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STABLY IRRATIONAL HYPERSURFACES OF SMALL SLOPES

STEFAN SCHREIEDER

1. Introduction

A classical problem in algebraic geometry asks to determine which varieties are
rational, i.e., birational to projective space. A very challenging and interesting class
of varieties for this question are smooth projective hypersurfaces of low degree.
While the problem is solved in characteristic zero and dimension three by the work
of Clemens–Griffiths [CG] and Iskovskikh–Manin [IM], it is still wide open in higher
dimensions.

A measure for the complexity of the rationality problem for a smooth projective
hypersurface X is its slope:

slope(X) :=
deg(X)

dim(X) + 1
.

If slope(X) > 1, then H0(X,ωX) �= 0, and so X is not even separably uniruled.
Generalizing the method of Iskovskikh–Manin to higher dimensions, Pukhlikov

[Pu1, Pu2] in low dimensions and de Fernex in general [deF1, deF2] have shown
that a smooth complex projective hypersurface X of slope 1 and dimension at least
three is birationally rigid. Again this is much stronger than proving irrationality
as it implies for instance Aut(X) = Bir(X).

Using an entirely different method which relies on the existence of regular dif-
ferential forms on certain degenerations to positive characteristic, Kollár [Ko1]
showed that a very general complex projective hypersurface X of degree at least

2�dim(X)+3
3 � is not ruled, hence not rational. Recently, Totaro [To] combined this

argument with the specialization method of Voisin and Colliot-Thélène–Pirutka
[Voi4,CTP1] to show that a very general complex projective hypersurface X of de-

gree at least 2�dim(X)+2
3 � is not stably rational; i.e., X × Pm is irrational for all m.

Totaro’s result generalized [CTP1], where it was shown earlier that a very general
complex quartic threefold is not stably rational.

The method of Clemens–Griffiths has been generalized by Murre [Mur] to three-
folds over any field of characteristic different from 2. In particular, he has shown
that over any such field, smooth cubic threefolds are irrational. Similarly, the ar-
guments of Colliot-Thélène–Pirutka in [CTP1] work over any uncountable field of
characteristic different from two, and so very general quartic threefolds are stably
irrational over any such field. In contrast, Kollár and Totaro’s method [Ko1, To]
seems to work only over fields of small characteristic, compared to the dimension,
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and one gets the best bounds in characteristic zero and two. Besides those results,
not much seems to be known about the rationality problem for smooth hypersur-
faces in positive characteristic. For instance, to the best of my knowledge, up till
now it was unknown whether for N ≥ 4 there are smooth irrational Fano hyper-
surfaces in PN+1 over algebraically closed fields of large characteristic, compared
to N .

1.1. Main result. Before this paper, no smooth projective hypersurfaceX of slope
at most 2

3 was known to be irrational over an algebraically closed field. On the
other hand, it is conjectured that at least over the complex numbers there should
be smooth hypersurfaces of arbitrary small slopes (and in fact cubics) that are not
stably rational. In this paper we produce stably irrational smooth hypersurfaces
(e.g. over C) whose degree grows logarithmically in the dimension, thus solving the
above conjecture.

To state our result, note that the disjoint intervals [2n−1 + n − 2, 2n + n − 1)
for positive integers n ≥ 2 cover [2,∞), and so any integer N ≥ 3 can be uniquely
written as n+ r for integers n ≥ 2 and r ≥ 1 with 2n−1 − 2 ≤ r ≤ 2n − 2.

Theorem 1.1. Let k be an uncountable field of characteristic different from two.
Let N ≥ 3 be an integer and write N = n+ r with 2n−1 − 2 ≤ r ≤ 2n − 2. Then a
very general hypersurface X ⊂ PN+1

k of degree d ≥ n+2 is not stably rational over
the algebraic closure of k.

The following table illustrates our lower bounds in dimensions N ≤ 1032.

dim(X) ≤ 4 ≤ 9 ≤ 18 ≤ 35 ≤ 68 ≤ 133 ≤ 262 ≤ 519 ≤ 1032
deg(X) ≥ 4 ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 10 ≥ 11 ≥ 12

For N = 3, we recover the result of Colliot-Thélène–Pirutka [CTP1], and for
N = 4, our bound coincides with that of Totaro [To]. However, in all dimensions
at least 5, our bounds are smaller than what was previously known. For instance,
it was unknown whether complex quintic fivefolds are rational.

If we write an integer N ≥ 3 as N = n + r with 2n−1 − 2 ≤ r ≤ 2n − 2 as in
Theorem 1.1, then n ≤ �log2 N�. Therefore, Theorem 1.1 implies the following.

Corollary 1.2. Let k be an uncountable field of characteristic different from two.
A very general hypersurface X ⊂ PN+1

k of dimension N ≥ 3 and degree at least
log2 N + 2 is not stably rational over the algebraic closure of k.

While [Ko1,To] produced a linear lower bound on the degree, our lower bound
grows only logarithmically in N , and so we get surprisingly strong results in high
dimensions. For instance, over any uncountable field of characteristic different from
two, a very general hypersurface of dimension N ≤ 1 048 594 and degree at least 22
is not stably rational.

1.2. Explicit equations. It is possible to write explicit equations for the examples
in Theorem 1.1 over countable fields k. As our proof uses a new double degeneration
argument, this works e.g. over fields admitting two degenerations, such as Q(t) or
Fp(s, t). In Appendix A, we give explicit examples in arbitrary dimension and for
all degrees covered by Theorem 1.1. We illustrate this now for k = Q(t).

For this, let N ≥ 3 be an arbitrary integer. As in Theorem 1.1, there are unique
integers n ≥ 2 and r ≥ 1 with N = n + r and 2n−1 − 2 ≤ r ≤ 2n − 2. Fix an
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integer d ≥ n + 2. (Any integer d ≥ log2 N + 2 has this property.) For simplicity,
we additionally assume that d is even, but similar examples also exist for odd d;
see Appendix A.

For any ε∈{0, 1}n, define |ε| :=
∑n

i=1 εi and ρ(ε) :=1 +
∑n

i=1(1− εi) · 2i−1. The
latter yields a bijection ρ :{0, 1}n→{1, . . . , 2n}, and we put S :=ρ−1({1, 2, . . . , r+
1}). Let t ∈ C be a transcendental number (e.g. π or e), and let p �= q be odd

primes with q � d. Then the hypersurface X ⊂ PN+1
Q(t) of dimension N and even

degree d ≥ n+ 2, given by the homogeneous polynomial

q ·

⎛⎝−xd−n
0 x1x2 · · ·xn + t2

(
n∑

i=0

x
d/2
i

)2

+
∑
ε∈S

x
d−2−|ε|
0 · xε1

1 · · ·xεn
n · x2

n+ρ(ε)

⎞⎠
+ p ·

N+1∑
i=0

xd
i ,

is smooth and not stably rational over C.
If the dimension N is of the special form 2n+n− 2, then we can circumvent one

of the degenerations in our argument, giving rise to examples over fields like Q and
Fp(t). For instance, if N = 2n + n− 2, the examples over Q will be obtained from
the above equation by setting t = 1. This leads to the following result.

Theorem 1.3. Let k be a field of characteristic different from two. If k has positive
characteristic, assume that it has positive transcendence degree over its prime field.
Then there are smooth projective hypersurfaces over k of arbitrarily small slopes
that are stably irrational over the algebraic closure of k.

1.3. Unirational hypersurfaces. Up till now, there was no example of a smooth
projective unirational hypersurface over an algebraically closed field which was
known to be stably irrational. This is slightly surprising and reflects the difficulty
of the (stable) rationality problem for smooth hypersurfaces. As for other types
of varieties, many unirational but stably irrational examples are known; see e.g.
[AM,CTO,Aso,Voi4,HKT,HPT2,Sch1,Sch2].

We prove in fact a strengthening of Theorem 1.1, where we allow the hypersur-
face to have some given multiplicity along a linear subspace; see Theorem 8.1 and
Corollary 8.2. Together with the unirationality result from [CMM], we then obtain
the following.

Corollary 1.4. Let N ∈ {6, 7, 8, 9}. Then a very general quintic hypersurface

X ⊂ PN+1
C containing a 3-plane is a smooth hypersurface that is unirational but

not stably rational.

1.4. The integral Hodge conjecture for rationally connected varieties.
In [Voi1], Voisin proved the integral Hodge conjecture (IHC) for uniruled three-
folds, hence for rationally connected ones. Later, Voisin asked whether the IHC for
codimension two cycles holds for rationally connected varieties in arbitrary dimen-
sion and conjectured that the answer is negative in dimensions at least four; see
[Voi2, Question 16].

Colliot-Thélène and Voisin [CTV] showed subsequently that the failure of the
IHC for codimension two cycles on a rationally connected smooth complex projec-
tive variety X is detected by the third unramified cohomology of X. Using the
six-dimensional example in [CTO], Colliot-Thélène and Voisin then concluded that
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the IHC for rationally connected varieties of dimension at least six in general fails
[CTV]. In the same article, they asked again about the case of rationally connected
varieties of dimensions four and five [CTV, Question 6.6]. For special types of ratio-
nally connected four- and fivefolds (including the case of cubics), a positive answer
to that question is known to hold; see e.g. [Voi2, Theorem 18], [CTV, Théorème
6.8], [Voi3, Theorem 1.4], and [FT, Théorème 3].

As a byproduct of our proof of Theorem 1.1, we obtain the following result, which
partially answers a question of Asok [Aso, Question 4.5] and, by [CTV], completely
answers the above-mentioned question of Voisin and Colliot-Thélène–Voisin.

Theorem 1.5. For integers N and i with 2 ≤ i ≤ N − 1, there is a unirational
smooth complex projective variety X of dimension N with nontrivial i-th unramified
cohomology:

Hi
nr(C(X)/C,Z/2) �= 0.

Corollary 1.6. In any dimension at least four, there is a smooth complex projective
unirational variety for which the integral Hodge conjecture for codimension two
cycles fails.

Note that the examples used in the above results are (weak) conic bundles and
not hypersurfaces; see Section 8.3 below. For instance, the four-dimensional exam-
ple in Corollary 1.6 is a (weak) conic bundle over P3.

1.5. Method. Instead of degenerations to mildly singular varieties in characteristic
two, used by Kollár [Ko1] and Totaro [To], we use in this paper a degeneration to a
highly singular hypersurface Z ⊂ PN+1 (corresponding to p → 0 in the equation in
Section 1.2). In fact, the singularities of Z are so bad that the degeneration method
of Voisin [Voi4] and Colliot-Thélène–Pirutka [CTP1] that has been used in [To] does
not seem to apply; see Remark 7.2 below. Instead, Theorem 1.1 is an application
of the method that I have introduced in [Sch1] and which generalizes [Voi4,CTP1]
to degenerations where much more complicated singularities are allowed.

