpreted as the cototal ideals
for D (i.e., the finite or infinite locally correct derivations) provide a model.

For the algebra I of standard rational intervals cototality is defined by

coTIx→ x ≡ I ∨ ∃y(coTIy ∧ x ≡ C−1y) ∨
∃y(coTIy ∧ x ≡ C0y) ∨
∃y(coTIy ∧ x ≡ C1y).

A model is provided by the set of all finite or infinite streams of signed digits
from {−1, 0, 1}, i.e., the well-known (non-unique) stream representation of
real numbers.

Generally, every inductive predicate I gives rise to a coinductive predicate,
its dual or companion coI. Let I be inductively defined by the clauses

∀~xi((Aiν(I))ν<ni → I~ti) (i < k).

The conjunction of these k clauses is equivalent to

∀~x(
∨∨
i<k

∃~xi((
∧∧
ν<ni

Aiν(I) ∧ ~x ≡ ~ti)→ I~x).

MINLOG REFERENCE MANUAL 57

Now the dual coI of I is coinductively defined by its closure axiom coI−:

∀~x(coI~x→
∨∨
i<k

∃~xi(
∧∧
ν<ni

Aiν(coI) ∧ ~x ≡ ~ti)).

Its greatest-fixed-point axiom coI+ is

∀~x(X~x→ ∀~x(X~x→
∨∨
i<k

∃~xi(
∧∧
ν<ni

Aiν(coI ∪X) ∧ ~x ≡ ~ti))→ coI~x)

where coI ∪X abbreviates { ~x | coI~x ∨X~x }.
Notice that the proof of the Ex-Falso-Quodlibet theorem above can ea-

sily be extended by a case coI~r: use the greatest-fixed-point axiom for coI
with X~x := F. Since we have a nullary clause ∀~x((Aν)ν<n → I~s) with no

occurrence of I in the Aν , it suffices to prove F → ∃~yi
∧∧

ν<n
~Aν . But this

follows from the induction hypothesis.

We extend this to the simultaneous case. For ~I := µ ~X(K0, . . . ,Kk−1) let
k =

∑
j<N kj with kj ≥ 1 and mj :=

∑
l<j kj , hence mj +kj = mj+1. Recall

the clauses or introduction axioms I+i :

∀~xi((Aiν(~I))ν<ni → Ij~ti) (mj ≤ i < mj+1).

The conjunction of these kj clauses is equivalent to

∀~x(
∨∨

mj≤i<mj+1

∃~xi(
∧∧
ν<ni

Aiν(~I) ∧ ~x ≡ ~ti)→ Ij~x).

The dual coIj of Ij is coinductively defined by its closure axiom coI−j :

∀~x(coIj~x→
∨∨

mj≤i<mj+1

∃~xi(
∧∧
ν<ni

Aiν(~coI) ∧ ~x ≡ ~ti)).

Its greatest-fixed-point axiom coI+j is

∀~x(Xj~x→ (∀~x(Xj~x→
∨∨

mj≤i<mj+1

∃~xi(
∧∧
ν<ni

Aiν(~coI ∨ ~X) ∧ ~x ≡ ~ti)))j<N

→ coIj~x).

The most important coinductively defined predicates for us will be those
of cototality; we have seen some examples above. Generally, for a finitary
algebra ι cototality is coinductively defined by

coTιx→
∨∨
i<k

∃~yi(
coTι~yi ∧ x ≡ Ci~yi).

5.7. Implementation. We maintain an association list IDS (a global vari-
able), which assigns all relevant information to the name of an inductively
defined predicate constant. This information consists of

(i) the names of idpredconsts simultaneously defined with the present one,
(ii) an algebra name (for computational content, in case there is one),

58 HELMUT SCHWICHTENBERG

(iii) the clauses with their names.

These data can be read off by

(idpredconst-name-to-simidpc-names name),

(idpredconst-name-to-alg-name name),

(idpredconst-name-to-clauses name).

Every inductively defined predicate constant has the internal representa-
tion

(idpredconst name types cterms).

types and cterms are to be substituted for the type and predicate variables
in the clauses. To create this substitution use idpredconst-to-tpsubst.

We provide a constructor, accessors and a test:

(make-idpredconst name types cterms) constructor,

(idpredconst-to-name idpredconst) accessor,

(idpredconst-to-types idpredconst) accessor,

(idpredconst-to-cterms idpredconst) accessor,

(idpredconst? x).

To introduce inductively defined predicates we use add-ids, for example

(add-ids (list (list "Even" (make-arity (py "nat")) "nat"))

’("Even 0" "InitEven")

’("allnc n^(Even n^ -> Even(n^ +2))" "GenEven"))

This introduces the inductively defined predicate constant Even, by the
clauses given. The presence of an algebra name after the arity (here nat)
indicates that this inductively defined predicate constant has computational
content. If this is an already known algebra, the clauses with this constant
in the conclusion must have the same types for their extracted terms as the
constructors of the algebra. If no such algebra is known, we can also write
algEven (instead of nat) to create one. The clauses can be given names
(here InitEven, GenEven), and are saved as theorems under these names.

For the inductive definition of the reflexive transitive closure of a binary
relation ≺ we have two variants of this definition, depending on whether
possible computational content of the relation ≺ is taken into account or
not. If not we take

(add-ids

(list (list "RTClNc" (make-arity (py "alpha") (py "alpha"))

"nat"))

’("allnc x^(RTClNc x^ x^)" "InitRTClNc")

’("allnc x^,y^,z^(R y^ z^ --> RTClNc x^ y^ -> RTClNc x^ z^)"

"GenRTClNc"))

MINLOG REFERENCE MANUAL 59

and otherwise

(add-ids

(list (list "TClCr" (make-arity (py "alpha") (py "alpha"))

"list"))

’("allnc x^(TClCr x^ x^)" "InitTClCr")

’("allnc x^,y^,z^(R y^ z^ -> TClCr x^ y^ -> TClCr x^ z^)"

"GenTClCr"))

The difference between the “non-computational implication” (displayed -->)
and the computational one (displayed ->) is explained in section 7.2.

For an inductive definition of the accessible part of a binary relation P we
consider the case that the relation ≺ is decidable, i.e., given by a boolean-
valued binary function r^

(add-ids

(list (list "Acc" (make-arity (py "alpha=>alpha=>boole")

(py "alpha"))

"algAcc"))

’("allnc r^,x^(F -> Acc r^ x^)" "EfqAcc")

’("allnc r^,x^(all y^(r^ y^ x^ -> Acc r^ y^) -> Acc r^ x^)"

"GenAccSup"))

We may also have the string identity in the field where an algebra name
is expected. This is allowed if and only if there is exactly one clause where
the type of its extracted term is essentially the identity. Then no new algebra
is created. Later λxx will be taken as realizer for the (single) clause, and
λx,f (fx) as realizer for the elimination axiom. Examples are computational
variants ExL, ExR and AndR of the (inductively defined) existential quantifier
and conjunction.

We also allow non-computational (n.c.) inductively defined predicates.
Then no algebra name is provided. Important special cases are:

(i) For every I its witnessing predicate IMR. It is special in the sense that
(IMR t ss) just states the fact that t is a realizer for I ss.

(ii) By providing just one nullary clause with ∀nc,→nc only and no algebra
name one can introduce a “uniform one clause defined” idpredconst
which is n.c. Examples are Leibniz equality EqD, and uniform variants
ExNc and AndNc of the existential quantifier and conjunction.

In all other cases the elimination scheme must be restricted to n.c. formulas.
Also, all (n.c.) clauses must be invariant. This ensures that the soundness
theorem holds: every introduction and elimination axiom is invariant, i.e.,
ε r A is the same as A.

It is also possible to introduce simultaneously inductively defined predi-
cates:

60 HELMUT SCHWICHTENBERG

(add-ids (list (list "Ev" (make-arity (py "nat")) "algEv")

(list "Od" (make-arity (py "nat")) "algOd"))

’("Ev 0" "InitEv")

’("allnc n^(Od n^ -> Ev(n^ +1))" "GenEv")

’("allnc n^(Ev n^ -> Od(n^ +1))" "GenOd"))

However, for simplicity we have restricted the discussion above to the non-
simultaneous case.

An important example for an inductively defined predicate is the totality
predicate for an algebra, for instance TotalNat for the algebra nat. It
can be created by calling (add-totality alg-name). The same can be
done for relative totality by calling (add-rtotality alg-name), yielding
for instance RTotalList for the algebra list.

To remove a name for an inductively defined predicate constant (and also
the ones defined simultaneously with it), we use

(remove-idpc-name name1 ...).

Coinductively defined predicates are in many aspects similar to induc-
tively defined ones, and it seems easiest to use most of the functions with
idpredconst in their name for both. We even insert the names of the
coinductively defined predicates in IDS; however, there is also a global vari-
able COIDS (with the same format) for the coinductively defined ones only.
add-co adds dualized “companions” for inductively defined predicate con-
stants to COIDS. Examples are cototality predicates for the corresponding
total ones, but also for instance CoEv, CoOd for Ev, Od. The optional algebra
names are the same as for the corresponding inductively defined predicate
constants. Realizers for cototality predicates are the cototal ideals of the
algebra.

The Minlog command for coinduction is coind (cf. section 11.22).

6. Terms and objects

6.1. Constructors and accessors. Terms are built from (typed) variables
and constants by abstraction, application, pairing, formation of left and right
components (i.e., projections) and the if-construct.

The if-construct distinguishes cases according to the outer constructor
form; the simplest example (for the type boole) is if-then-else. Here we do
not want to evaluate all arguments right away, but rather evaluate the test
argument first and depending on the result evaluate at most one of the other
arguments. This phenomenon is well known in functional languages; e.g., in
Scheme the if-construct is called a special form as opposed to an operator.
In accordance with this terminology we also call our if-construct a special
form. It will be given a special treatment in nbe-term-to-object.

MINLOG REFERENCE MANUAL 61

Usually it will be the case that every closed term of an algebra ground
type reduces via the computation rules to a constructor term, i.e., a closed
term built from constructors only. However, we do not require this.

We have constructors, accessors and tests for variables

(make-term-in-var-form var) constructor,

(term-in-var-form-to-var term) accessor,

(term-in-var-form? term) test,

for constants

(make-term-in-const-form const) constructor,

(term-in-const-form-to-const term), accessor,

(term-in-const-form? term) test,

for abstractions

(make-term-in-abst-form var term) constructor,

(term-in-abst-form-to-var term) accessor,

(term-in-abst-form-to-kernel term) accessor,

(term-in-abst-form? term) test,

for applications

(make-term-in-app-form term1 term2), constructor,

(term-in-app-form-to-op term) accessor,

(term-in-app-form-to-arg term) accessor,

(term-in-app-form? term) test,

for pairs

(make-term-in-pair-form term1 term2) constructor,

(term-in-pair-form-to-left term) accessor,

(term-in-pair-form-to-right term) accessor,

(term-in-pair-form? term) test,

for the left and right component of a pair

(make-term-in-lcomp-form term) constructor,

(make-term-in-rcomp-form term) constructor,

(term-in-lcomp-form-to-kernel term) accessor,

(term-in-rcomp-form-to-kernel term) accessor,

(term-in-lcomp-form? term) test,

(term-in-rcomp-form? term) test,

62 HELMUT SCHWICHTENBERG

and for if-constructs

(make-term-in-if-form test alts . rest) constructor,

(term-in-if-form-to-test term) accessor,

(term-in-if-form-to-alts term) accessor,

(term-in-if-form-to-rest term) accessor,

(term-in-if-form? term) test,

where in make-term-in-if-form, rest is either empty or an all-formula.
It is convenient to have more general application constructors and acces-

sors available, where application takes arbitrary many arguments and works
for ordinary application as well as for component formation.

(mk-term-in-app-form term term1 ...) constructor,

(term-in-app-form-to-final-op term), accessor,

(term-in-app-form-to-args term), accessor.

For abstraction it is convenient to have a more general constructor taking
arbitrary many variables to be abstracted one after the other

(mk-term-in-abst-form var1 ... term).

We also allow vector notation for recursion (cf. Joachimski and Matthes
[18]). Moreover we provide

(term=? term1 term2),

(terms=? terms1 terms2),

(term-to-type term),

(term-to-free term),

(term-to-bound term),

(term-to-tvars term),

(term-to-t-deg term),

(synt-total? term).

For displaying terms we have

(term-to-string term),

which is defined by

(token-tree-to-string (term-to-token-tree term)).

For better line breaks in the display one can use

(pp term),

MINLOG REFERENCE MANUAL 63

which is defined by

(token-tree-to-pp-tree (term-to-token-tree term)).

Sometimes for readability it is helpful to have special support for definitions
by cases. Then it is advisable to use

(pretty-print-with-case-display term),

abbreviated (ppc term). Moreover we provide

(term-to-scheme-expr term),

(term-to-haskell-expr term),

term-to-expr is used as abbreviation for term-to-scheme-expr. These
functions aim at producing a readable Scheme / Haskell expression that can
be evaluated. For instance term-to-expr transforms an application of a
program constant c to args, where c has a corresponding built-in Scheme
operator written in uncurried form with length of args many arguments,
into the corresponding Scheme expression. If however c is applied to fewer
arguments, then the default translation of c is used. Equality with name
“=” requires a special treatment: if there are exactly two arguments, it is
transformed into an =-expression if the type of = refers to a number type
(nat, pos, int or rat), and to an equal?-expression otherwise. If it is
applied to fewer arguments, then one needs FinAlg= as a special default
name, since the internal name = cannot be used.

6.2. Normalization. We need an operation which transforms a term into
its normal form w.r.t. the given computation and rewrite rules. Here we
base our treatment on normalization by evaluation introduced in [6], and
extended to arbitrary computation and rewrite rules in [5].

For normalization by evaluation we need semantical objects. For an ar-
bitrary ground type every term family of that type is an object. For an
algebra ground type, in addition the constructors have semantical counter-
parts. The freeness of the constructors is expressed by requiring that their
ranges are disjoint and that they are injective. Moreover, we view the free
algebra as a domain and require that its bottom element is not in the range
of the constructors. Hence the constructors are total and non-strict. Then
by applying nbe-reflect followed by nbe-reify we can normalize every
term, where normalization refers to the computation as well as the rewrite
rules.

An object consists of a semantical value and a type.

(nbe-make-object type value) constructor,

(nbe-object-to-type object) accessor,

(nbe-object-to-value object) accessor,

64 HELMUT SCHWICHTENBERG

(nbe-object? x) test.

To work with objects, we need

(nbe-object-apply function-obj arg-obj).

Again it is convenient to have a more general application operation available,
which takes arbitrary many arguments and works for ordinary application
as well as for component formation. We also need an operation composing
two unary function objects.

(nbe-object-app function-obj arg-obj1 ...),

(nbe-object-compose function-obj1 function-obj2).

For ground type values we need constructors, accessors and tests. To make
constructors “self-evaluating”, a constructor value has the form

(constr-value name objs delayed-constr),

where delayed-constr is a procedure of zero arguments which evaluates to
this very same constructor. This is necessary to avoid having a cycle (for
nullary constructors, and only for those).

(nbe-make-constr-value name objs) constructor,

(nbe-constr-value-to-name value) accessor,

(nbe-constr-value-to-args value) accessor,

(nbe-constr-value-to-constr value) accessor,

(nbe-constr-value? value) test,

(nbe-fam-value? value) test.

The essential function which “animates” the program constants according
to the given computation and rewrite rules is

(nbe-pconst-and-tsubst-and-rules-to-object

pconst tsubst comprules rewrules).

Using it we can the define an evaluation function, which assigns to a term
and an environment a semantical object:

(nbe-term-to-object term bindings) evaluation.

Here bindings is an association list assigning objects of the same type to
variables. In case a variable is not assigned anything in bindings, by default
we assign the constant term family of this variable, which always is an object
of the correct type.

The interpretation of the program constants requires some auxiliary func-
tions (cf. [5]):

(nbe-constructor-pattern? term) test,

MINLOG REFERENCE MANUAL 65

(nbe-inst? constr-pattern obj) test,

(nbe-genargs constr-pattern obj) generalized arguments,

(nbe-extract termfam) extracts a term from a family,

(nbe-match pattern term).

Then we can define

(nbe-reify object) reification,

(nbe-reflect term) reflection

and by means of these

(nbe-normalize-term-without-eta term).

The result is a term in long normal form; to transform it into η-normal form
one can use

(term-to-eta-nf term).

We now aim at a full normalization of terms, including permutative con-
versions. Here the if-form needs a special treatment. In a preprocessing
step, we η-expand the alternatives of if-terms, using

(term-to-term-with-eta-expanded-if-terms term).

The result contains if-terms with ground type alternatives only. Then per-
mutative conversions for if-terms can be performed. Notice that this is not
possible for recursion terms, but is is if we have recursion terms with no re-
cursive calls, i.e., essentially cases terms: they can be replaced by if-terms.
The relevant function is

(normalize-term-pi-with-rec-to-if term).

Using these (and some other) auxiliary functions we finally define

(nbe-normalize-term term),

abbreviated nt.
We also provide term-to-term-without-predecided-ifs. It simplifies

all if-terms whose branch is known because we are in a branch of an outer
if-term with the same test term.

As an alternative to normalization by evaluation, we can also normalize
“by hand”. This is done via

(term-to-one-step-beta-reduct term),

(term-in-beta-normal-form? term),

(term-to-beta-nf term),

(term-to-beta-eta-nf term),

(term-to-beta-pi-eta-nf term)

66 HELMUT SCHWICHTENBERG

abbreviated bpe-nt.
We also provide some auxiliary functions to analyze terms. In

(term-in-rec-normal-form? term)

we assume that term is not one of those appearing during proof normaliza-
tion. This means that all recursion constants are without repro data.

(term-to-consts term)

returns a list of all constants in a term (without repetitions). For tests
it can be useful to have a level-wise decomposition of terms into subterms:
one level transforms a term Nλ~u(vM1 . . .Mn) into the list N, v,M1, . . . ,Mn.
The general function is

(term-to-subterms term opt-level).

Example (let introduction). In practice it often happens that an extracted
term contains multiple occurrences of the same subterm. One can (and
should) avoid this by using the “identity theorem” Id (proving P → P with
a predicate variable P) at appropriate places in the underlying proof. This
amounts to the introduction of a “let” in the term, which is also displayed
in this form. Here is an example: let f be variable of type N→ N and g of
type N→ B. Consider the proof

(set-goal "all f,g,n ex boole(

(boole -> ex m(m<f n & g m) -> F) &

((ex m(m<f n & g m) -> F) -> boole))")

(assume "f" "g" "n")

(ex-intro (pt "NatLeast(f n)g=f n"))

(split) ;4,5

(assume "EqHyp" "ExHyp")

(by-assume "ExHyp" "m" "mProp")

(assert "NatLeast(f n)g<f n")

(use "NatLeLtTrans" (pt "m"))

(use "NatLeastLeIntro")

(use "mProp")

(use "mProp")

(simp "EqHyp")

(assume "Absurd")

(use "Absurd")

;; Goal 5

(assume "NegExHyp")

(use "NatLeGeToEq")

(use "NatLeastBound")

(use "NatNotLtToLe")

MINLOG REFERENCE MANUAL 67

(assume "LtHyp")

(use "NegExHyp")

(ex-intro (pt "NatLeast(f n)g"))

(split)

(use "LtHyp")

(use "NatLeastLtElim")

(use "LtHyp")

;; Proof finished.

(pp (nt (proof-to-extracted-term)))

;; [f0,g1,n2]NatLeast(f0 n2)g1=f0 n2

A problem is that when evaluating this term one needs to compute f0 n2

twice. To introduce the desired “let”, at a place where the term to be taken
out can be constructed (here: f n) one cuts in the formula E := ex n0

n0=f n. This generates two new goals: an implication E → A (where A is
the present goal), and A, with the implication to be proved first. Now here
one uses the identity theorem Id, and then carries on with assuming the
existential hypothesis, and taking an n0 with the definition n0=f n into the
context. In the extracted term this will yield the constant cId (evaluating
to λff) applied to λn0r(n0) and fn, displayed as [let n0 (f n) r(n0)].
It is only after “animating” Id (i.e., adding the computation rule cId 7→
λff) that this term evaluates to r(f n), as desired.

(set-goal "all f,g,n ex boole(

(boole -> ex m(m<f n & g m) -> F) &

((ex m(m<f n & g m) -> F) -> boole))")

(assume "f" "g" "n")

(cut "ex n0 n0=f n")

;; (use "Id") ;can be slow. Use use-with instead:

(use-with

"Id" (make-cterm (goal-to-formula (current-goal))) "?")

(assume "Exn0")

(by-assume "Exn0" "n0" "n0=f n")

(ex-intro (pt "NatLeast n0 g=n0"))

(split) ;11,12

(assume "EqHyp" "ExHyp")

(by-assume "ExHyp" "m" "mProp")

(assert "NatLeast(f n)g<f n")

(use "NatLeLtTrans" (pt "m"))

(use "NatLeastLeIntro")

(use "mProp")

(use "mProp")

(simp "<-" "n0=f n")

68 HELMUT SCHWICHTENBERG

(simp "EqHyp")

(assume "Absurd")

(use "Absurd")

;; Goal 5

(assume "NegExHyp")

(use "NatLeGeToEq")

(use "NatLeastBound")

(use "NatNotLtToLe")

(assume "LtHyp")

(use "NegExHyp")

(ex-intro (pt "NatLeast(f n)g"))

(split)

(simp "<-" "n0=f n")

(use "LtHyp")

(use "NatLeastLtElim")

(simp "<-" "n0=f n")

(use "LtHyp")

;; Now we prove the formula cut in above.

(ex-intro (pt "f n"))

(use "Truth")

;; Proof finished.

(pp (nt (proof-to-extracted-term)))

;; [f0,g1,n2][let n3 (f0 n2) (NatLeast n3 g1=n3)]

However, sometimes it is not easy to find the right places for introducting
a cut. For such situations it can be helpful to hand optimize a term by
searching for its longest duplicate subterm, and taking that subterm out via
a “let”. The relevant function is

(term-to-term-with-let term).

As test functions we provide

(term-form? x),

(term? x),

(check-term x)

abbreviated ct. Here term? returns #t or #f, and check-term is a complete
test returning an error if the argument is not a term.

6.3. Substitution. Recall the generalities on substitutions in section 2.1.
Under the conditions stated there on admissibility we define

(term-substitute term tosubst),

(term-subst term arg val),

MINLOG REFERENCE MANUAL 69

(compose-substitutions subst1 subst2).

Display functions for substitutions are

(pp-subst topsubst)

(display-substitutions topsubst),

(substitution-to-string subst).

We also provide

(term-gen-substitute term gen-subst),

(term-gen-subst term term1 term2).

term-gen-substitute substitutes simultaneously the left hand sides of the
association list gen-subst (associating terms to terms) at all occurrences in
term with no free variables captured by the corresponding right hand sides.
Renaming takes place if and only if a free variable would become bound.

6.4. Unification and matching. For first order unification we use unify.
It checks whether two terms can be unified, returns #f if this is impossible,
and a most general unifier otherwise. unify-list does the same for lists
of terms. The implemented algorithm makes use of disagreement pairs, and
does not yield idempotent unifiers (as opposed to the Martelli-Montanari
algorithm [21], implemented in modules/type-inf.scm).

For first order matching we use match. It checks whether a given pattern
(term or formula with type variables in its types) can be transformed by a
tosubst - respecting totality constraints - into a given instance, such that
(i) no type variable from a given set of identity variables, and (ii) no object
variable from a given set of signature variables gets substituted. It returns
#f, if this is impossible, and the tosubst otherwise.

For higher-order unification we use Huet’s [17] unification algorithm, and
(for the approriate fragment) also Miller’s [25] pattern unification algo-
rithm; both are discussed in 12. Higher-order matching is implemented as
huet-match, which is defined as a special case of huet-unifiers: no flexi-
ble variables are allowed in the instance. huet-match picks a most detailed
substitution. Higher-order matching for type substitutions is implemented
as pattern-and-instance-to-tsubst.

7. Formulas and comprehension terms

7.1. Constructors and accessors. A prime formula has the form

(predicate P r1 ... rn)

with a predicate variable or constant P and terms r1 . . . rn. Formulas are
built from prime formulas by

70 HELMUT SCHWICHTENBERG

(i) (imp formula1 formula2) implication,
(ii) (all x formula) all quantification,
(iii) (impnc formula1 formula2) implication without computational con-

tent,
(iv) (allnc x formula) all quantification without computational content,
(v) (exca (x1 ...xn) formula) classical existential quantification (with

the arithmetical form of falsity F),
(vi) (excl (x1 ...xn) formula) classical existential quantification (with

the logical form of falsity ⊥),
(vii) (excu (x1 ...xn) formula) classical existential quantification (with

the logical form of falsity ⊥, and using ∀nc rather than ∀ in the unfolded
form),

(viii) (tensor formula1 formula2) tensor, for proper unfolding of formu-
las containing exca, excl or excu.

We allow that quantified variables are formed without ^, i.e., range over
total objects only.

Formulas can be unfolded in the sense that the all classical existential
quantifiers are replaced according to their definition. Inversely a formula
can be folded in the sense that classical existential quantifiers are introduced
wherever possible. Notice that, since ∃̃x∃̃yA unfolds into a rather awkward

formula, we have extended the ∃̃-terminology to lists of variables:

∃̃x1,...,xnA := ∀x1,...,xn(A→ ⊥)→ ⊥.
In this context the tensor connective (written ∧̃) allows to abbreviate

∃̃x1,...,xn(A1 ∧̃ . . . ∧̃Am) := ∀x1,...,xn(A1 → · · · → Am → ⊥)→ ⊥.
This way we stay in the→,∀ part of the language. Notice that ∧̃ only makes
sense in this context, i.e., in connection with ∃̃.

