
CHAPTER 1

Logic

The main subject of Mathematical Logic is mathematical proof. In this
introductory chapter we deal with the basics of formalizing such proofs and,
via normalization, analysing their structure. The system we pick for the
representation of proofs is Gentzen’s natural deduction from (1935). Our
reasons for this choice are twofold. First, as the name says this is a natural
notion of formal proof, which means that the way proofs are represented
corresponds very much to the way a careful mathematician writing out all
details of an argument would proceed anyway. Second, formal proofs in
natural deduction are closely related (via the so-called Curry-Howard cor-
respondence) to terms in typed lambda calculus. This provides us not only
with a compact notation for logical derivations (which otherwise tend to be-
come somewhat unmanagable tree-like structures), but also opens up a route
to applying the computational techniques which underpin lambda calculus.

An underlying theme of this chapter is to bring out the constructive
content of logic, particularly in regard to the relationship between minimal
and classical logic. For us the latter is most appropriately viewed as a
subsystem of the former. This approach will reveal some interesting aspects
of proofs, e.g., that it is possible and useful to distinguish between existential
proofs that actually construct witnessing objects, and others that don’t.

As an example for a non-constructive existence proof, consider the fol-
lowing proposition.

There are irrational numbers a, b such that ab is rational.

This can be proved as follows, by cases.

Case
√

2
√
2

is rational. Choose a =
√

2 and b =
√

2. Then a, b are
irrational and by assumption ab is rational.

Case
√

2
√
2

is irrational. Choose a =
√

2
√
2

and b =
√

2. Then by
assumption a, b are irrational and

ab =
(√

2

√
2
)√2

=
(√

2
)2

= 2

is rational.

1

2 1. LOGIC

As long as we have not decided whether
√

2
√
2

is rational, we do not
know which numbers a, b we must take. Hence we have an example of an
existence proof which does not provide an instance.

1.1. Natural deduction

The rules of natural deduction come in pairs: we have an introduc-
tion and an elimination rule for the logical connectives → and ∀. The re-
sulting system is called minimal logic; it was introduced by Kolmogorov
(1932), Gentzen (1935) and Johansson (1937). Notice that no negation
is yet present. If we go on and require ex-falso-quodlibet for the nullary
propositional symbol ⊥ (“falsum”) we can embed intuitionistic logic with
negation as A → ⊥. To embed classical logic, we need to go further and
add as an axiom schema the principle of indirect proof, also called stability
(∀~x(¬¬R~x→ R~x) for relation symbols R).

1.1.1. Introduction and elimination rules for → and ∀. First we
have an assumption rule, allowing to write down an arbitrary formula A
together with a marker u:

u : A assumption.

The other rules of natural deduction split into introduction rules (I-rules
for short) and elimination rules (E-rules) for the logical connectives → and
∀. For implication → there is an introduction rule →+ and an elimination
rule →− also called modus ponens. The left premise A → B in →− is
called the major (or main) premise, and the right premise A the minor (or
side) premise. Note that with an application of the→+-rule all assumptions
above it marked with u : A are cancelled (which is denoted by putting square
brackets around these assumptions), and the u then gets written alongside.
There may of course be other uncancelled assumptions v : A of the same
formula A, which may get cancelled at a later stage.

[u : A]

|M
B →+uA→ B

|M
A→ B

| N
A →−B

For the universal quantifier ∀ there is an introduction rule ∀+ (again marked,
but now with the bound variable x) and an elimination rule ∀− whose right
premise is the term t to be substituted. The rule ∀+x with conclusion ∀xA
is subject to the following (eigen-)variable condition: the derivation M of
the premise A must not contain any open assumption having x as a free

1.1. NATURAL DEDUCTION 3

variable.

|M
A ∀+x∀xA

|M
∀xA(x) t

∀−
A(t)

As an example we derive (A→ B → C)→ (A→ B)→ A→ C:

u : A→ B → C w : A
B → C

v : A→ B w : A
B

C →+wA→ C →+v
(A→ B)→ A→ C

→+u
(A→ B → C)→ (A→ B)→ A→ C

Since in many cases the rule used is determined by the conclusion, we may
suppress in such cases the name of the rule. As an example involving the uni-
versal quantifier we derive ∀x(A → B) → A → ∀xB, under the assumption
that x is not free in A (written x /∈ FV(A)):

u : ∀x(A→ B) x

A→ B v : A
B ∀+x∀xB →+vA→ ∀xB →+u∀x(A→ B)→ A→ ∀xB

Note that the variable condition is satisfied: x is not free in A (and also not
free in ∀x(A→ B)).

