
CHAPTER 2

Computable functionals

The objects studied in mathematics have types, which in many cases are
function types, possibly of a higher type. We are particularly interested in
computable such objects. Their domains are partial continuous functionals
(Scott, Ershov) which we study first, via Scott’s information systems.

2.1. Information systems

The basic idea of information systems is to provide an axiomatic setting
to describe approximations of abstract objects (like functions or functionals)
by concrete, finite ones. We do not attempt to analyze the notion of “con-
creteness” or finiteness here, but rather take an arbitrary countable set A of
“bits of data” or “tokens” as a basic notion to be explained axiomatically.
In order to use such data to build approximations of abstract objects, we
need a notion of “consistency”, which determines when the elements of a
finite set of tokens are consistent with each other. We also need an “entail-
ment relation” between consistent sets U of data and single tokens a, which
intuitively expresses the fact that the information contained in U is suffi-
cient to compute the bit of information a. The axioms below are a minor
modification of Scott’s (1982), due to Larsen and Winskel (1991).

2.1.1. Ideals.

Definition. An information system is a structure (A,Con,`) where A
is an at most countable non-empty set (the tokens), Con is a set of finite
subsets of A (the consistent sets) and ` is a subset of Con×A (the entailment
relation), which satisfy

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,
U ∈ Con→ ∀a∈V (U ` a)→ V ` b→ U ` b.

13

14 2. COMPUTABLE FUNCTIONALS

The elements of Con are called formal neighborhoods. We use U, V,W
to denote finite sets, and write

U ` V for U ∈ Con ∧ ∀a∈V (U ` a),

a ↑ b for {a, b} ∈ Con (a, b are consistent),

U ↑ V for ∀a∈U,b∈V (a ↑ b).

Definition. The ideals (also called objects) of an information system
A = (A,Con,`) are defined to be those subsets x of A which satisfy

U ⊆ x→ U ∈ Con (x is consistent),

U ` a→ U ⊆ x→ a ∈ x (x is deductively closed).

We write x ∈ |A| to mean that x is an ideal of A.

Examples. The deductive closure U := { a ∈ A | U ` a } of U ∈ Con is
an ideal.

Every countable set A can be turned into a “flat” information system by
letting the set of tokens be A, Con := {∅} ∪ { {a} | a ∈ A } and U ` a mean
a ∈ U . In this case the ideals are just the elements of Con. For A = N we
have the following picture of the Con-sets.

∅
•

•
{0}

�
��
•
{1}

�
��

��
•
{2}

. . .

A rather important example is the following, which concerns approxi-
mations of functions from a countable set A into a countable set B. The
tokens are the pairs (a, b) with a ∈ A and b ∈ B, and

Con := { { (ai, bi) | i < k } | ∀i,j<k(ai = aj → bi = bj) },
U ` (a, b) := (a, b) ∈ U.

It is easy to verify that this defines an information system whose ideals are
(the graphs of) all partial functions from A to B.

Remark. One can show that for an arbitrary information system A =
(A,Con,`) the structure (|A|,⊆, ∅) is a “domain” (also called Scott-Ershov
domain, or “bounded complete algebraic cpo”), whose set of “compact ele-
ments” can be represented as |A|c = {U | U ∈ Con }. The converse holds as
well: every countable domain can be represented as an information system.
We will not need this relation to standard (non-constructive) domain theory
(cf. Abramsky and Jung (1994)), and hence not even define these notions
here.

2.1. INFORMATION SYSTEMS 15

2.1.2. Function spaces. We define the “function space” A → B be-
tween two information systems A and B.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be infor-
mation systems. Define A→ B = (C,Con,`) by

C := ConA ×B,

{ (Ui, bi) | i ∈ I } ∈ Con := ∀J⊆I
(⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB

)
.

For the definition of the entailment relation ` it is helpful to first define the
notion of an application of W := { (Ui, bi) | i ∈ I } ∈ Con to U ∈ ConA:

{ (Ui, bi) | i ∈ I }U := { bi | U `A Ui }.

From the definition of Con we know that this set is in ConB. Now define
W ` (U, b) by WU `B b.

