

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. Bachmann A. Dietlein, R. Schulte PARTIAL DIFFERENTIAL EQUATIONS I HOMEWORK SHEET 11 WS 2016/17 January 9, 2017

Exercise 1. Assume that for some attenuation function $\alpha = \alpha(r)$ and delay function $\beta = \beta(r) \ge 0$, there exist for all profiles ϕ solutions of the wave equation in $\mathbb{R} \times (\mathbb{R}^n \setminus \{0\})$ having the form

$$u(t, x) = \alpha(r)\phi(t - \beta(r)).$$

Here r = |x| and we assume $\beta(0) = 0$. Show that this is possible only if n = 1 or n = 3, and compute the form of the functions α , β .

Exercise 2. Let $g = \text{diag}(-1, 1, 1, 1) \in \mathbb{R}^{4 \times 4}$. A real 4×4 matrix $\Lambda \in \mathbb{R}^{4 \times 4}$ is called a Lorentz transformation if and only if $\Lambda^T g \Lambda = g$, where Λ^T denotes the transpose of Λ .

- (i) Show that the product of two Lorentz transformations is also a Lorentz transformation.
- (ii) Show that every Lorentz transformation is invertible, and that its inverse is also a Lorentz transformation. (Hence the set of all Lorentz transformations is a group.)
- (iii) Define the quadratic form $\langle x, y \rangle_g := x^T g y$, for $x, y \in \mathbb{R}^4$. Show that for every Lorentz transformation Λ we have $\langle \Lambda x, \Lambda y \rangle_g = \langle x, y \rangle_g$.
- (iv) Show that the following are Lorentz transformations (where $(t, x) \in \mathbb{R}^4$, with $t \in \mathbb{R}$, $x \in \mathbb{R}^3$):
 - (a) $(t, x) \mapsto (t, Ox)$, where O is an orthogonal transformation of \mathbb{R}^3 ,
 - (b) $(t, x) \mapsto (-t, x),$
 - (c) $(t, x) \mapsto \left(\frac{t ax_1}{\sqrt{1 a^2}}, \frac{x_1 at}{\sqrt{1 a^2}}, x_2, x_3\right)$, where 0 < a < 1.

(This transformation is called a Lorentz boost.)

(v) Show that the wave equation is Lorentz-covariant. That is, if u is a solution to the wave equation $u_{tt} - \Delta u = 0$ in \mathbb{R}^4 (allowing negative times), then for every Lorentz transformation Λ , the function $v(t, x) := u(\Lambda(t, x))$ is also a solution.

Exercise 3. Let $S := \{(\phi(x), x) : x \in \mathbb{R}^3\} \subset \mathbb{R}^4$ be a smooth hypersurface (i.e. $\phi \in C^{\infty}(\mathbb{R}^3)$). The Cauchy problem for the wave equation with initial surface S is:

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{ in } \mathbb{R}^4 \\ u = g \quad u_t = h & \text{ on } S . \end{cases}$$

We say that S is space-like if $1 - |\nabla \phi|^2 > 0$ on \mathbb{R}^3 .

Show that the Cauchy problem for the wave equation with the space-like initial surface $S = \{(t, x) \in \mathbb{R}^4 : t = ax_1\}, 0 < a < 1$, is equivalent to the initial-value problem (i.e. when $S = \{(t, x) \in \mathbb{R}^4 : t = 0\}$).

Hint: Use a Lorentz transformation.

Exercise 4. Let n = 3 or n = 2, and let $u \in C^2([0, \infty) \times \mathbb{R}^n)$ be the solution of

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{in } (0, \infty) \times \mathbb{R}^n, \\ u = 0, \quad u_t = h & \text{in } \{t = 0\} \times \mathbb{R}^n, \end{cases}$$

with $h \in C^2_c(\mathbb{R}^n)$, given by Kirchhoff's formula or Poisson's formula, respectively.

(i) Let $\alpha \in (0, 1)$. Prove that there exist constants $C_3, C_2 > 0$, depending on the support of h (and on α in the second case) such that for all t > 0

$$\sup_{x \in \mathbb{R}^3} |u(t,x)| \le \frac{C_3}{t} \sup_{\mathbb{R}^3} |h| \quad (n=3), \quad \sup_{x \in B_{\alpha t}(0)} |u(t,x)| \le \frac{C_2}{t} \sup_{\mathbb{R}^2} |h| \quad (n=2).$$

(ii) For n = 3, prove that

$$\sup_{x \in \mathbb{R}^3} |u(t,x)| \le \frac{1}{4\pi} \min\left(\frac{1}{t} \|Dh\|_{L^1(\mathbb{R}^3)}, \|D^2h\|_{L^1(\mathbb{R}^3)}\right), \quad t > 0.$$

Hint: For h with compact support, use that $h(x + tz) = -\int_t^\infty \partial_s h(x + sz) \, ds$.

You can drop your homework solutions until Monday, January 16 at 16 o'clock into the appropriate letterbox on the first floor near the library.