

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT



Prof. Dr. Bachmann PARTIAL DIFFERENTIAL EQUATIONS I A. Dietlein, R. Schulte HOMEWORK SHEET 6 Nove

WS 2016/17 November 28, 2016

For the following exercise we recall the definition of a regular boundary (of some set in, say,  $\mathbb{R}^n$ ) via local coordinates:

**Definition.** The boundary  $\partial\Omega$  of an open and bounded set  $\Omega \subset \mathbb{R}^n$  is  $C^k$ ,  $k \in \mathbb{N}$ , if for every  $y_0 \in \partial\Omega$  there exists r > 0 and a function  $\gamma_{y_0} \in C^k(\mathbb{R}^{n-1})$  such that after suitable relabelling of all coordinates we have

 $\Omega \cap B_r(y_0) = \{ x \in B_r(y_0) : x_n > \gamma_{y_0}(x_1, ..., x_{n-1}) \}.$ 

**Exercise 1** (Dirichlet-regular sets; 5+5 Points). Let  $\Omega \subset \mathbb{R}^n$  be open and bounded. Prove that  $\partial \Omega$  is Dirichlet regular in case (at least) one of the following conditions is met:

- (a) The set  $\Omega$  is convex
- (b) The boundary  $\partial \Omega$  ist  $C^2$

Hint: In both cases try to prove that  $x_0 \in \partial\Omega$  meets the exterior ball condition. In part (a) w.l.o.g. you can assume that  $x_0 = 0$  and  $\mathbb{R}^n_+ \cap \Omega = \emptyset$  (why?). For part (b) similar reasoning yields that w.l.o.g. you can assume  $\nu(x_0) = -e_n$ , where  $\nu(x_0)$  is the outer normal vector of  $\Omega$  at  $x_0$  and  $e_n$  denotes the unit vector in n-th direction. Then you can conclude  $\nabla \gamma_{x_0}(x_0) = 0$ , where  $\gamma_{x_0}$  denotes the local parametrization of  $\partial\Omega$  around  $x_0$ . Finally, the exterior ball condition can be verified via a Taylor expansion of  $\gamma_{x_0}$ .

The aim of the following two exercises is to prove the counterexample for general solvability of the Dirichlet problem mentioned in the lecture.

**Exercise 2** (Couterexample - A preparatory Lemma; 5 Punkte). Let  $\Omega \subset \mathbb{R}^n$  be nonempty, open and bounded and  $T \subset \overline{\Omega}$  such that  $\Omega \setminus T$  is open. Assume there exists a function u which satisfies the following properties:

- u is harmonic in  $\Omega \setminus T$
- For all  $x_0 \in \partial \Omega \setminus T$  we have

$$\lim_{\substack{x\in\Omega\backslash T\\x\to x_0}}u(x)=0$$

• There exists a harmonic function  $w_T : \Omega \setminus T \to (0, \infty)$  such that for all  $\xi \in \partial T \cap \Omega$ we have

$$\lim_{\substack{x \in \Omega \setminus T \\ x \to \xi}} \frac{|u(x)|}{w_T(x)} = 0$$

Prove that then  $u \equiv 0$ .

Exercise 3 (Counterexample; 5 Points).

- (a) Let  $\Omega \subset \mathbb{R}^n$  be open and bounded and  $\xi \in \overline{\Omega}$ . Assume that the function  $u \in C^0(\overline{\Omega} \setminus \{\xi\})$  is harmonic on  $\Omega \setminus \{\xi\}$  and bounded such that  $u|_{\partial\Omega \setminus \{\xi\}} \equiv 0$ . Prove that then  $u \equiv 0$  readily holds.
- (b) Use part (a) and the example on p.44 of the hand-written lecture notes (you may use without proof the properties (i)–(iv)) to prove the following: There exists a bounded and open set  $\Omega \subset \mathbb{R}^n$  and a function  $g \in C^0(\partial\Omega)$  such that there is no solution of the corresponding Dirichlet problem, i.e. there exists no harmonic function  $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$  such that  $u|_{\partial\Omega} = g$ .

You can drop your homework solutions until Monday, November 28 at 16 o'clock into the appropriate letterbox on the first floor near the library.