Remark. Clearly application is monotone in the second argument, in
the sense that U `A U ′ implies (WU ′ ⊆WU , hence also) WU `B WU ′. In
fact, application is also monotone in the first argument, i.e.,

W `W ′ implies WU `B W ′U.

To see this let W = { (Ui, bi) | i ∈ I } and W ′ = { (U ′j , b
′
j) | j ∈ J }. By

definition W ′U = { b′j | U `A U ′j }. Now fix j such that U `A U ′j ; we must

show WU `B b′j . By assumption W ` (U ′j , b
′
j), hence WU ′j `B b′j . Because

of WU ⊇WU ′j the claim follows.

Lemma 2.1.1. If A and B are information systems, then so is A→ B
defined as above.

Proof. Let A = (A,ConA,`A) and B = (B,ConB,`B). The first,
second and fourth property of the definition are clearly satisfied. For the
third, suppose

{(U1, b1), . . . , (Un, bn)} ` (U, b), i.e., { bj | U `A Uj } `B b.

We have to show that {(U1, b1), . . . , (Un, bn), (U, b)} ∈ Con. So let I ⊆
{1, . . . , n} and suppose

U ∪
⋃
i∈I

Ui ∈ ConA.

We must show that {b} ∪ { bi | i ∈ I } ∈ ConB. Let J ⊆ {1, . . . , n} consist
of those j with U `A Uj . Then also

U ∪
⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA.

16 2. COMPUTABLE FUNCTIONALS

Since ⋃
i∈I

Ui ∪
⋃
j∈J

Uj ∈ ConA,

from the consistency of {(U1, b1), . . . , (Un, bn)} we can conclude that

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∈ ConB.

But { bj | j ∈ J } `B b by assumption. Hence

{ bi | i ∈ I } ∪ { bj | j ∈ J } ∪ {b} ∈ ConB.

For the final property, suppose

W `W ′ and W ′ ` (U, b).

We have to show W ` (U, b), i.e., WU `B b. We obtain WU `B W ′U by
monotonicity in the first argument, and W ′U `B b by definition. �

We shall now give an alternative characterization of the ideals in A→ B,
as “approximable maps”. The basic idea for approximable maps is the desire
to study “information respecting” maps from A into B. Such a map is given
by a relation r between ConA and B, where (U, b) ∈ r intuitively means that
whenever we are given the information U ∈ ConA, then we know that at
least the token b appears in the value.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be infor-
mation systems. A relation r ⊆ ConA × B is an approximable map if it
satisfies the following:

(a) if (U, b1), . . . , (U, bn) ∈ r, then {b1, . . . , bn} ∈ ConB;
(b) if (U, b1), . . . , (U, bn) ∈ r and {b1, . . . , bn} `B b, then (U, b) ∈ r;
(c) if (U ′, b) ∈ r and U `A U ′, then (U, b) ∈ r.

Theorem 2.1.2. Let A and B be information systems. Then the ideals
of A→ B are exactly the approximable maps from A to B.

The proof is left as an exercise.

2.1.3. Continuous functions. We can also characterize approxima-
ble maps in a different way, which is closer to usual characterizations of
continuity1:

Lemma 2.1.3. Let A and B be information systems and f : |A| → |B|
monotone (i.e., x ⊆ y implies f(x) ⊆ f(y)). Then the following are equiva-
lent.

(a) f satisfies the “principle of finite support” PFS: If b ∈ f(x), then b ∈
f(U) for some U ⊆ x.

1In fact, approximable maps are exactly the continuous functions w.r.t. the so-called
Scott topology. However, we will not enter this subject here.

2.1. INFORMATION SYSTEMS 17

(b) f commutes with directed unions: for every directed D ⊆ |A| (i.e., for
any x, y ∈ D there is a z ∈ D such that x, y ⊆ z)

f
(⋃
x∈D

x
)

=
⋃
x∈D

f(x).

Note that in (b) the set { f(x) | x ∈ D } is directed by monotonicity of
f ; hence its union is indeed an ideal in |B|. Note also that from PFS and
monotonicity of f it follows immediately that if V ⊆ f(x), then V ⊆ f(U)
for some U ⊆ x.