Leibniz equality, the existential quantifier, conjunction and disjunction
are provided by means of inductively defined predicates. We also have the
built-in versions:

(i) (and formula1 formula2) conjunction
(ii) (ex x formula) existential quantification

We also allow prime formulas of the form (atom r) with a term r of type
boole. They are just shorthand for Leibniz equality of r with the boolean
constant True, written True eqd r.

Comprehension terms have the form (cterm vars formula). Note that
formula may contain further free variables.

Tests:

(atom-form? formula),

(predicate-form? formula),

MINLOG REFERENCE MANUAL 71

(prime-form? formula),

(imp-form? formula),

(impnc-form? formula),

(and-form? formula),

(tensor-form? formula),

(all-form? formula),

(allnc-form? formula),

(ex-form? formula),

(exca-form? formula),

(excl-form? formula),

(excu-form? formula)

and also

(quant-prime-form? formula),

(quant-free? formula).

We need constructors and accessors for prime formulas

(make-atomic-formula boolean-term),

(make-predicate-formula predicate term1 ...),

atom-form-to-kernel,

predicate-form-to-predicate,

predicate-form-to-args.

We also have constructors for special atomic formulas

(make-eqd term1 term2) constructor for Leibniz equalities,

(make-= term1 term2) constructor for equalities (atomic or eqd),

(make-total term) constructor for totalities,

(make-e term) constructor for existence on finalgs,

truth,

falsity,

falsity-log.

We need constructors and accessors for implications

(make-imp premise conclusion) constructor,

(imp-form-to-premise imp-formula) accessor,

(imp-form-to-conclusion imp-formula) accessor,

72 HELMUT SCHWICHTENBERG

non-computational implications (→nc; displayed -->)

(make-impnc premise conclusion) constructor,

(impnc-form-to-premise impnc-formula) accessor,

(impnc-form-to-conclusion impnc-formula) accessor,

conjunctions

(make-and formula1 formula2) constructor,

(and-form-to-left and-formula) accessor,

(and-form-to-right and-formula) accessor,

tensors

(make-tensor formula1 formula2) constructor,

(tensor-form-to-left tensor-formula) accessor,

(tensor-form-to-right tensor-formula) accessor,

universally quantified formulas

(make-all var formula) constructor,

(all-form-to-var all-formula) accessor,

(all-form-to-kernel all-formula) accessor,

universally quantified formulas without computational content (∀nc)
(make-allnc var formula) constructor,

(allnc-form-to-var allnc-formula) accessor,

(allnc-form-to-kernel allnc-formula) accessor,

existentially quantified formulas

(make-ex var formula) constructor,

(ex-form-to-var ex-formula) accessor,

(ex-form-to-kernel ex-formula) accessor,

existentially quantified formulas in the sense of classical arithmetic

(make-exca var formula) constructor,

(exca-form-to-var exca-formula) accessor,

(exca-form-to-kernel exca-formula) accessor,

existentially quantified formulas in the sense of classical logic

(make-excl var formula) constructor,

(excl-form-to-var excl-formula) accessor,

(excl-form-to-kernel excl-formula) accessor,

MINLOG REFERENCE MANUAL 73

existentially quantified formulas in the sense of classical logic w.r.t. ∀nc

(make-excu var formula) constructor,

(excu-form-to-var excu-formula) accessor,

(excu-form-to-kernel excu-formula) accessor.

By means of inductively defined predicate constants, we have defined
computationally sensitive forms of existential quantification exd, exl, exr,
exnc written ∃d, ∃l, ∃r, ∃u and also their total versions exdt, exlt, exrt,
exnct, conjunction andd, andr, andnc written ∧d, ∧r, ∧u (andb is used for
the boolean operator), disjunction or, orl, orr, oru, ornc written ∨d, ∨l,
∨r, ∨u, ∨nc (orb is used for the boolean operator). For all these we have
similar constructors and accessors. There is also some mild form of autom-
atization for these computationally sensitive forms of logical connectives,
which provides for computational content only if there is some:

(make-exi var formula),

(make-exnci var formula),

(make-andi formula1 formula2),

(make-ori formula1 formula2).

For convenience we have as generalized constructors

(mk-imp formula formula1 ...) implication,

(mk-impnc formula formula1 ...) n.c. implication,

(mk-neg formula1 ...) negation,

(mk-neg-log formula1 ...) logical negation,

(mk-and formula formula1 ...) conjunction,

(mk-tensor formula formula1 ...) tensor,

(mk-all var1 ... formula) all-formula,

(mk-allnc var1 ... formula) allnc-formula,

(mk-ex var1 ... formula) ex-formula,

(mk-exca var1 ... formula) classical ex-formula (arithmetical),

(mk-excl var1 ... formula) classical ex-formula (logical),

(mk-excu var1 ... formula) classical ex-formula (logical, n.c.).

and similar for the computationally sensitive logical connectives: mk-exd,
mk-exl, mk-exr, mk-exnc, mk-exdt, mk-exlt, mk-exrt, mk-exnct, mk-andd,
mk-andr, mk-andnc, mk-ord, mk-orl, mk-orr, mk-oru, mk-exi, mk-exnci,
mk-andi, mk-ori. As generalized accessors we have

(imp-form-to-premises-and-final-conclusion formula),

74 HELMUT SCHWICHTENBERG

(tensor-form-to-parts formula),

(all-form-to-vars-and-final-kernel formula),

(ex-form-to-vars-and-final-kernel formula)

and again similar for impnc-, allnc-, exca- and excl-forms, and the com-
putationally sensitive logical connectives. Occasionally it is convenient to
have

(imp-form-to-premises formula <n>), all (first n) premises

(imp-form-to-final-conclusion formula <n>)

where the latter computes the final conclusion (conclusion after removing
the first n premises) of the formula (similar for impnc-forms).

It is also useful to have some general procedures working for arbitrary
binary connectives and quantified formulas. We provide

(make-bicon bicon formula1 formula2) constructor,

(bicon-form-to-bicon bicon-form) accessor,

(bicon-form-to-left bicon-form) accessor,

(bicon-form-to-right bicon-form) accessor,

(bicon-form? x) test,

(make-quant-formula quant var1 ... kernel) constructor,

(quant-form-to-quant quant-form) accessor,

(quant-form-to-vars quant-form) accessor,

(quant-form-to-kernel quant-form) accessor,

(quant-form? x) test

and for convenience also

(mk-quant quant var1 ... formula).

We also provide

(prime-predicate-form? x),

(prime-form? x),

(quant-prime-form? x),

(quant-free? x)

and for prime, imp, impnc, all or allnc formulas

(formula-to-head formula).

To fold and unfold (classical existential quantifiers in) formulas we have

(fold-formula formula),

MINLOG REFERENCE MANUAL 75

(unfold-formula formula).

To test equality of formulas up to normalization and α-equality we use

(classical-formula=? formula1 formula2),

(formula=? formula1 formula2),

where in the first procedure we unfold before comparing.
Morever we need

(formula-to-free formula),

(formula-to-bound formula),

(formula-to-tvars formula),

(formula-to-pvars formula),

(ex-free-formula? formula),

(nbe-formula-to-type formula),

(formula-to-prime-subformulas formula).

nbe-formula-to-type needs a procedure associating type variables to pre-
dicate variables, which remembers the assignment done so far. Therefore it
refers to the global variable PVAR-TO-TVAR. This machinery will be used to
assign recursion constants to induction constants. There we need to asso-
ciate type variables with predicate variables, in such a way that we can later
refer to this assignment.

We also provide

(formula-to-prime-subformulas formula).

As an alternative to normalization by evaluation, we can also normalize
“by hand”. This is done via

(formula-to-beta-nf formula),

(cterm-to-beta-nf cterm),

(formula-to-eta-nf formula),

(cterm-to-eta-nf cterm),

(formula-to-beta-eta-nf formula),

(cterm-to-beta-eta-nf cterm).

Clearly every quantifier-free formula can be converted into a term of type
boole; this is done by

(qf-to-term formula).

We also provide

(alpha-equal-formulas-to-renaming formula1 formula2).

76 HELMUT SCHWICHTENBERG

The constructor and accessors for comprehension terms are

(make-cterm var1 ... formula) constructor,

(cterm-to-vars cterm) accessor,

(cterm-to-formula cterm) accessor.

Moreover we need

(cterm-to-arity cterm),

(cterm-to-free cterm),

(cterm-to-bound cterm),

(fold-cterm cterm),

(unfold-cterm cterm),

(pvar-cterm-to-pvar cterm),

(pvar-cterm? cterm).

7.2. Decoration. We think of (computationally relevant) implication →
and universal quantification ∀ as “decorated” versions of their non compu-
tational counterparts →nc and ∀nc (cf. 7.1). Moreover, existential quanti-
fiers ∃d, ∃l, ∃r can be seen as decorated versions of the non computational
quantifier ∃u, and similar for conjunction and disjunction. To “undecorate”
formulas and comprehension terms we use

(formula-to-undec-formula formula id-deco?),

(cterm-to-undec-cterm cterm id-deco?).

Both change all occurrences of →, ∀ into →nc, ∀nc, and in case id-deco? is
true (id for “inductively defined logical connective”),

(i) existential quantification ∃d, ∃l, ∃r into ∃u,
(ii) conjunction ∧d, ∧r into ∧u, and

(iii) disjunction ∨d, ∨l, ∨r into ∨u.

They do not touch formulas of nulltype under extension, and in case id-deco?
is false do not touch any formula of nulltype.

Conversely, formula-to-dec-formula changes all occurrences of →nc,
∀nc to →, ∀. We say that formula1 extends formula2 if some →nc, ∀nc
have been changed into →, ∀; then formula1 has a more complex type:

(extending-dec-variants? formula1 formula2 id-deco?).

In case id-deco? is true “extension” is transferred in the expected way to
∃d, ∃l, ∃r, ∃u, ∧d, ∧r, ∧u, ∨d, ∨l, ∨r and ∨u.

MINLOG REFERENCE MANUAL 77

7.3. Normalization. Normalization of formulas is done with

(normalize-formula formula),

(normalize-cterm cterm).

The former is abbreviated by nf.

7.4. Alpha-equality. To check equality of formulas and comprehension
terms we use

(classical-formula=? formula1 formula2 opt-ignore-deco-flag),

(classical-cterm=? cterm1 cterm2 opt-ignore-deco-flag),

(formula=? formula1 formula2 opt-ignore-deco-flag),

(cterm=? cterm1 cterm2 opt-ignore-deco-flag)

where the “classical” variants unfold classical existential quantifiers and nor-
malize all subterms in its formulas.

rename-variables renames bound variables in terms, formulas and com-
prehension terms.

7.5. Display. For a readable display of formulas we normally use

(pp formula)

which is implemented using as auxiliary functions

(predicate-to-token-tree pred),

(formula-to-token-tree formula).

Alternative display functions for formulas and comprehension terms are

(formula-to-string formula),

(cterm-to-string cterm).

7.6. Check. As test functions we provide

(formula-form? x),

(cterm-form? x),

(formula? x),

(cterm? x),

(check-formula x),

abbreviated cf. Here formula? returns #t or #f, and check-formula is a
complete test returning an error if the argument is not a formula.

78 HELMUT SCHWICHTENBERG

7.7. Substitution. We can simultaneously substitute for type, object and
predicate variables in a formula or a comprehension term:

(formula-substitute formula topsubst),

(formula-subst formula arg val),

(cterm-substitute cterm topsubst),

(cterm-subst cterm arg val).

In a simultaneous substitution topsubst for type, object and predicate vari-
ables in a formula or a comprehension term it is allowed that the substitu-
tion affects variables whose type is changed by topsubst, provided topsubst
is admissible for the formula or the comprehension term.

We also provide

(formula-gen-substitute formula gen-subst),

(formula-gen-subst formula term1 term2).

The former substitutes simultaneously the left hand sides of the association
list gen-subst at all occurrences in the formula with no free variables cap-
tured by the corresponding right hand sides. gen-subst is an association
list associating terms to terms. Renaming takes place if and only if a free
variable would become bound.

As display functions for substitutions we again use

(pp-subst topsubst)

(display-substitutions topsubst).

8. Assumption variables

Assumption variables are for proofs what variables are for terms. The
main difference, however, is that assumption variables have formulas as
types, and that formulas may contain free variables. Therefore we must
be careful when substituting terms for variables in assumption variables.
Our solution (as in Matthes’ thesis [24]) is to consider an assumption vari-
able as a pair of a (typefree) identifier and a formula, and to take equality
of assumption variables to mean that both components are equal. Rather
than using symbols as identifiers we prefer to use numbers (i.e., indices).
However, sometimes it is useful to provide an optional string as name for
display purposes.

We need a constructor, accessors and tests for assumption variables.

(make-avar formula index name) constructor,

(avar-to-formula avar) accessor,

(avar-to-index avar) accessor,

MINLOG REFERENCE MANUAL 79

(avar-to-name avar) accessor,

(avar? x) test,

(avar=? avar1 avar2) test.

Testing equality of assumption variables is often used, and it is expensive
since it involves an equality test for formulas (which includes normalization).
To allow a more efficient equality test, we maintain an avar-convention:
whenever two assumption variables have the same identifier, their formulas
are equal as well; therefore avar=? only checks equality of identifiers. For a
full test one can use

(avar-full=? avar1 avar2 opt-ignore-deco-flag).

For convenience we have the function

(mk-avar formula <index> <name>).

The formula is a required argument; the remaining arguments are optional.
The default for the name string is u. For display we use

(avar-to-string avar).

We also require that a function

(formula-to-new-avar formula)

is defined that returns an assumption variable of the requested formula dif-
ferent from all assumption variables that have ever been returned by any of
the specified functions so far.

9. Assumption constants

An assumption constant appears in a proof, as an axiom, a theorem or
a global assumption. Its formula is given as an “uninstantiated formula”,
where only type and predicate variables can occur freely; these are con-
sidered to be bound in the assumption constant. An exception are the
elimination and greatest-fixed-point axioms, where the argument variables
of the (co)inductively defined predicate are formally free in the uninstanti-
ated formula; however, they are considered bound as well. In the proof the
bound type variables are implicitly instantiated by types, and the bound
predicate variables by comprehension terms (the arity of a comprehension
term is the type-instantiated arity of the corresponding predicate variable).
Since we do not have explicit type and predicate quantification in formulas,
the assumption constant contains these parts left implicit in the proof, as
tpsubst.

To normalize a proof we will first translate it into a term, then normalize
the term and finally translate the normal term back into a proof. To make

80 HELMUT SCHWICHTENBERG

this work, in case of axioms we pass to the term appropriate “reproduction
data” to be used when after normalization the axiom in question is to be
reconstructed: all-formulas for induction, a number i and an inductively
defined predicate constant idpc for its i-th clause, imp-formulas for elimi-
nation, an existential formula for existence introduction, and an existential
formula together with a conclusion for existence elimination. During norma-
lization of the term these formulas are passed along. When the normal form
is reached, we have to translate back into a proof. Then these reproduction
data are used to reconstruct the axiom in question.

Internally, the formula of an assumption constant is split into an unin-
stantiated formula where only type and predicate variables can occur freely,
and a substitution for at most these type and predicate variables. The for-
mula assumed by the constant is the result of carrying out this substitution
in the uninstantiated formula. Note that free variables may again occur in
the assumed formula. For example, assumption constants axiomatizing the
existential quantifier will internally have the form

(aconst ExIntro ∀x̂α(Px̂→ ∃x̂αPx̂) (α 7→ τ, P (α) 7→ { ẑτ | A })),
(aconst ExElim ∃x̂αPx̂→ ∀x̂α(Px̂→ Q)→ Q

(α 7→ τ, P (α) 7→ { ẑτ | A }, Q 7→ { | B })).
Interface for general assumption constants:

(make-aconst name kind uninst-formula tpsubst

repro-data1 ...) constructor,

(aconst-to-name aconst) accessor,

(aconst-to-kind aconst) accessor,

(aconst-to-uninst-formula aconst) accessor,

(aconst-to-tpsubst aconst) accessor,

(aconst-to-repro-data aconst) accessor,

(aconst-form? x) test.

To construct the formula associated with an aconst, it is useful to separate
the instantiated formula from the variables to be generalized. The latter
can be obtained as free variables in inst-formula. We therefore provide

(aconst-to-inst-formula aconst),

(aconst-to-formula aconst).

The reproduction data can be computed from the name, the uninstanti-
ated formula, the tpsubst of an axiom, by

(aconst-to-computed-repro-data aconst).

MINLOG REFERENCE MANUAL 81

However, to avoid recomputations we carry them along.
We also provide

(check-aconst x),

(aconst=? aconst1 aconst2),

(aconst-without-rules? aconst),

(aconst-to-string aconst).

9.1. Axioms. In TCF the only axioms are the clauses and the least- or
greatest-fixed-point axioms of inductively or coinductively defined predi-
cates, and equality axioms stating the (Leibniz) equality of both sides of a
computation rule. However, as long as (i) we allow free type parameters and
(ii) make use of convenient abbreviations, we need to allow corresponding
additional axioms.

Recall that we require nullary constructors in every free algebra; hence,
it has a “canonical inhabitant”. Since we allow free type parameters α, we
provide a constant Inhabα intended to denote the canonical inhabitant of
the (unknown) type α. When finally we substitute a closed type ρ for the
type parameter α, we can give a value to Inhabρ by adding an appropriate
computation rule; an example is

(add-computation-rule (pt "(Inhab nat)") (pt "0")).

Since for closed types the canonical inhabitant is total, we add an axiom
stating the totality of Inhabα; it appears among the initial theorems under
the name InhabTotal.

Recall that in order to make formal arguments with quantifiers relativized
to total objects more managable, we use a special sort of variables intended
to range over such objects only. For example, n, n0, n1, n2, . . . range over
total natural numbers, and n^, n^0, n^1, n^2, . . . are general variables. For-
mally this is done by providing the abbreviating axioms

AllTotalElim : ∀xPx→ ∀ncx̂ (T x̂→ Px̂),

AllncTotalElim : ∀ncx Px→ ∀ncx̂ (T x̂→nc Px̂)

and their converses AllTotalIntro and AllncTotalIntro. For the induc-
tively defined (decorated) existential quantifiers we have the abbreviating
axioms

ExDTotalElim : ∃dxPx→ ∃rx̂(T x̂ ∧d Px̂),

ExLTotalElim : ∃lxPx→ ∃rx̂(Px̂ ∧r T x̂),

ExRTotalElim : ∃rxPx→ ∃rx̂(T x̂ ∧r Px̂),

ExNcTotalElim : ∃uxPx→ ∃ux̂(T x̂ ∧u Px̂)

82 HELMUT SCHWICHTENBERG

and their converses ExDTotalIntro, ExLTotalIntro, ExRTotalIntro and
ExNcTotalIntro. For the primitive existential quantifier we have the ab-
breviating axiom

ExTotalElim : ∃xPx→ ∃rx̂(T x̂ ∧ Px̂)

and its converse ExTotalIntro.
Recall the treatment in 5.3 of induction axioms, viewed as elimination

axioms for inductively defined totality predicates. We can also use the pre-
dicate constant T instead, which gives essentially the same axioms; this is
what ind calls. In more detail, the command (ind r) expects a goal A(r)
with a syntactically total term r. Then the induction axiom

∀n(A(0)→ ∀n(A(n)→ A(Sn))→ A(n))

is used with the term r and two new goals for the base and the step case.
Similarly, (elim Hyp) with a hypothesis Hyp : Tr and a goal A(r) uses the
elimination axiom

∀ncn̂ (T n̂→ A(0)→ ∀ncn̂ (A(n̂)→ A(Sn̂))→ A(n̂))

with the term r, the hypothesis Hyp and two new goals for the base and the
step case. The resulting proofs clearly can be transformed into each other
using the abbreviating axioms above dealing with total variables.

We now spell out what in detail we mean by induction over simultaneous
free algebras ~ι = µ~ξ ~κ, with goal formulas ∀ιjxj Pjxj . For the constructor type

κi = ~ρ→ (~σ1 → ξj1)→ · · · → (~σn → ξjn)→ ξj ∈ KT~ξ

we have the step formula

Di := ∀
y
ρ1
1 ,...,yρmm ,y

~σ1→ιj1
m+1 ,...,y

~σn→ιjn
m+n

(∀~x~σ1 Pj1(ym+1~x)→ · · · →

∀~x~σn Pjn(ym+n~x)→

Pj(C
~ι
i(~y))).

Here ~y = yρ11 , . . . , y
ρm
m , y

~σ1→ιj1
m+1 , . . . , y

~σn→ιjn
m+n are the components of the object

C~ιi(~y) of type ιj under consideration, and

∀~x~σ1 Pj1(ym+1~x), . . . ,∀~x~σn Pjn(ym+n~x)

are the hypotheses available when proving the induction step. The induction
axiom Indιj then proves the formula

Indιj : D1 → · · · → Dk → ∀
ιj
xj Pjxj .

We will often write Indj for Indιj .
An example is

E1 → E2 → E3 → E4 → ∀xT1 P1(x1)

MINLOG REFERENCE MANUAL 83

with

E1 := P1(Leaf),

E2 := ∀xTs(P2x→ P1(Branch(x))),

E3 := P2(Empty),

E4 := ∀xT1 ,xTs
2

(P1(x1)→ P2(x2)→ P2(Tcons(x1, x2))).

Here the fact that we deal with a simultaneous induction (over tree and
tlist), and that we prove a formula of the form ∀xT . . . , can all be inferred
from what is given: the ∀xT . . . is right there, and for tlist we can look up
the simultaneously defined algebras. – The internal representation is

(aconst Ind E1 → E2 → E3 → E4 → ∀xT1 P1(x1)

(P1 7→ {xT1 | A1 }, P2 7→ {xTs
2 | A2 })).

A simplified version (without the recursive calls) of the induction axiom
is the cases axiom

(aconst Cases E1 → E2 → ∀xT1 P1(x1) (P1 7→ {xT1 | A1 }))

with

E1 := P1(Leaf),

E2 := ∀Ts
x P1(Branch(x)).

The assumption constants corresponding to these axioms are generated
by

(all-formulas-to-ind-aconst all-formula1 ...) for Ind

(all-formula-to-cases-aconst all-formula) for Cases.

all-formula-and-number-to-gind-aconst takes an all-formula, a num-
ber n for the arity of the measure function and an optional argument
for the name of a theorem proving general induction from induction. If
opt-gindthmname is not present, general induction is viewed as an axiom
(and GRec will be extracted). Otherwise general induction is viewed as
proved from structural induction (and Rec is extracted).

We also provide

(formula-to-efq-aconst formula),

which is conceived as a global assumption (of F → A). As we have seen
in section 5.3, it can be proved if the formula A has no stricly positive
occurrences of predicate variables (cf. section 10.8).

84 HELMUT SCHWICHTENBERG

For the introduction and elimination axioms ExIntro and ExElim of the
primitive existential quantifier we provide

(ex-formula-to-ex-intro-aconst ex-formula),

(ex-formula-and-concl-to-ex-elim-aconst ex-formula concl).

To deal with inductively defined predicate constants, we need additional
axioms with names “Intro” and “Elim”, which are generated by

(number-and-idpredconst-to-intro-aconst i idpc),

(imp-formulas-to-elim-aconst imp-formula1 ...);

here an imp-formula is expected to have the form I~x → A. (For simulta-
neously inductively defined predicates we need many such imp-formulas).

For coinductively defined predicate constants we need additional axioms,
with names “Closure” and “Gfp”. They are generated by

(coidpredconst-to-closure-aconst coidpc),

(imp-formulas-to-gfp-aconst imp-formula1 ...).

9.2. Theorems. A theorem is a special assumption constant. We main-
tain an association list THEOREMS assigning to every name of a theorem the
assumption constant and its proof.

Theorems are normally created after successfully completing an interac-
tive proof. One may also create a theorem from an explicitly given (closed)
proof. The command is

(add-theorem string . opt-proof) or save.

From a theorem name we can access its aconst, its (original) proof and also
its instantiated proof by

(theorem-name-to-aconst string),

(theorem-name-to-proof string),

(theorem-name-to-inst-proof string).

We also provide

(remove-theorem string1 ...),

(display-theorems string1 ...),

(pp theorem-name).

Initially we provide the following theorems

atom(p̂)→ p̂ = tt AtomTrue

(atom(p)→ F)→ p = ff AtomFalse

MINLOG REFERENCE MANUAL 85

and for every finitary algebra, e.g., nat

n = n =-Refl-nat

n̂1 = n̂2 → n̂2 = n̂1 =-Sym-nat

n̂1 = n̂2 → n̂2 = n̂3 → n̂1 = n̂3 =-Trans-nat.

Notice that the more general (atom(p̂) → F) → p̂ = ff does not hold. A
counterexample is the empty ideal of type B.

Here are some other examples of theorems; we give the internal repre-
sentation as assumption constants, which show how the assumed formula is
split into an uninstantiated formula and a substitution, in this case a type
substitution α 7→ ρ, an object substitution fα→N 7→ gρ→N and a predicate
variable substitution P (α) 7→ { ẑρ | A }.

(aconst Cvind-with-measure-11

∀α→N
f (∀xα(∀y(fy<fx→ Py)→ Px)→ ∀xPx)

(α 7→ ρ, fα→N 7→ gρ→N, P (α) 7→ { ẑρ | A })).
(aconst Minpr-with-measure-l11

∀fα→N(∃̃xαPx→ ∃̃x(Px ∧̃ ∀y(fy<fx→ Py → ⊥)))

(α 7→ ρ, fα→N 7→ gρ→N, P (α) 7→ { ẑρ | A })).

Here ∃̃ is the classical existential quantifier defined by ∃̃xA := ∀x(A→ ⊥)→
⊥ with the logical form of falsity ⊥ (as opposed to the arithmetical form
F). l indicates “logic” (we have used the logical form of falsity), the first
1 that we have one predicate variable P , and the second that we quantify
over just one variable x. Both theorems can easily be generalized to more
such parameters.

