

MATHEMATISCHES INSTITUT

PARTIAL DIFFERENTIAL EQUATIONS I Homework Sheet 3

WS 2016/17 November 3, 2016

Exercise 1 (Mean value formula for boundary values; 5 Points). Let $n \geq 3, r > 0$, $f \in C^0(\overline{B_r(0)})$. Let $g \in C^0(\partial B_r(0))$ and let $u \in C^2(\overline{B_r(0)})$ be a solution of the boundary value problem

$$\begin{cases} -\Delta u = f & \text{in } B_r(0) \\ u = g & \text{on } \partial B_r(0) \end{cases}$$

Show, that

$$u(0) = \oint_{\partial B_r(0)} g(x) \, \mathrm{d}S(x) + \frac{1}{n(n-2)\alpha_n} \int_{B_r(0)} \left(\frac{1}{|x|^{n-2}} - \frac{1}{r^{n-2}}\right) f(x) \, \mathrm{d}x \,. \tag{1}$$

Hint: Use the proof of the mean value formula, to show that for all $\varepsilon \in (0, r)$:

$$\int_{\partial B_r(0)} g(x) \,\mathrm{d}S(x) - \int_{\partial B_\varepsilon(0)} u(x) \,\mathrm{d}S(x) = \frac{-1}{n\alpha_n} \int_\varepsilon^r \frac{1}{s^{n-1}} \left(\int_{B_s(0)} f(x) \,\mathrm{d}x \right) \,\mathrm{d}s$$

To get equation (1) you can use partial integration.

Exercise 2 (A-priori estimate for derivatives of a harmonic function; 5 Points). Let $U \subseteq \mathbb{R}^n$ an open set and $-\infty \leq m \leq M \leq \infty$. Let u be a harmonic function on U with $m \leq u \leq M$. Show that for all r > 0 and $x \in U$ with $\overline{B_r(x)} \subset U$ and for all $i \in \{1, \cdots, n\}$:

$$|u_{x_i}(x)| \le \frac{n(M-m)}{2r}.$$

Exercise 3 (Extension of bounded harmonic functions, part 1; 5 Points). Let $n \ge 2$. Let $u \in L^{\infty}(B_1(0)) \cap C^2(B_1(0) \setminus \{0\})$ be harmonic on $B_1(0) \setminus \{0\}$.

- (a) Let $n \ge 3$. Show that $u \in C^2(B_1(0))$ and u is harmonic on $B_1(0)$.
- (b) Show that for all $r \in (0, 1)$ the integral $\int_{\partial B_r(0)} u(x) \, \mathrm{d}S(x)$ is constant.

Hint: For (a) show that $0 = \int_{B_1(0)} u(x) \Delta \phi(x) \, dx$ for all $\phi \in C_c^{\infty}(B_1(0))$. To achive this result, separate ϕ into $\phi = \phi \eta_{\varepsilon} + \phi (1 - \eta_{\varepsilon})$ for a suitable $\eta_{\varepsilon} \in C_c^{\infty}(B_{2\varepsilon}(0))$ such that $\eta_{\varepsilon}|_{B_{\varepsilon}(0)} = 1$. Apply the compactness theorem for harmonic functions onto functions of the form $\phi_{\varepsilon} * u$, where ϕ_{ε} is a smooth mollifier.

For (b) show that $\int_{\partial B_r(0)} \nabla u(x) \cdot \frac{x}{|x|} dS(x) = const.$

Exercise 4 (Extension of bounded harmonic functions, part 2; 5 Points). Let n = 2. Let $u \in L^{\infty}(B_1(0)) \cap C^2(B_1(0) \setminus \{0\})$ be harmonic on $B_1(0) \setminus \{0\}$.

(a) Show, that there exists a constat $C \in \mathbb{R}$ such that for all $\phi \in C_0^{\infty}(B_1(0))$ and for all r > 0 is

$$\lim_{\varepsilon \downarrow 0} \int_{\partial B_r(0)} \phi(\varepsilon x) u(\varepsilon x) \, \mathrm{d}S(x) = 2\pi r C \phi(0).$$

(b) Show that $u \in C^2(B_1(0))$ and u is harmonic on $B_1(0)$.

Hint: For (a) use Exercise 3 (b). You can assume w.l.o.g. that $u \ge 0$. For (b) proceed as in Exercise 3 (a). This time, choose a radially symmetric cut-off function $\eta(\cdot) = f(|\cdot|)$. You may use the results of Tutorial Sheet 2 Exercise 3. Use (a) to determine $\lim_{\varepsilon \downarrow 0} \int \Delta \eta_{\varepsilon}(x) \phi(x) u(x) dx$.

You can drop your homework solutions until **Monday**, **November 6** at **16 o'clock** into the appropriate letterbox on the first floor near the library.