Proof. Let f satisfy PFS, and D ⊆ |A| be directed. f(
⋃
x∈D x) ⊇⋃

x∈D f(x) follows from monotonicity. For the reverse inclusion let b ∈
f(
⋃
x∈D x). Then by PFS b ∈ f(U) for some U ⊆

⋃
x∈D x. From the

directedness and the fact that U is finite we obtain U ⊆ z for some z ∈ D.
From b ∈ f(U) and monotonicity infer b ∈ f(z). Conversely, let f commute
with directed unions, and assume b ∈ f(x). Then

b ∈ f(x) = f(
⋃
U⊆x

U) =
⋃
U⊆x

f(U),

hence b ∈ f(U) for some U ⊆ x. �

We call a function f : |A| → |B| continuous if it satifies the conditions
in Lemma 2.1.3. Hence continuous maps f : |A| → |B| are those that can
be completely described from the point of view of finite approximations of
the abstract objects x ∈ |A| and f(x) ∈ |B|: whenever we are given a finite
approximation V to the value f(x), then there is a finite approximation U
to the argument x such that already f(U) contains the information in V ;
note that by monotonicity f(U) ⊆ f(x).

Clearly the identity and constant functions are continuous, and also the
composition g ◦ f of continuous functions f : |A| → |B| and g : |B| → |C|.

Theorem 2.1.4. Let A = (A,ConA,`A), B = (B,ConB,`B) be in-
formation systems. Then the ideals of A → B are in a natural bijective
correspondence with the continuous functions from |A| to |B|, as follows.

(a) With any approximable map r ⊆ ConA×B we can associate a continuous
function |r| : |A| → |B| by

|r|(z) := { b ∈ B | (U, b) ∈ r for some U ⊆ z }.

We call |r|(z) the application of r to z.
(b) Conversely, with any continuous function f : |A| → |B| we can associate

an approximable map f̂ ⊆ ConA ×B by

f̂ := { (U, b) | b ∈ f(U) }.

18 2. COMPUTABLE FUNCTIONALS

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|.

The proof is left as an exercise.
Consequently we can (and will) view approximable maps r ⊆ ConA×B

as continuous functions from |A| to |B|.
Equality of two subsets r, s ⊆ ConA × B means that they consist of

the same tokens (U, b). We can characterize equality r = s by extensional
equality of the associated functions |r|, |s|. It even suffices that |r| and |s|
coincide on all compact elements U for U ∈ ConA.

Lemma 2.1.5 (Extensionality). Assume that A = (A,ConA,`A) and
B = (B,ConB,`B) are information systems and r, s ⊆ ConA × B approxi-
mable maps. Then the following are equivalent.

(a) r = s,
(b) |r|(z) = |s|(z) for all z ∈ |A|,
(c) |r|(U) = |s|(U) for all U ∈ ConA.

Proof. It suffices to prove (c) → (a). As above this follows from

(U, b) ∈ r ↔ ∃V⊆U (V, b) ∈ r by axiom (c) for approximable maps

↔ b ∈ |r|(U). �

Moreover, one can easily check that

s ◦ r := { (U, c) | ∃V ((V, c) ∈ s ∧ (U, V) ⊆ r) }

is an approximable map (where (U, V) := { (U, b) | b ∈ V }), and

|s ◦ r| = |s| ◦ |r|, ĝ ◦ f = ĝ ◦ f̂ .

We usually write r(z) for |r|(z), and similarly (U, b) ∈ f for (U, b) ∈ f̂ .
It should always be clear from the context where the mods and hats should
be inserted.

2.2. Partial continuous functionals

We now use information systems to define the Scott-Ershov model of
partial continuous functionals, each of a given “type”.

2.2.1. Types. What is a type? Clearly if τ and σ are types, then we
want that also τ → σ is a type, to be called “function type”. But we have to
start somewhere. The basic idea is that we consider finite lists of (named)
“constructor types”.

Types may involve type variables α, β, γ, ξ, ζ. Iterated arrows are un-
derstood as associated to the right. For example, α → β → γ means
α→ (β → γ), not (α→ β)→ γ.

2.2. PARTIAL CONTINUOUS FUNCTIONALS 19

Definition. Constructor types κ have the form

~α→ (ξ)i<n → ξ

with all type variables αi distinct from each other and from ξ. An argument
type of a constructor type is called a parameter argument type if it is differ-
ent from ξ, and a recursive argument type otherwise. A constructor type is
recursive if it has a recursive argument type. Each list of named constructor
types with all of its parameter argument types distinct determines a base
type ι~κ. A base type given by a list of named constructor is sometimes called
algebra.