When dealing with classical logic it will be useful to have

(P → P1)→ ((P → ⊥)→ P1)→ P1 CasesLog.

The proof uses the global assumption StabLog (see below) for P1; hence we
cannot extract a term from it.

The assumption constants corresponding to these theorems are generated
by

(theorem-name-to-aconst name).

9.3. Global assumptions. A global assumption is a special assumption
constant. It provides a proposition whose proof does not concern us pre-
sently. Global assumptions are added, removed and displayed by

(add-global-assumption name formula) (abbreviated aga),

(remove-global-assumption string1 ...),

86 HELMUT SCHWICHTENBERG

(display-global-assumptions string1 ...).

We initially supply global assumptions for ex-falso-quodlibet and stability,
both in logical and arithmetical form (for our two forms of falsity).

⊥ → P EfqLog,

((P → ⊥)→ ⊥)→ P StabLog,

F→ P Efq,

((P → F)→ F)→ P Stab.

The assumption constants corresponding to these global assumptions are
generated by

(global-assumption-name-to-aconst name).

It is a practical problem to find existing theorems or global assumptions
relevant for the situation at hand. To help searching for those we provide

(search-about symbol-or-string . opt-strings).

It searches in THEOREMS and GLOBAL-ASSUMPTIONS for all items whose name
contains each of the strings given, excluding the strings Total Partial Com-
pRule RewRule Sound. It one wants to list all these as well, take the symbol
’all as first argument.

10. Proofs

Proofs are built from assumption variables and assumption constants (i.e.,
axioms, theorems and global assumptions) by the usual rules of natural de-
duction, i.e., introduction and elimination rules for implication, conjunction
and universal quantification. From a proof we can read off its context , which
is an ordered list of object and assumption variables.

10.1. Constructors and accessors. We have constructors, accessors and
tests for assumption variables

(make-proof-in-avar-form avar) constructor,

(proof-in-avar-form-to-avar proof) accessor,

(proof-in-avar-form? proof) test,

for assumption constants

(make-proof-in-aconst-form aconst) constructor,

(proof-in-aconst-form-to-aconst proof) accessor,

(proof-in-aconst-form? proof) test,

for implication introduction

(make-proof-in-imp-intro-form avar proof) constructor,

MINLOG REFERENCE MANUAL 87

(proof-in-imp-intro-form-to-avar proof) accessor,

(proof-in-imp-intro-form-to-kernel proof) accessor,

(proof-in-imp-intro-form? proof) test,

for implication elimination

(make-proof-in-imp-elim-form proof1 proof2) constructor,

(proof-in-imp-elim-form-to-op proof) accessor,

(proof-in-imp-elim-form-to-arg proof) accessor,

(proof-in-imp-elim-form? proof) test,

for and introduction

(make-proof-in-and-intro-form proof1 proof2) constructor,

(proof-in-and-intro-form-to-left proof) accessor,

(proof-in-and-intro-form-to-right proof) accessor,

(proof-in-and-intro-form? proof) test,

for and elimination

(make-proof-in-and-elim-left-form proof) constructor,

(make-proof-in-and-elim-right-form proof) constructor,

(proof-in-and-elim-left-form-to-kernel proof) accessor,

(proof-in-and-elim-right-form-to-kernel proof) accessor,

(proof-in-and-elim-left-form? proof) test,

(proof-in-and-elim-right-form? proof) test,

for all introduction

(make-proof-in-all-intro-form var proof) constructor,

(proof-in-all-intro-form-to-var proof) accessor,

(proof-in-all-intro-form-to-kernel proof) accessor,

(proof-in-all-intro-form? proof) test,

for all elimination

(make-proof-in-all-elim-form proof term) constructor,

(proof-in-all-elim-form-to-op proof) accessor,

(proof-in-all-elim-form-to-arg proof) accessor,

(proof-in-all-elim-form? proof) test,

and for cases-constructs

(make-proof-in-cases-form test alt1 ...) constructor,

88 HELMUT SCHWICHTENBERG

(proof-in-cases-form-to-test proof) accessor,

(proof-in-cases-form-to-alts proof) accessor,

(proof-in-cases-form-to-rest proof) accessor,

(proof-in-cases-form? proof) test.

It is convenient to have more general introduction and elimination operators
that take arbitrary many arguments. The former works for implication-
introduction and all-introduction, and the latter for implication-elimination,
and-elimination and all-elimination.

(mk-proof-in-intro-form x1 ... proof),

(mk-proof-in-elim-form proof arg1 ...).

The result of (mk-proof-in-intro-form x1 ... proof) is formed from
proof by first abstracting x1, then x2 and so on. Here x1, x2 . . . can be
assumption or object variables. Further related functions are

(proof-in-intro-form-to-kernel-and-vars proof),

(proof-in-elim-form-to-final-op proof),

(proof-in-elim-form-to-args proof).

We also provide

(mk-proof-in-and-intro-form proof proof1 ...).

In our setup there are axioms rather than rules for the existential quan-
tifier. However, sometimes it is useful to construct proofs as if an existence
introduction rule would be present; internally then an existence introduction
axiom is used.

(make-proof-in-ex-intro-form term ex-formula proof-of-inst),

(mk-proof-in-ex-intro-form .

terms-and-ex-formula-and-proof-of-inst).

For the non-computational connectives →nc and ∀nc (cf. 7.1) we need
similar constructors, accessors and tests. For n.c. implication introduction

(make-proof-in-impnc-intro-form avar proof) constructor,

(proof-in-impnc-intro-form-to-avar proof) accessor,

(proof-in-impnc-intro-form-to-kernel proof) accessor,

(proof-in-impnc-intro-form? proof) test,

for n.c. implication elimination

(make-proof-in-impnc-elim-form proof1 proof2) constructor,

(proof-in-impnc-elim-form-to-op proof) accessor,

MINLOG REFERENCE MANUAL 89

(proof-in-impnc-elim-form-to-arg proof) accessor,

(proof-in-impnc-elim-form? proof) test,

for n.c. all introduction

(make-proof-in-allnc-intro-form var proof) constructor,

(proof-in-allnc-intro-form-to-var proof) accessor,

(proof-in-allnc-intro-form-to-kernel proof) accessor,

(proof-in-allnc-intro-form? proof) test,

for n.c. all elimination

(make-proof-in-allnc-elim-form proof term) constructor,

(proof-in-allnc-elim-form-to-op proof) accessor,

(proof-in-allnc-elim-form-to-arg proof) accessor,

(proof-in-allnc-elim-form? proof) test.

Again it is convenient to have

(mk-proof-in-nc-intro-form x1 ... proof).

We also provide

(mk-proof-in-cr-nc-intro-form x . rest).

Here x is obtained from a list of premises and variables where each element
is followed by an indicator for nc or cr (true means nc). Moreover we need

(proof? x),

(proof=? proof1 proof2),

(proofs=? proofs1 proofs2),

(proof-to-formula proof),

(proof-to-context proof),

(proof-to-cvars proof),

(proof-to-free proof),

(proof-to-tvars proof),

(proof-to-pvars proof),

(proof-to-free-avars proof),

(proof-to-bound-avars proof),

(proof-to-free-and-bound-avars-wrt avar-eq proof),

(proof-to-free-and-bound-avars proof),

(proof-respects-avar-convention? proof),

(proof-to-aconsts-without-rules proof),

90 HELMUT SCHWICHTENBERG

(proof-to-aconsts proof),

(proof-to-global-assumptions proof).

proof-to-cvars computes the computational variables of the proof, which
are the ones the extra variable condition for ∀nc refers to.

To work with contexts we provide

(context-to-vars context),

(context-to-avars context),

(context=? context1 context2),

(pp-context context).

We can also convert the name of a theorem or a global assumption into a
proof consisting of just the corresponding assumption constant:

(thm-or-ga-name-to-proof name).

Decorating proofs. In this section we are interested in “fine-tuning” the com-
putational content of proofs, by inserting decorations (cf. 7.2). Here is an
example (due to Constable) of why this is of interest. Suppose that in a
proof M of a formula C we have made use of a case distinction based on
an auxiliary lemma stating a disjunction, say L : A ∨ B. Then the extract
et(M) will contain the extract et(L) of the proof of the auxiliary lemma,
which may be large. Now suppose further that in the proof M of C, the
only computationally relevant use of the lemma was which one of the two
alternatives holds true, A or B. We can express this fact by using a weak-
ened form of the lemma instead: L′ : A ∨u B. Since the extract et(L′) is a
boolean, the extract of the modified proof has been “purified” in the sense
that the (possibly large) extract et(L) has disappeared.

We consider the question of “optimal” decorations of proofs: suppose we
are given an undecorated proof, and a decoration of its end formula. The
task then is to find a decoration of the whole proof (including a further
decoration of its end formula) in such a way that any other decoration
“extends” this one. Here “extends” just means that some connectives have
been changed into their more informative versions, disregarding polarities.
We show that such an optimal decoration exists, and give an algorithm to
construct it.

We denote the sequent of a proof M by Seq(M); it consists of its context
and end formula.

The proof pattern P(M) of a proof M is the result of marking in c.r.
formulas of M (i.e., those not above a c.i. formula) all occurrences of impli-
cations and universal quantifiers as non-computational, except the “unin-
stantiated” formulas of axioms and theorems. For instance, the induction

MINLOG REFERENCE MANUAL 91

axiom for N consists of the uninstantiated formula ∀cn(P0 →c ∀cn(Pn →c

P (Sn))→c PnN) with a unary predicate variable P and a predicate substi-
tution P 7→ {x | A(x) }. Notice that a proof pattern in most cases is not a
correct proof, because at axioms formulas may not fit.

We say that a formula D extends C if D is obtained from C by changing
some (possibly zero) of its occurrences of non-computational implications
and universal quantifiers into their computational variants →c and ∀c.

A proof N extends M if (i) N and M are the same up to variants of
implications and universal quantifiers in their formulas, and (ii) every c.r.
formula of M is extended by the corresponding one in N . Every proof M
whose proof pattern P(M) is U is called a decoration of U .

Notice that if a proof N extends another one M , then FV(et(N)) is
essentially (that is, up to extensions of assumption formulas) a superset of
FV(et(M)). This can be proven by induction on N .

We assume that every axiom has the property that for every extension of
its formula we can find a further extension which is an instance of an axiom,
and which is the least one under all further extensions that are instances
of axioms. This property clearly holds for axioms whose uninstantiated
formula only has the decorated→c and ∀c, for instance induction. However,
in ∀cn(A(0) →c ∀cn(A(n) →c A(Sn)) →c A(nN)) the given extension of the
four A’s might be different. One needs to pick their “least upper bound” as
further extension. To make this assumption true for the other (introduction
and elimination) axioms we simply add all their extensions as axioms, if
necessary.

One can define a decoration algorithm [28], assigning to every proof pat-
tern U and every extension of its sequent an “optimal” decoration M∞ of
U , which further extends the given extension of its sequent.

Theorem. Under the assumption above, for every proof pattern U and every
extension of its sequent Seq(U) we can find a decoration M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and
(b) M∞ is optimal in the sense that any other decoration M of U whose

sequent Seq(M) extends the given extension of Seq(U) has the property
that M also extends M∞.

The main function for decorating is

decorate proof . opt-decfla-and-name-and-altname

The default case for opt-decfla is the formula of the proof. If opt-decfla
is present, it must be a decoration variant of the formula of the proof. If the
optional argument name-and-altname is present, then in every recursive
call it is checked whether (1) the present proof is an application of the
assumption constant op with name to some args, (2) op applied to args

92 HELMUT SCHWICHTENBERG

proves an extension of decfla, and (3) altop applied to args and some of
decavars is between op applied to args and decfla w.r.t. extension. If so,
a proof based on altop is returned, else one carries on.

An important auxiliary function is proof-to-ppat, used to transform a
proof into its proof pattern. It turns every →, ∀ formula in the given proof
into an →nc, ∀nc formula, including the parts of an assumption constant
which come from its uninstatiated formula. It does not touch the c.i. parts
of the proof, i.e., those which are above a c.i. formula. Recall that the proof
pattern ppat is in general not a proof.

We illustrate the effects of decoration on a simple example (from [28])
involving implications. Consider A → B → A with the trivial proof M :=
λAu1λ

B
u2u1. Clearly the second implication has no computational significance.

We apply the decoration algorithm and specify as extension of Seq(P(M))
the formula A →nc B →nc A. The algorithm detects that the first im-
plication needs to be decorated, since the abstracted assumption variable
is computational. Since the second implication can be left undecorated, a
proof of A→c B →nc A is constructed from M .

A similar phenomenon occurs for A ∧d B → B. Let M be its proof and
U := P(M) its proof pattern. When given the extension A ∧u B →nc B for
Seq(U), the decoration algorithm constructs a correct proof of A∧rB →c B.

10.2. Normalization by evaluation. Normalization of proofs will be done
by reduction to normalization of terms. (1) Construct a term from the
proof. To do this properly, create for every free avar in the given proof
a new variable whose type comes from the formula of the avar; store this
information. Note that in this construction one also has to create new
variables for the bound avars. Similary to avars we have to treat assumption
constants which are not axioms, i.e., theorems or global assumptions. (2)
Normalize the resulting term. (3) Reconstruct a normal proof from this
term, the end formula and the stored information. – The critical variables
are carried along for efficiency reasons.

To assign recursion constants to induction constants, we need to associate
type variables with predicate variables, in such a way that we can later refer
to this assignment. Therefore we carry along a procedure pvar-to-tvar

which remembers the assignment done so far (cf. make-rename).
Due to our distinction between general variables x^0, x^1, x^2, . . . and

variables x0, x1, x2, . . . intended to range over total objects only, η-conversion
of proofs cannot be done via reduction to η-conversion of terms. To see this,

MINLOG REFERENCE MANUAL 93

consider the proof
∀x̂Px̂ x

Px
∀xPx

∀x̂Px̂→ ∀xPx
The proof term is λuλx(ux). If we η-normalize this to λuu, the proven for-
mula would be all ∀x̂Px̂→ ∀x̂Px̂. Therefore we split nbe-normalize-proof
into nbe-normalize-proof-without-eta and proof-to-eta-nf.

Moreover, for a full normalization of proofs (including permutative con-
versions) we need a preprocessing step that η-expands each ex-elim axiom
such that the conclusion is atomic or existential.

We need the following functions.

(proof-and-genavar-var-alist-to-pterm pvar-to-tvar proof)

(npterm-and-var-genavar-alist-and-formula-to-proof

npterm var-genavar-alist crit formula)

(elim-npterm-and-var-genavar-alist-to-proof

npterm var-genavar-alist crit).

Normalization of proofs can be made more efficient if we are interested in
extraction only. To this end we can provide an “extraction-flag”, indicating
whether this is the case. If so, we can disregard (maximal) parts of the proof
without computational content. Accordingly we have

(nbe-normalize-proof proof),

(nbe-normalize-proof-for-extraction proof)

abbreviated np and npe, respectively.
Finally we consider some proof transformations (Prawitz’ simplification

conversions, removal of predecided assumption variables, removal of prede-
cided if-theorems, generalized pruning).

Simplification conversions (Prawitz [27]) make use of the concept of a
permutative assumption constant. It is checked whether one side-proof-
kernel has no free occurrence of any assumption variable bound in this side-
proof. The corresponding function is

(normalize-proof-simp proof).

The function

(proof-to-proof-without-predecided-avars proof)

removes dependencies on assumption variables, and in this way helps to
make normalize-proof-simp useful.

94 HELMUT SCHWICHTENBERG

It can be also useful to remove predecided If’s, including those with True
or False as boolean arguments. This is particularly important in the context
of “pruning” (cf. Chiarabini [8]). We have

(prune proof),

(remove-predecided-if-theorems proof).

For tests it is useful to have a level-wise decomposition of proofs into

subproofs: one level transforms a proof λ~uv ~M into the list (v,M1, . . . ,Mn).
We provide

(proof-to-parts proof . opt-level),

(proof-to-proof-parts proof),

(proof-to-depth proof).

It can also be useful to do normalization by hand, including β-conversion
and idpredconst-elim-intro conversion. The latter uses for nested idpredcon-
stants

(formula-and-psubsts-to-mon-proof proof).

An elim-intro redex occurs when an elim aconst is applied to terms and the
result of applying an intro-aconst to terms and an idpc-proof.

(proof-to-one-step-idpredconst-elim-intro-reduct proof),

(proof-to-one-step-reduct proof),

(proof-to-normal-form proof),

(proof-to-length proof).

10.3. Substitution. In a proof we can substitute

(i) types for type variables (by a type variable substitution tsubst),
(ii) terms for variables (by a substitution subst),

(iii) comprehension terms for predicate variables (by a predicate variable
substitution psubst), and

(iv) proofs for assumption variables (by a assumption variable substitution
asubst).

All these substitutions can be packed together, as an argument topasubst

for proof-substitute. It is assumed that topasubst is admissible, in the
sense of section 2.1.

(aconst-substitute aconst topsubst),

(proof-substitute proof topasubst).

MINLOG REFERENCE MANUAL 95

If we want to substitute for a single variable only (which can be a type-, an
object-, a predicate- or an assumption-variable), then we can use

(proof-subst proof arg val).

The procedure expand-theorems expects a proof and a test whether a
string denotes a theorem to be replaced by its proof. The result is the (nor-
mally quite long) proof obtained by replacing the theorems by their saved
proofs. If opt-name-test is provided, it only expands (non-recursively)
the theorems passing the test. expand-thm expands a single theorem given
by its name and expand-theorems-with-positive-content does what its
name says.

(expand-theorems proof . opt-name-test),

(expand-thm proof thm-name),

(expand-theorems-with-positive-content proof).

10.4. Display. There are many ways to display a proof. We normally use
display-proof for a linear representation, showing the formulas and the
rules used. We also provide a (hopefully) readable type-free lambda ex-
pression via proof-to-expr, and can add useful information with one of
proof-to-expr-with-formulas, proof-to-expr-with-aconsts. In case
the optional proof argument is not present, the current proof is taken in-
stead.

(display-proof . opt-proof) abbreviated dp,

(display-normalized-proof . opt-proof) abbreviated dnp,

(proof-to-expr . opt-proof),

(proof-to-expr-with-formulas . opt-proof),

(proof-to-expr-with-aconsts . opt-proof).

Here display-normalized-proof normalizes the proof first. There are the
following (less useful) display functions:

(display-pterm . opt-proof) abbreviated dpt,

(display-proof-expr . opt-proof) abbreviated dpe,

(display-normalized-pterm . opt-proof) abbreviated dnpt,

(display-normalized-proof-expr . opt-proof) abbreviated dnpe.

rename-avars renames bound assumption variables in terms, formulas
and comprehension terms.

96 HELMUT SCHWICHTENBERG

10.5. Check. When in addition one wants to check the correctness of the
proof, use check-and-display-proof, abbreviated cdp.

(check-and-display-proof . opt-proof-and-ignore-deco-flag).

ignore-deco-flag is set to true as soon as the present proof argument
proves a formula of nulltype. There is a global variable CDP-COMMENT-FLAG

by which one can suppress some of the information cdp is providing. Initially
CDP-COMMENT-FLAG is set to true.

10.6. Classical logic. (proof-of-stab-at formula) generates a proof of
((A → F) → F) → A. For F, T one takes the obvious proof, and for other
atomic formulas the proof using cases on booleans. For all other prime or
existential formulas one takes an instance of the global assumption Stab:
((P → F) → F) → P . Here the argument formula must be unfolded. For
the logical form of falsity we take (proof-of-stab-log-at formula), and
similary for ex-falso-quodlibet we provide

(proof-of-efq-at formula),

(proof-of-efq-log-at formula).

Using these functions we can then define (reduce-efq-and-stab proof),
which reduces all instances of stability and ex-falso-quodlibet axioms in a
proof to instances of these global assumptions with prime or existential
formulas, or (if possible) replaces them by their proofs.

With rm-exc we can transform a proof involving classical existential quan-
tifiers in another one without, i.e., in minimal logic. The Exc-Intro and
Exc-Elim theorems are replaced by their proofs, using expand-theorems.

We now consider the Gödel-Gentzen translation, also known as negative
translation. It allows embed classical logic into minimal logic; more precisely
into its “negative fragment” involving only → and ∀. First we define the
Gödel-Gentzen translation of formulas:

(formula-to-goedel-gentzen-translation formula).

We do not consider ∃̃, because it can be unfolded (is not needed for program
extraction).

Finally we will define the Gödel-Gentzen translation of proofs. To this
end we introduce a further observation (due to Leivant; see Troelstra and
van Dalen [41, Ch.2, Sec.3]) which will be particularly useful for program
extraction from classical proofs. There it will be necessary to transform a
given classical derivation `c A into a minimal logic derivation ` Ag. In
particular, for every assumption constant C used in the given derivation we
have to provide a derivation of Cg. Now for some formulas S – the so-called

MINLOG REFERENCE MANUAL 97

spreading formulas – this is immediate, for we can derive S → Sg, and hence
can use the original assumption constant.

First notice that our formulas may contain predicate variables denoted
by X, which are place holders for comprehension terms, i.e., formulas with
distinguished variables. We use the notation A[X := { ~x | B }] or shortly
A[{ ~x | B }] or even A[B] for substitution of a comprehension term { ~x | B }
for the predicate variable X. Recall that the Gödel-Gentzen translation of
X~t is ¬¬X~t.

Recall also that we view an assumption constant as consisting of an unin-
stantiated formula (e.g., X0→ ∀n(Xn→ X(n+1))→ ∀nXn for induction)
together with a substitution of comprehension terms for predicate variables
(e.g., X 7→ {n | n < n + 1 }). Then in order to obtain a derivation of
Cg for an assumption constant C it suffices to know that its uninstantiated

formula S is spreading, for then we have ` S[~Ag]→ S[~A]g (see the theorem
below) and hence can use the same assumption constant with a different
substitution.

We define spreading formulas S, wiping formulas W and isolating formu-
las I inductively.

S ::= ⊥ | R~t | X~t | S ∧ S | I → S | ∀xS,
W ::= ⊥ | X~t |W ∧W | S →W | ∀xW,
I ::= R~t |W | I ∧ I.

Let S (W, I) be the class of spreading (wiping, isolating) formulas.

Theorem.

` S[~Ag]→ S[~A]g for every spreading formula S,

`W [~A]g →W [~Ag] for every wiping formula W ,

` I[~A]g → ¬¬I[~Ag] for every isolating formula I.

We assume here that all occurrences of predicate variables are substituted.

Proof. By induction on the simultaneous generation of S, W and I. We

write Sg for S[~A]g and S for S[~Ag], and similarly for W and I.
Case ⊥ ∈ S. We must show ` ⊥ → ⊥g. Take λu⊥u.
Case R~t ∈ S. We must show ` R~t→ ¬¬R~t. Take λuR~tλv¬R~t.vu.
Case X~t ∈ S, with X substituted by { ~x | A }. We must show ` Ag[~t]→

Ag[~t], which is trivial.

98 HELMUT SCHWICHTENBERG

Case S1 ∧ S2 ∈ S. We must show ` S1 ∧ S2 → Sg1 ∧ S
g
2 . Take

IH

S1 → Sg1

u : S1 ∧ S2
S1

Sg1

IH

S2 → Sg2

u : S1 ∧ S2
S2

Sg2
Sg1 ∧ S

g
2

Case I → S ∈ S. We must show ` (I → S) → Ig → Sg. Recall that
` ¬¬Sg → Sg by the Stability Lemma, because Sg is negative. Take

Stab
¬¬Sg → Sg

IH
Ig → ¬¬I v : Ig

¬¬I

w1 : ¬Sg

IH
S → Sg

u : I → S w2 : I
S

Sg

⊥ →+w2¬I
⊥ →+w1¬¬Sg

Sg

Case ∀xS ∈ S. We must show ` ∀xS → ∀xSg. Take

IH
S → Sg

u : ∀xS x
S

Sg

Case ⊥ ∈ W. We must show ` ⊥g → ⊥. Take λu⊥u.
Case X~t ∈ W, with X substituted by { ~x | A }. We must show ` Ag[~t]→

Ag[~t], which is trivial.
Case W1 ∧W2 ∈ W. We must show `W g

1 ∧W
g
2 →W1 ∧W2. Take

IH

W g
1 →W1

u : W g
1 ∧W

g
2

W g
1

W1

IH

W g
2 →W2

u : W g
1 ∧W

g
2

W g
2

W2

W1 ∧W2

Case S →W ∈ W. We must show ` (Sg →W g)→ S →W . Take

IH
W g →W

u : Sg →W g

IH
S → Sg v : S

Sg

W g

W

Case ∀xW ∈ W. We must show ` ∀xW g → ∀xW . Take

IH
W g →W

u : ∀xW g x
W g

W

Case R~t ∈ I. We must show ` ¬¬R~t→ ¬¬R~t, which is trivial.

MINLOG REFERENCE MANUAL 99

Case W ∈ I. We must show `W g → ¬¬W , which trivially follows from
the IH `W g →W . Take

v : ¬W

IH
W g →W u : W g

W
⊥

Case I1 ∧ I2 ∈ I. We must show ` Ig1 ∧ I
g
2 → ¬¬(I1 ∧ I2). Take

IH

Ig2 → ¬¬I2
Ig1∧I

g
2

Ig2
¬¬I2

IH

Ig1 → ¬¬I1
Ig1∧I

g
2

Ig1
¬¬I1

¬(I1 ∧ I2)
I1 I2
I1 ∧ I2

⊥
¬I1

⊥
¬I2

⊥
�

This completes the proof.

The theory above is implemented as follows. Simultaneously with sprea-
ding formulas we need to define wiping and isolating formulas:

(spreading-formula? formula),

(wiping-formula? formula),

(isolating-formula? formula),

(spreading-formula-to-proof formula . opt-psubst),

(wiping-formula-to-proof formula . opt-psubst),

(isolating-formula-to-proof formula . opt-psubst).