One important condition which the degeneration methods in [Voi4,CTP1] and
[Sch1] have in common is the existence of some specialization Z of the varieties
we are interested in, such that stable irrationality for Z can be detected via some
cohomological obstruction, e.g. via the existence of some nontrivial unramified co-
homology class α ∈ Hn

nr(k(Z)/k,Z/2); see [CTO]. The key novelty of the strategy
in [Sch1] is however the observation that instead of a careful analysis of the sin-
gularities of Z needed for the arguments in [CTP1], it suffices to check that the
unramified class α restricts to zero on all exceptional divisors of a resolution of
singularities of Z. It is exactly this flexibility that we will crucially exploit in this
paper.

An additional difficulty arises in positive characteristic, where resolution of sin-
gularities is an open problem. To be able to deal with such fields as well, we will
develop in Section 3 below an analogue of the method of [Sch1] where one replaces
a resolution of singularities of Z by an alteration of suitable degree, which always
exists by the work of de Jong and Gabber. While the method from [Sch1] can be
adopted to alterations, it seems impossible to use alterations in the context of the
original method of [Voi4,CTP1].

We will use a degeneration of a very general hypersurface of degree d to a spe-
cial hypersurface Z ⊂ PN+1 of degree d and multiplicity d − 2 along an r-plane
P . Blowing up the r-plane, we get a (weak) r-fold quadric bundle f : Y → Pn
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(cf. [Sch1, Section 3.5]), and we use that structure to produce a nontrivial un-
ramified cohomology class α ∈ Hn

nr(k(Z)/k,Z/2). The first examples of quadric
bundles with nontrivial unramified cohomology over P2 (resp., P3) and fiber dimen-
sion r = 1, 2 (resp., r = 3, . . . , 6) have been constructed in [AM,CTO]. Recently,
these results have been generalized to arbitrary n, r ≥ 1 with 2n−1−1 ≤ r ≤ 2n−2
in [Sch1].

The main difficulties that we face are as follows. Firstly, we need to find a
nontrivial unramified cohomology class for a hypersurface Z of small slope, while
all previously known examples have large slopes; see [Sch1]. Secondly, the known
methods from [CTO, Sch1] do not seem to work in dimensions of the form N =
2n + n − 1. Finally, we have to arrange that α restricts to zero on all exceptional
divisors of a resolution of Z (or more generally on all subvarieties of an alteration
of Z that lie over the singular locus of Z). I have noticed before (cf. [Sch1, Sch2])
that such a vanishing result is often automatically satisfied for all subvarieties that
do not dominate Pn, and we prove a general such vanishing result in Theorem 9.2
below. However, the key additional issue here is that α also has to restrict to zero
on the (weak) (r−1)-fold quadric bundle E → Pn that we introduce in the blow-up
Y = BlPZ as exceptional divisor.

In this paper we introduce a new construction method for quadric bundles with
nontrivial unramified cohomology which circumvents all complications mentioned
above at the same time. Our construction is inspired by an example of a quadric
surface bundle over P2 that played a key role in the work of Hassett, Pirutka, and
Tschinkel [HPT1, Example 8]. An important step in the argument is a degeneration
of the quadric bundle Y = BlPZ to a bundle with a section, hence to a rational
variety, which allows us to control the unramified cohomology of Y ; see Section 6
below. Together with the initial degeneration to the singular hypersurface Z, this
yields a double degeneration argument, which is the main technical innovation of
the paper.

2. Preliminaries

2.1. Conventions. A variety is an integral separated scheme of finite type over a
field. For a scheme X, we denote its codimension one points by X(1). A property
holds for a very general point of a scheme if it holds at all closed points inside some
countable intersection of open dense subsets. A quadric bundle is a flat projective
morphism f : Y → S of varieties whose generic fiber is a smooth quadric; if we
drop the flatness assumption, Y is called a weak quadric bundle.

2.2. Alterations. Let Y be a variety over an algebraically closed field k. An
alteration of Y is a proper generically finite surjective morphism τ : Y ′ → Y , where
Y ′ is a nonsingular variety over k. De Jong proved that alterations always exist;
see [deJo]. Later, Gabber showed that one can additionally require that deg(τ ) be
prime to any given prime number � which is invertible in k; see [IT, Theorem 2.1].

2.3. Galois cohomology and unramified cohomology. Let � be a prime and let
K be a field of characteristic different from � which contains all �-th roots of unity.
We identify the Galois cohomology group Hi(K,Z/�) with the étale cohomology
Hi

ét(SpecK,Z/�), where Z/� denotes the constant sheaf. We have H1(K,Z/�) �
K∗/(K∗)� via Kummer theory. Using this isomorphism, we denote by (a1, . . . , ai) ∈
Hi(K,Z/�) the cup product of the classes (aj) ∈ H1(K,Z/�), represented by
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aj ∈ K∗. If K has transcendence degree d over an algebraically closed subfield
k ⊂ K, then Hi(K,Z/�) = 0 for all i > d; see [Se, II.4.2].

For any discrete valuation ring A with residue field κ and fraction field K, both
of characteristic different from �, there is a residue map

∂A : Hi(K,Z/�) → Hi−1(κ,Z/�).

This has the following property; see e.g. [Sch1, Lemma 9].

Lemma 2.1. In the above notation, suppose that −1 ∈ (K∗)�. Let π ∈ A be a
uniformizer, let 0 ≤ m ≤ i be integers, and let a1 . . . , ai ∈ A∗ be units in A. Then

∂A(πa1, . . . , πam, am+1, . . . , ai) =

⎛⎝ m∑
j=1

(a1, . . . , âj , . . . , am)

⎞⎠ ∪ (am+1, . . . , ai),

where aj ∈ κ denotes the image of aj in κ and (a1, . . . , âj , . . . , am) denotes the
symbol where aj is omitted and where we use the convention that the above sum∑m

j=1 is one if m = 1 and zero if m = 0.

Proof. The cases m = 0, 1 follow from [CTO, Proposition 1.3]. For m ≥ 2, the
lemma follows from

(πa1, . . . , πam, am+1, . . . , ai) =

⎛⎝ m∑
j=0

(a1, . . . , aj−1, π, aj+1, . . . , am)

⎞⎠
∪ (am+1, . . . , ai),

where the summand for j = 0 is understood to be (a1, . . . , am). The latter identity
follows from (π, π) = 0, which itself is a consequence of the well-known relation
(π,−π) = 0 (see e.g. [Ke, Lemma 2.2]) and the assumption −1 ∈ (K∗)�. �

Assume now that K = k(X) is the function field of a normal variety X over
a field k. The unramified cohomology group Hi

nr(K/k,Z/�) is the subgroup of
Hi(K,Z/�) that consists of all elements α ∈ Hi(K,Z/�) that have trivial residue
at any geometric discrete rank one valuation on K that is trivial on k.1 If x ∈ X
is a scheme point in the smooth locus of X, then any α ∈ Hi(K,Z/�) that is
unramified over k comes from a class in Hi

ét(SpecOX,x,Z/�), and so it can be
restricted to yield a class α|x ∈ Hi(κ(x),Z/�); see [CT1, Theorem 4.1.1]. That is,
any α ∈ Hi

nr(K/k,Z/�) can be restricted to the generic point of any subvariety
Z ⊂ X which meets the smooth locus of X.

2.4. Quadratic forms. Let K be a field of characteristic different from two. For
ci ∈ K∗, we denote by 〈c0, c1, . . . , cr+1〉 the quadratic form q =

∑
ciz

2
i over K.

The orthogonal sum (resp., tensor product) of two quadratic forms q and q′ over K
will be denoted by q ⊥ q′ (resp., q ⊗ q′). We say that q and q′ are similar if there
is some λ ∈ K∗ with q � λq′ := 〈λ〉 ⊗ q′. For any field extension F of K and any
quadratic form q over K such that {q = 0} is integral over F , we denote by F (q)
the function field of the projective quadric over F that is defined by {q = 0}.

A quadratic form over K is called a Pfister form if it is isomorphic to the tensor
product of forms 〈1,−ai〉 for i = 1, . . . , n, where ai ∈ K∗. If −1 is a square

1We follow the convention used in [Mer], which slightly differs from [CTO], where also non-
geometric valuations are considered. Both definitions coincide by [CT1, Theorem 4.1.1] if X is
smooth and proper.
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in K, then we may ignore the signs. As usual, we denote this tensor product
by 〈〈a1, . . . , an〉〉. Isotropic Pfister forms are hyperbolic; see e.g. [Lam, Theorem
X.1.7].

The following result is due to the work of many people, including Arason, Elman,
Lam, Knebusch, and Voevodsky.

Theorem 2.2. Let K be a field with char(K) �= 2 and let a1, . . . , an ∈ K∗.
The Pfister form ψ = 〈〈a1, . . . , an〉〉 is isotropic if and only if (a1, . . . , an) = 0 ∈
Hn(K,Z/2).

Proof. The theorem follows from [EL, Main Theorem 3.2] and Voevodsky’s proof
of the Milnor conjecture [Voe]. �

Theorem 2.3. Let K be a field with char(K) �= 2 and let f : Q → SpecK be an
integral projective quadric, defined by a quadratic form q over K. Let a1, . . . , an ∈
K∗ and consider α := (a1, . . . , an) ∈ Hn(K,Z/2). Assume α �= 0. Then the
following are equivalent:

(1) f∗α = 0 ∈ Hn(K(Q),Z/2);
(2) the Pfister form ψ := 〈〈a1, . . . , an〉〉 becomes isotropic over K(q) = K(Q);
(3) q is similar to a subform of the Pfister form ψ := 〈〈a1, . . . , an〉〉.

Proof. The equivalence of (1) and (2) follows from Theorem 2.2. Since α �= 0, ψ
is anisotropic over K by Theorem 2.2. The equivalence of (2) and (3) is thus a
consequence of the subform theorem of Arason and Knebusch; see [Lam, Corollary
X.4.9]. �

2.5. Decompositions of the diagonal. We say that a variety X admits an in-
tegral decomposition of the diagonal if ΔX = [z × X] + B in CHdim(X)(X × X)
for some zero-cycle z ∈ CH0(X) of degree one and some cycle B with supp(B) ⊂
X × S for some closed algebraic subset S � X. Equivalently, δX = [z × k(X)] in
CH0(X × k(X)), where δX is the class of the diagonal and z × k(X) is the base
change of the zero-cycle z to the function field k(X). Sometimes, we will also write
Xk(X) := X × k(X) and zk(X) := z × k(X) for the corresponding base changes.

Recall that a variety X is called retract rational if there are nonempty open
subsets U ⊂ X and V ⊂ PN , for some integer N , and morphisms f : U → V and
g : V → U with g ◦ f = idU . It is known (and not hard to see) that stably rational
varieties are retract rational. We have the following lemma, which in the case where
X is smooth and proper is due to Colliot-Thélène and Pirutka [CTP1, Lemme 1.5].