For some common lists of named constructor types there are standard
names for the corresponding base types:

Dummy: ξ U (unit),

tt : ξ, ff : ξ B (booleans),

SdL: ξ,SdM: ξ,SdR: ξ D (signed digits),

Zero: ξ,Succ: ξ → ξ N (natural numbers, unary),

One: ξ,S0 : ξ → ξ,S1 : ξ → ξ P (positive numbers, binary),

L: ξ,B: ξ → ξ → ξ Y (binary trees)

and with parameter types

Id: α→ ξ I(α) (identity),

Nil : ξ,Cons: α→ ξ → ξ L(α) (lists),

SCons: α→ ξ → ξ S(α) (streams),

Pair : α→ β → ξ α× β (product),

InL: α→ ξ, InR: β → ξ α+ β (sum),

DummyL: ξ, Inr : α→ ξ uysum(α) (for U + α),

Inl : α→ ξ,DummyR: ξ ysumu(α) (for α+ U).

Definition. Types are inductively defined by

(a) Every type variable α is a type.
(b) If ~κ(~α) is a list of named constructor types and ~τ are types where the

length of ~τ is the number of parameters in ~κ, then ι~κ(~τ) is a type.
(c) It τ and σ are types, then so is τ → σ.

Types of the form τ → σ are called function types, and types of the form
ι~κ(~τ) base types.

If the base type corresponding to a list of named constructor types has
a standard name, then we use this name to denote the base type.

20 2. COMPUTABLE FUNCTIONALS

A type is closed it it has no parameters. Let τ(~α) be a type with ~α its
parameters, and let ~ρ be closed types. We define the level of τ(~ρ) by

lev(ι~κ(~ρ)) := max(lev(~ρ)),

where the length of ~ρ is the number of parameters in ~κ(~α),

lev(τ → σ) := max(lev(σ)), 1 + lev(τ)).

Examples of base types:

• L(α), L(L(α)), α× β are base types of level 0.
• L(L(N)), N + B, Z := P + U + P, Q := Z× P are closed base types

of level 0.
• R := (N→ Q)× (P→ N) is a closed base type of level 1.

2.2.2. The information systems Aτ . For every closed type τ we
define the information system Aτ = (Aτ ,Conτ ,`τ). The ideals x ∈ |Aτ | are
the partial continuous functionals of type τ . Since we will have Aτ→σ =
Aτ → Aσ, the partial continuous functionals of type τ → σ will correspond
to the continuous functions from |Aτ | to |Aσ|.

Definition (Information system of a closed type τ). We simultaneously
define Aι~κ(~τ)

, Aτ→σ, Conι~κ(~τ)
and Conτ→σ.

(a) The tokens a ∈ Aι~κ(~τ)
are the type correct constructor expressions

CU1 . . . Uma
∗
1 . . . a

∗
n

with C the name of a constructor type ~α → (ξ)i<n → ξ from ~κ, all Uj
(j < m) from Conτj and each a∗i (i < n) an extended token, i.e., a token
or the special symbol ∗ which carries no information.

(b) The tokens in Aτ→σ are the pairs (U, b) with U ∈ Conτ and b ∈ Aσ.
(c) A finite set U of tokens in Aι~κ(~τ)

is consistent (i.e., U ∈ Conι~κ(~τ)
) if

(i) all its elements start with the same constructor C, say of arity
~τ → (ι~κ(~τ))i<n → ι~κ(~τ),

(ii) the union Vj of all Con-sets at the j-th (j < m) argument position
of some token in U is in Conτj , and

(iii) all Ui ∈ Conι~κ(~τ)
(i < n), where Ui consists of all (proper) tokens

at the (m+ i)-th argument position of some token in U .
(d) { (Ui, bi) | i ∈ I } ∈ Conτ→σ is defined to mean

∀J⊆I(
⋃
j∈J

Uj ∈ Conτ → { bj | j ∈ J } ∈ Conσ).

Building on this definition, we define U `τ a for U ∈ Conτ and a ∈ Aτ .