Using these we can define the Gödel-Gentzen translation:

(proof-to-goedel-gentzen-translation proof).

Notice that the Gödel-Gentzen translation double negates every atom, and
hence may produce triple negations. However, we can systematically replace
triple negations by single ones. The final result then is

(proof-to-reduced-goedel-gentzen-translation proof).

10.7. Existence formulas. In case of existence formulas ∃~x1A1 . . . ∃~xnAn
and conclusion B we recursively construct a proof of

∃~x1A1 → . . . ∃~xnAn → ∀~x1,...,~xn(A1 → · · · → An → B)→ B

by means of

(ex-formulas-and-concl-to-ex-elim-proof x . rest).

100 HELMUT SCHWICHTENBERG

10.8. Basic proof constructions. For every formula A, a proof of F→ A
(i.e., ex-falso-quodlibet) is constructed, and also proofs that constructors
are injective and have disjoint ranges. For ex-falso-quodlibet we use

(formula-to-efq-proof formula).

To make this work easily for (simultaneous) inductive definitions, we as-
sume that taking the initial clause of each inductively defined predicate
constant produces clauses without recursive calls which are terminating.
This is checked in add-ids.

Given proofs of Leibniz equalities r1 ≡ s1, . . . , rn ≡ sn and a predicate-
proof of Ir1 . . . rn we construct a proof of Is1 . . . sn using EqDCompat by
means of

(eqd-proofs-and-predicate-proof-to-proof eqd-proofs

predicate-proof)

To generate proofs of the injectivity of constructors we have

(constructor-eqd-proof-to-args-eqd-proof eqd-proof

. opt-index).

It expects an eqd-proof of C~r ≡ C~s with the same constructor C and C~r of
ground type, and an optional index (with default value 0). The result is a
proof of ri ≡ si.
(constructor-eqd-imp-args-eqd-proof eqd-formula . opt-index)

is similar, but expects an eqd-formula rather than an eqd-proof and proves
the implication C~r ≡ C~s→ ri ≡ si.

Finally we have

(constructors-overlap-imp-falsity-proof eqd-formula).

It generates a proof of an implication from an equality between two con-
structor terms with different constructors at their heads to falsity. In this
sense we provide proofs that constructors have disjoint ranges.

11. Interactive theorem proving with partial proofs

A partial proof is a proof with holes, i.e., special assumption variables
(called goal variables) v, v1, v2 . . . whose formulas must be closed. We
assume that every goal variable v has a single occurrence in the proof. We
then select a (not necessarily maximal) subproof vx1...xn with distinct
object or assumption variables x1...xn. Such a subproof is called a goal .
When interactively developing a partial proof, a goal vx1...xn is replaced
by another partial proof, whose context is a subset of x1...xn (i.e., the
context of the goal with v removed).

MINLOG REFERENCE MANUAL 101

To gain some flexibility when working on our goals, we do not at each
step of an interactive proof development traverse the partial proof searching
for the remaining goals, but rather keep a list of all open goals together with
their numbers as we go along. We maintain a global variable PPROOF-STATE

containing a list of three elements: (1) num-goals, an alist of entries (number
goal drop-info hypname-info), (2) proof and (3) maxgoal, the maximal
goal number used.

To construct a goal and access its components we have

(make-goal-in-avar-form avar),

(make-goal-in-all-elim-form goal uservar),

(make-goal-in-allnc-elim-form goal uservar),

(make-goal-in-imp-elim-form avar),

(make-goal-in-impnc-elim-form avar),

(mk-goal-in-elim-form . elim-items),

(goal-to-goalvar goal),

(goal-to-context goal),

(goal-to-formula goal).

For interactively building proofs we need

(goal=? proof goal),

(goal-subst proof goal proof1).

Initialization of the global variable PPROOF-STATE and access to its parts is
possible via

(make-pproof-state num-goals proof maxgoal),

(pproof-state-to-num-goals),

(pproof-state-to-proof),

(pproof-state-to-formula).

At each stage of an interactive proof development we have access to the
current proof and the current goal by executing

(current-proof),

(current-goal).

We initially supply our axioms (see 9.1) as theorems, and also

AtomTrue: all boole^(boole^ -> boole^ =True)

AtomFalse: all boole((boole -> F) -> boole=False)

There is a global constant THEOREMS containing all theorems known to the
system, and also their proofs. Similarly we maintain a global constant

102 HELMUT SCHWICHTENBERG

GLOBAL-ASSUMPTIONS, which initially contains the global assumptions listed
in 9.3.

For display we have

(display-current-goal) abbreviated dcg,

(display-current-goal-with-normalized-formulas),

abbreviated dcg and dcgnf, respectively. One can switch to a different
display style for the current goal by setting COQ-GOAL-DISPLAY to true.

We list some commands for interactively building proofs.

11.1. set-goal. An interactive proof starts with setting the goal

(set-goal string-or-formula),

i.e., with setting a goal. The goal-formula might be given by its display
string. It should be closed; if not, universal quantifiers are inserted auto-
matically.

11.2. normalize-goal. (normalize-goal . ng-info) (short: ng) takes
optional arguments ng-info. If there are none, the goal formula and all
hypotheses are normalized. Otherwise exactly those among the hypotheses
and the goal formula are normalized whose numbers (or names, or just #t

for the goal formula) are listed as additional arguments.

11.3. assume. With (assume x1 ...) we can move universally quantified
variables and hypotheses into the context. The variables must be given
names (known to the parser as valid variable names for the given type), and
the hypotheses should be identified by numbers or strings.

Internally, assume extends the partial proof under construction by in-
troduction rules. To every quantifier ∀x (resp. ∀ncy) in the present goal

corresponds an application of the ∀+-rule (resp. (∀nc)+-rule). To meet the
variable condition for (∀nc)+-rules, the ∀nc-variable y in the assumed context
is not admitted as a computational variable in a future proof of the present
goal. Therefore it is displayed in braces, as {y}.

11.4. use. In (use x . elab-path-and-terms), x is one of the following.

(i) A number or string identifying a hypothesis form the context.
(ii) A formula with free variables from the context, generating a new goal.

(iii) The name of a theorem or global assumption.
(iv) A closed proof.

It is checked whether some final part of this used formula has the form of (or
“matches”) the goal, where if (i) x determines a hypothesis or is the formula
for a new goal, then all its free topvars are rigid, and if (ii) x determines a
closed proof, then all its (implicitly generalized) tpvars are flexible, except

MINLOG REFERENCE MANUAL 103

the predicate variable ⊥ (written bot) from falsity-log. elab-path-and-
terms is a list consisting of symbols left or right, giving directions in case
the used formula contains conjunctions, and of terms/cterms to be substi-
tuted for the variables that cannot be instantiated by matching. Matching is
done for type and object variables first (via match), and in case this fails with
huet-match next. There is a similar (use2 x . elab-path-and-terms),
which only applies huet-match.

11.5. use-with. This is a more verbose form of use, where the terms are
not inferred via unification, but have to be given explicitly. Also, for the
instantiated premises one can indicate how they are to come about. So in
(use-with x . x-list), x is one of the following.

(i) A number or string identifying a hypothesis form the context.
(ii) The name of a theorem or global assumption. If it is a global assump-

tion whose final conclusion is a nullary predicate variable distinct from
bot (e.g. EfqLog or StabLog), this predicate variable is substituted by
the goal formula.

(iii) A closed proof.
(iv) A formula with free variables from the context, generating a new goal.

Moreover x-list is a list consisting of

(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,
(iii) a closed proof,
(iv) the string “?” (value of DEFAULT-GOAL-NAME), generating a new goal,
(v) a symbol left or right,
(vi) a term, whose free variables are added to the context,

(vii) a type, which is substituted for the first type variable,
(viii) a comprehension term, which is substituted for the first predicate vari-

able.

Internally x-and-x-list-to-proof-and-new-num-goals-and-maxgoal will
be used by use-with (and also by inst-with) to construct the new data.
It appears in error messages if the arguments of use-with are incorrect.

Notice that new free variables not in the ordered context can be intro-
duced in use-with. They will be present in the newly generated goals. The
reason is that proofs should be allowed to contain free variables. This is
necessary to allow logic in ground types where no constant is available (for
instance to prove ∀xPx→ ∀x¬Px→ ⊥).

Notice also that there are situations where use-with can be applied but use
cannot. For an example, consider the goal P (S(k + l)) with the hypothesis
∀lP (k + l) in the context. Then use cannot find the term Sl by matching;

104 HELMUT SCHWICHTENBERG

however, applying use-with to the hypothesis and the term Sl succeeds (since
k + Sl and S(k + l) have the same normal form).

11.6. inst-with. inst-with does for forward chaining the same as use-with
for backward chaining. It replaces the present goal by a new one, with one
additional hypothesis obtained by instantiating a previous one; this effect
could also be obtained by cut. In (inst-with x . x-list), x is

(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,

(iii) a closed proof,
(iv) a formula with free variables from the context, generating a new goal.

and x-list is a list consisting of

(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,

(iii) a closed proof,
(iv) the string “?” (value of DEFAULT-GOAL-NAME), generating a new goal,
(v) a symbol left or right,

(vi) a term, whose free variables are added to the context,
(vii) a type, which is substituted for the first type variable,
(viii) a comprehension term, which is substituted for the first predicate vari-

able.

11.7. inst-with-to. inst-with-to expects a string as its last argument,
which is used (via name-hyp) to name the newly introduced instantiated
hypothesis.

11.8. cut. The command (cut A) replaces the goal B by the two new goals
A and A→ B, with A→ B to be proved first.

11.9. assert. The command (assert A) replaces the goal B by the two
new goals A and A→ B, with A to be proved first.

11.10. strip. To move (all or n) universally quantified variables and hy-
potheses of the current goal into the context, we use the command (strip)

or (strip n).

11.11. drop. In (drop . x-list), x-list is a list of numbers or strings iden-
tifying hypotheses from the context. A new goal is created, which differs
from the previous one only in display aspects: the listed hypotheses are
hidden (but still present). If x-list is empty, all hypotheses are hidden.

11.12. name-hyp. The command name-hyp expects an index i and a string.
Then a new goal is created, which differs from the previous one only in
display aspects: the string is used to label the ith hypothesis.

MINLOG REFERENCE MANUAL 105

11.13. split, msplit. The command (split) expects as goal a conjunction
A ∧ B or an AndConst-atom, and splits it into two new goals A and B.
We allow multiple split (msplit) over a conjunctive formula (all conjuncts
connected through & which are at the same level are split at once).

11.14. get. To be able to work on a goal different from that on top of the
goal stack, we can move it up using (get n).

11.15. undo. With (undo . n), the last n steps of an interactive proof
can be made undone. (undo) has the same effect as (undo 1). (undoto n)

allows to go back to a previous pproof state whose (top) goal had number
n.

11.16. ind. (ind) expects a goal ∀xιA(x) with x total and ι an algebra. Let
c1, . . . , cn be the constructors of the algebra. Then n new goals ∀~xi(A(x1i)→
· · · → A(xki) → A(ci~xi) are generated. (ind t) expects a goal A(t). It
computes the algebra ι as type of the term t. Then again the n new goals
above are generated.

11.17. simind. (simind all-formula1 ...) expects a goal ∀xιA(x) with
x total and ι an algebra. We have to provide as arguments the other all-
formulas to be proved simultaneously with the goal.

11.18. gind. (gind h) expects a goal ∀~xA(~x) with ~x total. It generates a
new goal Progh{ ~x | A(~x) } where h is a term of type ~ρ→ N, xi has type ρi
and Progh{ ~x | A(~x) } := ∀~x(∀~y(h~y < h~x→ A(~y))→ A(~x)).

(gind h t1 ...tn) expects a goal A(~t) and generates the same goal as
for (gind h) with the formula ∀~xA(x).

11.19. intro. (intro i . terms) expects as goal an inductively defined
predicate. The i-th introduction axiom for this predicate is applied, via use

(hence terms may have to be provided). (intro-with i . x-list) does
the same, via use-with.

11.20. elim. Recall that I~r provides (i) a type substitution, (ii) a predicate
instantiation, and (iii) the list ~r of argument terms. In (elim idhyp) idhyp
is, with an inductively defined predicate I,

(i) a number or string identifying a hypothesis I~r form the context
(ii) the name of a global assumption or theorem I~r;

(iii) a closed proof of a formula I~r;
(iv) a formula I~r with free variables from the context, generating a new

goal.

106 HELMUT SCHWICHTENBERG

Then the (strengthened) elimination axiom is used with ~r for ~x and idhyp
for I~r to prove the goal A(~r), leaving the instantiated (with { ~x | A(~x) })
clauses as new goals.

(elim) expects a goal I~r → A(~r). Then the (strengthened) clauses are
generated as new goals, via use-with.

In case of simultaneously inductively defined predicate constants we can
provide other imp-formulas to be proved simultaneously with the given one.
Then the (strengthened) simplified clauses are generated as new goals.

11.21. inversion, simplified-inversion. In

(inversion x . imp-formulas)

it is assumed that x is one of the following.

(i) A number or string identifying a hypothesis I~r form the context.
(ii) The name of a theorem or global assumption stating I~r.

(iii) A closed proof of I~r.
(iv) A formula I~r with free vars from the context, generating a new goal.

imp-formulas have the form J~s → B. Here I, J are inductively defined
predicates, with clauses K1, . . . ,Kn. Now one uses the elim-aconst for I~x→
~x = ~r → A with A the goal formula and the additional implications J~y →
~y = ~s→ B, with “?” for the clauses, ~r for ~x and proofs for ~r = ~r, to obtain
the goal. Then many of the generated goals for the clauses will contain
false premises, coming from substituted equations ~x = ~r, and are proved
automatically.

imp-formulas not provided are taken as J~x→ J~x. Generated clauses for
such J are proved automatically from the intro axioms (the rec-prems are
not needed).

For simultaneous inductively defined predicates (simplified-inversion
x . imp-formulas) does not add imp-formulas J~x→ J~x to form the elim-
aconst. Then the (new) imp-formulas-to-uninst-elim-formulas-etc

generates simplified clauses. In some special cases this suffices.

11.22. coind. Recall that J(~r) with a coinductively defined predicate J
provides

(i) a type substitution,
(ii) a predicate instantiation, and

(iii) the list ~r of argument terms.

(coind hyp) expects a goal J(~r) with a coinductively defined predicate J ,
and hyp is expected to be

(i) a number or string identifying a hypothesis A(~r) form the context;
(ii) the name of a global assumption or theorem A(~r);

(iii) a closed proof of a formula A(~r);

MINLOG REFERENCE MANUAL 107

(iv) a formula A(~r) with free variables from the context, generating a new
goal.

(coind) expects an inst-imp-formula A(~r)→ J~r as goal. Then the greatest-
fixed-point axiom for J is used: P~x → ∀~x(P~x → C(P)) → J~x with C(J)
the defining clause for J . Substitute { ~x | A(~x) } for P , and use A(~x) →
∀~x(A(~x) → C({ ~x | A(~x) })) → J~x (i.e., its universal closure). After an
appropriate application (~r for ~x) we are left with a new goal saying that
{ ~x | A(~x) } satisfies the defining clause for J .

In case of simultaneous coinductively defined predicates we can provide
other imp-formulas to be proved simultaneously with the given one. Then
their clauses are generated as new goals.

11.23. ex-intro. In (ex-intro term), the user provides a term to be used
for the present (existential) goal.

11.24. ex-elim. In (ex-elim x), x is

(i) a number or string identifying an existential hypothesis from the con-
text,

(ii) the name of an existential global assumption or theorem,
(iii) a closed proof on an existential formula,
(iv) an existential formula with free variables from the context, generating

a new goal.

Let ∃yA be the existential formula identified by x. The user is then asked
to provide a proof for the present goal, assuming that a y satisfying A is
available.

11.25. by-assume. Suppose we prove a goal from an existential formula
∃xA, ∃dxA, ∃rxA, ∃lxA, ∃uxA or ∃̃x1,...,xn(A1 ∧̃ . . . ∧̃Am). The natural way to
use this hypothesis is to say “by the existential hypothesis assume we have an
x satisfying A” or “by . . . assume we have x1, . . . , xn satisfying A1, . . . , Am”.
Correspondingly we provide (by-assume x y u). Here x (as in ex-elim)
identifies an existential hypothesis, and we assume (i.e., add to the context)
the variable y and – with label u – the kernel A.

Example (introducing abbreviations). Suppose that in a proof we want
to abbreviate a (complex) term t by a variable x. Then do

(assert "ex x x=t")

(ex-intro (pt "t"))

(use "Truth")

(assume "ExHyp")

(by-assume "ExHyp" "x" "x-Def")

Now we have x and x-Def: x = t in the context, and can work with x rather
than the term t.

108 HELMUT SCHWICHTENBERG

11.26. cases. (cases) expects a goal formula ∀xA with x of an algebra type
and total. Let c1, . . . , cn be the constructors of the algebra. Then n new
goals ∀~xiA(ci~xi) are generated. (cases t) expects a goal A(t) with t a total
term. If t is a boolean term, the goal A(t) is replaced by the two new goals
atom(t) → A(tt) and (atom(t) → F) → A(ff). If t is a total non-boolean
term, cases is called with the all-formula ∀x(x = t→ A(x)).

(cases ’auto) expects an atomic goal and checks whether its boolean
kernel contains an if-term whose test is neither an if-term nor contains bound
variables. With the first such test (cases test) is called.

11.27. casedist. (casedist t) replaces the goal A containing a boolean
term t by two new goals atom(t)→ A(tt) and (atom(t)→ F)→ A(ff).

11.28. simp. In (simp opt-dir x . elab-path-and-terms), the optio-
nal argument opt-dir is either the string “<-” or missing. x is

(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,

(iii) a closed proof,
(iv) a formula with free variables from the context, generating a new goal.

The optional elab-path-and-terms is a list consisting of symbols left or
right, giving directions in case the used formula contains conjunctions, and
of terms. The universal quantifiers of the used formula are instantiated
with appropriate terms to match a part of the goal. The terms provided are
substituted for those variables that cannot be inferred. For the instantiated
premises new goals are created. This generates a used formula, which is to
be an atom, a negated atom or t ≈ s. If it as a (negated) atom, it is checked
whether the kernel or its normal form is present in the goal. If so, it is
replaced by T (or F). If it is an equality t = s or t ≈ s with t or its normal
form present in the goal, t is replaced by s. In case “<-” exchange t and s.
Example: for f of type nat=>boole consider the situation

f n m EqHyp:n=m

fHyp:f n

?_2:[if (f m) False True]=f n

Then the command

(simp "EqHyp")

generates the a new goal with n replaced by m:

[if (f m) False True]=f m

We can also change the direction: the command

(simp "<-" "EqHyp")

generates the a new goal with m replaced by n:

MINLOG REFERENCE MANUAL 109

[if (f n) False True]=f n

11.29. simp-with. This is a more verbose form of simp, where the terms
are not inferred via matching, but have to be given explicitly. In fact, simp is
defined via simp-with. Also, for the instantiated premises one can indicate
how they are to come about. So in (simp-with opt-dir x . x-list),
opt-dir and x are as in simp (except that the formula of x must be an atom,
a negated atom or t ≈ s), and x-list is a list consisting of

(i) a number or string identifying a hypothesis form the context,
(ii) the name of a theorem or global assumption,

(iii) a closed proof,
(iv) the string “?” (value of DEFAULT-GOAL-NAME), generating a new goal,
(v) a symbol left or right,
(vi) a term, whose free variables are added to the context,

(vii) a type, which is substituted for the first type variable,
(viii) a comprehension term, which is substituted for the first predicate vari-

able.

11.30. simphyp, simphyp-to. simphyp does for forward chaining the same
as simp for backward chaining. It replaces the present goal by a new one,
with one additional hypothesis obtained by simplifying a previous one. No-
tice that this effect could also be obtained by cut or assert. In (simphyp

hyp opt-dir x . elab-path-and-terms), hyp is one of the following.

(i) A number or string identifying a hypothesis form the context.
(ii) The name of a theorem or global assumption, but not one whose final

conclusion is a predicate variable.
(iii) A closed proof.
(iv) A formula with free variables from the context, generating a new goal.

simphyp-to expects a string as its last argument, which is used (via name-hyp)
to name the newly introduced simplified hypothesis. Example: if in the sit-
uation in 11.28 above we type

(simphyp-to "fHyp" "EqHyp" "fHypSimp")

we obtain as new goal

f n m EqHyp:n=m

fHyp:f n

fHypSimp:f m

?_2:[if (f m) False True]=f n

11.31. simphyp-with, simphyp-with-to. simphyp-with is a more ver-
bose form of simphyp, where the terms are not inferred via matching, but
have to be given explicitly. simphyp-with-to again expects a string as

110 HELMUT SCHWICHTENBERG

its last argument, to be used as name for the newly introduced simplified
hypothesis.

11.32. min-pr. In (min-pr x measure), x is

(i) a number or string identifying a classical existential hypothesis from
the context,

(ii) the name of a classical existential global assumption or theorem,
(iii) a closed proof on a classical existential formula,
(iv) a classical existential formula with free variables from the context,

generating a new goal.

The result is a new implicational goal, whose premise provides the (classical)
existence of instances with least measure.

We also provide exc-formula-to-min-pr-proof. It computes first a
gind-aconst (an axiom or a theorem) and from this a proof of the minimum
principle.

11.33. by-assume-minimal-wrt. For convenience in classical arguments
there is (by-assume-minimal-wrt exc-hyp . rest) where rest may be
called varnames-and-measure-and-minhyp-and-hyps. It is meant for the fol-
lowing situation. Suppose we are proving a goal G from a classical existential

hypothesis ∃̃~x ~A. Then by the minimum principle we can assume that we

have ~x which are minimal w.r.t. a measure h such that ~A are satisfied.
We also provide make-gind-aconst. It takes a positive integer n and re-

turns an assumption constant for general induction w.r.t. a measure function
of type α1 → . . .→ αn → N.

Finally we provide make-min-pr-aconst. It takes positive integers m,n
and returns an assumption constant for the minimum principle w.r.t. a mea-
sure function of type α1 → . . .→ αn → N.

11.34. exc-intro. In (exc-intro terms), the user provides terms to be
used for the present (classical existential) goal. Moreover we also provide
make-exc-intro-aconst and exc-formula-to-exc-intro-aconst

11.35. exc-elim. In (exc-elim x), x is

(i) a number or string identifying a classical existential hypothesis from
the context,

(ii) the name of a classical existential global assumption or theorem,
(iii) a closed proof on a classical existential formula,
(iv) a classical existential formula with free variables from the context,

generating a new goal.

Let ∃̃~y ~A be the classical existential formula identified by x. The user is
then asked to provide a proof for the present goal, assuming that terms ~y

MINLOG REFERENCE MANUAL 111

satisfying ~A are available. Moreover we also provide make-exc-elim-aconst
and exc-formula-to-exc-elim-aconst.

11.36. pair-elim. In (pair-elim), a goal ∀pP (p) is replaced by the new
goal ∀x1,x2P (〈x1, x2〉).

11.37. admit. (admit) temporarily accepts the present goal, by turning it
into a global assumption.

11.38. search. We provide a proof search tool search based on Huet’s [17]
unification algorithm for the simply typed lambda calculus; its underlying
theory is explained in 12. (search m (name1 m1) ...) expects for m a
default value for multiplicity (i.e., how often assumptions are to be used),
for name1 . . .

(i) numbers of hypotheses from the present context or
(ii) names for theorems or global assumptions,

and for m1 . . . multiplicities (positive integers for global assumptions or
theorems). A search is started for a proof of the goal formula from the
given hypotheses with the given multiplicities and in addition from the other
hypotheses (but not any other global assumptions or theorems) with m
or mult-default. To exclude a hypothesis from being tried, list it with
multiplicity 0. One can trace search by setting VERBOSE-SEARCH to true.

11.39. auto. It can be convenient to automate (the easy cases of an) inter-
active proof development by iterating search as long as it is successful in
finding a proof. Then the first goal where it failed is presented as the new
goal. (auto m (name1 m1) ...) takes the same arguments as search.

11.40. prop. prop searches for a proof of the current goal in minimal propo-
sitional logic. In particular it provides easy access to the axiom of truth for
proving T and to ex-falso-quodlibed and proof-by-contradiction. The search
meachnism is based on work of Hudelmaier [15, 19, 16] and Dyckhoff [11].
If the search does not succeed, the same is done for intuitionistic proposi-
tional logic (by adding ex-falso-quodlibet assumptions to the context). If it
does not succeed again, it does the same for classical propositional logic (by
adding stability assumptions to the context).

11.41. efproof. efproof constructs a proof of the present goal from falsity
F, which must be part of the context.

112 HELMUT SCHWICHTENBERG

11.42. def, defnc. def is used to introduce an abbreviation of a term t
by a variable x of the same type. The syntax is that def is called with
two strings, the first for the variable and the second for the term. This
adds a context item x=t with name xDef. defnc does the same, with x a
non-computational variable.

12. Unification and proof search

We describe a proof search method suitable for minimal logic with higher
order functionals. It is based on Huet’s [17] unification algorithm for the
simply typed lambda calculus.

Huet’s unification algorithm does not terminate in general; this must be
the case, since it is well known that higher order unification is undecidable.
However, non-termination can be avoided if we restrict ourselves to a certain
fragment of higher order (simply typed) minimal logic. This fragment is
determined by requiring that every higher order variable Y can only occur
in a context Y ~x, where ~x are distinct bound variables in the scope of the
operator binding Y , and of opposite polarity. Note that for first order logic
this restriction does not mean anything, since there are no higher order
variables. However, when designing a proof search algorithm for first order
logic only, one is naturally led into this fragment of higher order logic, where
the algorithm works as well.

In this section we only present the algorithms and state their properties.
Proofs can be found in [30].