Lemma 2.4. Let X be a proper variety over a field k. If X is retract rational (e.g.
stably rational), then it admits an integral decomposition of the diagonal.

Proof. Suppose that there are nonempty open subsets U ⊂ X and V ⊂ PN , for
some integer N , and morphisms f : U → V and g : V → U with g ◦ f = idU .
Let Γf ⊂ X × PN and Γg ⊂ PN × X be the closures of the graphs of f and g,
respectively. Let K := k(X) be the function field of X and consider the diagram

Γf ×K

p

����
��
��
��
�

q

����
���

���
�

Γg ×K

r

�����
���

��� s

���
��

��
��

��

X ×K PN ×K X ×K,
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where p, q, r, and s denote the natural projections, respectively. Since Γf and
X are birational, K = k(Γf ), and so the diagonal of Γf gives rise to a zero-
cycle δΓf

on Γf × K. Since q and s are proper, the pushforwards q∗ and s∗ are
defined on the level of Chow groups. There is also a refined Gysin homomorphism
r! : CH0(P

N
K) → CH0((Γg)K), defined as follows; see [Ful, Definition 8.1.2]. Since

PN is smooth, the graph Γr ⊂ (Γg)K×PN
K is a regularly embedded closed subvariety.

For a cycle z on PN
K , the cycle r!(z) is then defined as the intersection of Γr with

(Γg)K × z (viewed as a cycle on Γr � (Γg)K).
We claim that

s∗ ◦ r! ◦ q∗(δΓf
) = δX ∈ CH0(X ×K),(1)

where δX is the class of the K-point of X ×K induced by the diagonal of X. To
see this, note that the pushforward q∗(δΓf

) ∈ CH0(P
N ×K) is represented by the

generic point of the graph of f inside PN × X. In particular, q∗(δΓf
) lies inside

the open subset V × K over which r is an isomorphism. Hence, r! ◦ q∗(δΓf
) is

represented by the K-point of Γg × K that corresponds to the generic point of
the graph of the rational map X ��� Γg induced by f . Hence, s∗ ◦ r! ◦ q∗(δΓf

)
corresponds to the generic point of the graph of the rational map g ◦ f : X ��� X,
which is the diagonal, because g ◦ f = idU . We have thus proven that (1) holds,
as we want. (Note that all closed points considered above have residue field K and
the morphisms q, r, and s induce isomorphisms between those residue fields, so no
multiplicities show up in the above computations.)

On the other hand, CH0(P
N ×K) � [z ×K] · Z is generated by the class of the

K-point z ×K for any k-point z ∈ PN
k , and we may choose z ∈ V . Since q∗(δΓf

)
has degree one, we conclude that q∗(δΓf

) = [z × K]. Since r is an isomorphism
above V , the k-point z ∈ V gives rise to a unique k-point z′ ∈ Γg such that
r!(q∗(δΓf

)) = [z′ × K]. If z′′ := g(z′) denotes the image of z′ in X, then we
conclude that

s∗(r
!(q∗(δΓf

))) = [z′′ ×K].

The lemma then follows by comparing this with (1) above. �

2.6. Specializations. We say that a variety X over a field L specializes (or degen-
erates) to a variety Y over a field k, with k algebraically closed, if there is a discrete
valuation ring R with residue field k and fraction field F with an injection of fields
F ↪→ L such that the following holds. There is a flat proper morphism X �� SpecR
such that Y is isomorphic to the special fiber Y � X ×k and X � X ×L is isomor-
phic to the base change of the generic fiber X ×F . With this definition, we have for
instance the following. Let f : X → B be a flat proper morphism of varieties over
an algebraically closed uncountable field whose fibers Xb := f−1(b) are integral.
Then the fiber Xt over a very general point t ∈ B degenerates to the fiber X0 for
any closed point 0 ∈ B; cf. [Sch1, §2.2].

3. Degeneration method

In previous degeneration methods [Voi4, CTP1, Sch1], it was crucial that the
special fiber Y admit a resolution of singularities. This leads to difficulties in
positive characteristic, where resolutions of singularities are not known to exist in
general. In this section we show that the method in [Sch1] still works if we replace
resolutions by alterations τ : Y ′ → Y of suitable degree, which exist in arbitrary
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characteristic by the work of de Jong and Gabber; see Section 2.2 above. Here
we have no control on the birational geometry of Y ′; for instance, Y ′ might be of
general type and of positive geometric genus even though Y is rationally connected.
In particular, we cannot expect that Y ′ admits a decomposition of the diagonal,
and so the method of [Voi4,CTP1] does a priori not work in this context.

Proposition 3.1. Let X be a proper geometrically integral variety over a field L
which degenerates to a proper variety Y over an algebraically closed field k. Let
� be a prime different from char(k) and let τ : Y ′ → Y be an alteration whose
degree is prime to �. Suppose that for some i ≥ 1 there is a nontrivial class α ∈
Hi

nr(k(Y )/k,Z/�) such that

(τ∗α)|E = 0 ∈ Hi(k(E),Z/�) for any subvariety E ⊂ τ−1(Y sing).

Then X does not admit an integral decomposition of the diagonal. In particular, X
is not retract rational and hence not stably rational.

Remark 3.2. In many important examples, the vanishing condition in Proposition
3.1 turns out to be automatically satisfied; see e.g. [Sch1, Sch2] and Proposition
5.1 below. A quite general result in this direction is proved in Theorem 9.2 of this
paper, which makes it easy to apply the above proposition in many cases.

Proof of Proposition 3.1. Replacing X by its base change to the algebraic closure
of L, we may assume that L is algebraically closed. By Lemma 2.4, X admits an
integral decomposition of the diagonal if it is retract rational or stably rational.
For a contradiction, we thus assume that X admits an integral decomposition of
the diagonal. Via the specialization homomorphism on Chow groups [Ful, Section
20.3], we then conclude that there is a decomposition of the diagonal of Y . We let
K = k(Y ) be the function field of Y and get

δY = [zK ] ∈ CH0(YK),(2)

where δY denotes the class of the diagonal and zK is the base change of a zero-cycle
z ∈ CH0(Y ) of degree one.

Let U ⊂ Y be the smooth locus of Y and let U ′ := τ−1(U). We have the
following commutative diagram:

U ′
K

τ |U′

��

� � j′
�� Y ′

K

τ

��

UK
� � j

�� YK .

Since j is flat, j∗ is defined on the level of Chow groups. Since U ′
K and UK are

smooth, τ |∗U ′ is defined as well; see [Ful, §8]. Applying τ |∗U ′ ◦ j∗ to (2), we thus get

τ |∗U ′(j∗δY ) = τ |∗U ′(j∗[zK ]) ∈ CH0(U
′
K).(3)

We have j∗[zK ] = [z′′K ], where z′′K denotes the base change of a zero-cycle z′′ ∈
CH0(U) (not necessarily of degree one). Let z′ ∈ CH0(U

′) be the pullback of z′′

via the morphism U ′ → U . It then follows that

τ |∗U ′(j∗[zK ]) = [z′K ] ∈ CH0(U
′
K),(4)

where z′K = z′ ×K denotes the base change of z′ to K.
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Let Γτ ⊂ Y ′ × Y be the graph of τ . Let δ′Y ∈ CH0(Y
′
K) be the zero-cycle given

by the generic point of Γτ . Since U ′
K → UK is étale above a neighborhood of the

diagonal point, we find that

δ′Y |U ′
K
= τ |∗U ′(j∗δY ) ∈ CH0(U

′
K).(5)

Applying the localization exact sequence [Ful, Proposition 1.8] to the inclusion
j′ : U ′

K ↪→ Y ′
K , we then conclude from (3), (4), and (5) that

δ′Y = [z′K ] + [z̃] ∈ CH0(Y
′
K),(6)

where z̃ is a zero-cycle on Y ′
K whose support is contained in Y ′

K \ U ′
K .

Recall that there is a bilinear pairing

CH0(Y
′
K)×Hi

nr(k(Y
′)/k,Z/�) ��Hi(K,Z/�), ([z], β) � �� 〈[z], β〉.

If z is a closed point of Y ′
K , it is defined as follows. Pulling back β via Y ′×Y → Y ′

and noting that k(Y ′ × Y ) = K(Y ′
K) we obtain a class βK ∈ Hi(K(Y ′

K),Z/�) that
is unramified over k and hence also over the larger field K. We may thus consider
the restriction βK |z ∈ Hi(κ(z),Z/�) of βK to the closed point z ∈ Y ′

K . The class
〈[z], β〉 ∈ Hi(K,Z/�) is then given by pushing down βK |z via the finite morphism
Specκ(z) → SpecK. Since Y ′ is smooth and proper over k, this pairing descends
from the level of cycles to Chow groups; see [Mer, §2.4].

Let us now consider the class τ∗α ∈ Hi
nr(k(Y

′)/k,Z/�). We aim to pair this class
with δ′Y . To this end, recall that the graph Γτ is isomorphic to Y ′ and so the generic
point of Γτ , which represents δ′Y , has residue field k(Y ′) and Spec k(Y ′) → SpecK
is induced by τ . By the above description of the pairing, this implies that

〈δ′Y , τ∗α〉 = τ∗τ
∗α = deg(τ )α ∈ Hi(K,Z/�).

This class is nonzero, because deg(τ ) is prime to � and α �= 0. On the other hand,
using the decomposition of δ′Y in (6), we claim that

〈δ′Y , τ∗α〉 = 〈z′K + z̃, τ∗α〉 = 0,

which contradicts the previous computation, as we want. To prove our claim, note
that 〈z′K , τ∗α〉 = 0 because z′K is the base change of a zero-cycle z′ on Y ′, and so
this pairing factors through the restriction of τ∗α to z′ ∈ CH0(Y

′), which vanishes
because Hi

nr(k/k,Z/�) = 0 since i ≥ 1 and k is algebraically closed. To see that
〈z̃, τ∗α〉 = 0, note that z̃K is supported on the complement of U ′

K in Y ′
K , and so

it suffices to see that 〈y′, τ∗α〉 = 0 for any closed point y′ ∈ Y ′
K \ U ′

K . The image
of a closed point y′ ∈ Y ′

K \ U ′
K via Y ′

K → Y ′ is the function field of a subvariety
Z ′ ⊂ Y ′ that is contained in Y ′ \ U ′; that is, Z ′ is a subvariety of Y ′ that maps
to the singular locus of Y . The pairing 〈y′, τ∗α〉 factors through the restriction of
τ∗α to the function field of Z ′ ⊂ Y ′, and so we conclude that 〈y′, τ∗α〉 = 0 because
(τ∗α)|Z′ = 0 by assumptions, as Z ′ ⊂ τ−1(Y sing). This proves the above claim,
which finishes the proof of the proposition. �

Remark 3.3. In the above notation, we may by [IT, Theorem 2.1] assume that the
irreducible components of Y ′ \ τ−1(U) are smooth. The injectivity property (see
e.g. [CT1, Theorem 3.8.1]) then implies that τ∗α restricts to zero on any subvariety
E ⊂ Y ′ that maps to Y sing if and only if it restricts to zero on all components of
Y ′ \ τ−1(U).
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4. A special quadratic form

Let k be a field of characteristic different from two. Let n ≥ 1 be an integer and
consider the function field K := k(Pn). Let x0, . . . , xn be homogeneous coordinates
on Pn. For i = 1, . . . , n, we then consider the following rational function on Pn:

ai :=
−xi

x0
∈ K∗.(7)

Let g ∈ k[x0, . . . , xn] be a nontrivial homogeneous polynomial and put

b :=
g

x
deg(g)
0

∈ K∗.(8)

We will always assume that g satisfies the following two conditions. Firstly,

g contains the monomial x
deg(g)
i nontrivially for all i = 0, . . . , n.(9)

This condition is equivalent to asking that g not vanish at points of the form
[0 : · · · : 0 : 1 : 0 : · · · : 0] and hence not on any nonempty intersection of coordinate
hyperplanes {xi1 = xi2 = · · · = xic = 0}. Secondly, we will assume that

the image of g in k[x0, . . . , xn]/(xi) becomes a square for all i = 0, 1, . . . , n.(10)

For ε = (ε1, . . . , εn) ∈ {0, 1}n, consider

cε :=

n∏
i=1

xεi
i .