Definition. A formula A is called derivable (in minimal logic), writ-
ten ` A, if there is a derivation of A (without free assumptions) using
the natural deduction rules. A formula B is called derivable from assump-
tions A1, . . . , An, if there is a derivation of B with free assumptions among
A1, . . . , An. Let Γ be a (finite or infinite) set of formulas. We write Γ ` B if
the formula B is derivable from finitely many assumptions A1, . . . , An ∈ Γ.

1.1.2. Properties of negation. Recall that negation was defined by
¬A := (A→ ⊥). The following can easily be derived.

A→ ¬¬A,
¬¬¬A→ ¬A.

However, ¬¬A→ A is in general not derivable.

4 1. LOGIC

Lemma. The following are derivable.

(A→ B)→ ¬B → ¬A,
¬(A→ B)→ ¬B,

¬¬(A→ B)→ ¬¬A→ ¬¬B,
(⊥ → B)→ (¬¬A→ ¬¬B)→ ¬¬(A→ B),

¬¬∀xA→ ∀x¬¬A.

Derivations are left as an exercise.
We have not yet considered the logical connectives “or” (disjunction)

and “exists”. They are special from a constructive point of view, since a
proposition with such a connective should have “computational content”.
For this reason we do not consider them as logical concepts, but rather as
(special cases of) inductive definitions which will be dealt with later in this
course.

However, there is a substitute, the so-called weak (or “classical”) form of
disjunction end existence. We write them with a tilde to mark the difference
from the strong form of these connectives. They are defined by

A ∨̃ B := ¬A→ ¬B → ⊥, ∃̃xA := ¬∀x¬A.

Since ∃̃x∃̃yA unfolds into an awkward formula we extend the ∃̃-terminology
to lists of variables:

∃̃x1,...,xnA := ∀x1,...,xn(A→ ⊥)→ ⊥.

Moreover let

∃̃x1,...,xn(A1 ∧̃ . . . ∧̃Am) := ∀x1,...,xn(A1 → · · · → Am → ⊥)→ ⊥.

This allows to stay in the →,∀ part of the language. Notice that ∧̃ only
makes sense in this context, i.e., in connection with ∃̃.

1.1.3. Intuitionistic and classical derivability. In the definition of
derivability falsity ⊥ plays no role. We may change this and require ex-
falso-quodlibet axioms, of the form

∀~x(⊥ → R~x)

with R a relation symbol distinct from ⊥. Let Efq denote the set of all such
axioms. A formula A is called intuitionistically derivable, written `i A, if
Efq ` A. We write Γ `i B for Γ ∪ Efq ` B.

We may even go further and require stability axioms, of the form

∀~x(¬¬R~x→ R~x)

1.1. NATURAL DEDUCTION 5

with R again a relation symbol distinct from ⊥. Let Stab denote the set of
all these axioms. A formula A is called classically derivable, written `c A,
if Stab ` A. We write Γ `c B for Γ ∪ Stab ` B.

It is easy to see that intuitionistically (i.e., from Efq) we can derive
⊥ → A for an arbitrary formula A, using the introduction rules for the
connectives.

Theorem (Stability, or principle of indirect proof).

(a) ` (¬¬B → B)→ ¬¬(A→ B)→ A→ B.
(b) ` (¬¬A→ A)→ ¬¬∀xA→ A.
(c) `c ¬¬A→ A.

Proof. (a) For simplicity, in the derivation to be constructed we leave
out applications of →+ at the end.

u : ¬¬B → B

v : ¬¬(A→ B)

u1 : ¬B
u2 : A→ B w : A

B
⊥ →+u2¬(A→ B)

⊥ →+u1¬¬B
B

(b)

u : ¬¬A→ A

v : ¬¬∀xA

u1 : ¬A
u2 : ∀xA x

A
⊥ →+u2¬∀xA

⊥ →+u1¬¬A
A

(c) Induction on A. The case R~t with R distinct from ⊥ is given by Stab.
In the case ⊥ the desired derivation is

v : (⊥ → ⊥)→ ⊥
u : ⊥ →+u⊥ → ⊥

⊥
In the cases A→ B and ∀xA use (a) and (b), respectively. �

Using stability we can prove some well-known facts about the interaction
of weak disjunction and the weak existential quantifier with implication. We
first prove a more refined claim, stating to what extent we need to go beyond
minimal logic.

6 1. LOGIC

Lemma. The following are derivable.