12.1. Huet’s unification algorithm. We work in the simply typed λ-
calculus, with the usual conventions. For instance, whenever we write a
term we assume that it is correctly typed. Substitutions are denoted by
ϕ,ψ, ρ. The result of applying a substitution ϕ to a term r or a formula A
is written as rϕ or Aϕ, with the understanding that after the substitution
all terms are brought into long normal form.
Q always denotes a ∀∃∀-prefix, say ∀~x∃~y∀~z, with distinct variables. We

call ~x the signature variables, ~y the flexible variables and ~z the forbidden
variables of Q, and write Q∃ for the existential part ∃~y of Q. A variable is
called rigid if it is either a signature variable or else a forbidden variable.

A Q-term is a term with all its free variables in Q, and similarly a Q-
formula is a formula with all its free variables in Q. A Q-substitution is a
substitution of Q-terms.

A unification problem U consists of a ∀∃∀-prefix Q and a conjunction C
of equations between Q-terms of the same type, i.e.,

∧∧n
i=1 ri = si. We may

assume that each such equation is of the form λ~xr = λ~xs with the same ~x
(which may be empty) and r, s of ground type.

MINLOG REFERENCE MANUAL 113

A solution to such a unification problem U is a Q-substitution ϕ such
that for every i, riϕ = siϕ holds (i.e., riϕ and siϕ have the same normal
form). We sometimes write C as ~r = ~s, and (for obvious reasons) call it a
list of unification pairs.

We now define the unification algorithm. It takes a unification problem
U = QC and produces a not necessarily well-founded tree (called matching
tree by Huet [17]) with nodes labelled by unification problems and vertices
labelled by substitutions.

Definition (Unification algorithm). We distinguish cases according to the
form of the unification problem, and either give the transition done by the
algorithm, or else state that it fails.

Case identity, i.e., Q(r = r ∧ C). Then

Q(r = r ∧ C) =⇒ε QC.

Case ξ, i.e., Q(λ~xr = λ~xs ∧ C). We may assume here that the bound
variables ~x are the same on both sides.

Q(λ~x r = λ~x s ∧ C) =⇒ε Q∀~x(r = s ∧ C).

Case rigid-rigid, i.e., Q(f~r = g~s ∧ C) with both f and g rigid, that is
either a signature variable or else a forbidden variable. If f is different from
g then fail. If f equals g,

Q(f~r = f~s ∧ C) =⇒ε Q(~r = ~s ∧ C).

Case flex-rigid, i.e., Q(u~r = f~s ∧ C) with f rigid. Then the algorithm
branches into one imitation branch and m projection branches, where r =
r1, . . . , rm. Imitation replaces the flexible head u, using the substitution ρ =

[u := λ~x(f(h1~x) . . . (hn~x))] with new variables ~h and ~x. This is only allowed
if f is a signature (and not a forbidden) variable. For ri we have a projection
if and only if the final value type of ri is the (ground) type of f~s. Then the
i-th projections pulls ri in front, by ρ = [u := λ~x(xi(h1~x) . . . (hni~x))]. In
each of these branches we have

Q(u~r = f~s ∧ C) =⇒ρ Q
′(u~r = f~s ∧ C)ρ,

where Q′ is obtained from Q by removing ∃u and adding ∃~h.
Case flex-flex, i.e., Q(u~r = v~s ∧ C). If there is a first flex-rigid or rigid-

flex equation in C, pull this equation (possibly swapped) to the front and
apply case flex-rigid. Otherwise, i.e., if all equations are between terms
with flexible heads, pick a new variable z of ground type and let ρ be the
substitution mapping each of these flexible heads u to λ~xz.

Q(u~r = v~s ∧ C) =⇒ρ Q∅.
This concludes the definition of the unification algorithm.

114 HELMUT SCHWICHTENBERG

Clearly ρ is defined on flexible variables of Q only, and its value terms
have no free occurrences of forbidden variables from Q. One can prove
correctness and completeness of this algorithm.

Theorem (Huet). Let a unification problem U consisting of a ∀∃∀-prefix Q
and a list ~r = ~s of unification pairs be given. Then either

(a) the unification algorithm can make a transition, and
(i) (correctness) for every transition U =⇒ρ U ′ and U ′-solution ϕ′ the

substitution (ρ ◦ ϕ′)�Q∃ is a U-solution, and
(ii) (completeness) for every U-solution ϕ there is a transition U =⇒ρ

U ′ and U ′-solution ϕ′ such that ϕ = (ρ ◦ ϕ′)�Q∃, and moreover
µ(ϕ′) ≤ µ(ϕ) with < in case flex-rigid, or else

(b) the unification algorithm fails, and there is no U-solution, or else
(c) the unification algorithm succeeds, and ~r = ~s is empty.

Here µ(ϕ) denotes the number of applications in the value terms of ϕ.

Corollary. Given a unification problem U = QC, and a success node in the
matching tree, labelled with a prefix Q′ (i.e., a unification problem U ′ with no
unification pairs). Then by composing the substitution labels on the branch
leading to this node we obtain a pair (Q′, ρ) with a “transition” substitution
ρ and such that for any Q′-substitution ϕ′, (ρ ◦ ϕ′)�Q∃ is an U-solution.
Moreover, every U-solution can be obtained in this way, for an appropriate
success node. Since the empty substitution is a Q′-substitution, ρ�Q∃ is a
U-solution, which is most general in the sense stated.

12.2. The pattern unification algorithm. We restrict the notion of a
Q-term as follows. Q-terms are inductively defined by the following clauses.

• If u is a universally quantified variable in Q or a constant, and ~r are
Q-terms, then u~r is a Q-term.
• For any flexible variable y and distinct forbidden variables ~z from
Q, y~z is a Q-term.
• If r is a Q∀z-term, then λzr is a Q-term.

Explicitly, r is a Q-term iff all its free variables are in Q, and for every
subterm y~r of r with y free in r and flexible in Q, the ~r are distinct variables
either λ-bound in r (such that y~r is in the scope of this λ) or else forbidden
in Q.
Q-goals and Q-clauses are simultaneously defined by

• If ~r are Q-terms, then P~r is a Q-goal as well as a Q-clause.
• If D is a Q-clause and G is a Q-goal, then D → G is a Q-goal.
• If G is a Q-goal and D is a Q-clause, then G→ D is a Q-clause.
• If G is a Q∀x-goal, then ∀xG is a Q-goal.
• If D[y := Y ~z] is a ∀~x∃~y,Y ∀~z -clause, then ∀yD is a ∀~x∃~y∀~z -clause.

MINLOG REFERENCE MANUAL 115

Explicitly, a formula A is a Q-goal iff all its free variables are in Q, and for
every subterm y~r of A with y either existentially bound in A (with y~r in the
scope) or else free in A and flexible in Q, the ~r are distinct variables either
λ- or universally bound in A (such that y~r is in the scope) or else free in A
and forbidden in Q.

A Q-substitution is a substitution of Q-terms.
A pattern unification problem U consists of a ∀∃∀-prefix Q and a conjunc-

tion C of equations between Q-terms of the same type, i.e.,
∧∧n

i=1(ri = si).
We may assume that each such equation is of the form λ~xr = λ~xs with the
same ~x (which may be empty) and r, s of ground type.

A solution to such a unification problem U is a Q-substitution ϕ such
that for every i, riϕ = siϕ holds (i.e., riϕ and siϕ have the same normal
form). We sometimes write C as ~r = ~s, and (for obvious reasons) call it a
list of unification pairs.

We now define the pattern unification algorithm. It takes a unification
problem U = QC and returns a substitution ρ and another unification prob-
lem U ′ = Q′C ′. Note that ρ will be neither a Q-substitution nor a Q′-
substitution, but will have the property that

(a) ρ is defined on flexible variables of Q only, and its value terms have no
free occurrences of forbidden variables from Q,

(b) if G is a Q-goal, then Gρ is a Q′-goal, and
(c) whenever ϕ′ is a U ′-solution, then (ρ ◦ ϕ′)�Q∃ is a U-solution.

Definition (Pattern unification algorithm). We distinguish cases according
to the form of the unification problem, and either give the transition done
by the algorithm, or else state that it fails.

Case identity, i.e., Q(r = r ∧ C). Then

Q(r = r ∧ C) =⇒ε QC.

Case ξ, i.e., Q(λ~xr = λ~xs ∧ C). We may assume here that the bound
variables ~x are the same on both sides.

Q(λ~xr = λ~xs ∧ C) =⇒ε Q(∀~x(r = s) ∧ C).

Case rigid-rigid, i.e., Q(f~r = f~s ∧ C) with f either a signature variable
or else a forbidden variable.

Q(f~r = f~s ∧ C) =⇒ε Q(~r = ~s ∧ C).

Case flex-flex with equal heads, i.e., Q(u~y = u~z ∧ C).

Q(u~y = u~z ∧ C) =⇒ρ Q
′(Cρ)

with ρ = [u := λ~y(u
′ ~w)], Q′ is Q with ∃u replaced by ∃u′ , and ~w an enu-

meration of those yi which are identical to zi (i.e., the variable at the same
position in ~z). Notice that λ~y(u

′ ~w) = λ~z(u
′ ~w).

116 HELMUT SCHWICHTENBERG

Case flex-flex with different heads, i.e., Q(u~y = v~z ∧ C).

Q(u~y = v~z ∧ C) =⇒ρ Q
′Cρ,

where ρ and Q′ are defined as follows. Let ~w be an enumeration of the
variables both in ~y and in ~z. Then ρ = [u, v := λ~y(u

′ ~w), λ~z(u
′ ~w)], and Q′

is Q with ∃u,∃v removed and ∃u′ inserted.
Case flex-rigid, i.e., Q(u~y = t ∧ C) with t rigid, i.e., not of the form v~z

with flexible v.
Subcase occurrence check: t contains (a critical subterm with head) u.

Then fail.
Subcase pruning: t contains a subterm v ~w1z ~w2 with ∃v in Q, and z free

in t but not in ~y.

Q(u~y = t ∧ C) =⇒ρ Q
′(u~y = tρ ∧ Cρ)

where ρ = [v := λ~w1
λzλ~w2

(v′ ~w1 ~w2)], Q
′ is Q with ∃v replaced by ∃v′ .

Subcase pruning impossible: λ~yt (after all pruning steps are done still)
has a free occurrence of a forbidden variable z. Then fail.

Subcase explicit definition: otherwise.

Q(u~y = t ∧ C) =⇒ρ Q
′Cρ

where ρ = [u := λ~yt], and Q′ is obtained from Q by removing ∃u. This
concludes the definition of the pattern unification algorithm.

One can prove that this algorithm indeed has the three properties stated
above. The first one (ρ is defined on flexible variables of Q only, and its value
terms have no free occurrences of forbidden variables from Q) is obvious from
the definition. We now state the second one; the third one will be stated
next.

Lemma (Q′-goals). If Q =⇒ρ Q
′ and G is a Q-goal, then Gρ is a Q′-goal.

Let Q −→ρ Q
′ mean that for some C,C ′ we have QC =⇒ρ Q

′C ′. Write
Q −→∗ρ Q′ if there are ρ1, . . . , ρn and Q1, . . . , Qn−1 such that

Q −→ρ1 Q1 −→ρ2 . . . −→ρn−1 Qn−1 −→ρn Q
′,

and ρ = ρ1 ◦ · · · ◦ ρn.

Corollary. If Q −→∗ρ Q′ and G is a Q-goal, then Gρ is a Q′-goal.

Lemma. Let a unification problem U consisting of a ∀∃∀-prefix Q and a list
~r = ~s of unification pairs be given. Then either

(a) the unification algorithm makes a transition U =⇒ρ U ′, and

Φ′ : U ′-solutions→ U-solutions

ϕ′ 7→ (ρ ◦ ϕ′)�Q∃

MINLOG REFERENCE MANUAL 117

is well-defined and we have Φ: U-solutions → U ′-solutions such that Φ′

is inverse to Φ, i.e. Φ′(Φϕ) = ϕ, or else
(b) the unification algorithm fails, and there is no U-solution.

It is not hard to see that the unification algorithm terminates, by defining
a measure that decreases with each transition.

Corollary. Given a unification problem U = QC, the unification algorithm
either fails, and there is no U-solution, or else returns a pair (Q′, ρ) with
a “transition” substitution ρ and a prefix Q′ (i.e., a unification problem U ′
with no unification pairs) such that for any Q′-substitution ϕ′, (ρ◦ϕ′)�Q∃ is
an U-solution, and every U-solution can be obtained in this way. Since the
empty substitution is a Q′-substitution, ρ�Q∃ is a U-solution, which is most
general in the sense stated.

12.3. Proof search. A Q-sequent has the form P ⇒ G, where P is a list
of Q-clauses and G is a Q-goal.

We write M [P] to indicate that all assumption variables in the derivation
M are assumptions of clauses in P.

Write `n S for a set S of sequents if there are derivations MGi
i [Pi] in long

normal form for all (Pi ⇒ Gi) ∈ S such that
∑

dp(Mi) ≤ n. Let `<n S
mean ∃m<n `m S.

We prove correctness and completeness of the proof search procedure:
correctness is the if-part of the two lemmata to follow, and completeness
the only-if-part.

Lemma. Let Q be a ∀∃∀-prefix, {P ⇒ ∀~x(~D → A)} ∪ S Q-sequents with

~x, ~D not both empty. Then we have for every substitution ϕ:

ϕ is a Q-substitution such that `n
(
{P ⇒ ∀~x(~D → A)} ∪ S

)
ϕ

if and only if

ϕ is a Q∀~x-substitution such that `<n
(
{P ∪ ~D ⇒ A} ∪ S

)
ϕ.

Proof. “If”. Let ϕ be a Q∀~x-substitution and `<n
(
{P ∪ ~D ⇒ A} ∪ S

)
ϕ.

So we have

NAϕ[~Dϕ ∪ Pϕ].

Since ϕ is a Q∀~x-substitution, no variable in ~x can be free in Pϕ, or free in
yϕ for some y ∈ dom(ϕ). Hence

M (∀~x(~D→A))ϕ[Pϕ] := λ~xλ~u~DϕN

is a correct derivation.

118 HELMUT SCHWICHTENBERG

“Only if”. Let ϕ be a Q-substitution and `n
(
{P ⇒ ∀~x(~D → A)} ∪ S

)
ϕ.

This means we have a derivation (in long normal form)

M (∀~x(~D→A))ϕ[Pϕ] = λ~xλ~u~Dϕ(NAϕ[~Dϕ ∪ Pϕ]).

Now dp(N) < dp(M), hence `<n
(
{P ∪ ~D ⇒ A} ∪ S

)
ϕ, and ϕ clearly is a

Q∀~x-substitution. �

Lemma. Let Q be a ∀∃∀-prefix, {P ⇒ P~r} ∪ S Q-sequents and ϕ a substi-
tution. Then

ϕ is a Q-substitution such that `n
(
{P ⇒ P~r} ∪ S

)
ϕ

if and only if there is a clause ∀~x(~G → P~s) in P such that the following

holds. Let ~z be the final universal variables in Q, ~X be new (“raised”) vari-
ables such that Xi~z has the same type as xi, let Q∗ be Q with the existential

variables extended by ~X, and let ∗ indicate the substitution [x1, . . . , xn :=
X1~z, . . . , Xn~z]. Then there is a result (Q′, ρ) of either Huet’s or the pattern
unification algorithm applied to Q∗(~r = ~s∗) and a Q′-substitution ϕ′ such

that `<n
(
{P ⇒ ~G∗} ∪ S

)
ρϕ′, and ϕ = (ρ ◦ ϕ′)�Q∃.

Proof. “If”. Let (Q′, ρ) be such a result, and assume that ϕ′ is a Q′-

substitution such that Ni `
(
P ⇒ ~G∗

)
ρϕ′. Let ϕ := (ρ ◦ ϕ′)�Q∃. From

unif(Q∗, ~r = ~s∗) = (Q′, ρ) we know ~rρ = ~s∗ρ, hence ~rϕ = ~s∗ρϕ′. Then

u(∀~x.
~G→P~s)ϕ((~Xρϕ′)~z) ~N

~G∗ρϕ′

derives P~s∗ρϕ′ (i.e., P~rϕ) from Pϕ.
“Only if”. Assume ϕ is a Q-substitution such that ` (P ⇒ P~r)ϕ, say by

u∀~x(
~G→P~s)ϕ~t ~N (~Gϕ)[~x:=~t], with ∀~x(~G→ P~s) a clause in P, and with additional

assumptions from Pϕ in ~N . Then ~rϕ = (~sϕ)[~x := ~t]. Since we can assume
that the variables ~x are new and in particular not range variables of ϕ, with

ϑ := ϕ ∪ [~x := ~t]

we have ~rϕ = ~sϑ. Let ~z be the final universal variables in Q, ~X be new
(“raised”) variables such that Xi~z has the same type as xi, let Q∗ be Q with

the existential variables extended by ~X, and for terms and formulas let ∗
indicate the substitution [x1, . . . , xn := X1~z, . . . , Xn~z]. Moreover, let

ϑ∗ := ϕ ∪ [X1, . . . , Xn := λ~zt1, . . . , λ~ztn].

Then ~rϑ∗ = ~rϕ = ~sϑ = ~s∗ϑ∗, i.e., ϑ∗ is a solution to the unification problem
given by Q∗ and ~r = ~s. Hence by the corollary unif(Q∗, ~r = ~s∗) = (Q′, ρ) and
there is aQ′-substitution ϕ′ such that ϑ∗ = (ρ◦ϕ′)�Q∗∃, hence ϕ = (ρ◦ϕ′)�Q∃.
Also, (~Gϕ)[~x := ~t] = ~Gϑ = ~G∗ϑ∗ = ~G∗ρϕ′. �

MINLOG REFERENCE MANUAL 119

A state is a pair (Q,S) with Q a prefix and S a finite set of Q-sequents.
By the two lemmas just proved we have state transitions

(Q, {P ⇒ ∀~x(~D → A)} ∪ S) 7→ε (Q∀~x, {P ∪ ~D ⇒ A} ∪ S)

(Q, {P ⇒ P~r} ∪ S) 7→ρ (Q′, ({P ⇒ ~G∗} ∪ S)ρ),

where in the latter case there is a clause ∀~x(~G → P~s) in P such that the

following holds. Let ~z be the final universal variables in Q, ~X be new
(“raised”) variables such that Xi~z has the same type as xi, let Q∗ be Q with

the existential variables extended by ~X, and let ∗ indicate the substitution
[x1, . . . , xn := X1~z, . . . , Xn~z], and unif(Q∗, ~r = ~s∗) = (Q′, ρ).

Notice that by the lemma on Q′-goals above, if P ⇒ P~r is a Q-sequent

(which means that
∧∧
P → P~r is a Q-goal), then (P ⇒ ~G∗)ρ is a Q′-sequent.

Theorem. Let Q be a prefix, and S be a set of Q-sequents. For every
substitution ϕ we have: ϕ is a Q-substitution satisfying ` Sϕ iff there is a
prefix Q′, a substitution ρ and a Q′-substitution ϕ′ such that

(Q,S) 7→ρ∗ (Q′, ∅),
ϕ = (ρ ◦ ϕ′)�Q∃.

Examples. (a) The sequent ∀y(∀zRyz → Q),∀y1,y2Ry1y2 ⇒ Q leads first
to ∀y1,y2Ry1y2 ⇒ Ryz under ∃y∀z, then to y1 = y ∧ y2 = z under
∃y∀z∃y1,y2 , and finally to Y1z = y ∧ Y2z = z under ∃y,Y1,Y2∀z, which has
the solution Y1 = λzy, Y2 = λzz.

(b) ∀y(∀zRyz → Q),∀y1Ry1y1 ⇒ Q leads first to ∀y1Ry1y1 ⇒ Ryz under
∃y∀z, then to y1 = y ∧ y1 = z under ∃y∀z∃y1 , and finally to Y1z =
y ∧ Y1z = z under ∃y,Y1∀z, which has no solution.

(c) Here is a more complex example (derived from proofs of the Orevkov-
formulas), for which we only give the derivation tree.

∀y(∀z(Ryz→⊥))→⊥
∀z(R0z→⊥)→⊥

∀y(∀z1(Ryz1→⊥)→⊥)

∀z1(Rzz1→⊥)→⊥

∀z(S0z→⊥)

S0z1→⊥
(∗) R0z Rzz1

S0z1
⊥

Rzz1→⊥
∀z1(Rzz1→⊥)

⊥
R0z→⊥
∀z(R0z→⊥)

⊥

where (∗) is a derivation from Hyp1 : ∀z,z1(R0z → Rzz1 → S0z1).

120 HELMUT SCHWICHTENBERG

12.4. Extension by ∧ and ∃. The extension by conjunction is rather easy;
it is even superfluous in principle, since conjunctions can always be avoided
at the expense of having lists of formulas instead of single formulas.

However, having conjunctions available is clearly useful at times, so let’s
add it. This requires the notion of an elaboration path for a formula (cf. [25]).
The reason is that the property of a formula to have a unique atom as its
head is lost when conjunctions are present. An elaboration path is meant to
give the directions (left or right) to go when we encounter a conjunction as
a strictly positive subformula. For example, the elaboration paths of ∀xA∧
(B ∧C → D ∧ ∀yE) are (left), (right, left) and (right, right). Clearly,
a formula is equivalent to the conjunction (over all elaboration paths) of
all formulas obtained from it by following an elaboration path (i.e., always
throwing away the other part of the conjunction). In our example,

∀xA ∧ (B ∧ C → D ∧ ∀yE)↔ ∀xA ∧ (B ∧ C → D) ∧ (B ∧ C → ∀yE).

In this way we regain the property of a formula to have a unique head, and
our previous search procedure continues to work.

For the existential quantifier ∃ the problem is of a different nature. We
chose to introduce ∃ by means of axiom schemata. Then the problem is
which of such schemes to use in proof search, given a goal G and a set P of
clauses. We might proceed as follows.

List all prime, positive and negative existential subformulas of P ⇒ G,
and remove any formula from those lists which is of the form of another one2.
For every positive existential formula – say ∃xB – add (the generalization
of) the existence introduction scheme

∃+x,B : ∀x(B → ∃xB)

to P. Moreover, for every negative existential formula – say ∃xA – and every
(prime or existential) formula C in any of those two lists, except the formula
∃xA itself, add (the generalization of) the existence elimination scheme

∃−x,A,B : ∃xA→ ∀x(A→ B)→ B

to P. Then start the search algorithm as described in section 12.3. The
normal form theorem for the natural deduction system of minimal logic
with ∃ then guarantees completeness.

However, experience has shown that this complete search procedure tends
to be trapped in too large a search space. Therefore in our actual implemen-
tation we decided to only take instances of the existence elimination scheme
with existential conclusions.

2To do this, for patterns the dual of the theory of “most general unifiers”, i.e., a theory
of “most special generalizations”, needs to be developed.

MINLOG REFERENCE MANUAL 121

Moreover, it seems appropriate that – before the search is started – one
eliminates in a preprocessing step as many existential quantifiers as possible.

12.5. Implementation. Following Miller [25], Berger and [30], we have
implemented a proof search algorithm for minimal logic. To enforce termi-
nation, every assumption can only be used a fixed number of times.

We work with lists of sequents instead of single sequents; they all are
Q-sequents for the same prefix Q. One then searches for a Q-substitution
ϕ and proofs of the ϕ-substituted sequents. intro-search takes the first
sequent and extends Q by all universally quantified variables x1 It
then calls select, which selects (using or) a fitting clause. If one is found,
a new prefix Q′ (raising the new flexible variables) is formed, and the n
(≥ 0) new goals with their clauses (and also all remaining sequents) are
substituted with star ◦ ρ, where star is the “raising” substitution and ρ is
the most general unificator. For this constellation intro-search is called
again. In case of success, one obtains a Q′-substitution ϕ′ and proofs of the
star ◦ ρ ◦ ϕ′ -substituted new sequents. Let ϕ := (ρ ◦ ϕ′)�Q∃, and take the
first n proofs of these to build a proof of the ϕ-substituted (first) sequent
originally considered by intro-search.

12.6. Notes. The present treatment benefitted from a presentation of Miller’s
[25] given by Ulrich Berger, in a logic seminar in München in 1991. The type
of restriction to higher order terms described in the text has been introduced
in [25]; it has been called patterns by Nipkow [26]. Miller also noted its
relevance for extensions of logic programming, and showed that the unifica-
tion problem for patterns is solvable and admits most general unifiers. The
present treatment was motivated by the desire to use Miller’s approach as
a basis for an implementation of a simple proof search engine for (first and
higher order) minimal logic.

Compared with Miller [25], we make use of several simplifications, opti-
mizations and extensions, in particular the following.

(i) Instead of arbitrarily mixed prefixes we only use those of the form
∀∃∀. Nipkow in [26] already had presented a version of Miller’s pattern
unification algorithm for such prefixes, and Miller in [25, section 9.2]
notes that in such a situation any two unifiers can be transformed
into each other by a variable renaming substitution. Here we restrict
ourselves to ∀∃∀-prefixes throughout, i.e., in the proof search algorithm
as well.

(ii) The order of events in the pattern unification algorithm is changed
slightly, by postponing the raising step until it is really needed. This
avoids unnecessary creation of new higher type variables. – Already
Miller noted in [25, p.515] that such optimizations are possible.

122 HELMUT SCHWICHTENBERG

(iii) The extensions concern the (strong) existential quantifier, which has
been left out in Miller’s treatment, and also conjunction(cf. 12.4). The
latter can be avoided in principle, but of course is a useful thing to
have.

13. Extracted terms

13.1. The type of a formula. We assign to every formula A an object
τ(A), a type or the nulltype symbol (written ◦ in text and displayed eps

in Minlog). τ(A) is intended to be the type of the program to be extracted
from a proof of A. This is done by

(formula-to-et-type formula),

(idpreconst-to-et-type idpc).

Both are defined simultaneously; this makes sense, since the clauses and also
the comprehension terms of an idpredconst are prior to the idpredconst.

