Übungen zur Vorlesung "Diskrete Strukturen"

Aufgabe 17. Seien G eine nicht leere Menge und $\circ: G \to G \to G$ eine Abbildung. Man zeige: G ist eine Gruppe genau dann, wenn gilt:

- (a) $(x \circ y) \circ z = x \circ (y \circ z)$ für alle $x, y, z \in G$ (Assoziativgesetz).
- (b) (i) $\forall_{x,y \in G} \exists_{z \in G} (x \circ z = y)$.
 - (ii) $\forall_{x,y \in G} \exists_{z \in G} (z \circ x = y)$.

Aufgabe 18. Sei G eine Gruppe, $M \subseteq G$ eine Teilmenge und

$$\langle M \rangle := \{ x \in G \mid \exists_{n \in \mathbb{N}, x_1, \dots, x_n \in M, \varepsilon_1, \dots, \varepsilon_n \in \{1, -1\}} x = x_1^{\varepsilon_1} \cdots x_n^{\varepsilon_n} \}.$$

Man zeige, daß $\langle M \rangle$ die kleinste Untergruppe von G ist, die M enthält.

Aufgabe 19. Sei G eine zyklische Gruppe. Man zeige:

- (a) Ist G unendlich, so gibt es genau zwei Elemente $x, y \in G$ mit $G = \langle x \rangle$ und $G = \langle y \rangle$.
- (b) Ist |G| = n und $G = \langle x \rangle$, so besteht die Menge der $y \in G$ mit $G = \langle y \rangle$ aus Potenzen x^k von x, für die k teilerfremd zu n ist.

Aufgabe 20. Seien G_1, G_2 Gruppen. Auf $G_1 \times G_2$ definiert man eine Verknüpfung durch $(x_1, x_2) \circ (y_1, y_2) := (x_1y_1, x_2y_2)$.

- (a) Man zeige, daß $(G_1 \times G_2, \circ)$ eine Gruppe ist.
- (b) Man zeige, daß die Projektionen $p_i: G_1 \times G_2 \to G_i, p_i(x_1, x_2) := x_i$ für i = 1, 2 Homomorphismen sind.
- (c) Sei noch H eine Gruppe und $f_i: H \to G_i$ Homomorphismen. Man zeige, daß es genau einen Homomorphismus $f_1 \times f_2: H \to G_1 \times G_2$ gibt mit

$$p_i \circ (f_1 \times f_2) = f_i$$
 für $i = 1, 2$.