Further let

ρ : {0, 1, . . . , 2n − 1} ∼ �� {0, 1}n(11)

be a bijection with ρ(0) = (0, 0, . . . , 0). We put ci := cρ(i) and di := deg(ci) and
get c0 = 1.

For r ≤ 2n − 2, we then define

q :=

〈
b,

c1

xd1
0

,
c2

xd2
0

, . . . ,
cr+1

x
dr+1

0

〉
.(12)

This quadratic form will play a key role in our arguments; it should be compared
to the Pfister form

ψ := 〈〈a1, . . . , an〉〉 =
〈
1,

c1

xd1
0

,
c2

xd2
0

, . . . ,
c2n−1

x
d2n−1

0

〉
.(13)

By Theorem 2.2, the Pfister form ψ is related to the class

α := (a1, . . . , an) ∈ Hn(K,Z/2).(14)

Lemma 4.1. We have α �= 0 ∈ Hn(K,Z/2).

Proof. We use Lemma 2.1 and take successive residues of α along xn = 0, xn−1 = 0,
. . . , x1 = 0 to reduce the statement to the observation that 1 ∈ H0(k,Z/2) is
nonzero. This proves α �= 0, as we want. �
Example 4.2. If n = 2, we may consider

g = x2
0 + x2

1 + x2
2 − 2(x0x1 + x0x2 + x1x2),

which defines a smooth conic {g=0} ⊂ P2 that is tangent to the lines {xi = 0}
for i = 0, 1, 2. In this case, conditions (9) and (10) are satisfied. For r = 2, the
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corresponding quadratic form q from (12) coincides with the example of Hassett–
Pirutka–Tschinkel in [HPT1, Example 8]. If f : Q → SpecK denotes the corre-
sponding projective quadric surface, then f∗α is nontrivial and unramified over k
by [HPT1, Proposition 11].

In the next section, we show that the projective quadric f : Q → SpecK defined
by q in (12) always has the property that f∗α is unramified over k as long as (9) and
(10) hold. We also prove that the vanishing condition needed for the degeneration
method in Proposition 3.1 is satisfied under these conditions. Note however that
conditions (9) and (10) do not imply that f∗α is nontrivial. In fact, since α �= 0,
Theorem 2.3 implies that f∗α is trivial if and only if q is similar to a subform of ψ
(and this holds, for instance, when b is a square). If r = 2n − 2, this last property
is easily analyzed:

Lemma 4.3. Let f : Q → SpecK be the projective quadric, defined by q in (12).
If r = 2n − 2, then f∗α �= 0 if and only if b is not a square in K.

Proof. Since r = 2n−2, q and ψ have the same dimension. Since q and ψ represent
a common element, q is similar to a subform of ψ if and only if q � ψ (see [Lam,
Theorem X.1.8]), and this is by Witt’s cancellation theorem equivalent to b being a
square in K. The lemma thus follows from Theorem 2.3, because α �= 0 by Lemma
4.1. �

For r < 2n − 2, the question whether q is similar to a subform of ψ is quite
subtle, and so it is in general hard to decide whether f∗α is nontrivial. For special
choices of g, this problem will be settled in Section 6 below.

5. A vanishing result

Proposition 5.1. Let k be an algebraically closed field of characteristic different
from two. Let n, r ≥ 1 be positive integers with r ≤ 2n − 2. Let f : Y → Pn be a
surjective morphism of proper varieties over k whose generic fiber is birational to
the quadric over K = k(Pn) given by q in (12). Assume that (9) and (10) hold.
Then:

(1) f∗α ∈ Hn
nr(k(Y )/k,Z/2), where α ∈ Hn(K,Z/2) is from (14);

(2) for any dominant generically finite morphism τ : Y ′ → Y of varieties and
for any subvariety E ⊂ Y ′ which meets the smooth locus of Y ′ and which
does not dominate Pn via f ◦ τ , we have

(τ∗f∗α)|E = 0 ∈ Hn(k(E),Z/2).

We will prove in Theorem 9.2 below that (in a much more general setting) item
(1) in Proposition 5.1, i.e., the fact that f∗α is unramified, implies the vanishing
in item (2). For sake of simplicity, we prefer not to invoke this general result in the
following but rely on a direct argument which uses the explicit description of the
quadratic form q.

Proof of Proposition 5.1. Recall first that if (1) holds, then

τ∗f∗α ∈ Hn
nr(k(Y

′)/k,Z/2)

(by functoriality of unramified cohomology), and so the restriction (τ∗f∗α)|E in
item (2) is defined by [CT1, Theorem 4.1.1(b)]. Assuming (1), we claim that it
suffices to prove (2) in the case where E is a divisor. To see this, let E ⊂ Y ′ be a
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subvariety which does not dominate Pn and which meets the smooth locus of Y ′.
By our conventions, E is integral and so it is smooth at the generic point (because
k is algebraically closed). This implies that the exceptional divisor of the blow-up
BlEY

′ has a unique component which dominates E and this component is birational
to E×Ps, where s = dim(Y )−dim(E)−1. Moreover, BlEY is smooth at the generic
point of this particular component. Since Hn(k(E),Z/2) → Hn(k(E × Ps),Z/2) is
injective, replacing Y ′ by BlEY

′ thus shows that it suffices to prove (2) in the case
where E ⊂ Y ′ is a divisor that does not dominate Pn.

By [Mer, Proposition 1.7], we may up to birational modifications assume that
τ (E) is a divisor on Y . In order to prove that (τ∗f∗α)|E vanishes, it thus suffices
to show that f∗α restricts to zero on the generic point of any prime divisor E ⊂ Y
with f(E) � Pn.

Next, we claim that in order to prove item (1), it suffices to show that f∗α
has trivial residue at the generic point of any prime divisor E ⊂ Y that does not
dominate Pn. To see this, let ν be a geometric discrete rank one valuation on K(Q)

that is trivial on k. By [Mer, Proposition 1.7], there is a normal variety Ỹ and a

dominant birational morphism Ỹ → Y such that ν corresponds to a prime divisor

on Ỹ . Replacing Y by Ỹ , we may thus assume that ν corresponds to a prime divisor
E on Y . We denote its generic point by y ∈ Y (1). If E dominates Pn, then the
residue at y vanishes by Lemma 2.1: ∂y(f

∗α) = 0. It thus suffices to treat the case
where f(E) � Pn, as claimed.

As we have seen above, in order to prove the proposition, it suffices to show that

∂y(f
∗α) = 0(15)

and

(f∗α)|E = 0 ∈ Hn(k(E),Z/2),(16)

where y ∈ Y (1) denotes the generic point of a prime divisor E ⊂ Y with f(E) � Pn.
We will prove (15) and (16) simultaneously. To begin with, we choose a normal

projective variety S with a birational morphism S → Pn such that y ∈ Y maps
to a codimension one point x ∈ S(1) on S; cf. [Mer, Propositions 1.4 and 1.7] and
[Sch1, Lemma 29].

Let c ≥ 0 be the maximal natural number such that f(E) lies on the intersection
of c coordinate hyperplanes, that is, such that there are integers 0 ≤ i1 < i2 <
· · · < ic ≤ n with xij (f(y)) = 0 for all j = 1, . . . , c. The proof proceeds now via
two cases.

Case 1. The image f(E) ⊂ Pn has dimension dim(f(E)) = n− c.
We first show that (15) and (16) follow from a different statement that will be

easier to check in this case. To this end, consider the local rings B := OY,y and

A := OS,x. Further let Â and B̂ be the completions of A and B, respectively, and

let K̂ = Frac(Â) and L̂ = Frac(B̂) be the corresponding fraction fields. Since the
generic fiber of f : Y → Pn is birational to the quadric defined by q from (12),
inclusion of fields induces a sequence

Hn(K,Z/2) ϕ1 �� Hn(K̂,Z/2) ϕ2 �� Hn(K̂(q),Z/2) ϕ3 �� Hn(L̂,Z/2),(17)

where we use that {q = 0} is integral over K̂ because r ≥ 1. The residue of

f∗α at y factors through the image of α in Hn(L̂,Z/2) via the above sequence;
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see e.g. [CTO, p. 143]. Moreover, if ∂y(f
∗α) = 0, then f∗α ∈ Hn

ét(Spec B̂,Z/2) ⊂
Hn(L̂,Z/2) (see e.g. [CT1, §3.3 and 3.8 ]), and so the restriction of f∗α to E factors

through the image of α in Hn(L̂,Z/2) via the above sequence as well. Hence, in
order to prove (15) and (16), it suffices to establish

ϕ3 ◦ ϕ2 ◦ ϕ1(α) = 0 ∈ Hn(L̂,Z/2).(18)

Since we are in Case 1, codimPn(f(E)) = c. This implies that c ≥ 1 because
f(E) � Pn. By the definition of c, f(y) lies on the intersection of c coordinate
hyperplanes. The assumption codimPn(f(E)) = c thus implies that f(y) is the
generic point of {xi1 = · · · = xic = 0} for some 0 ≤ i1 < i2 < · · · < ic ≤ n, and so
condition (9) implies that

g(f(y)) �= 0.(19)

There is some j ∈ {0, . . . , n} such that xj(f(y)) �= 0. Moreover, condition (10)
implies that deg(g) is even and so b coincides with b′ := g

x
deg(g)
j

up to squares. Since

c ≥ 1, condition (10) implies that b′ is a square in κ(x). By (19), it is in fact a
nontrivial square, and so Hensel’s lemma implies that b′ (and hence also b) becomes

a square in the field extension K̂ of K, considered above. Hence, over the field K̂,
q becomes isomorphic to a subform of ψ = 〈〈a1, . . . , an〉〉. By Theorem 2.3, we thus
get

ϕ2(ϕ1(α)) = 0.