In formula-to-et-type we assign type variables to the predicate vari-
ables. For to be able to later refer to this assignment, we use a global variable
PVAR-TO-TVAR-ALIST, which memorizes the assigment done so far. Later
reference is necessary, because such type variables will appear in extracted
programs of theorems involving predicate variables, and in a given develop-
ment there may be many auxiliary lemmata containing the same predicate
variable. A fixed PVAR-TO-TVAR refers to and updates PVAR-TO-TVAR-ALIST.

We also define separately

(formula-of-nulltype? formula),

since this test can be done more efficiently.

13.2. Extracted terms. We can define, for a given derivation M of a for-
mula A with τ(A) 6= ◦, its extracted term (or extracted program) et(M) of
type τ(A). We also need extracted terms for the axioms. For induction
we take recursion, for the proof-by-cases axiom we take the cases-construct
for terms; for the other axioms the extracted terms are rather clear. Term
extraction is implemented by

(proof-to-extracted-term proof-or-thm-name).

Hence proof-to-extracted-term gets either a proof or else a theorem
name. In the former case it works its way through the proof, until it comes to
an assumption variable, an axiom, a theorem or a global assumption. When
it is a theorem, theorem-to-extracted-term is called. This also happens
in when a theorem name is the input. theorem-to-extracted-term ap-
plies as its default operation theorem-or-global-assumption-to-pconst,
where in case of a lemma L the pconst has name cL.

MINLOG REFERENCE MANUAL 123

When we want to execute the program, we have to replace the constant
cL corresponding to lemma L by the extracted program of its proof, and
the constant cGA corresponding to a global assumption GA by an assumed
extracted term to be provided by the user. This can be achieved by adding
computation rules for cL and cGA. We can be rather flexible here and en-
able/block rewriting by using animate/deanimate as desired. Notice that
the type of the extracted term provided for a cGA must be the extracted type
of the assumed formula. When predicate variables are present, one must use
the type variables assigned to them in PVAR-TO-TVAR-ALIST.

(animate thm-or-ga-name . opt-eterm),

(deanimate thm-or-ga-name).

The constant cL will unfold under normalization if the lemma is animated.
However, in some cases theorem-to-extracted-term directly gives short
and meaningful terms:

InhabTotal 7→ (Inhab rho),

AllAllPartial, AllPartialAll 7→ [x]x,

ExExPartial, ExPartialEx 7→ [x]x,

Pconst + Total 7→ pconst,

Pconst + STotal 7→ the extract from the proof,

AlgEqTotal 7→ [n, m]n = m,

BooleIfTotal 7→ [free][if test arg1 arg2],

EqDCompat, EqDCompatRev 7→ [x]x,

Id 7→ [x]x, if unfold-let-flag is true.

Here is an example. It is easy to prove NatEqTotal:

∀ncn̂ (TNn̂→ ∀ncm̂ (TNm̂→ TB(n̂ = m̂)))

Since the proof is by induction (or rather elimination for TotalNat), the
extracted term will involve recursion:

[n](Rec nat=>nat=>boole)n([n0][if n0 True ([n1]False)])

([n0,(nat=>boole),n1][if n1 False (nat=>boole)])

However, we can prove that λn,m(n = m) realizes the formula as well:

;; NatEqTotalSound

(set-goal (real-and-formula-to-mr-formula

(pt "[n,m]n=m")

(proof-to-formula (theorem-name-to-proof "NatEqTotal"))))

(assume "n^" "n^0" "TMRn0n")

(elim "TMRn0n")

124 HELMUT SCHWICHTENBERG

(assume "m^" "m^0" "TMRm0m")

(elim "TMRm0m")

(use "TotalBooleTrueMR")

(assume "m^1" "m^10" "Useless1" "Useless2")

(use "TotalBooleFalseMR")

(assume "m^" "m^0" "Useless1" "IH" "m^1" "m^10" "TMRm10m1")

(elim "TMRm10m1")

(use "TotalBooleFalseMR")

(assume "m^2" "m^20" "TMRm20m2" "Useless2")

(use "IH")

(use "TMRm20m2")

;; Proof finished.

(save "NatEqTotalSound")

Hence we are allowed to change the extracted term of NatEqTotal into
λn,m(n = m).

Generally, proof-to-soundness-proof at FinAlgEqTotal looks for a
therem with name FinAlgEqTotalSound and uses it. An error is raised
if FinAlgEqTotalSound does not exist.

The following table gives the symbols of Minlog’s output and the corre-
sponding notation in the λ-calculus.

Explanation Symbol Minlog’s output
λ-abstraction λxM [x]M

pair 〈M,N〉 M pair N

left element of a pair (M 0) lft M

right element of a pair (M 1) rht M

left embedding into a sum type ρ+ σ InlρσM (InL rho sigma)M

right embedding into a sum type ρ+ σ InrσρM (InR sigma rho)M

recursion operator R Rec

corecursion operator coR CoRec

arrow for types → =>

product for types × yprod

sum for types + ysum

primitive pair 〈M,N〉 M@N

left element of a primitive pair (M 0) left M

right element of a primitive pair (M 1) right M

primitive product for types × @@

13.3. Soundness. One can prove that every theorem in TCF + Axnci has
a realizer: the extracted term of its proof. Here (Axnci) is an arbitrary set
of non-computational invariant formulas viewed as axioms.

MINLOG REFERENCE MANUAL 125

Theorem (Soundness). Let M be a derivation of A from assumptions ui : Ci
(i < n). Then we can derive et(M) r A from assumptions xui r Ci (with
xui := ε in case Ci is n.c.).

The proof is by induction on M , and can be traced back to early work of
Kleene, Kreisel and Troelstra. References and a detailed exposition close to
the present terminology can be found in [35, 7.2.8].

We clearly want that proof-to-soundness-proof does not unfold the
auxiliary propositions used in the proof. Let a theorem Thm (thought of as
coming with its proof M) prove a formula A. Then we should have ThmSound
proving et(M) r A in our proof library. When proof-to-soundness-proof

arrives at Thm, it inserts ThmSound. There is no circularity here, since t r A
is invariant, i.e., ε r (t r A) is the formula t r A itself (cf. [35, 7.2.4]).

In the special case of a theorem PconstTotal proving totality of the con-
stant Pconst the extracted term is Pconst rather than cPconstTotal (which
when animated would unfold into a term with recursion operators). Then
PconstTotalSound proves Pconst r PconstTotal, with a simple standard
proof.

An internal proof of soundness can be generated by calling

(proof-to-soundness-proof proof-or-thm-name).

This uses the auxiliary functions

(axiom-to-soundness-proof aconst),

(theorem-to-soundness-proof aconst),

(global-assumption-to-soundness-proof aconst).

14. Computational content of classical proofs

14.1. Refined A-translation. In this section the connectives →, ∀ denote
the computational versions →c, ∀c, unless stated otherwise.

We will concentrate on the question of classical versus constructive proofs.
It is known, by the so-called “A-translation” of Friedman [13] and Dragalin

[10], that any proof of a specification of the form ∀x∃̃yB with B quantifier-

free and a weak (or “classical”) existential quantifier ∃̃y, can be transformed
into a proof of ∀x∃yB, now with the constructive existential quantifier ∃y.
However, when it comes to extraction of a program from a proof obtained
in this way, one easily ends up with a mess. Therefore, some refinements of
the standard transformation are necessary. We shall study a refined method
of extracting reasonable and sometimes unexpected programs from classical
proofs. It applies to proofs of formulas of the form ∀x∃̃yB where B need not
be quantifier-free, but only has to belong to the larger class of goal formulas.

126 HELMUT SCHWICHTENBERG

Furthermore we allow unproven lemmata D to appear in the proof of ∀x∃̃yB,
where D is a definite formula.

We now describe in more detail what this section is about. It is well known
that from a derivation of a classical existential formula ∃̃yA := ∀y(A→ ⊥)→
⊥ one generally cannot read off an instance. A simple example has been
given by Kreisel: let R be a primitive recursive relation such that ∃̃zRxz is
undecidable. Clearly – even logically –

` ∀x∃̃y∀z(Rxz → Rxy)

but there is no computable f satisfying

∀x∀z(Rxz → R(x, f(x))),

for then ∃̃zRxz would be decidable: it would be true if and only if R(x, f(x))
holds.

However, it is well known that in case ∃̃yG with G quantifier-free one can
read off an instance. Here is a simple idea of how to prove this: replace ⊥
anywhere in the proof by ∃yG. Then the end formula ∀y(G → ⊥) → ⊥ is
turned into ∀y(G→ ∃yG)→ ∃yG, and since the premise is trivially provable,
we have the claim.

Unfortunately, this simple argument is not quite correct. First, G may
contain ⊥, and hence is changed under the substitution of ∃yG for ⊥. Sec-
ond, we may have used axioms or lemmata involving ⊥ (e.g., ⊥ → P), which
need not be derivable after the substitution. But in spite of this, the simple
idea can be turned into something useful.

Assume that the lemmata ~D and the goal formula G are such that we can
derive

~D → Di[⊥ := ∃yG],(10)

G[⊥ := ∃yG]→ ∃yG.(11)

Assume also that the substitution [⊥ := ∃yG] turns any axiom into an
instance of the same axiom-schema, or else into a derivable formula. Then

from our given derivation (in minimal logic) of ~D → ∀y(G → ⊥) → ⊥ we
obtain

~D[⊥ := ∃yG]→ ∀y(G[⊥ := ∃yG]→ ∃yG)→ ∃yG.

Now (10) allows the substitution in ~D to be dropped, and by (11) the second
premise is derivable. Hence we obtain as desired

~D → ∃yG.

We shall identify classes of formulas – to be called definite and goal formulas
– such that slight generalizations of (10) and (11) hold.

MINLOG REFERENCE MANUAL 127

This section is based on [4] and particularly [35, 7.3], where the theory
is developed in more detail and further references are given. Recall that we
restrict to formulas in the language {⊥,→,∀}.

A formula is relevant if it ends with (logical) falsity. Definite and goal
formulas are defined by a simultaneous recursion.

(atr-relevant? formula),

(atr-definite? formula),

(atr-goal? formula).

We need to construct proofs from F→ ⊥ of

DF → D,

G→ (GF → ⊥)→ ⊥,
((RF → F)→ ⊥)→ R for R relevant and definite,

I → IF for I irrelevant and goal.

This is done by

(atr-arb-definite-proof formula),

(atr-arb-goal-proof formula),

(atr-rel-definite-proof formula),

(atr-irrel-goal-proof formula).

The next task is to generalize G → (GF → ⊥) → ⊥ and construct a proof
of (GF

1 → ...→ GF
n → ⊥)→ G1 → ...→ Gn → ⊥, via

(atr-goals-F-to-bot-proof . goals).

Given a proof of ~A → ~D → ∀~y(~G → ⊥) → ⊥ with ~A arbitrary, ~D definite

and ~G goal formulas, we transform it into a proof of (F→ ⊥)→ ~A→ ~DF →
∀~y(~GF → ⊥)→ ⊥. This is done via

(atr-min-excl-proof-to-bot-reduced-proof min-excl-proof).

Substituting the formula ∃~y ~GF for ⊥ in the proof given above of (F →
⊥) → ~A → ~DF → ∀~y(~GF → ⊥) → ⊥, both the ex-falso-quodlibet premise

and the “wrong formula” ∀~y(~GF → ⊥) become provable and we obtain a

proof of ~A′ → ~DF → ∃~y ~GF, where ~A′ is defined to be ~A[⊥ := ∃~y ~GF]. The
corresponding function is

(atr-min-excl-proof-to-ex-proof min-excl-proof).

By

(atr-min-excl-proof-to-structured-extracted-term

128 HELMUT SCHWICHTENBERG

min-excl-proof . realizers-for-nondefinite-formulas)

we can then extract a term r such that ~A→ ~D → ~GF[y := r] (if ~y = y).
One can test with min-excl-formula? whether a given formula indeed is

a classical (i.e., weak) existence formula. Moreover, atr-expand-theorems
expands all non-definite theorems. This only makes sense before substituting
for ⊥.

See section 13 for an interpretation of the symbols of the extracted terms
in Minlog’s output.

14.2. Gödel’s Dialectica interpretation. In his original functional inter-
pretation [14], Gödel assigned to every formula A a new one ∃~x∀~yAD(~x, ~y)
with AD(~x, ~y) quantifier-free. Here ~x, ~y are lists of variables of finite types;
the use of higher types is necessary even when the original formula A is
first-order. He did this in such a way that whenever a proof of A say in
Peano arithmetic was given, one could produce closed terms ~r such that the
quantifier-free formula AD(~r, ~y) is provable in his quantifier-free system T.

In [14] Gödel referred to a Hilbert-style proof calculus. However, since
the realizers will be formed in a λ-calculus formulation of system T, Gödel’s
interpretation becomes more perspicuous when it is done for a natural de-
duction calculus. The present implementation is based on such a setup.
Then the need for contractions comes up in the (only) logical rule with two
premises: modus ponens (or implication elimination →−). This makes it
possible to give a relatively simple proof of the Soundness Theorem.

We assign to every formula A objects τ+(A), τ−(A) (a type or the “null-
type” symbol ◦). τ+(A) is intended to be the type of a (Dialectica-) realizer
to be extracted from a proof of A, and τ−(A) the type of a challenge for the
claim that this term realizes A.

τ+(P~s) := ◦, τ−(P~s) := ◦,
τ+(∀xρA) := ρ→ τ+(A), τ−(∀xρA) := ρ× τ−(A),

τ+(∃xρA) := ρ× τ+(A), τ−(∃xρA) := τ−(A),

τ+(A ∧B) := τ+(A)× τ+(B), τ−(A ∧B) := τ−(A)× τ−(B),

and for implication

τ+(A→ B) := (τ+(A)→ τ+(B))× (τ+(A)→ τ−(B)→ τ−(A)),

τ−(A→ B) := τ+(A)× τ−(B).

Recall that (ρ → ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦, and (ρ × ◦) := ρ,
(◦ × σ) := σ, (◦ × ◦) := ◦.

In case τ+(A) (τ−(A)) is 6= ◦ we say that A has positive (negative) compu-
tational content . For formulas without positive or without negative content

MINLOG REFERENCE MANUAL 129

one can give an easy characterization, involving the well-known notion of
positive or negative occurrences of quantifiers in a formula.

τ+(A) = ◦ ↔ A has no positive ∃ and no negative ∀,
τ−(A) = ◦ ↔ A has no positive ∀ and no negative ∃,
τ+(A) = τ−(A) = ◦ ↔ A is quantifier-free.

Both the positive and the negative type of a formula can be computed by

(formula-to-etdp-type formula),

(formula-to-etdn-type formula).

For every formula A and terms r of type τ+(A) and s of type τ−(A) we
define a new quantifier-free formula |A|rs by induction on A.

|P~s |rs := P~s,

|∀xA(x)|rs := |A(s0)|r(s0)s1 ,

|∃xA(x)|rs := |A(r0)|r1s ,

|A ∧B|rs := |A|r0s0 ∧ |B|r1s1,

|A→ B|rs := |A|s0r1(s0)(s1) → |B|
r0(s0)
s1 .

The formula ∃x∀y|A|xy is called the Gödel translation of A and is often de-

noted by AD. Its quantifier-free kernel |A|xy is called Gödel kernel of A; it
is denoted by AD.

For readability we sometimes write terms of a pair type in pair form:

|∀zA|fz,y := |A|fzy ,
|∃zA|z,xy := |A|xy ,

|A ∧B|x,zy,u := |A|xy ∧ |B|zu,

|A→ B|f,gx,u := |A|xgxu → |B|fxu .

formula-to-d-formula calculates the Gödel (or Dialectica) translation of
a formula.

To answer the question when the Gödel translation of a formula A is equiv-
alent to the formula itself, we need the (constructively doubtful) Markov
principle (MP), for higher type variables and quantifier-free formulas A0, B0.

(∀xρA0 → B0)→ ∃xρ(A0 → B0) (xρ /∈ FV(B0)).

We also need the (less problematic) axiom of choice (AC)

∀xρ∃yσA(x, y)→ ∃fρ→σ∀xρA(x, f(x)).

and the independence of premise axiom (IP)

(A→ ∃xρB)→ ∃xρ(A→ B) (xρ /∈ FV(A), τ+(A) = ◦).

Notice that (AC) expresses that we can only have continuous dependencies.

Theorem (Characterization).

AC + IP + MP ` (A↔ ∃x∀y |A|xy).

130 HELMUT SCHWICHTENBERG

Let Heyting arithmetic HAω in all finite types be the fragment of TCF
where (i) the only base types are N and B, and (ii) the only inductively de-
fined predicates are totality, Leibniz equality EqD, the (proper) existential
quantifier and conjunction. We can prove soundness of the Dialectica inter-
pretation for HAω + AC + IP + MP, for our natural deduction formulation
of the underlying logic.

Theorem (Soundness). Let M be a derivation

HAω + AC + IP + MP ` A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ+(Ci) be variables
for realizers of the assumptions, and y be a variable of type τ−(A) for a
challenge of the goal. Then we can find terms et+(M) =: t of type τ+(A)
with y /∈ FV(t) and et−i (M) =: ri of type τ−(Ci), and a derivation in HAω

of |A|ty from assumptions ūi : |Ci|xiri .

proof-to-extracted-d-terms returns the extracted realiser and a list
of extracted challenges labelled with their associated assumption variables.

15. Reading formulas in external form

A formula can be produced from an external representation, for example
a string, using the pt function. It has one argument, a string denoting a
formula, that is converted to the internal representation of the formula. For
the following syntactical entities parsing functions are provided:

(py string) for parsing types,

(pv string) for parsing variables,

(pt string) for parsing terms,

(pf string) for parsing formulas.

The conversion occurs in two steps: lexical analysis and parsing.

15.1. Lexical analysis. In this stage the string is brocken into short se-
quences, called tokens.

A token can be one of the following:

(i) An alphabetic symbol: A sequence of letters a–z and A–Z. Upper and
lower case letters are considered different.

(ii) A number: A sequence of digits 0–9
(iii) A punctuation mark: One of the characters: () [] . , ;

(iv) A special symbol: A sequence of characters, that are neither letters,
digits, punctuation marks nor white space.

MINLOG REFERENCE MANUAL 131

For example: abc, ABC and A are alphabetic symbols, 123, 0123 and 7

are numbers, (is a punctuation mark, and <=, +, and ##:-^ are special
symbols.

Tokens are always character sequences of maximal length belonging to one
of the above categories. Therefore fx is a single alphabetic symbol not two
and likewise <+ is a single special symbol. The sequence alpha<=(-x+z),
however, consists of the 8 tokens alpha, <=, (, -, x, +, z, and). Note that
the special symbols <= and - are separated by a punctuation mark, and the
alphabetic symbols x and z are separated by the special symbol +.

If two alphabetic symbols, two special symbols, or two numbers follow
each other they need to be separated by white space (spaces, newlines, tabs,
formfeeds, etc.). Except for a few situations mentioned below, whitespace
has no significance other than separating tokens. It can be inserted and
removed between any two tokens without affecting the significance of the
string.

Every token has a token type, and a value. The token type is one of the
following: number, var-index, var-name, const, pvar-name, predconst, type-
symbol, pscheme-symbol, postfix-op, prefix-op, binding-op, add-op, mul-op,
rel-op, and-op, or-op, imp-op, pair-op, if-op, postfix-jct, prefix-jct, and-jct,
or-jct, tensor-jct, imp-jct, quantor, dot, hat, underscore, comma, semicolon,
arrow, lpar, rpar, lbracket, rbracket.

The possible values for a token depend on the token type and are explained
below.

New tokens can be added using the function

(add-token string token-type value).

The inverse is the function

(remove-token string).

A list of all currently defined tokens sorted by token types can be obtained
by the function

(display-tokens).

15.2. Parsing. The second stage, parsing , extracts structure form the se-
quence of tokens.

Types. Type-symbols are types; the value of a type-symbol must be
a type. If ρ and σ are types, then ρ=>σ is a type (function type) and
ρ@@σ is a type (primitive pair type). Parentheses can be used to indicate
proper nesting. For example boole is a predefined type-symbol and hence,
(boole@@boole)=>boole is again a type. The parentheses in this case are
not strictly necessary, since @@ binds stronger than =>. Both operators as-
sociate to the right.

132 HELMUT SCHWICHTENBERG

Variables. Var-names are variables; the value of a var-name token must
be a pair consisting of the type and the name of the variable (the same name
string again3). For example to add a new boolean variable called “flag”, you
have to invoke the function (add-token "flag" ’var-name (cons ’boole

"flag")). This will enable the parser to recognize “flag3”, “flag^”, or
“flag^14” as well.

Further, types, as defined above, can be used to construct variables.
A variable given by a name or a type can be further modified. If it is

followed by a ^, a general (or partial)xs variable is constructed. Instead of
the ^ a _ can be used to specify a total variable.

Total variables are the default and therefore, the _ can be omitted.
As another modifier, a number can immediately follow, with no white-

space in between, the ^ or the _, specifying a specific variable index.
In the case of indexed total variables given by a variable name or a type

symbol, again the _ can be omitted. The number must then follow, with no
whitespace in between, directly after the variable name or the type.

Note: This is the only place where whitespace is of any significance in
the input. If the ^, _, type name or variable name is separated from the
following number by whitespace, this number is no longer considered to be
an index for that variable but a numeric term in its own right.

For example, assuming that p is declared as a variable of type boole, we
have:

(i) p a total variable of type boole with name p and no index.
(ii) p_ a total variable of type boole with name p and no index.

(iii) p^ a partial variable of type boole with name p and no index.
(iv) p2 a total variable of type boole with name p and index 2.
(v) p_2 a total variable of type boole with name p and index 2.

(vi) p^2 a partial variable of type boole with name p and index 2.
(vii) boole a total anonymous variable of type boole with no index.
(viii) boole_ a total anonymous variable of type boole with no index.
(ix) boole^ a partial anonymous variable of type boole with no index.
(x) boole_2 a total anonymous variable of type boole with index 2.

(xi) boole2 a total anonymous variable of type boole with index 2.
(xii) boole^2 a partial anonymous variable of type boole with index 2.
(xiii) (boole)_2 a total anonymous variable of type boole with index 2.
(xiv) nat=>boole_2 a total anonymous variable of type function of nat to

boole with index 2.
(xv) nat=>boole^2 a partial anonymous variable of type function of nat to

boole with index 2.

3This is not nice and may be later, we find a way to give the parser access to the string
that is already implicit in the token

MINLOG REFERENCE MANUAL 133

(xvi) (nat=>alpha2) a total anonymous variable of type function of nat to
alpha2 with no index.

(xvii) (nat=>alpha2)_2 a total anonymous variable of type function of nat
to alpha2 with index 2.

(xviii) (nat=>alpha2)^2 a partial anonymous variable of type function of nat
to alpha2 with index 2.

Compare these with the following applicative terms.

(i) nat=>boole 2 a total anonymous variable of type function of nat to
boole with no index applied to the numeric term 2.

(ii) nat=>boole_ 2 a total anonymous variable of type function of nat to
boole with no index applied to the numeric term 2.

(iii) nat=>boole^ 2 a partial anonymous variable of type function of nat
to boole with no index applied to the numeric term 2.

(iv) nat=>boole_2 2 a total anonymous variable of type function of nat to
boole with index 2 applied to the numeric term 2.

(v) nat=>boole^2 2 a partial anonymous variable of type function of nat
to boole with index 2 applied to the numeric term 2.

(vi) (nat=>alpha)2 a total anonymous variable of type function of nat to
alpha with no index applied to the numeric term 2.

(vii) (nat=>alpha)_ 2 a total anonymous variable of type function of nat
to alpha with no index applied to the numeric term 2.

(viii) (nat=>alpha)^ 2 a partial anonymous variable of type function of nat
to alpha with no index applied to the numeric term 2.

(ix) (nat=>alpha)_2 2 a total anonymous variable of type function of nat
to alpha with index 2 applied to the numeric term 2.

(x) (nat=>alpha)^2 2 a partial anonymous variable of type function of
nat to alpha with index 2 applied to the numeric term 2.

(xi) (nat=>alpha2)_2 2 a total anonymous variable of type function of
nat to alpha2 with index 2 applied to the numeric term 2.

(xii) (nat=>alpha2)^2 2 a partial anonymous variable of type function of
nat to alpha2 with index 2 applied to the numeric term 2.

Terms are built from atomic terms using application and operators.
An atomic term is one of the following: a constant, a variable, a number,

a conditional, or any other term enclosed in parentheses.
Constants have const as token type, and the respective term in inter-

nal form as value. There are also composed constants, so-called constant
schemata. A constant schema has the form of the name of the constant
schema (token type constscheme) followed by a list of types, the whole
thing enclosed in parentheses. There are a few built in constant schemata;
for instance, (Rec <typelist>) is the recursion over the types given in the
type list.

134 HELMUT SCHWICHTENBERG

For a number, the user defined function make-numeric-term is called
with the number as argument. The return value of make-numeric-term

should be the internal term representation of the number.
To form a conditional term, the if operator if followed by a list of atomic

terms is enclosed in square brackets. Depending on the constructor of the
first term, the selector, a conditional term can be reduced to one of the
remaining terms.

From these atomic terms, compound terms are built not only by appli-
cation but also using a variety of operators, that differ in binding strength
and associativity.

Postfix operators (token type postfix-op) bind strongest, next in binding
strength are prefix operators (token type prefix-op), next come binding
operators (token type binding-op).

A binding operator is followed by a list of variables and finally a term.
There are two more variations of binding operators, that bind much weaker
and are discussed later.

