

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. Bachmann A. Dietlein, R. Schulte Partial Differential Equations I Tutorial Sheet 5 WS 2016/17 November 22, 2016

We define $\mathbb{R}^n_+ := \{x \in \mathbb{R}^n : x_n > 0\}$ and, for fixed $n, |\partial B(0,1)|$ denotes the surface area of the unit sphere in \mathbb{R}^n .

T 1. Let $g \in C^0(\mathbb{R}^{n-1}) \cap L^\infty(\mathbb{R}^{n-1})$ and define the function $u : \mathbb{R}^n \to \mathbb{R}$ via

$$u(x) := \frac{2x_n}{|\partial B(0,1)|} \int_{\partial \mathbb{R}^n_+} \frac{g(y)}{|x-y|^n} \mathrm{d}y \qquad (x \in \mathbb{R}^n_+).$$

Prove that u then is a solution to the Dirichlet problem on the half space \mathbb{R}^n_+ with boundary value g on $\partial \mathbb{R}^n_+$. More precisely, prove that

- (a) $u \in C^2(\mathbb{R}^n_+) \cap L^\infty(\mathbb{R}^n_+),$
- (b) $\Delta u = 0$ in \mathbb{R}^n_+ ,
- (c) For each point $x_0 \in \partial \mathbb{R}^n_+$ we have

$$\lim_{\substack{x \in \mathbb{R}^n_+ \\ x \to x_0}} u(x) = g(x_0)$$

Hint: You may use, and prove at the very end if time permits, that

$$\frac{2x_n}{|\partial B(0,1)|} \int_{\partial \mathbb{R}^n_+} \frac{1}{|x-y|^n} \mathrm{d}y = 1 \qquad (x \in \mathbb{R}^n_+).$$

T 2 (classical Harnack inequality). Let u be a non-negative harmonic function on $B_R(0)$, R > 0. Show, that for all $x \in B_R(0)$ the following inequality holds

$$\frac{R-|x|}{(R+|x|)^{n-1}}R^{n-2}u(0) \le u(x) \le \frac{R+|x|}{(R-|x|)^{n-1}}R^{n-2}u(0).$$

T 3. Let $\Omega \subseteq \mathbb{R}^n$ open and $u \in C^0(\Omega)$. Prove the equivalence of the following:

- (i) u is superharmonic in Ω
- (ii) $\int_{\partial B_r(x)} u(y) \, \mathrm{d}S(y) \leq r^{n-1} \omega_n u(x)$ for all balls $B_r(x) \subset \Omega$
- (iii) $\int_{B_r(x)} (u(y) u(x)) \, \mathrm{d}y \leq 0$ for all balls $B_r(x) \subset \subset \Omega$.