Therefore, (18) holds, and this implies (as we have seen above) (15) and (16).

Case 2. The image f(E) ⊂ Pn has dimension dim(f(E)) < n− c.
In this case, consider the birational morphism S → Pn and think about α as a

class on the generic point of S. We aim to show that

∂xα = 0.(20)

This will be enough to conclude (15) and (16) for the following reasons. If ∂xα = 0,
then f∗α has trivial residue at y (see e.g. [CTO, p. 143]), and so (15) holds. More-
over, since ∂xα = 0, (f∗α)|E can be computed by first restricting α to κ(x) and then
pulling it back to k(E). This implies that (f∗α)|E = 0 because Hn(κ(x),Z/2) = 0,
since x ∈ S is a point of dimension n− 1 over the algebraically closed ground field
k.

It thus remains to prove (20). To this end, we choose some j ∈ {0, . . . , n} such
that xj(f(y)) �= 0. Multiplying each ai by the square of x0/xj , we get

α =

(
−x0x1

x2
j

,
−x0x2

x2
j

, . . . ,
−x0

xj
, . . . ,

−x0xn

x2
j

)
.

It is well-known that (a,−a) = 0 for all a ∈ K∗ (see e.g. [Ke, Lemma 2.2]). Applying
this to a = x0/xj , the above identity yields

α =

(
−x1

xj
,
−x2

xj
, . . . ,

−x0

xj
, . . . ,

−xn

xj

)
.

Hence, up to relabelling, we may assume that j = 0 and so x0 does not vanish
at f(y). Up to relabelling further, we may also assume that xi(f(y)) = 0 for
i = 1, . . . , c and xi(f(y)) �= 0 for i ≥ c+ 1.
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If c = 0, then (20) is clear by Lemma 2.1. If c ≥ 1, Lemma 2.1 implies that

∂x(α) = γ1 ∪ γ2,

with γ2 = (ac+1, . . . , an) ∈ Hn−c(κ(x),Z/2), where ai for i > c denotes the restric-
tion of ai =

xi

x0
to x (this works because x0 and xi for i > c do not vanish at x).

In particular, γ2 is a pullback of a class from Hn−c(κ(f(y)),Z/2). Hence, γ2 = 0
because k is algebraically closed, and so the cohomological dimension of κ(f(y)) is
less than n− c, as we are in Case 2. This proves that (20) holds, which finishes the
proof in Case 2.

This concludes the proof of Proposition 5.1. �

6. A nonvanishing result

In this section we aim to construct examples of homogeneous polynomials g that
satisfy the conditions (9) and (10) from Section 4 in such a way that the unramified
class f∗α from Proposition 5.1 is nontrivial.

Let k be a field of positive transcendence degree over its prime field F ⊂ k. That
is, there is some element t ∈ k that is algebraically independent over F and so
F (t) ⊂ k.

Let n ≥ 1 be an integer and let G ∈ F [x0, . . . , xn] be a homogeneous polynomial

of degree �n+1
2 � which contains the monomial x

�n+1
2 �

i nontrivially for all i = 0, . . . , n

(e.g. G =
∑n

i=0 x
�n+1

2 �
i ). We then consider

g := t2G2 − xε
0 ·

n∏
i=0

xi and b :=
g

x
2�n+1

2 �
0

,(21)

where ε = 0 if n+ 1 is even and ε = 1 otherwise. Since g is a square modulo xi for

all 0 ≤ i ≤ n, (10) holds. Since G contains x
�n+1

2 �
i nontrivially for all i = 0, . . . , n,

condition (9) holds as well.
Let f : Q → SpecK be the projective quadric defined by q from (12), where b

is as in (21) above. Specializing t → 0 shows that for any choice of G, the rational
function b is not a square in k(Pn). Hence, f∗α �= 0 if r = 2n − 2, by Lemma
4.3. If r < 2n − 2, then this statement is in general not true any longer. Indeed,
〈b〉 ⊂ 〈1, −x1···xn

xn
0

〉, and so q is a subform of ψ if −1 is a square in k and the monomial

x1 · · ·xn is among the ci with i = r+2, . . . , 2n−1 and the latter implies f∗α = 0 by
Theorem 2.3. For what follows, it is therefore essential to assume that the bijection
ρ from (11) is chosen in such a way that ρ(1) = (1, 1, . . . , 1) and so the following
holds:

c1 = x1 · · ·xn.(22)

Proposition 6.1. Let n, r ≥ 1 be integers with r ≤ 2n − 2. Let k be a field
of characteristic different from two and of positive transcendence degree over its
prime field F . Let K = k(Pn). Let f : Q → SpecK be the projective quadric
defined by the quadratic form q from (12), where g is as in (21). Assume that (22)
holds. Then, f∗α �= 0 ∈ Hn(K(Q),Z/2), where α = (a1, . . . , an).

Proof. The idea is to specialize t → 0. Under this specialization, b specializes to
−c1/x

n
0 , and so q becomes isotropic. The specialization of the class f∗α is thus

nonzero, as it is given by the pullback of a nonzero class (see Lemma 4.1) via a
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purely transcendental field extension. But then f∗α must be nonzero itself. We
give the details of this argument in what follows.

For a contradiction, we assume f∗α = 0. It follows for instance from Theorem
2.3 that α maps to zero in Hn(F (t)′(Pn)(q),Z/2) for some finitely generated field
extension F (t)′ of F (t) with F (t)′ ⊂ k. We choose a normal F -variety W which
admits a surjective morphism W → SpecF [t] such that F (W ) = F (t)′ and F (t) ↪→
F (W ) corresponds to the natural inclusion. Since W → SpecF [t] is surjective and
W is normal, we may after shrinking W assume that there is a Cartier prime divisor
W0 ⊂ W which maps to the origin in A1

F = SpecF [t].

For 0 ≤ i ≤ r + 1, we put c′i := x
2�n+1

2 �−di

0 ci, where di = deg(ci). The quadratic
form

ϕ := 〈g, c′1, c′2, . . . , c′r+1〉

defines a subscheme

Q := {ϕ = 0} ⊂ Pr+1
W ×W Pn

W

over W . The fiber QF (W0) of Q → W above the generic point of W0 ⊂ W is
isomorphic to the quadric over F (W0) that is defined by the reduction q0 of q
modulo t. Since q0 has full rank, QF (W0) is smooth over F (W0). Let η0 ∈ Q be
the generic point of QF (W0) ⊂ Q. Since the fiber QF (W0) is reduced, the closure

{η0} ⊂ Q of η0 is an irreducible component of the pullback of the Cartier divisor

W0 ⊂ W via the natural map Q → W . Hence, {η0} is generically Cartier, and
so η0 is a smooth codimension one point of Q. The local ring B := OQ,η0

is
therefore a discrete valuation ring with fraction field F (W )(Pn)(q) and residue
field F (W0)(P

n)(q0).
Since ai ∈ B∗ for all i, α gives rise to a class in Hn

ét(SpecB,Z/2). This class
vanishes by assumptions, because F (W ) = F (t)′ and restriction to the generic point
yields an injection Hn

ét(SpecB,Z/2) ↪→ Hn(F (W )(Pn)(q),Z/2); see e.g. [CT1,
§3.6]. Restricting that class to the closed point of SpecB then shows that α
maps to zero in Hn(F (W0)(P

n)(q0),Z/2). By (21) and (22), g and −c′1 coincide
modulo t, and so q0 is isotropic over F (W0)(P

n). Hence, Hn(F (W0)(P
n),Z/2) →

Hn(F (W0)(P
n)(q0),Z/2) is injective (see e.g. [CT1, Proposition 4.1.4]), and so α

vanishes in Hn(F (W0)(P
n),Z/2), which contradicts Lemma 4.1. This concludes

the proposition. �

Remark 6.2. If k has characteristic zero, then for any prime p ≥ 3, Proposition

6.1 holds for the integral polynomial g = p2 ·
(∑n

i=0 x
�n+1

2 �
i

)2

+ xε
0x0x1 · · ·xn. The

proof is essentially the same as the one presented above, where we replace the
characteristic zero degeneration t → 0 by a degeneration to characteristic p.

Remark 6.3. In the above proof, we specialized b to −c1
x
d1
0

. Since q becomes isotropic

under our specialization, the class f∗α from Proposition 5.1 does not stay unram-
ified (because Hn

nr(K(Q)/K,Z/2) = 0 if Q is rational over K). This is coherent
with the observation that in our specialization, the condition (9) that has been used
in an essential way in the proof of Proposition 5.1 is heavily violated, because we
specialized g to −xε

0x0 · · ·xn.
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7. A hypersurface singular along an r-plane

In this section we work over an algebraically closed field k of characteristic dif-
ferent from two and put K = k(Pn). Let n ≥ 1 and 1 ≤ r ≤ 2n − 2, and let
e0, . . . , er+1 ∈ k[x0, . . . , xn] be homogeneous polynomials of degrees deg(e0) = d
and deg(ei) = d− 2 for i ≥ 1. Assume further that the following three conditions
are satisfied, where q and ψ are as in (12) and (13) and g satisfies (9) and (10).
Firstly,

gcd(e0, . . . , er+1) = 1; i.e., e0, . . . , er+1 are coprime in k[x0, . . . , xn].(23)

Secondly, there is some μ ∈ K∗ with

q � 〈μ〉 ⊗
〈
e0
xd
0

,
e1

xd−2
0

,
e2

xd−2
0

, . . . ,
er+1

xd−2
0

〉
.(24)

Thirdly, there is some λ ∈ K∗ with

〈λ〉 ⊗
〈

e1

xd−2
0

,
e2

xd−2
0

, . . . ,
er+1

xd−2
0

〉
⊂ ψ.(25)

Let N := n+ r and choose homogeneous coordinates x0, . . . , xn, y1, . . . , yr+1 on
PN+1. We consider the hypersurface

Z = {F = 0} ⊂ PN+1 with F = e0 +

r+1∑
i=1

ei · y2i(26)

of degree d. Condition (23) implies that Z is integral.