Next, after the binding operators, is plain application. Juxtaposition of
two terms means applying the first term to the second. Sequences of appli-
cations associate to the left. According to the vector notation convention
the meaning of application depends on the type of the first term. Two
forms of applications are defined by default: if the type of the first term is
of arrow-form? then make-term-in-app-form is used; for the type of a free
algebra we use the corresponding form of recursion. However, there is one ex-
ception: if the first term is of type boole application is read as a short-hand
for the “if. . . then . . . else” construct (which is a special form) rather than
boolean recursion. The user may use the function add-new-application

to add new forms of applications. This function takes two arguments, a
predicate for the type of the first argument, and a function taking the two
terms and returning another term intended to be the result of this form of
application. Predicates are tested in the inverse order of their definition, so
more general forms of applications should be added first.

By default these new forms of application are not used for output; but the
user might declare that certain terms should be output as formal application.
When doing so it is the user’s responsibility to make sure that the syntax
used for the output can still be parsed correctly by the parser! To do so the
function (add-new-application-syntax pred toarg toop) can be used,
where the first argument has to be a predicate (i.e., a function mapping
terms to #t and #f) telling whether this special form of application can be
used. If so, the arguments toarg and toop have to be functions mapping
the term to operator and argument of this “application” respectively.

MINLOG REFERENCE MANUAL 135

After that, we have binary operators written in infix notation. In order
of decreasing binding strength these are:

(i) multiplicative operators, leftassociative, token type mul-op;
(ii) additive operators, leftassociative, token type add-op;
(iii) relational operators, not associative, token type rel-op;
(iv) boolean and operators, leftassociative, token type and-op;
(v) boolean or operators, leftassociative, token type or-op;
(vi) boolean implication operators, rightassociative, token type imp-op;

(vii) pairing operators, rightassociative, token type pair-op.

On the top level, we have two more forms of binding operators, one using
the dot “.”, the other using square brackets “[]”. Recall that a binding
operator is followed by a list of variables and a term. This notation can
be augmented by a period “.” following after the variable list and before
the term. In this case the scope of the binding extends as far to the right
as possible. Bindings with the lambda operator can also be specified by
including the list of variables in square brackets. In this case, again, the
scope of the binding extends as far as possible.

Predefined operators are = as described above, the binding operator lambda,
and the primitive pairing operator @ with two prefix operators left and
right for projection.

The value of an operator token is a function that will obtain the internal
representation of the component terms as arguments and returns the internal
representation of the whole term.

If a term is formed by application, the function make-gen-application

is called with two subterms and returns the compound term. The default
here (for terms with an arrow type) is to make a term in application form.
However other rules of composition might be introduced easily.

Formulas are built from atomic formulas using junctors and quantors.
The simplest atomic formulas are made from terms using the implicit

predicate “atom”. The semantics of this predicate is well defined only for
terms of type boole. Further, a predicate constant (token type predconst)
or a predicate variable (token type pvar) followed by a list of atomic terms is
an atomic formula. Lastly, any formula enclosed in parentheses is considered
an atomic formula.

The composition of formulas using junctors and quantors is very similar
to the composition of terms using operators and binding. So, first postfix
junctors, token type postfix-jct, are applied, next prefix junctors, token
type prefix-jct, and quantors, token type quantor, in the usual form:
quantor, list of variables, formula. Again, we have a notation using a pe-
riod after the list of variables, making the scope of the quantor as large as
possible. Predefined quantors are all, ex, allnc, excl, exca, and excu.

136 HELMUT SCHWICHTENBERG

The remaining junctors are binary junctors written in infix form. In order
of decreasing binding strength we have:

(i) conjunction junctors, leftassociative, token type and-jct;
(ii) disjunction junctors, leftassociative, token type or-jct;
(iii) tensor junctors, rightassociative, token type tensor-jct;
(iv) implication junctors, rightassociative, token type imp-jct.

Predefined junctors are & (and), ! (tensor), -> (implication) and --> (non-
computational implication).

The value of junctors and quantors is a function that will be called with
the appropriate subformulas, respectively variable lists, to produce the com-
pound formula in internal form.

16. Natural numbers

For the algebra N of natural numbers there is a library file nat.scm

collecting definitions of some standard functions and relations referring to
the type N. These are

(add-program-constant "NatPlus" (py "nat=>nat=>nat"))

(add-program-constant "NatTimes" (py "nat=>nat=>nat"))

(add-program-constant "NatLt" (py "nat=>nat=>boole"))

(add-program-constant "NatLe" (py "nat=>nat=>boole"))

(add-program-constant "Pred" (py "nat=>nat"))

(add-program-constant "NatMinus" (py "nat=>nat=>nat"))

(add-program-constant "NatMax" (py "nat=>nat=>nat"))

(add-program-constant "NatMin" (py "nat=>nat=>nat"))

(add-program-constant "AllBNat" (py "nat=>(nat=>boole)=>boole"))

(add-program-constant "ExBNat" (py "nat=>(nat=>boole)=>boole"))

(add-program-constant "NatLeast" (py "nat=>(nat=>boole)=>nat"))

(add-program-constant "NatLeastUp" (py "nat=>nat=>(nat=>boole)=>nat"))

with there standard (mostly infix) notations. To see their defining equations
(i.e., computation rules) and proved equations used as (left to right) rewrite
rules one can type for instance

(display-pconst "NatPlus")

and obtains

NatPlus

comprules

nat+0 nat

nat1+Succ nat2 Succ(nat1+nat2)

rewrules

0+nat nat

Succ nat1+nat2 Succ(nat1+nat2)

MINLOG REFERENCE MANUAL 137

nat1+(nat2+nat3) nat1+nat2+nat3

The file also contains often used theorems and their proofs. To review them
the search-about command is recommended. To find out about what has
been proved about a particular constant use

(search-about "NatMax")

The result contains

NatMaxLUB

all nat1,nat2,nat3(nat1<=nat3 -> nat2<=nat3 -> nat1 max nat2<=nat3)

NatMaxUB2

all nat1,nat2 nat2<=nat1 max nat2

NatMaxUB1

all nat1,nat2 nat1<=nat1 max nat2

NatMaxComm

all nat1,nat2 nat1 max nat2=nat2 max nat1

To see which theorems relating to case distinctions are available type

(search-about "Cases")

One obtains the following theorems with their names:

NatLeLtCases

all nat1,nat2((nat1<=nat2 -> Pvar) ->

(nat2<nat1 -> Pvar) -> Pvar)

NatLeCases

all nat1,nat2(nat1<=nat2 ->

(nat1<nat2 -> Pvar) ->

(nat1=nat2 -> Pvar) -> Pvar)

NatLtSuccCases

all nat1,nat2(nat1<Succ nat2 ->

(nat1<nat2 -> Pvar) ->

(nat1=nat2 -> Pvar) -> Pvar)

As another example, to check the available transitivity theorems type

(search-about "Trans")

The result is

NatLtLtSuccTrans

all nat1,nat2,nat3(nat1<nat2 -> nat2<Succ nat3 -> nat1<nat3)

NatLeLtTrans

all nat1,nat2,nat3(nat1<=nat2 -> nat2<nat3 -> nat1<nat3)

NatLtLeTrans

all nat1,nat2,nat3(nat1<nat2 -> nat2<=nat3 -> nat1<nat3)

NatLeTrans

all nat1,nat2,nat3(nat1<=nat2 -> nat2<=nat3 -> nat1<=nat3)

138 HELMUT SCHWICHTENBERG

NatLtTrans

all nat1,nat2,nat3(nat1<nat2 -> nat2<nat3 -> nat1<nat3)

NatEqTrans

all nat1,nat2,nat3(nat1=nat2 -> nat2=nat3 -> nat1=nat3)

Yet another example is

(search-about "NatLeast")

The bounded least number operator NatLeast, written µng, is defined re-
cursively as follows. Here g is a variable of type N→ B.

µ0g := 0,

µSng :=

{
0 if g0

Sµn(g ◦ S) otherwise.

Then we obtain

NatLeastBound : µng ≤ n,
NatLeastLeIntro : gm→ µng ≤ m,
NatLeastLtElim : µng < n→ g(µng),

PropNatLeast : m ≤ n→ gm→ g(µng).

From µng we define

µnn0
g :=

{
(µn−n0λmg(m+ n0)) + n0 if n0 ≤ n
0 otherwise.

Clearly µn0g = µng. Generally we have

NatLeastUpLBound : n0 ≤ n→ n0 ≤ µnn0
g,

NatLeastUpBound : µnn0
g ≤ n,

NatLeastUpLeIntro : n0 ≤ m→ gm→ µnnog ≤ m,
NatLeastUpLtElim : n0 ≤ µnn0

g < n→ g(µnn0
g).

References

1. P. Aczel, H. Simmons, and S.S. Wainer (eds.), Proof theory. a selection of papers from
the leeds proof theory programme 1990, Cambridge University Press, 1992. 29

2. Ulrich Berger, Program extraction from normalization proofs, Typed Lambda Calculi
and Applications (M. Bezem and J.F. Groote, eds.), LNCS, vol. 664, Springer Verlag,
Berlin, Heidelberg, New York, 1993, pp. 91–106. iii

3. , From coinductive proofs to exact real arithmetic, Computer Science Logic
(E. Grädel and R. Kahle, eds.), LNCS, Springer Verlag, Berlin, Heidelberg, New York,
2009, pp. 132–146. 4.3

4. Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg, Refined program ex-
traction from classical proofs, Annals of Pure and Applied Logic 114 (2002), 3–25. iii,
14.1

MINLOG REFERENCE MANUAL 139

5. Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg, Term rewriting for nor-
malization by evaluation, Information and Computation 183 (2003), 19–42. 1.1, 2.3,
6.2

6. Ulrich Berger and Helmut Schwichtenberg, An inverse of the evaluation functional
for typed λ-calculus, Proceedings 6’th Symposium on Logic in Computer Science
(LICS’91) (R. Vemuri, ed.), IEEE Computer Society Press, Los Alamitos, 1991,
pp. 203–211. 6.2

7. Stefan Berghofer, Proofs, programs and executable specifications in higher order logic,
Ph.D. thesis, Institut für Informatik, TU München, 2003. 1.6

8. Luca Chiarabini, Program development by proof transformation, Ph.D. thesis, Fakultät
für Mathematik, Informatik und Statistik der LMU, München, 2009. 10.2

9. Coq Development Team, The Coq Proof Assistant Reference Manual – Version 8.2,
Inria, 2009. 1.6

10. Albert Dragalin, New kinds of realizability, Abstracts of the 6th International Congress
of Logic, Methodology and Philosophy of Sciences (Hannover, Germany), 1979, pp. 20–
24. 1, 14.1

11. Roy Dyckhoff, Contraction–free sequent calculi for intuitionistic logic, The Journal of
Symbolic Logic 57 (1992), 793–807. 11.40

12. Yuri L. Ershov, Model C of partial continuous functionals, Logic Colloquium 1976
(R. Gandy and M. Hyland, eds.), North–Holland, Amsterdam, 1977, pp. 455–467. 1

13. Harvey Friedman, Classically and intuitionistically provably recursive functions,
Higher Set Theory (D.S. Scott and G.H. Müller, eds.), Lecture Notes in Mathematics,
vol. 669, Springer Verlag, Berlin, Heidelberg, New York, 1978, pp. 21–28. 1, 14.1

14. Kurt Gödel, Über eine bisher noch nicht benützte Erweiterung des finiten Standpunkts,
Dialectica 12 (1958), 280–287. 1, 4.1, 5.1, 14.2

15. Jörg Hudelmaier, Bounds for cut elimination in intuitionistic propositional logic,
Ph.D. thesis, Mathematische Fakultät, Eberhard–Karls–Universität Tübingen, 1989.
11.40

16. Jörg Hudelmaier, An o(n logn)–space decision procedure for intuitionistic proposi-
tional logic, J. Logic Computation 3 (1993), no. 1, 63–75. 11.40

17. Gérard Huet, A unification algorithm for typed λ-calculus, Theoretical Computer Sci-
ence 1 (1975), 27–57. 6.4, 11.38, 12, 12.1

18. Felix Joachimski and Ralph Matthes, Short proofs of normalisation for the simply-
typed λ-calculus, permutative conversions and Gödel’s T , Archive for Mathematical
Logic 42 (2003), 59–87. 6.1

19. Jörg Hudelmaier, Bounds for cut elimination in intuitionistic propositional logic,
Archive for Mathematical Logic 31 (1992), 331–354, Lemma 4 is true (and needed)
for atomic u only. 11.40

20. Nils Köpp and Helmut Schwichtenberg, Lookahead analysis in exact real arithmetic
with logical methods, Theoretical Computer Science 943 (2023), 171–186.

21. Alberto Martelli and Ugo Montanari, An efficient unification algorithm, ACM Trans-
actions on Programming Languages and Systems 4 (1982), no. 2, 258–282. 2.2, 6.4

22. Per Martin-Löf, Hauptsatz for the intuitionistic theory of iterated inductive definitions,
Proceedings of the Second Scandinavian Logic Symposium (J.E. Fenstad, ed.), North–
Holland, Amsterdam, 1971, pp. 179–216. 5.4

23. , Intuitionistic type theory, Bibliopolis, 1984. 1
24. Ralph Matthes, Extensions of System F by Iteration and Primitive Recursion on

Monotone Inductive Types, Ph.D. thesis, Mathematisches Institut der Universität
München, 1998. 8

140 HELMUT SCHWICHTENBERG

25. Dale Miller, A logic programming language with lambda–abstraction, function variables
and simple unification, Journal of Logic and Computation 2 (1991), no. 4, 497–536.
v, 6.4, 12.4, 12.5, 12.6, i, ii

26. Tobias Nipkow, Higher-order critical pairs, Proceedings of the Sixth Annual IEEE
Symposium on Logic in Computer Science (Los Alamitos) (R. Vemuri, ed.), IEEE
Computer Society Press, 1991, pp. 342–349. 12.6, i

27. Dag Prawitz, Natural deduction, Acta Universitatis Stockholmiensis. Stockholm Stud-
ies in Philosophy, vol. 3, Almqvist & Wiksell, Stockholm, 1965. 10.2

28. Diana Ratiu and Helmut Schwichtenberg, Decorating proofs, Proofs, Categories and
Computations. Essays in honor of Grigori Mints (S. Feferman and W. Sieg, eds.),
College Publications, 2010, pp. 171–188. 10.1, 10.1

29. Helmut Schwichtenberg, Proofs as programs, in Aczel et al. [1], pp. 81–113. (document)
30. , Proof search in minimal logic, Artificial Intelligence and Symbolic Computa-

tion, 7th International Conference, AISC 2004, Linz, Austria, September 2004, Pro-
ceedings (B. Buchberger and J.A. Campbell, eds.), LNAI, vol. 3249, Springer Verlag,
Berlin, Heidelberg, New York, 2004, pp. 15–25. 12, 12.5

31. , Program extraction from proofs: the fan theorem for uniformly coconvex bars,
Mathesis Universalis, Computability and Proof (S. Centrone, S. Negri, D. Sarikaya,
and P. Schuster, eds.), Synthese Library, vol. 412, Springer Nature, 2019, pp. 333–341.

32. , Computational aspects of Bishop’s constructive mathematics, Handbook of
constructive mathematics (D. Bridges, H. Ishihara, H. Schwichtenberg, and M. Rath-
jen, eds.), Cambridge University Press, 2023.

33. , Logic for exact real arithmetic: multiplication, Mathematics for Computation
(M4C) (M. Benini, O. Beyersdorff, M. Rathjen, and P. Schuster, eds.), World Scientific,
Singapore, 2023, pp. 39–69.

34. Helmut Schwichtenberg, Monika Seisenberger, and Franziskus Wiesnet, Higman’s
lemma and its computational content, Advances in Proof Theory (R. Kahle, T. Strahm,
and T. Studer, eds.), Birkhäuser, 2016, pp. 353–375.

35. Helmut Schwichtenberg and Stanley S. Wainer, Proofs and computations, Perspectives
in Logic, Association for Symbolic Logic and Cambridge University Press, 2012. 1.5,
13.3, 14.1

36. , Tiered arithmetics, Feferman on Foundations (G. Jäger and W. Sieg, eds.),
Outstanding Contributions to Logic, vol. 13, Springer, 2017, pp. 145–168.

37. Helmut Schwichtenberg and Franziskus Wiesnet, Logic for exact real arithmetic, Log-
ical Methods in Computer Science 17 (2021), no. 2, arxiv.org/abs/1904.12763.

38. Dana Scott, Outline of a mathematical theory of computation, Technical Monograph
PRG–2, Oxford University Computing Laboratory, 1970. 1

39. Viggo Stoltenberg-Hansen, Edward Griffor, and Ingrid Lindström, Mathematical the-
ory of domains, Cambridge Tracts in Theoretical Computer Science, Cambridge Uni-
versity Press, 1994. 1.1, 1.2, 3

40. Anne S. Troelstra and Helmut Schwichtenberg, Basic proof theory, 2nd ed., Cambridge
University Press, 2000. 1.5

41. Anne S. Troelstra and Dirk van Dalen, Constructivism in mathematics. an introduc-
tion, Studies in Logic and the Foundations of Mathematics, vol. 121, 123, North–
Holland, Amsterdam, 1988. 1.5, 10.6

42. Franziskus Wiesnet, Introduction to Minlog, Proof and Computation (K. Mainzer,
P. Schuster, and H. Schwichtenberg, eds.), World Scientific, 2018, pp. 233–288.

Index

HAω, 130
TCF, 49
F, 5, 49
⊥, 126
∧̃, 70

abbreviations, 107
aconst-form?, 80
aconst-substitute, 94
aconst-to-computed-repro-data, 80
aconst-to-formula, 80
aconst-to-inst-formula, 80
aconst-to-kind, 80
aconst-to-name, 80
aconst-to-repro-data, 80
aconst-to-string, 81
aconst-to-tpsubst, 80
aconst-to-uninst-formula, 80
aconst-without-rules?, 81
aconst=?, 81
add-algs, 19
add-co, 60
add-computation-rule, 41
add-external-code, 41
add-global-assumption, 85
add-ids, 58
add-infix-display-string, 41
add-new-application, 134
add-postfix-display-string, 41
add-predconst-name, 46
add-prefix-display-string, 41
add-program-constant, 41
add-pvar-name, 44
add-rewrite-rule, 41
add-rtotality, 60
add-theorem, 84
add-totality, 60
add-tvar-name, 19
add-var-name, 22
admissible, 12, 13
admissible-substitution?, 14
admit, 111
aga, 85
alg-form-to-name, 20
alg-form-to-types, 20
alg-form?, 20
alg-le?, 21

alg-name-to-arity, 20
alg-name-to-simalg-names, 20
alg-name-to-token-types, 20
alg-name-to-tvars, 20
alg-name-to-typed-constr-names, 20
alg-or-arrow-types-to-corec-const,

43
alg-or-arrow-types-to-corec-consts,

42
alg-to-destr-const, 41
alg?, 20
algebra, 15

explicit, 18
finitary, 17
nested, 14, 15
simultaneously defined, 17
structure-finitary, 17
unnested, 15

algebras-to-embedding, 22
all quantification, 70

without computational content, 70
all-form-to-kernel, 72
all-form-to-var, 72
all-form-to-vars-and..., 74
all-form?, 71
all-for...-to-gind-aconst, 83
all-for...-to-grecguard-const, 39,

42
all-formula-to-cases-aconst, 83
all-formula-to-cases-const, 38, 42
all-formulas-to-ind-aconst, 83
all-formulas-to-rec-const, 38
allnc-form-to-kernel, 72
allnc-form-to-var, 72
allnc-form?, 71
AllncTotalElim, 81
AllncTotalIntro, 81
AllTotalElim, 55, 81
AllTotalIntro, 55
AllTotalIntro, 81
alpha-equal-formulas-to-renaming,

75
and-form-to-left, 72
and-form-to-right, 72
and-form?, 71
AndNc, 59
AndR, 59

141

142 HELMUT SCHWICHTENBERG

animate, 123
animation, 64
arity

of a predicate variable, 43
arity-to-string, 44
arity-to-types, 44
arrow-form-to-arg-type, 21
arrow-form-to-arg-types, 21
arrow-form-to-final-val-type, 21
arrow-form-to-val-type, 21
arrow-form?, 20
arrow-type-to-cases-const, 42
arrow-types-to-rec-const, 41
assert, 104
assume, 102
asubst, 11
atom-form-to-kernel, 71
atom-form?, 70
AtomFalse, 101
AtomFalse, 84
AtomToEqDTrue, 50
AtomTrue, 101
AtomTrue, 84
atr-arb-definite-proof, 127
atr-arb-goal-proof, 127
atr-definite?, 127
atr-expand-theorems, 128
atr-goal?, 127
atr-goals-F-to-bot-proof, 127
atr-irrel-goal-proof, 127
atr-min-excl-proof-to-bot-reduced-proof,

127
atr-min-excl-proof-to-ex-proof, 127
atr...-to-structured-extracted-term,

128
atr-rel-definite-proof, 127
atr-relevant?, 127
A-translation, 125
auto, 111
avar-convention, 79
avar-full=?, 79
avar-proof-equal?, 11
avar-to-formula, 78
avar-to-index, 78
avar-to-name, 79
avar-to-string, 79
avar=?, 79
avar=?, 11
avar?, 79

axiom
independence of premise, 129
of choice, 129
of extensionality, 51

axiom-to-soundness-proof, 125

Barral, 4
Benl, 4
Berger, 4, 32, 121
bicon-form-to-bicon, 74
bicon-form-to-left, 74
bicon-form-to-right, 74
bicon-form?, 74
boole, 20
Bopp, 4
bottom, 43
bpe-nt, 66
Buchholz, 4, 12
by-assume, 107
by-assume-minimal-wrt, 110

canonical inhabitant, 27, 81
casedist, 108
Cases, 83
cases, 108
C-operator, 29
CasesLog, 85
cdp, 96
CDP-COMMENT-FLAG, 96
cf, 77
change-t-deg-to-one, 41
check-aconst, 81
check-and-display-proof, 96
check-and-display-proof, 96
check-const, 40
check-formula, 77
check-term, 68
Chiarabini, 4
classical-cterm=?, 77
classical-formula=?, 75, 77
clause, 48
Closure, 84
coidpredconst-to-closure-aconst, 84
COIDS, 60
coind, 60, 106
coinduction, 56
coinductive definition

of cototality, 56
companion, 56

MINLOG REFERENCE MANUAL 143

Compose, 37
compose-substitutions, 69
compose-substitutions-wrt, 11
compose-t-substitutions, 11
composition, 11
comprehension term, 48, 70
computation rule, 27, 35
conjunction, 51, 70

primitive, 51
consistent-substitutions-wrt?, 11
const-form?, 40
const-to-kind, 39
const-to-name, 39
const-to-object-or-arity, 39
const-to-arrow-types-or..., 39
const-to-t-deg, 39
const-to-token-type, 39
const-to-tsubst, 39
const-to-tvars, 40
const-to-type, 39
const-to-uninst-type, 39
const=?, 40
const?, 40
Constable, 90
constant scheme, 133
constr-name-and-tsubst..., 40
constr-name-to-constr, 40
constr-name?, 40
constructor, 40
constructor pattern, 35
constructor symbol, 16
constructor type, 15
constructor-eqd-imp-args-eqd-proof,

100
constructor-eqd-proof-to-args-eqd-proof,

100
constructors-overlap-imp-falsity-proof,

100
context, 86
context-to-avars, 90
context-to-vars, 90
context=?, 90
conversion, 26, 36
D-, 27, 36
β-, 27
η-, 27
R-, 27

COQ-GOAL-DISPLAY, 102
Coquand, 8

corec-const-...-to-bcorec-term, 43
corecursion

operator, 31, 34
cototality, 56, 57
cpx, 21
CpxConstr, 21
Crosilla, 4
ct, 68
cterm-form?, 77
cterm-subst, 78
cterm-substitute, 78
cterm-to-arity, 76
cterm-to-beta-eta-nf, 75
cterm-to-beta-nf, 75
cterm-to-bound, 76
cterm-to-eta-nf, 75
cterm-to-formula, 76
cterm-to-free, 76
cterm-to-string, 77
cterm-to-undec-cterm, 76
cterm-to-vars, 76
cterm=?, 77
cterm?, 77
current-goal, 101
current-proof, 101
cut, 104
Cvind-with-measure-11, 85

dcg, 102
dcg, 102
dcgnf, 102
deanimate, 123
decorate, 91
decoration, 51

algorithm, 91
of proofs, 91

def, 112
default-var-name, 22, 23
defnc, 112
degree

of negativity, 44
of positivity, 44

degree of totality, 22
destructor, 37
destructor type, 31, 34
Dialectica interpretation, 128
disjunction, 52
display-alg, 40
display-current-goal, 102

144 HELMUT SCHWICHTENBERG

display-current-goal-with..., 102
display-default-varnames, 23
display-global-assumptions, 86
display-normalized-proof, 95
display-normalized-proof-expr, 95
display-normalized-pterm, 95
display-pconst, 41
display-proof, 95
display-proof-expr, 95
display-pterm, 95
display-substitutions, 69, 78
display-t-substitution, 12
display-theorems, 84
dnp, 95
dnpe, 95
dnpt, 95
dp, 95
dpe, 95
dpt, 95
Dragalin, 5, 125
drop, 104
dual, 56
duplication, 25, 26

Eberl, 4
efproof, 111
Efq, 86
EfqLog, 86
elaboration path, 120
Elim, 84
elim, 105, 106
elimination axiom, 49
empty-subst, 10
EqD, 59
eqd-proofs-and-predicate-proof-to-proof,

100
EqDTrueToAtom, 50
=-Refl-nat, 85
=-Sym-nat, 85
=-Trans-nat, 85
equality

decidable, 36, 49
Leibniz, 5, 49, 51, 70
pointwise, 50

ex-elim, 107
ex-falso-quodlibet, 49, 100
ex-form-to-kernel, 72
ex-form-to-var, 72
ex-form-to-vars-and..., 74

ex-form?, 71
ex-for...-to-ex-elim-aconst, 84
ex-for...-to-ex-elim-const, 41
ex-for...-to-ex-elim-const, 39
ex-formula-to-ex-intro-aconst, 84
ex-formula-to-ex-intro-const, 39
ex-formulas-and-concl-to-ex-elim-proof,

