

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. Bachmann A. Dietlein, R. Schulte Partial Differential Equations I Tutorial Sheet 1 WS 2016/17 October 24, 2016

T 1. Let $u : \mathbb{R}^n \to \mathbb{R}$. Determine the order of the following partial differential equations. Moreover, find a function $F : \mathbb{R}^{n^k} \times \ldots \times \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ such that, after suitable choice of coordinates, the differential equation reads

$$F(D^k u, \dots, Du, u, x) = 0.$$

Finally, decide whether the differential equations below are linear, semilinear, quasilinear or fully nonlinear.

a) $-\Delta u = 0,$ b) $-\Delta u = \lambda u,$ c) $u_t + \sum_{i=1}^{n-1} (b^i u)_{x_i} = 0,$ d) $u_t - \Delta u = 0,$ e) |Du| = 1,f) $-\Delta u = f(u),$ g) $\operatorname{div} \left(\frac{Du}{\sqrt{1 + |Du|^2}}\right) = 0$ h) $\operatorname{div}(|Du|^{p-2}Du) = 0,$ i) $\operatorname{det}(D^2 u) = f(x, u).$

T 2. Determine whether the following partial differential equations on \mathbb{R}^2 are elliptic, parabolic or hyperbolic:

a) $3u_{xx} + 4u_{xy} + u_{yy} = 0$, b) $9u_{xx} + 12u_{xy} + 4u_{yy} = 0$, c) $2u_{xx} + u_{yy} + 2u_x = 0$, d) $(x+y)^2(u_{xx} + u_{yy}) - 2(x-y)^2u_{xy} = 0$.

T 3. Denote by B = B(0, 1) the unit ball in \mathbb{R}^n and let $p \ge 1, 0 < s < 1$. In this exercise we consider the function

$$u: B \to \mathbb{R}, u(x) = |x|^{-s}.$$

- a) Prove that $u \in L^p(B)$ holds for $p < \frac{n}{s}$.
- b) Calculate the partial derivatives u_{x_i} , $j = 1 \dots d$ of u on the set $B \setminus \{(0, \dots, 0)\}$.
- c) Let moreover $p < \frac{n}{s+1}$. Prove that in this case $\int_B |u_{x_i}|^p dx < \infty$ holds.

The aim of the following exercise is to extend the results from exercise 4 on homework sheet 1 to open sets $U \subseteq \mathbb{R}^n$. We start with some definitions.

a) For $U \subset \mathbb{R}^n$ open and $\varepsilon > 0$ we define $U_{\varepsilon} := \{x \in U : \operatorname{dist}(x, \partial U) > \varepsilon\}$, where dist denotes the distance function.

- b) A function $0 \leq \eta \in C_c^{\infty}(\mathbb{R}^n)$ with $\|\eta\|_1 = 1$ and $\operatorname{supp}(\eta) \subseteq \overline{B(0,1)}$ is called a mollifier. Given a mollifier η we define for $\varepsilon > 0$ the functions $\eta_{\varepsilon}(\cdot) := \varepsilon^{-n} \eta(\varepsilon^{-1} \cdot)$.
- c) For $U \subset \mathbb{R}^n$ open, $f \in L^1(U)$, $\varepsilon > 0$ and η a mollifier we define the function $f^{\varepsilon} \in L^1(U_{\varepsilon})$ as

$$f^{\varepsilon}(x) := (\eta_{\varepsilon} * \tilde{f})(x) = \int_{U} \eta_{\varepsilon}(x - y)f(y) \,\mathrm{d}y \qquad (x \in U_{\varepsilon}).$$

Here the function $\tilde{f} \in L^1(\mathbb{R}^n)$ is defined via $\tilde{f}|_U = f$ and $\tilde{f}|_{\mathbb{R}^n \setminus U} = 0$.

- ${\bf T}$ 4. Let $U\subseteq \mathbb{R}^n$ open and $f\in L^1(U)$
- a) Prove that $f^{\varepsilon} \in C^1(U_{\varepsilon})$ and argue that $f^{\varepsilon} \in C^{\infty}(U_{\varepsilon})$ holds.
- b) Prove that the pointwise convergence $f^{\varepsilon} \xrightarrow{\varepsilon \searrow 0} f$ holds (Lebesgue-) almost everywhere on U. Also prove that if $f \in C(U)$ is continuous then the above convergence is uniform on compact subsets of U.