Let P̃N+1 be the blow-up of PN+1 along the r-plane P := {x0 = · · · = xn = 0}.
Then, P̃N+1 � P(E), where E := OPn(−1) ⊕ O⊕(r+1)

Pn and the natural morphism

P̃N+1 → Pn, induced by projection to the x-coordinates, identifies to the projection
P(E) → Pn. The blow-up

Y := BlPZ

of Z along P is the proper transform of Z in P̃N+1, and so we get a morphism
f : Y → Pn. Locally over Pn, Y ⊂ P(E) is given by the quadratic form

e0 · z20 +

r+1∑
i=1

ei · z2i ,(27)

where z0 is a local coordinate that trivializes OPn(−1) and z1, . . . , zr+1 trivialize

O⊕(r+1)
Pn ; cf. [Sch1, Section 3.5].
By condition (24), the generic fiber of f : Y → Pn is birational to the quadric

over K defined by q in (12). Hence, f∗α ∈ Hn
nr(k(Y )/k,Z/2) is unramified by

Proposition 5.1.

Proposition 7.1. Let k be an algebraically closed field of characteristic different
from two. Let n ≥ 1 and 1 ≤ r ≤ 2n − 2. Let e0, . . . , er+1 ∈ k[x0, . . . , xn] be
homogeneous polynomials as above such that (23), (24), and (25) hold and consider
the corresponding hypersurface Z ⊂ PN+1 from (26). Let τ : Y ′ → Y = BlPZ be
an alteration and let ξ : Y ′ → Z be the natural morphism.

Then any subvariety E ⊂ ξ−1(Zsing) satisfies (τ∗f∗α)|E = 0 ∈ Hn(k(E),Z/2).
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Proof. Consider Y = BlPZ. In the coordinates (27), the exceptional divisor E′ ⊂ Y
of the blow-up Y → Z is given by z0 = 0. Note that E′ might be reducible (e.g.
if e1, . . . , er+1 are not coprime). However, the generic fiber of f |E′ : E′ → Pn is a
smooth quadric, and so E′ has a unique component E′′ ⊂ E′ that dominates Pn.
Moreover, condition (25) implies that the generic fiber E′′

η of E′′ → Pn is defined
by a quadratic form that is similar to a subform of ψ. Hence, Theorem 2.3 shows
that

(f∗α)|E′′ = 0 ∈ Hn(k(E′′),Z/2).

Since ψ is anisotropic, the generic fiber E′′
η is a smooth quadric over K = k(Pn).

Let E ⊂ E′′ be a subvariety which dominates Pn. Since (f∗α)|E′′ = 0, the injectiv-
ity theorem (see e.g. [CT1, Theorem 3.8.1]), applied to the local ring of E′′

η at the
generic point of E, then shows that

(f∗α)|E = 0 ∈ Hn(k(E),Z/2).(28)

Now let τ : Y ′ → Y be an alteration. The composition ξ : Y ′ → Z yields an
alteration of Z. Let E ⊂ ξ−1(Zsing) be a subvariety. If E does not dominate Pn

via f ◦ τ , then (τ∗f∗α)|E = 0 follows from Proposition 5.1, because condition (24)
implies that the generic fiber of f : Y → Pn is isomorphic to the projective quadric
over K, defined by q from (12). On the other hand, if E dominates Pn via f ◦ τ ,
then τ (E) must be a subvariety of E′′, because ξ(E) ⊂ Zsing. Since the generic
fiber of Y → Pn is smooth, f∗α can be restricted to the generic point of τ (E)
(see [CT1, Theorem 4.1.1]), and this restriction vanishes by (28) above. Hence,
(τ∗f∗α)|E = 0 by functoriality. This finishes the proof of Proposition 7.1. �
Remark 7.2. The exceptional divisor E′ of Y = BlPZ is a hypersurface of bidegree
(d− 2, 2) in Pn × Pr, given by

∑r+1
i=1 ei · y2i = 0. The generic fiber E′

η of E′ → Pr is
thus a hypersurface of degree ≤ d− 2 (with equality if E′ is irreducible) in Pn

k(Pr),

and in general it seems very unlikely that such a hypersurface admits a zero-cycle
of degree one. In particular, it seems unlikely that Z admits a universally CH0-
trivial resolution; cf. [CTP1]. Hence, the degeneration method in [Voi4,CTP1] does
not seem to apply to the singular hypersurface Z considered above. We expect in
particular that E′

η is not stably rational, and so also the methods from [NS,KT]
(which assume characteristic zero) do not seem to apply.

8. Proof of main results

8.1. Theorem 1.1. Via Lemma 2.4, Theorem 1.1 follows from the following more
general result.

Theorem 8.1. Let k be an uncountable field of characteristic different from two.
Let N ≥ 3 be a positive integer and write N = n + r, where n, r ≥ 1 are integers
with 2n−1 − 2 ≤ r ≤ 2n − 2. Let L ⊂ PN+1

k be either empty or a linear subspace
with dim(L) ≤ r. Fix integers d ≥ n+ 2 and d′ ≤ d− 2.

Then a very general hypersurface X ⊂ PN+1
k of degree d and with multiplicity d′

along L does not admit an integral decomposition of the diagonal over the algebraic
closure k.

Proof. We aim to reduce to the case where k is algebraically closed. To this end,
consider the parameter space M that parametrizes all hypersurfaces in PN+1

k of
degree d and with multiplicity d′ along L. Suppose we know the theorem over
the algebraic closure k of k. Then there are countably many proper subvarieties
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Si � Mk, defined over k, such that for any hypersurface X in Mk \
⋃

i Si, Xk

does not admit an integral decomposition of the diagonal. Each Si is defined over
some finite extension of k and so it has finitely many orbits under the Galois group
Gal(k/k). Hence, up to adding all the Galois conjugates, we may assume that⋃

i Si is closed under the Galois action. This implies that
⋃

i Si =
⋃

j(Tj)k for a
countable union of proper subvarieties Tj ⊂ M that are defined over k. It then
follows that any hypersurface parametrized by M\

⋃
j Tj does not admit an integral

decomposition of the diagonal over k, as we want. We may thus from now on assume
that k is algebraically closed.

We choose coordinates x0, . . . , xn, y1, . . . , yr+1 on PN+1 such that

L ⊂ P := {x0 = · · · = xn = 0}.

In order to prove the theorem, we then specify the hypersurface Z from Section 7
as follows. Let g and b be as in (21) in Section 6 and consider the homogeneous
polynomials ci of degree di, defined in Section 4, where we assume that (22) holds;
i.e., c1 = x1 · · ·xn.

Case 1. d ≥ n+ 2 with d even.
Let h = x0 + x1 and consider

e0 := hd−deg(g)g and ei := xd−2−di
0 ci(29)

for i ≥ 1. Since deg(g) = 2�n+1
2 � and d ≥ n+2, d−deg(g) is nonnegative. Similarly,

d− 2− di ≥ 0 because di ≤ n for all i.

Since G contains the monomial x
�n+1

2 �
i nontrivial for all i, g = t2G2+xε

0x1 · · ·xn

from (21) is not divisible by xi for any i. Hence, e0, . . . , er+1 are coprime, and so
(23) holds. Since d− deg(g) is even, because d and deg(g) are even, the conditions
(24) and (25) are also satisfied (with λ = μ = 1). We may then consider the degree

d hypersurface Z := {F = 0} ⊂ PN+1 from (26), where F = e0 +
∑r+1

i=1 ei · y2i .
Now let X be a very general hypersurface of degree d ≥ n+ 2 with d even as in

the theorem. ThenX degenerates to Z; see e.g. [Sch1, §2.2]. Let Y := BlPZ and let
f : Y → Pn be the morphism induced by projection to the x-coordinates. Since g
in (21) satisfies (9) and (10), Proposition 5.1 shows that f∗α ∈ Hn

nr(k(Y )/k,Z/2),
where α is the class from (14). By Proposition 6.1, f∗α �= 0. By de Jong and
Gabber, there is an alteration τ : Y ′ → Y of Y = BlPZ of odd degree; the natural
map ξ : Y ′ → Z yields an alteration of odd degree of Z. By Proposition 7.1, the
restriction (τ∗f∗α)|E = 0 vanishes for any subvariety E ⊂ Y ′ which maps to the
singular locus of Z. It thus follows from Proposition 3.1 that X does not admit an
integral decomposition of the diagonal, as we want.

Case 2. d ≥ n+ 2 with d odd.
For i > 0, we consider x1ci and absorb squares; the formal definition is as follows:

c′ε := x1−ε1
1 ·

n∏
i=2

xεi
i and c′i := c′ρ(i).

Let d′i := deg(c′i) and note that d′i ≤ n for all i ≥ 1. We then define

e0 := hd−deg(g)−1x1g and ei := x
d−2−d′

i
0 c′i(30)

for i ≥ 1, where h = x0 + x1 as in Case 1.
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Since c′1 = x2 · · ·xn is not divisible by x1 and h, and g is not divisible by xi for
any i, e0, . . . , er+1 are coprime, and so (23) holds. Moreover, since d− deg(g) − 1
is even, because deg(g) is even and d is odd in case 2, e0, . . . , er+1 satisfy the
conditions (24) and (25) with λ = μ = x1

x0
. We may then consider the degree d

hypersurface Z := {F = 0} ⊂ PN+1 from (26), where F = e0 +
∑r+1

i=1 ei · y2i .
Now let X be a very general hypersurface of degree d ≥ n+ 2 with d odd as in

the theorem. Then X degenerates to Z (see e.g. [Sch1, §2.2]), and we conclude as
in Case 1 that X does not admit an integral decomposition of the diagonal. This
finishes the proof of the theorem. �

If we put d′ = 1 in Theorem 8.1, we obtain the particularly interesting case of
hypersurfaces that contain a linear subspace of dimension r′ ≤ r. If r′ > N

2 , then

any such hypersurface is singular, but for r′ ≤ N
2 , a general such hypersurface is

smooth, as we will recall below. This yields the following.

Corollary 8.2. Let k be an uncountable field of characteristic different from two.
Let N ≥ 3 be a positive integer and write N = n + r, where n, r ≥ 1 are integers
with 2n−1 − 2 ≤ r ≤ 2n − 2. Fix integers d ≥ n+ 2 and l ≤ N

2 .

Then a very general hypersurface X ⊂ PN+1
k of degree d and containing a linear

space of dimension l is smooth and stably irrational over the algebraic closure k.

Proof. Apart from the assertion that X is smooth, the corollary is an immediate
consequence of the case d′ = 1 in Theorem 8.1. To prove smoothness, it suffices to
find a single example of a smooth hypersurface X ⊂ PN+1

k of degree d ≥ 3 which

contains a linear space of dimension �N
2 �. If char(k) � d, a smooth example is given

by
∑N+1

i=0 xd
i = 0, which contains the linear space {x0 = ζx1, x2 = ζx3, . . . , xN =

ζxN+1} if N is even and {x0 = ζx1, x2 = ζx3, . . . , xN−1 = ζxN , xN+1 = 0} if N is
odd, where ζ ∈ k satisfies ζd = −1. If char(k) | d, a smooth example is given by

xd
0+

∑N
i=0 xix

d−1
i+1 = 0, which contains the linear space {x0 = x2 = · · · = x2	N+1

2 
 =

0}. This concludes the corollary. �

Proof of Corollary 1.4. Let N ∈ {6, 7, 8, 9}. By Corollary 8.2, a very general quin-

tic X ⊂ PN+1
C containing a 3-plane is smooth and stably irrational. On the other

hand, at least in characteristic zero, these examples are unirational by [CMM]. This
proves Corollary 1.4. �

8.2. Theorem 1.3 and examples over Fp(t) and Q. Examples of stably ir-

rational smooth quartic threefolds over Q and of some higher-dimensional hy-
persurfaces over Q were previously given in [CTP1] and [To], respectively. If
N = 2n + n− 2, then we can also obtain examples defined over small fields like Q
or Fp(t), as follows. By Lemma 2.4, our result implies Theorem 1.3 stated in the
introduction.