(∃̃xA→ B)→ ∀x(A→ B) if x /∈ FV(B),(1)

(¬¬B → B)→ ∀x(A→ B)→ ∃̃xA→ B if x /∈ FV(B),(2)

(⊥ → B[x:=c])→ (A→ ∃̃xB)→ ∃̃x(A→ B) if x /∈ FV(A),(3)

∃̃x(A→ B)→ A→ ∃̃xB if x /∈ FV(A).(4)

The last two items can also be seen as simplifying a weakly existentially
quantified implication whose premise does not contain the quantified variable.
In case the conclusion does not contain the quantified variable we have

(¬¬B → B)→ ∃̃x(A→ B)→ ∀xA→ B if x /∈ FV(B),(5)

∀x(¬¬A→ A)→ (∀xA→ B)→ ∃̃x(A→ B) if x /∈ FV(B).(6)

Proof. (1)

∃̃xA→ B

u1 : ∀x¬A x
¬A A

⊥ →+u1¬∀x¬A
B

(2)

¬¬B → B

¬∀x¬A

u2 : ¬B

∀x(A→ B) x

A→ B u1 : A
B

⊥ →+u1¬A
∀x¬A

⊥ →+u2¬¬B
B

(3) Writing B0 for B[x:=c] we have

∀x¬(A→ B) c

¬(A→ B0)

⊥ → B0

A→ ∃̃xB u2 : A

∃̃xB

∀x¬(A→ B) x

¬(A→ B)
u1 : B
A→ B

⊥ →+u1¬B
∀x¬B

⊥
B0 →+u2A→ B0

⊥

1.1. NATURAL DEDUCTION 7

(4)

∃̃x(A→ B)

∀x¬B x
¬B

u1 : A→ B A
B

⊥ →+u1¬(A→ B)

∀x¬(A→ B)

⊥
(5)

¬¬B → B

∃̃x(A→ B)

u2 : ¬B
u1 : A→ B

∀xA x
A

B
⊥ →+u1¬(A→ B)

∀x¬(A→ B)

⊥ →+u2¬¬B
B

(6) We derive ∀x(⊥ → A) → (∀xA → B) → ∀x¬(A → B) → ¬¬A. Writing
Ax,Ay for A(x), A(y) we have

∀x¬(Ax→ B) x

¬(Ax→ B)

∀xAx→ B

∀y(⊥ → Ay) y

⊥ → Ay
u1 : ¬Ax u2 : Ax

⊥
Ay

∀yAy
B →+u2Ax→ B

⊥ →+u1¬¬Ax
Using this derivation M we obtain

∀x¬(Ax→ B) x

¬(Ax→ B)

∀xAx→ B

∀x(¬¬Ax→ Ax) x

¬¬Ax→ Ax

|M
¬¬Ax

Ax
∀xAx

B
Ax→ B

⊥
Since clearly ` (¬¬A→ A)→ ⊥→ A the claim follows. �

Remark. An immediate consequence of (6) is the classical derivability

of the “drinker formula” ∃̃x(Px → ∀xPx), to be read “in every non-empty

8 1. LOGIC

bar there is a person such that, if this person drinks, then everybody drinks”.
To see this let A := Px and B := ∀xPx in (6).

Corollary.

`c (∃̃xA→ B)↔ ∀x(A→ B) if x /∈ FV(B),

`i (A→ ∃̃xB)↔ ∃̃x(A→ B) if x /∈ FV(A),

`c ∃̃x(A→ B)↔ (∀xA→ B) if x /∈ FV(B).

There is a similar lemma on weak disjunction:

Lemma. The following are derivable.

(A ∨̃ B → C)→ (A→ C),

(A ∨̃ B → C)→ (B → C),
(7)

(¬¬C → C)→ (A→ C)→ (B → C)→ A ∨̃ B → C,(8)

(⊥ → B)→ (A→ B ∨̃ C)→ (A→ B) ∨̃ (A→ C),(9)

(A→ B) ∨̃ (A→ C)→ A→ B ∨̃ C,(10)

(¬¬C → C)→ (A→ C) ∨̃ (B → C)→ A→ B → C,(11)

(⊥ → C)→ (A→ B → C)→ (A→ C) ∨̃ (B → C).(12)

Proof. We only consider (8) and (12); the rest is left as an exercise.
(8)

¬¬C → C

¬A→ ¬B → ⊥

u1 : ¬C
A→ C u2 : A

C
⊥ →+u2¬A

¬B → ⊥

u1 : ¬C
B → C u3 : B

C
⊥ →+u3¬B

⊥ →+u1¬¬C
C

(12)

¬(B → C)

⊥ → C

¬(A→ C)

A→ B → C u1 : A
B → C u2 : B

C →+u1A→ C

⊥
C →+u2B → C

⊥
The general idea here is to view ∨̃ as a finitary version of ∃̃. �

1.2. DERIVATION TERMS, NORMALIZATION 9

Corollary.