99
ex-free-formula?, 75
ex-intro, 107
exc-elim, 110
exc-for...-to-exc-elim-aconst, 111
exc-formula-to-exc-intro-aconst,

110
exc-formula-to-min-pr-proof, 110
exc-intro, 110
exca, 70
exca-form-to-kernel, 72
exca-form-to-var, 72
exca-form?, 71
excl, 70
excl-form-to-kernel, 72
excl-form-to-var, 72
excl-form?, 71
excu, 70
excu-form-to-kernel, 73
excu-form-to-var, 73
excu-form?, 71
ExDTotalElim, 81
ExDTotalIntro, 82
ExElim, 80
ExElim, 84
ExIntro, 80
ExIntro, 84
existential quantification, 70
existential quantifier

primitive, 51, 84
ExL, 59
ExLTotalElim, 81
ExLTotalIntro, 82
ExNc, 59
ExNcTotalElim, 81
ExNcTotalIntro, 82
expand-theorems, 95
expand-theorems-with-pos..-content,

95
expand-thm, 95
expand-thm, 95
ExR, 59

MINLOG REFERENCE MANUAL 145

ExRTotalElim, 81
ExRTotalIntro, 82
extending-dec-variants?, 76
external code, 38
ExTotalElim, 82
ExTotalIntro, 82
extracted program, 122
extracted term, 122

falsity, 71
falsity F, 5, 49
falsity-log, 71
Filliatre, 8
finalg-to-=-const, 41
finalg-to-e-const, 41
finalg?, 20
fold-cterm, 76
fold-formula, 74
formula, 69

definite, 127
folded, 70
goal, 127
isolating, 97, 99
negative content, 128
positive content, 128
prime, 69
relevant, 127
spreading, 97, 99
unfolded, 70
uninstantiated, 79
wiping, 97, 99

formula-and-psubsts-to-mon-proof,
94

formula-form?, 77
formula-gen-subst, 78
formula-gen-substitute, 78
formula-of-nulltype?, 122
formula-subst, 78
formula-substitute, 78
formula-to-beta-eta-nf, 75
formula-to-beta-nf, 75
formula-to-bound, 75
formula-to-d-formula, 129
formula-to-dec-formula, 76
formula-to-efq-const, 39
formula-to-efq-aconst, 83
formula-to-efq-proof, 100
formula-to-et-type, 122
formula-to-eta-nf, 75

formula-to-etdn-type, 129
formula-to-etdp-type, 129
formula-to-free, 75
for...-goedel-gentzen-translation,

96
formula-to-head, 74
formula-to-prime-subformulas, 75
formula-to-pvars, 75
formula-to-string, 77
formula-to-token-tree, 77
formula-to-tvars, 75
formula-to-undec-cterm, 76
formula=?, 75, 77
formula?, 77
Forsberg, 4
Friedman, 5, 125

general induction, 42
general recursion, 42
get, 105
Gfp, 84
gind, 105
global assumption, 85
global-ass...-name-to-aconst, 86
global-ass...-to-soundness-proof,

125
GLOBAL-ASSUMPTIONS, 86, 102
goal, 100
goal-subst, 101
goal-to-context, 101
goal-to-formula, 101
goal-to-goalvar, 101
goal=?, 101
Gödel, 128

translation, 129
Gödel-Gentzen translation, 96
greatest-fixed-point axiom, 56
ground-type?, 20

Harrop degree, 44
Harrop formula, 44
head, 120
Hernest, 4
Herrmann, 4
Heyting arithmetic, 130
Huber, 4, 42
Huet, 8
huet-match, 69, 103
huet-unifiers, 69

146 HELMUT SCHWICHTENBERG

Id, 66
identity, 59
identity theorem, 66
idpreconst-to-et-type, 122
idpredconst-name-to-alg-name, 58
idpredconst-name-to-clauses, 58
idpredconst-name-to-simidpc-names,

58
idpredconst-to-cterms, 58
idpredconst-to-name, 58
idpredconst-to-tpsubst, 58
idpredconst-to-types, 58
idpredconst?, 58
IDS, 60
IDS, 57
if-construct, 30, 60
ignore-deco-flag, 96
ImagPart, 21
imitation, 113
imp-form-to-conclusion, 71
imp-form-to-final-conclusion, 74
imp-form-to-premise, 71
imp-form-to-premises, 74
imp-form?, 71
imp-formulas-to-elim-aconst, 84
imp-formulas-to-gfp-aconst, 84
imp-formulas-to-rec-const, 42
imp-formulas-to-rec-const, 38
implication, 70

without computational content, 70
impnc-form-to-conclusion, 72
impnc-form-to-premise, 72
impnc-form?, 71
Ind, 83
ind, 82, 105
induction, 82, 105

general, 42, 55, 105, 110
simultaneous, 105
strengthened form, 47
structural, 55

inductive definition
of conjunction, 51
of disjunction, 52
of existence, 51
of totality, 46

inhabitant
canonical, 81
total, 15

Inhabtotal, 81

inst-with, 104
inst-with-to, 104
int, 21
IntNeg, 21
IntPos, 21
Intro, 84
intro, 105
intro-search, 121
intro-with, 105
IntZero, 21
inversion, 106
isolating formula, 99
isolating-formula-to-proof, 99
isolating-formula?, 99

Joachimski, 4

Köpp, 4
Kleene, 125
Kreisel, 125

least-fixed-point axiom, 49
Leibniz equality, 5, 8, 49, 51, 59, 70
Leivant, 96
let introduction, 66
Letouzey, 8
lexical analysis, 130

make-=, 71
make-aconst, 80
make-alg, 20
make-all, 72
make-allnc, 72
make-and, 72
make-andi, 73
make-arity, 44
make-arrow, 20
make-atomic-formula, 71
make-avar, 78
make-bicon, 74
make-const, 39
make-cterm, 76
make-e, 71
make-eqd, 71
make-ex, 72
make-exc-elim-aconst, 111
make-exc-intro-aconst, 110
make-exca, 72
make-excl, 72
make-excu, 73

MINLOG REFERENCE MANUAL 147

make-exi, 73
make-exnci, 73
make-gind-aconst, 110
make-goal-in-all-elim-form, 101
make-goal-in-allnc-elim-form, 101
make-goal-in-avar-form, 101
make-goal-in-imp-elim-form, 101
make-goal-in-impnc-elim-form, 101
make-imp, 71
make-impnc, 72
make-min-pr-aconst, 110
make-ori, 73
make-pproof-state, 101
make-predconst, 46
make-predicate-formula, 71
make-proof-in-aconst-form, 86
make-proof-in-all-elim-form, 87
make-proof-in-all-intro-form, 87
make-proof-in-allnc-elim-form, 89
make-proof-in-allnc-intro-form, 89
make-proof-in-and-elim-l..., 87
make-proof-in-and-elim-r..., 87
make-proof-in-and-intro-form, 87
make-proof-in-avar-form, 86
make-proof-in-cases-form, 87
make-proof-in-ex-intro-form, 88
make-proof-in-imp-elim-form, 87
make-proof-in-imp-intro-form, 86
make-proof-in-impnc-elim-form, 88
make-proof-in-impnc-intro-form, 88
make-pvar, 44
make-quant-formula, 74
make-star, 21
make-subst, 10
make-subst-wrt, 10
make-substitution, 10
make-substitution-wrt, 10
make-tensor, 72
make-term-in-abst-form, 61
make-term-in-app-form, 61
make-term-in-const-form, 61
make-term-in-if-form, 62
make-term-in-lcomp-form, 61
make-term-in-pair-form, 61
make-term-in-rcomp-form, 61
make-term-in-var-form, 61
make-total, 71
make-tvar, 19
map operator, 18

Markov principle, 129
Martin-Löf, 51
match, 69, 103
matching tree, 113
Matthes, 4
Miller, 9, 121
min-excl-formula?, 128
min-pr, 110
minimum principle, 110
Minpr-with-measure-l11, 85
Miyamoto, 4
mk-all, 73
mk-allnc, 73
mk-and, 73
mk-andd, 73
mk-andi, 73
mk-andnc, 73
mk-andr, 73
mk-arrow, 21
mk-avar, 79
mk-ex, 73
mk-exca, 73
mk-excl, 73
mk-excu, 73
mk-exd, 73
mk-exdt, 73
mk-exi, 73
mk-exl, 73
mk-exlt, 73
mk-exnc, 73
mk-exnci, 73
mk-exnct, 73
mk-exr, 73
mk-exrt, 73
mk-goal-in-elim-form, 101
mk-imp, 73
mk-impnc, 73
mk-neg, 73
mk-neg-log, 73
mk-ord, 73
mk-ori, 73
mk-orl, 73
mk-orr, 73
mk-oru, 73
mk-proof-in-and-intro-form, 88
mk-proof-in-cr-nc-intro-form, 89
mk-proof-in-elim-form, 88
mk-proof-in-ex-intro-form, 88
mk-proof-in-intro-form, 88

148 HELMUT SCHWICHTENBERG

mk-proof-in-nc-intro-form, 89
mk-quant, 74
mk-tensor, 73
mk-term-in-abst-form, 62
mk-term-in-app-form, 62
mk-var, 23
msplit, 105

name-hyp, 104
nat, 21
nbe-constr-value-to-constr, 64
nbe-constr-value-to-name, 64
nbe-constr-value?, 64
nbe-constructor-pattern?, 64
nbe-extract, 65
nbe-fam-value?, 64
nbe-formula-to-type, 75
nbe-genargs, 65
nbe-inst?, 65
nbe-make-constr-value, 64
nbe-make-object, 63
nbe-match, 65
nbe-normalize-proof, 93
nbe-normalize-proof-for-extraction,

93
nbe-normalize-term, 65
nbe-normalize-term-without-eta, 65
nbe-object-app, 64
nbe-object-apply, 64
nbe-object-compose, 64
nbe-object-to-type, 63
nbe-object-to-value, 63
nbe-object?, 64
nbe-pconst-...-to-object, 64
nbe-reflect, 65
nbe-reify, 65
nbe-term-to-object, 64
negative translation, 96
nested-alg-name?, 20
new-tvar, 19
nf, 77
ng, 102
Niggl, 4
Nipkow, 8
normalize-cterm, 77
normalize-formula, 77
normalize-goal, 102
normalize-proof-simp, 93

normalize-term-pi-with-rec-to-if,
65

np, 93
npe, 93
nt, 65
nulltype, 10, 122
number...-to-intro-aconst, 84
number...-to-intro-const, 39
numerated-var-to-index, 23
numerated-var, 23

object-type?, 20
One, 21
osubst, 11

pair-elim, 111
parameter argument type, 15
parameter premise, 48
parsing, 131
pattern, 121
pattern unification problem, 115
pattern-and-instance-to-tsubst, 69
Paulin-Mohring, 8
Paulson, 8
pconst-name-and-tsubst-to-object,

40
pconst-name-to-comprules, 40
pconst-name-to-external-code, 40
pconst-name-to-inst-objs, 40
pconst-name-to-object, 40
pconst-name-to-pconst, 40
pconst-name-to-rewrules, 40
constr-name?, 40
pf, 130
Pol, van de, 4
pos, 21
pp, 77, 84
pp, 21, 62
pp-context, 90
pp-subst, 69, 78
pp-subst, 12
ppc, 63
pproof-state-to-formula, 101
pproof-state-to-num-goals, 101
pproof-state-to-proof, 101
predconst-name-to-arity, 46
predconst-name?, 46
predconst-to-index, 46
predconst-to-name, 46

MINLOG REFERENCE MANUAL 149

predconst-to-string, 46
predconst-to-tsubst, 46
predconst-to-uninst-arity, 46
predconst?, 46
predicate

nested, 48
unnested, 48

predicate constant, 45
predicate variable, 97
predicate-equal?, 43
predicate-form-to-args, 71
predicate-form-to-predicate, 71
predicate-form?, 70
predicate-to-arity, 43
predicate-to-token-tree, 77
Presburger, 9
pretty-print-with-case-display, 63
prime-form?, 71, 74
prime-predicate-form?, 74
product type

promitive, 51
progressive, 55
projection, 113
proof pattern, 90
proof transformation, 93
proof-in-aconst-form-to-aconst, 86
proof-in-aconst-form?, 86
proof-in-all-elim-form-to-arg, 87
proof-in-all-elim-form-to-op, 87
proof-in-all-elim-form?, 87
pr...all-intro-form-to-kernel, 87
pr...all-intro-form-to-var, 87
proof-in-all-intro-form?, 87
proof-in-allnc-elim-form-to-arg, 89
proof-in-allnc-elim-form-to-op, 89
proof-in-allnc-elim-form?, 89
pr...allnc-intro-form-to-kernel, 89
pr...allnc-intro-form-to-var, 89
proof-in-allnc-intro-form?, 89
proof-in-and-elim..., 87
proof-in-and-elim-left-form?, 87
proof-in-and-elim..., 87
proof-in-and-elim-right-form?, 87
pr...and-intro-form-to-left, 87
pr...and-intro-form-to-right, 87
proof-in-and-intro-form?, 87
proof-in-avar-form-to-avar, 86
proof-in-avar-form?, 86
proof-in-cases-form-to-alts, 88

proof-in-cases-form-to-rest, 88
proof-in-cases-form-to-test, 88
proof-in-cases-form?, 88
proof-in-elim-form-to-args, 88
pr...elim-form-to-final-op, 88
proof-in-imp-elim-form-to-arg, 87
proof-in-imp-elim-form-to-op, 87
proof-in-imp-elim-form?, 87
proof-in-imp-intro-form-to-avar, 87
pr...-imp-intro-form-to-kernel, 87
proof-in-imp-intro-form?, 87
proof-in-impnc-elim-form-to-arg, 89
proof-in-impnc-elim-form-to-op, 88
proof-in-impnc-elim-form?, 89
proof-in-impnc-intro-form-to-avar,

88
pr...-impnc-intro-form-to-kernel,

88
proof-in-impnc-intro-form?, 88
proof-in-intro-form-to..., 88
proof-of-efq-at, 96
proof-of-efq-log-at, 96
proof-of-stab-at, 96
proof-of-stab-log-at, 96
proof-respects-avar-convention?, 89
proof-subst, 95
proof-substitute, 94
proof-to-aconsts, 90
proof-to-aconsts-without-rules, 89
proof-to-bound-avars, 89
proof-to-context, 89
proof-to-cvars, 89
proof-to-depth, 94
proof-to-expr, 95
proof-to-expr-with-aconsts, 95
proof-to-expr-with-formulas, 95
proof-to-extracted-d-terms, 130
proof-to-extracted-term, 122
proof-to-formula, 89
proof-to-free, 89
proof-to-free-and-bound-avars, 89
proof-to-free-and-bound-avars-wrt,

89
proof-to-free-avars, 89
proof-to-global-assumptions, 90
proof-to-goedel-gentzen-translation,

99
proof-to-length, 94
proof-to-normal-form, 94

150 HELMUT SCHWICHTENBERG

proof-to-one-step-idp..-elim-intro-reduct,
94

proof-to-one-step-reduct, 94
proof-to-parts, 94
proof-to-ppat, 92
proof-to-proof-parts, 94
proof-to-proof-without-predec..-avars,

93
proof-to-pvars, 89
proof-to-reduced-goedel-gentzen-transl..,

99
proof-to-soundness-proof, 125
proof-to-tvars, 89
proof=?, 89
proof?, 89
proofs=?, 89
prop, 111
prune, 94
psubst, 11
pt, 130
pv, 130
pvar-cterm-equal?, 11
pvar-cterm-to-pvar, 76
pvar-cterm?, 76
pvar-name-to-arity, 44
pvar-name?, 44
pvar-to-arity, 44
pvar-to-h-deg, 44
pvar-to-index, 44
pvar-to-n-deg, 44
pvar-to-name, 44
PVAR-TO-TVAR, 75
pvar?, 44
py, 130

Q-clause, 114
Q-formula, 112
Q-goal, 114, 115
Q-sequent, 117, 119
Q-substitution, 112, 115
Q-term, 112, 114
qf-to-term, 75
quant-form-to-kernel, 74
quant-form-to-quant, 74
quant-form-to-vars, 74
quant-form?, 74
quant-free?, 71, 74
quant-prime-form?, 71, 74

Ranzi, 4
rat, 21
RatConstr, 21
RatD, 21
Ratiu, 4
RatN, 21
real

abstract, 32
real, 21
RealConstr, 21
realMod, 21
RealPart, 21
RealSeq, 21
Rec, 133
recursion

general, 30, 42
operator, 25
operator, simultaneous, 26

recursive argument type, 15
recursive premise, 48
reduce-efq-and-stab, 96
relation

accessible part, 53
remove-alg-name, 20
remove-computation-rules-for, 41
remove-external-code, 41
remove-global-assumption, 85
remove-idpc-name, 60
remove-predconst-name, 46
remove-predecided-if-theorems, 94
remove-program-constant, 41
remove-pvar-name, 44
remove-rewrite-rules-for, 41
remove-theorem, 84
remove-tvar-name, 19
remove-var-name, 22
rename-avars, 95
rename-variables, 77
restrict-substitution-to-args, 11
restrict-substitution-wrt, 11
rm-exc, 96
RTotalList, 60
Ruckert, 4

save, 84
Schimanski, 4
search, 111
search-about, 86
Seisenberger, 4

MINLOG REFERENCE MANUAL 151

select, 121
set-goal, 102
sfinalg?, 20
signed digit, 32
simind, 105
simp, 108
simp-with, 109
simphyp, 109
simphyp-to, 109
simphyp-with, 109
simphyp-with-to, 109
simplified-inversion, 106
solution, 115

to a unification problem, 113
SOne, 21
soundness theorem

for Dialectica, 130
for realizability, 125

special form, 60
split, 105
spreading formula, 97, 99
spreading-formula-to-proof, 99
spreading-formula?, 99
Stärk, 4
Stab, 86
StabLog, 86
star-form-to-left-type, 21
star-form-to-right-type, 21
star-form?, 20
state, 119
state transition, 119
stream representation, 32, 56
strictly positive, 15
strip, 104
subst-item-equal-wrt?, 11
substitution, 12, 68, 78, 80, 94, 112

admissible, 12, 13, 94
substitution-equal-wrt?, 11
substitution-equal?, 11
substitution-to-string, 69
Succ, 21
synt-total?, 62
SZero, 21

T, 26
tensor, 70
tensor-form-to-left, 72
tensor-form-to-parts, 74
tensor-form-to-right, 72

tensor-form?, 71

term

of T+, 35

of Gödel’s T, 26

term-form?, 68

(term-gen-subst, 69

(term-gen-substitute, 69

term-in-abst-form-to-kernel, 61

term-in-abst-form-to-var, 61

term-in-abst-form?, 61

term-in-app-form-to-arg, 61

term-in-app-form-to-args, 62

term-in-app-form-to-final-op, 62

term-in-app-form-to-op, 61

term-in-app-form?, 61

term-in-beta-normal-form?, 65

term-in-const-form-to-const, 61

term-in-const-form?, 61

term-in-if-form-to-alts, 62

term-in-if-form-to-rest, 62

term-in-if-form-to-test, 62

term-in-if-form?, 62

term-in-lcomp-form-to-kernel, 61

term-in-lcomp-form?, 61

term-in-pair-form-to-left, 61

term-in-pair-form-to-right, 61

term-in-pair-form?, 61

term-in-rcomp-form-to-kernel, 61

term-in-rcomp-form?, 61

(term-in-rec-normal-form?, 66

term-in-var-form-to-var, 61

term-in-var-form?, 61

term-subst, 68

term-substitute, 68

term-to-beta-eta-nf, 65

term-to-beta-nf, 65

term-to-beta-pi-eta-nf, 65

term-to-bound, 62

(term-to-consts, 66

term-to-eta-nf, 65

term-to-expr, 63

term-to-free, 62

term-to-haskell-expr, 63

term-to-one-step-beta-reduct, 65

term-to-scheme-expr, 63

term-to-string, 62

(term-to-subterms, 66

term-to-t-deg, 62

152 HELMUT SCHWICHTENBERG

term-to-term-with-eta-expanded-if-terms,
65

(term-to-term-with-let, 68
term-to-term-without-predecided-ifs,

65
term-to-token-tree, 62, 63
term-to-totality-formula, 45
term-to-tvars, 62
term-to-type, 62
term=?, 62
term?, 68
terms-to-mr-totality-formula, 46
terms=?, 62
theorem-name-to-aconst, 84, 85
theorem-name-to-inst-proof, 84
theorem-name-to-proof, 84
theorem-to-soundness-proof, 125
THEOREMS, 84, 86, 101
thm-or-ga-name-to-proof, 90
token, 130
token type, 38
token-tree-to-pp-tree, 21, 63
token-tree-to-string, 21, 62
totality, 46, 53

absolute, 53
relative, 53
structural, 54

TotalNat, 60
Trifonov, 5
Troelstra, 125
truth, 71
tsubst, 11
tvar-to-index, 19
tvar-to-name, 19
tvar?, 19
type, 15

base, 18
higher, 18
level of, 18

type constant, 10
type form, 15
type variable, 10
type-info-to-grec-const, 42
type-info-to-grecguard-const, 42
type-le?, 21
type-match, 14
type-match-list, 14
type-match-modulo-coercion, 22
type-subst, 11

type-substitute, 11
type-to-new-partial-var, 24
type-to-new-var, 24
type-to-string, 21
type-to-token-tree, 21
type-unify, 14
type-unify-list, 14
type?, 21
types-lub, 22
types-to-embedding, 22

undelay-delayed-corec, 43
undo, 105
undoto, 105
unfold-cterm, 76
unfold-formula, 75
unfold-formula, 45
unification problem, 112
uniform one clause defined, 59
unify, 69
unify-list, 69
unit, 20
use, 102
use-with, 103
use2, 103
uysum, 20

var-form?, 23
var-term-equal?, 11
var-to-index, 22
var-to-name, 23
var-to-new-partial-var, 24
var-to-new-var, 24
var-to-t-deg, 23
var-to-type, 22
var?, 23
variable

flexible, 112
forbidden, 112
rigid, 112
signature, 112

VERBOSE-SEARCH, 111

Weich, 5
Wiesnet, 5
wiping formula, 99
wiping-formula-to-proof, 99
wiping-formula?, 99

x-and-x-list-to-proof-and..., 103

MINLOG REFERENCE MANUAL 153

yprod, 20
ysum, 20
ysumu, 20

Zero, 21
Zuber, 5

	1. Introduction
	1.1. Simultaneous free algebras
	1.2. Partial continuous functionals
	1.3. Primitive recursion, computable functionals
	1.4. Decidable predicates, axioms for predicates
	1.5. Minimal logic, proof transformation
	1.6. Comparison with Coq and Isabelle

	2. Types, with simultaneous free algebras as base types
	2.1. Generalities for substitutions, type substitutions
	2.2. Type unification and matching
	2.3. Algebras and types
	2.4. Coercion

	3. Variables
	4. Constants
	4.1. Structural recursion operators and Gödel's T
	4.2. Conversion
	4.3. Corecursion
	4.4. A common extension T+ of Gödel's T and Plotkin's PCF
	4.5. Implementation

	5. Predicates
	5.1. Predicate variables
	5.2. Predicate constants
	5.3. Inductively defined predicate constants
	5.4. Examples of inductive predicates
	5.5. Totality and induction
	5.6. Coinductive definitions
	5.7. Implementation

	6. Terms and objects
	6.1. Constructors and accessors
	6.2. Normalization
	6.3. Substitution
	6.4. Unification and matching

	7. Formulas and comprehension terms
	7.1. Constructors and accessors
	7.2. Decoration
	7.3. Normalization
	7.4. Alpha-equality
	7.5. Display
	7.6. Check
	7.7. Substitution

	8. Assumption variables
	9. Assumption constants
	9.1. Axioms
	9.2. Theorems
	9.3. Global assumptions

	10. Proofs
	10.1. Constructors and accessors
	10.2. Normalization by evaluation
	10.3. Substitution
	10.4. Display
	10.5. Check
	10.6. Classical logic
	10.7. Existence formulas
	10.8. Basic proof constructions

	11. Interactive theorem proving with partial proofs
	11.1. set-goal
	11.2. normalize-goal
	11.3. assume
	11.4. use
	11.5. use-with
	11.6. inst-with
	11.7. inst-with-to
	11.8. cut
	11.9. assert
	11.10. strip
	11.11. drop
	11.12. name-hyp
	11.13. split, msplit
	11.14. get
	11.15. undo
	11.16. ind
	11.17. simind
	11.18. gind
	11.19. intro
	11.20. elim
	11.21. inversion, simplified-inversion
	11.22. coind
	11.23. ex-intro
	11.24. ex-elim
	11.25. by-assume
	11.26. cases
	11.27. casedist
	11.28. simp
	11.29. simp-with
	11.30. simphyp, simphyp-to
	11.31. simphyp-with, simphyp-with-to
	11.32. min-pr
	11.33. by-assume-minimal-wrt
	11.34. exc-intro
	11.35. exc-elim
	11.36. pair-elim
	11.37. admit
	11.38. search
	11.39. auto
	11.40. prop
	11.41. efproof
	11.42. def, defnc

	12. Unification and proof search
	12.1. Huet's unification algorithm
	12.2. The pattern unification algorithm
	12.3. Proof search
	12.4. Extension by and
	12.5. Implementation
	12.6. Notes

	13. Extracted terms
	13.1. The type of a formula
	13.2. Extracted terms
	13.3. Soundness

	14. Computational content of classical proofs
	14.1. Refined A-translation
	14.2. Gödel's Dialectica interpretation

	15. Reading formulas in external form
	15.1. Lexical analysis
	15.2. Parsing

	16. Natural numbers
	References
	Index