Theorem 8.3. Let n ≥ 2 be an integer and put N := 2n+n−2. Let k be a field of
characteristic different from two. If k has positive characteristic, assume that it has
positive transcendence degree over its prime field. Then for any degree d ≥ n + 2
there is a smooth hypersurface X ⊂ PN+1

k of degree d whose base change Xk to the
algebraic closure of k does not admit an integral decomposition of the diagonal.

Proof. The proof of the theorem follows the same line of argument as the proof of
Theorem 8.1, the main difference being that we will degenerate to a hypersurface
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which is defined over the algebraic closure of a finite field and so the nonvanishing
result from Proposition 6.1 does not apply. We will replace that nonvanishing result
by Lemma 4.3, which requires the assumption r = 2n − 2 (and so N = 2n + n− 2).
We explain the details in what follows.

Let n ≥ 2, r = 2n − 2, and N = n+ r. Further let p be an odd prime. We will
now work over the algebraic closure Fp of Fp. As in the proof of Theorem 8.1, we
choose coordinates x0, . . . , xn, y1, . . . , yr+1 on PN+1 such that

L ⊂ P := {x0 = · · · = xn = 0}.

We consider G =
∑

i x
�n+1

2 �
i , g = G2 + xε

0x0 · · ·xn and b = g

x
deg(g)
0

. With these

choices and for any d ≥ n+2, we then consider the polynomials ei used in the proof
of Theorem 8.1 (and which depend on the parity of d). These choices determine

the hypersurface Z ⊂ PN+1

Fp
from Section 7. By definition, Z = Z0 × Fp is the base

change of a hypersurface Z0 which is defined over the prime field Fp. Let Y = BlLZ

with natural map f : Y → Pn. The class f∗α ∈ Hn(Fp(Y ),Z/2) is unramified over

Fp by Proposition 5.1. Moreover, since b is not a square and since r = 2n − 2,
Lemma 4.3 implies that f∗α is nontrivial. By Proposition 7.1, the assumptions of
the degeneration method (Proposition 3.1) are satisfied by Z, and so any proper
variety which specializes to Z is not stably rational. This implies the theorem as
follows.

If k has positive characteristic p, then by the assumptions in the theorem, it has
positive transcendence degree over its prime field. The generic fiber of a sufficiently
general pencil of degree d hypersurfaces over Fp which contains Z0 gives an example
of a smooth hypersurface X of degree d which is defined over k and such that Xk

degenerates to Z. Hence, Xk does not admit a decomposition of the diagonal, as
we want.

If k has characteristic zero, then we may choose any prime p > 2 and consider
the hypersurface Z over Fp from above. There is a smooth hypersurface X over k
(in fact over Q) and of degree d such that Xk degenerates to Z. This shows that
Xk does not admit a decomposition of the diagonal, as we want. This concludes
the proof. �

8.3. Theorem 1.5 and the integral Hodge conjecture for unirational va-
rieties.

Proof of Theorem 1.5. Let N ≥ 3 be an integer and put n := N − 1 and r = 1.
Consider the polynomial g ∈ C[x0, . . . , xn] and the corresponding rational function

b from (21). We then consider the quadratic form q =

〈
b, c1

x
d1
0

, c2
x
d2
0

〉
from (12),

where we assume that the bijection ρ is chosen in such a way that c1 = x1x2 · · ·xn

and c2 = x2x3 · · ·xn.
Let Q be the projective conic overK = C(Pn) that is defined by q. By Hironaka’s

theorem, we can choose some smooth complex projective variety X of dimension
N = n+ 1 together with a morphism X → Pn whose generic fiber is isomorphic to

Q. Our choice of c1 and c2 implies that q is similar to
〈
b · x2x3···xn

xn−1
0

, x1

x0
, 1
〉
, and so

X is unirational; see e.g. [Sch1, Lemma 14]. On the other hand,

Hn
nr(C(X)/C,Z/2) �= 0
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by Propositions 5.1 and 6.1. This proves the theorem in the case where i = N −
1. The general case follows by taking products with projective spaces, because
unramified cohomology is a stable birational invariant; see [CTO]. This concludes
the proof of Theorem 1.5. �
Proof of Corollary 1.6. Corollary 1.6 is a direct consequence of [CTV, Théorème
1.1] and Theorem 1.5, which produces unirational smooth complex projective vari-
eties X in any dimension at least four with H3

nr(C(X)/C,Z/2) �= 0. �

9. Supplements

9.1. Double covers. It is possible to adapt the arguments of this paper to the
case of double covers of projective spaces. The result is as follows; for earlier
results on the rationality problem for double covers, see e.g. [Ko2,Voi4,Bea,CTP2,
Oka,HPT2].

Theorem 9.1. Let N ≥ 3 be a positive integer and write N = n+r with 2n−1−2 ≤
r ≤ 2n−2. Let k be an uncountable field of characteristic different from two. Then
a double cover of PN

k , branched along a very general hypersurface of even degree
d ≥ 2�n+1

2 �+ 2, is not stably rational over the algebraic closure of k.

Proof. As in Theorem 8.1, it suffices to treat the case where k is algebraically
closed. Let x0, . . . , xn, y1, . . . , yr be coordinates on PN and consider the (r − 1)-
plane P = {x0 = · · · = xn = 0}. Let e0, . . . , er ∈ k[x0, . . . , xn] be homogeneous
polynomials of degrees deg(e0) = d and deg(ei) = d − 2 for all i ≥ 1. We then
consider the hypersurface of degree d in PN , given by

F = e0 +

r∑
i=1

eiy
2
i .

From now on we assume that d is even and we consider the double covering Z → PN ,
branched along {F = 0}. Introducing an additional variable yr+1, Z is given by the
equation y2r+1 + F = 0. Since F vanishes on the plane P , Z contains a copy of P ,
and we consider the blow-up Y := BlPZ. It is well-known (see e.g. [Sch1, Section
3.5]) that Y carries the structure of a weak r-fold quadric bundle f : Y → Pn,
which locally over Pn is given by the equation

z2r+1 + e0z
2
0 +

r∑
i=1

eiz
2
i = 0.(31)

The exceptional divisor of the blow-up Y → Z is given by z0 = 0, and so it is the
weak (r − 1)-fold quadric bundle given by z2r+1 +

∑r
i=1 eiz

2
i = 0.

In order to adapt the arguments used for hypersurfaces, we need to ensure that
the following two conditions hold. Firstly, there is some μ ∈ K∗ with

q � 〈μ〉 ⊗
〈
e0
xd
0

,
e1

xd−2
0

,
e2

xd−2
0

, . . . ,
er

xd−2
0

, 1

〉
.(32)

Secondly, there is some λ ∈ K∗ with

〈λ〉 ⊗
〈

e1

xd−2
0

,
e2

xd−2
0

, . . . ,
er

xd−2
0

, 1

〉
⊂ ψ.(33)

The first condition ensures by Propositions 5.1 and 6.1 that

f∗α ∈ Hn
nr(k(Y )/k,Z/2)
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is unramified and nontrivial. Moreover, by the argument in Section 7, condition
(33) ensures together with Proposition 5.1 that for any alteration τ : Y ′ → Y of
Y = BlPZ, the class τ∗f∗α restricts to zero on the generic point of any subvariety
E ⊂ Y ′ that maps to the singular locus of Z.

Let ci be as in Section 4 and assume that ρ in (11) is chosen such that c1 =
x1 · · ·xn and cr+1 = x1x2. We consider x1x2ci and absorb squares to obtain poly-
nomials c′′i with c′′r+1 = 1. For an even integer d ≥ deg(g) + 2 = 2�n+1

2 � + 2, we
then put

e0 = hd−deg(g)−2x1x2g and ei = x
d−deg(c′′i )−2
0 c′′i

for i ≥ 1, where g is as in (21) and h is a linear homogeneous polynomial which
is not a multiple of xi for i = 0, . . . , n. Then conditions (32) and (33) are both
satisfied (with λ = μ = x1x2

x2
0
). Applying the same argument as in the proof of

Theorem 8.1 shows then that a double cover of PN , branched along a very general
hypersurface of degree d, does not admit a decomposition of the diagonal and so it
is not stably rational. This concludes the theorem. �

9.2. A general vanishing result. Starting with the work of Artin–Mumford and
Colliot-Thélène–Ojanguren, many important examples of rationally connected va-
rieties with unramified cohomology are constructed as follows. One starts with
a proper morphism f : Y → Pn whose generic fiber is a smooth quadric Q over
k(Pn) and chooses Q in such a special way that there is a class α ∈ Hn(k(Pn),Z/2)
whose pullback f∗α ∈ Hn(k(Y ),Z/2) is nontrivial and unramified over k; see e.g.
[AM,CTO,HPT1,Sch1] and the results in Sections 5 and 6 of this paper.

We prove the following vanishing theorem, which shows that in the above situa-
tion, the vanishing condition that is needed in the degeneration method in Propo-
sition 3.1 for varieties which specialize to Y is automatically satisfied. Our result
generalizes [Sch2, Proposition 7] and shows that in fact item (1) implies (2) in
Proposition 5.1.

Theorem 9.2. Let f : Y → S be a surjective morphism of proper varieties over
an algebraically closed field k with char(k) �= 2 whose generic fiber is birational
to a smooth quadric over k(S). Let n = dim(S) and assume that there is a class
α ∈ Hn(k(S),Z/2) with f∗α ∈ Hn

nr(k(Y )/k,Z/2).
Then for any dominant generically finite morphism τ : Y ′ → Y of varieties and

for any subvariety E ⊂ Y ′ which meets the smooth locus of Y ′ and which does not
dominate S via f ◦ τ , we have (τ∗f∗α)|E = 0 ∈ Hn(k(E),Z/2).

In the proof of Theorem 9.2, we use the following two results.

Proposition 9.3 (Proposition 8.1 [CT2]). Let A ↪→ B be a local homomorphism
of discrete valuation rings with residue fields κA and κB and fraction fields K :=
Frac(A) and L := Frac(B) all of characteristic different from two. Let f : SpecB →
SpecA be the corresponding dominant morphism.