(e) {C~U1
~a∗1, . . . ,C

~Ul ~a
∗
l } `ι~κ(~τ)

C′~V ~a∗ is defined to mean C = C′, l ≥ 1, Vj
as in (c) above and Ui ` a∗i , with Ui as in (c) above (and U ` ∗ taken
to be true).

2.2. PARTIAL CONTINUOUS FUNCTIONALS 21

(f) W `τ→σ (U, b) is defined to mean WU `σ b, where application WU
of W = { (Ui, bi) | i ∈ I } ∈ Conτ→σ to U ∈ Conτ is defined to be
{ bi | U `τ Ui }; recall that U ` V abbreviates ∀a∈V (U ` a).

Note that the present definition is by recursion on the height of the syntactic
expressions involved, defined by

|α| := 0,

|ι~κ(~τ)| := 1 + max{ |τi| | τi ∈ ~τ },
|τ → σ| := max{1 + |τ |, |σ|},

|CU1 . . . Uma
∗
1 . . . a

∗
n| := 1 + max({ |Uj | | 1 ≤ j ≤ m } ∪ { |a∗i | | 1 ≤ i ≤ n }),
| ∗ | := 0,

|(U, b)| := 1 + max{|U |, |b|},
|{ ai | i ∈ I }| := 1 + max{ |ai| | i ∈ I },

|U ` a| := 1 + max{|U |, |a|}.

It is easy to see that (Aτ ,Conτ ,`τ) is an information system. Observe
that all the notions involved are computable: a ∈ Aτ , U ∈ Conτ and U `τ a.

Definition (Partial continuous functionals). For every closed type τ let
Aτ be the information system (Aτ ,Conτ ,`τ). The set |Aτ | of ideals in Aτ

is the set of partial continuous functionals of type τ . A partial continuous
functional x ∈ |Aτ | is computable if it is recursively enumerable when viewed
as a set of tokens.

Notice that Aτ→σ = Aτ → Aσ as defined generally for information
systems.

For example, the tokens for the base type N are shown in Figure 1 (with
0 for Zero and S for Succ). For tokens a, b we have {a} ` b if and only if
there is a path from a (up) to b (down). As another example, consider the
base type Y of binary trees with a nullary constructor L (for Leaf) and a
binary B (for Branch). Then {B(L, ∗), B(∗, L)} is consistent, and it entails
B(L,L).

2.2.3. Ideals of a closed base type. Let τ be a closed base type, for
simplicity without parameters. An example is the type Y of binary trees.
We want to take a closer look at the elements of |Aτ |, i.e., the ideals in
Aτ . Among them it seems natural to single out those with the following
property, to be called “cototality”:

Definition (Cototal ideal). Consider a token in the ideal, and in this
token (a constructor expression) a position occupied by the symbol ∗ (indi-
cating “no information”). Then it must be possible to further analyze the

22 2. COMPUTABLE FUNCTIONALS

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Figure 1. Tokens and entailment for N

ideal, in the following sense. There must be another token in the ideal where
this symbol ∗ is replaced by a constructor expression C~∗ with C the name
of a constructor of the underlying base type.

Clearly cototal ideals may be infinite. However, they can be analyzed (or
“destructed”) up to an arbitrary depth. It may also happen that a cototal
ideal is finite. In this case it is called “total”.

Hence in our model of partial continuous functionals already at base
types we have ideals (i.e., objects) which are either

• cototal and infinite, or
• total (i.e., cototal and finite), or
• neither.

This is a somewhat uncommon view of what we should understand as an ob-
ject of for instance the base type Y of binary trees. However, it fits perfectly
with the type theory TCF allowing inductive and coinductive predicates to
be studied in Chapter 3.

We give some examples for the base type Y, with a more pictorial repre-
sentation. Tokens in AY (omitting B):

L
L L

HHH�
��
@@�� L

∗ L

HHH�
��
@@��

Consistency in AY:

L ∗
H
HH��

� ↑
∗ L
H
HH��

�

Moreover

L L
H
HH��

� 6↑
L

∗ ∗

H
HH��

�@
@��

but

L ∗
H
HH��

� ↑
L

∗ ∗

H
HH��

�@
@��

