

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. Bachmann A. Dietlein, R. Schulte Partial Differential Equations I Tutorial Sheet 9 WS 2016/17 December 19, 2016

T 1. (i) Assume that $E = (E^1, E^2, E^3), B = (B^1, B^2, B^2)$, with $E^i, B^i \in C^2((0, \infty) \times \mathbb{R}^3)$ for i = 1, 2, 3, solve *Maxwell's equations*:

$$E_t = \nabla \times B, \qquad B_t = -\nabla \times E,$$

$$\nabla \cdot B = 0, \qquad \nabla \cdot E = 0.$$

Show that for $u = E^i$ or $u = B^i$, i = 1, 2, 3,

 $u_{tt} - \Delta u = 0.$

Here, the curl of a vector field $F : \mathbb{R}^3 \to \mathbb{R}^3$ is defined as

$$\nabla \times F := (\partial_{x_2} F^3 - \partial_{x_3} F^2, \partial_{x_3} F^1 - \partial_{x_1} F^3, \partial_{x_1} F^2 - \partial_{x_2} F^1)$$

It satisfies the relation $\nabla \times (\nabla \times F) = \nabla (\nabla \cdot F) - \Delta F$.

(ii) Assume that $u = (u^1, u^2, u^3)$ with $u^i \in C^{\infty}((0, \infty) \times \mathbb{R}^3)$ solves the evolution equations of linear elasticity:

$$u_{tt} - \mu \Delta u - (\lambda + \mu) \nabla (\nabla \cdot u) = 0$$
 in $(0, \infty) \times \mathbb{R}^3$.

Show $v := \nabla \cdot u$ and $w := \nabla \times u$ each solve wave equations, but with different speeds of propagation.

T 2. Find all solutions $u \in C^2(\mathbb{R}^2)$ of the equation

$$u_{xy}(x,y) = 0.$$