` (A ∨̃ B → C)→ (A→ C), ` (A ∨̃ B → C)→ (B → C),

`c (A→ C)→ (B → C)→ A ∨̃ B → C,

`i (A→ B ∨̃ C)↔ (A→ B) ∨̃ (A→ C),

`c (A→ C) ∨̃ (B → C)↔ (A→ B → C).

1.2. Derivation terms, normalization

A derivation in normal form does not make “detours”, or more precisely,
it cannot occur that an elimination rule immediately follows an introduction
rule. We use “conversions” to remove such “local maxima” of complexity,
thus reducing any given derivation to normal form.

1.2.1. The Curry-Howard correspondence. Since natural deduc-
tion derivations can be notationally cumbersome, it will be convenient to
represent them as typed “derivation terms”, where the derived formula is
the “type” of the term (and displayed as a superscript). This representa-
tion goes under the name of Curry-Howard correspondence. It dates back
to Curry (1930) and somewhat later Howard, published only in (1980), who
noted that the types of the combinators used in combinatory logic are ex-
actly the Hilbert style axioms for minimal propositional logic. Subsequently
Martin-Löf (1972) transferred these ideas to a natural deduction setting
where natural deduction proofs of formulas A now correspond exactly to
lambda terms with type A. This representation of natural deduction proofs
will henceforth be used consistently.

We give an inductive definition of such derivation terms for the →,∀-
rules in Table 1 where for clarity we have written the corresponding deriva-
tions to the left. This can be extended to the rules for ∃, ∨ and ∧, but we
will not do this here. The reason is that these connectives will be viewed as
inductively defined (nullary) predicates with parameters.

Every derivation term carries a formula as its type. However, we shall
usually leave these formulas implicit and write derivation terms without
them.

Every derivation term can be written uniquely in one of the forms

u ~M | λvM | (λvM)N~L,

where u is an assumption variable or constant, v is an assumption or object
variable, and M , N , L are derivation or object terms.

1.2.2. Normalization. A conversion removes an elimination immedi-
ately following an introduction. We consider the following conversions, for

10 1. LOGIC

Derivation Term

u : A uA

[u : A]

|M
B →+uA→ B

(λuAM
B)A→B

|M
A→ B

| N
A →−B

(MA→BNA)B

|M
A ∀+x (with var.cond.)∀xA

(λxM
A)∀xA (with var.cond.)

|M
∀xA(x) t

∀−
A(t)

(M∀xA(x)t)A(t)

Table 1. Derivation terms for → and ∀

derivations written in tree notation and also as derivation terms. A con-
version removes an elimination immediately following an introduction. We
consider the following conversions, for derivations written in tree notation
and also as derivation terms.
→-conversion.

[u : A]

|M
B →+uA→ B

| N
A →−B

7→β

| N
A
|M
B

1.2. DERIVATION TERMS, NORMALIZATION 11

or written as derivation terms

(λuM(uA)B)A→BNA 7→β M(NA)B.

The reader familiar with λ-calculus should note that this is nothing other
than β-conversion.
∀-conversion.

|M
A(x)

∀+x∀xA(x) t
∀−

A(t)

7→β
|M ′

A(t)

or written as derivation terms

(λxM(x)A(x))∀xA(x)t 7→β M(t).

The closure of the conversion relation 7→β is defined by

(a) If M 7→β M
′, then M 7→M ′.

(b) If M 7→ M ′, then also MN 7→ M ′N , NM 7→ NM ′, λvM 7→ λvM
′

(inner reductions).

Therefore M 7→ N means that M reduces in one step to N , i.e., N is
obtained from M by replacement of (an occurrence of) a redex M ′ of M by
a conversum M ′′ of M ′, i.e., by a single conversion.

A term M is in normal form, or M is normal , if M does not contain a
redex. A reduction sequence is a (finite or infinite) sequence M0 7→ M1 7→
M2 . . . such that Mi 7→ Mi+1, for all i. Finite reduction sequences are par-
tially ordered under the initial part relation; the collection of finite reduction
sequences starting from a term M forms a tree, the reduction tree of M . The
branches of this tree may be identified with the collection of all infinite and
all terminating finite reduction sequences. A term is strongly normalizing if
its reduction tree is finite.

Theorem 1.2.1. Every derivation term is strongly normalizing, and the
final element of each reduction sequence is uniquely determined.

For time reasons the proof is omitted. It can be found for instance in
Troelstra and van Dalen (1988).