Assume that there is some α ∈ Hn(K,Z/2) with f∗α ∈ Hn
ét(SpecB,Z/2) ⊂

Hn(L,Z/2). If A ↪→ B is unramified, then the restriction of f∗α to the closed
point of SpecB lies in the image of f∗ : Hn(κA,Z/2) → Hn(κB,Z/2).

Lemma 9.4. Let k be an algebraically closed field of characteristic different from
two. Let S be a normal variety over k and let Q be a smooth projective quadric
over the function field k(S). Then for any codimension one point s ∈ S(1), there
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is an open neighborhood U ⊂ S of s and a smooth variety X over k together with
a proper morphism g : X → U whose generic fiber is isomorphic to Q and such
that the special fiber Xs of X over s ∈ U has the following property: for any
component Di of the reduced special fiber (Xs)

red, Di is smooth over κ(s), and, if
Xs is nonreduced along Di, then Di is rational over κ(s).

Proof. We will frequently use that a variety over k is smooth if and only if it
is regular, because k is algebraically closed. For instance, since S is normal, it
is regular in codimension one and so it is smooth away from a closed subset of
codimension two. It follows that there is a smooth neighborhood U ⊂ S of s such
that the closure D := {s} ⊂ U is smooth and cut out by a single regular function
π ∈ OS(U). After possibly shrinking U , we may additionally assume that there are
nowhere vanishing regular functions ci ∈ OS(U)∗ on U and an integer 1 ≤ m ≤ r+1
such that the generic fiber of the U -scheme

Q :=

{
m∑
i=0

ciz
2
i + π

r+1∑
i=m+1

ciz
2
i = 0

}
⊂ Pr+1

U

is isomorphic to Q. If m = r + 1, then Q is smooth over U (because char(k) �= 2).
It follows that Q is smooth over k and the fiber Qs of Q over s is smooth over the
residue field κ := κ(s), as we want. If m = r, then Q is smooth over k and blowing
up the closure of the singular point x of the fiber Qs of Q above s yields a model
which is smooth over k and whose fiber above s is of the form BlxQs+2 ·Pr

κ. Since
BlxQs and Pr

κ are smooth over κ, the lemma holds in this case.
If m < r, then Q has singular locus

Z := Qsing =

{
z0 = · · · = zm = π =

r+1∑
i=m+1

ciz
2
i = 0

}
.

Since the ci are nowhere vanishing on U , Z is a smooth (but if m = r− 1, possibly
reducible) quadric bundle over D, which is contained in the trivial Pr−m-bundle

P := {z0 = · · · = zm = 0} ⊂ Pr+1
D .

The blow-up Q′ := BlZQ is smooth over k, because its exceptional (Cartier) divisor
E is smooth over k, as it is given by

E :=

{
m∑
i=0

ci|D · z2i + tw = 0

}
⊂ PZ(OZ(1)

⊕(m+1) ⊕ ϕ∗ND/U ⊕OZ(2)),

where ci|D denotes the restriction of ci to D and z0, . . . , zm are local coordinates
that trivialize OZ(1)

⊕(m+1), t trivializes locally the pullback ϕ∗ND/U of the normal
bundle of D in U via the natural map ϕ : Z → D, and w trivializes locally OZ(2);
cf. [CTS, Théorème 3.3]. Note that the fiber Es of E above the generic point s ∈ D
is smooth over κ, because Zs is a smooth quadric over κ and all fibers of Es → Zs

are quadrics of full rank.

The fiber of Q′ → U above s is reduced and given by Es + Q̃s, where Q̃s is the
blow-up of the quadric cone Qs = {

∑m
i=0 ciz

2
i = 0} ⊂ Pr+1

κ in Zs. Here, Zs denotes
the fiber of Z → D above s, and ci denotes the image of ci in κ = κ(s). The

exceptional divisor of Q̃s → Qs is in the above coordinates given by Es ∩ {t = 0},
where Es denotes the fiber of E → D above s. The singular locus of Es∩{t = 0} is
given by z0 = · · · = zm = 0, i.e., by the intersection of Es with the proper transform
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P̃s ⊂ Q̃s of the plane Ps := {z0 = · · · = zm = 0} ⊂ Pr+1
κ . This shows that the

singular locus of Q̃s is given by P̃s, and a similar analysis shows that Bl
˜Ps
Q̃s is

smooth over κ.
Let P̃ ⊂ Q′ be the proper transform of P . Since Z ⊂ P is a Cartier divisor on

P , P̃ � P � Pr−m
D . Since D is smooth over k, so is P̃ .

Let Q′′ := Bl
˜PQ′. Since Q′ and P̃ are smooth over k, so is Q′′. Let E′′ be

the exceptional divisor of Q′′ → Q′ and let E′′
s be the fiber of E′′ → D above s.

Since Q′ is smooth over k and the center of the blow-up is given by P̃ � Pr−m
D ,

which is a trivial Pr−m-bundle over D, we find that E′′
s is a Zariski locally trivial

Pm-bundle over Pr−m
κ and so it is smooth and rational over κ. The fiber Q′′

s of Q′′

over s is reduced along all components apart from E′′
s , where the multiplicity is two:

Q′′
s = 2 ·E′′

s +Bl
˜Ps∩Es

Es+Bl
˜Ps
Q̃s. Since Es is smooth over κ and P̃s ∩Es � Zs is

a smooth quadric, Bl
˜Ps∩Es

Es is smooth over κ. As noted above, Bl
˜Ps
Q̃s is smooth

over κ as well. This shows that X := Q′′ satisfies the conclusion of the lemma, as
we want. �

Proof of Theorem 9.2. As in the proof of Proposition 5.1, one reduces (after replac-
ing Y ′, Y , and S by different birational models) to the case where Y and S are
normal and E is a divisor on Y ′ that maps to divisors on Y and S. By functoriality,
it thus suffices to prove that f∗α restricts to zero on the function field of a given
divisor E ⊂ Y whose generic point maps to a codimension one point s ∈ S(1).

By assumptions, the generic fiber of f : Y → S is birational to a smooth quadric
Q. Applying Lemma 9.4 to the codimension one point s ∈ S(1), we get an open
neighborhood U ⊂ S of s, a smooth k-variety X, and a proper morphism g : X → U
whose generic fiber is isomorphic to Q. Moreover, for any component Di of the
reduced special fiber (Xs)

red, Di is smooth over κ := κ(s), and if Xs is nonreduced
along Di, then Di is rational over κ.

We fix some component Di of (Xs)
red and denote by x its generic point. We may

think about x as a codimension one point on X: x ∈ X(1). Since the k-varieties X
and Y are birational (over S), the class g∗α ∈ Hn(k(X),Z/2) is unramified over k
by assumptions, and so we can restrict g∗α to the generic point x of Di. As before,
by slight abuse of notation, we denote this restriction by

(g∗α)|Di
∈ Hn(κ(Di),Z/2).(34)

Since k is algebraically closed, κ = κ(s) has cohomological dimension less than n.
We claim that this implies that the above restriction vanishes.

To prove this claim, let us first deal with the case where Xs is reduced along
Di. We consider the discrete valuation rings B := OX,x and A := OS,s. The
morphism g : X → S induces a local homomorphism A ↪→ B, which is unramified
because Xs is reduced along Di. Since g∗α ∈ Hn(k(X),Z/2) is unramified over
k, g∗α ∈ Hn

ét(SpecB,Z/2). Therefore, Proposition 9.3 shows that the restriction
(g∗α)|Di

lies in the image of g∗ : Hn(κ(s),Z/2) → Hn(κ(x),Z/2) and so it must
vanish because Hn(κ(s),Z/2) = 0.

Next, we deal with the case where Xs is not reduced along Di. In this case, Di

is rational over κ, and so

Hn
nr(κ(Di)/κ,Z/2) = Hn(κ,Z/2).
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The right hand side vanishes because κ = κ(s) has cohomological dimension less
than n. To conclude, it thus suffices to see that (g∗α)|Di

∈ Hn(κ(Di),Z/2) is
unramified over κ. To see this, note that X is smooth and integral over k. Since g∗α
is unramified over k, the equivalence of (a) and (b) in [CT1, Theorem 4.1.1] shows
that for any scheme point p ∈ X, the class g∗α ∈ Hn(k(X), Z/2) comes from a class
in Hn

ét(SpecOX,p,Z/2). Using functoriality of étale cohomology, we conclude that
for any scheme point p ∈ Di, the restriction (g∗α)|Di

∈ Hn(κ(Di),Z/2) comes from
a class in Hn

ét(SpecODi,p,Z/2). The equivalence of (b) and (d) in [CT1, Theorem
4.1.1] applied to the smooth and proper variety Di over κ then shows that (g∗α)|Di

is unramified over κ, as we want. Altogether, we have thus proven that the class in
(34) vanishes.

Up to replacing Y by another normal model, we may assume that the base
change YU admits a proper birational morphism YU → X over U . In order to prove
that f∗α vanishes at the generic point of E ⊂ YU , it thus suffices to prove that
g∗α restricts to zero on the generic point of any subvariety W ⊂ X which lies over
the codimension one point s ∈ U . (That restriction is defined by [CT1, Theorem
4.1.1(b)] because g∗α is unramified over k and X is smooth over k.) We have proven
this already if W coincides with one of the components of (Xs)

red. The general case
follows then from the injectivity property (see e.g. [CT1, Theorem 3.8.1]), because
the components of (Xs)

red are smooth over κ(s). This concludes the proof of the
theorem. �

Appendix A. Explicit examples

In this section we give in any dimension N and in all degrees d covered by Theo-
rem 1.1, explicit examples of smooth stably irrational hypersurfaces over countable
fields, such as Q(t) or Fp(s, t). If N is of the special form N = 2n + n − 2, we
produce similar examples over smaller fields, such as Q or Fp(s).

Let N ≥ 3 be an integer and write N = n+r with integers n ≥ 2 and r ≥ 1 with
2n−1 − 2 ≤ r ≤ 2n − 2. Let further d ≥ n+ 2 be an integer, and let k be a field.

For any ε ∈ {0, 1}n, we put |ε| :=
∑n

i=1 εi and define a bijection ρ : {0, 1}n →
{1, . . . , 2n} via ρ(ε) := 1 +

∑n
i=1(1− εi) · 2i−1. Set S := ρ−1({1, 2, . . . , r + 1}) and

consider the following homogeneous degree d polynomials:

Rev := −xd−n
0 x1x2 · · ·xn +

∑
ε∈S

x
d−2−|ε|
0 · xε1

1 · · ·xεn
n · x2

n+ρ(ε),

Rodd := −xd−n+1
0 x2 · · ·xn +

∑
ε∈S

x
d−2−|ε|+(−1)1−ε1

0 · x1−ε1
1 xε2

2 · · ·xεn
n · x2

n+ρ(ε),

R′ :=

{∑N+1
i=0 xd

i if char(k) � d;

xd
0 +

∑N
i=0 xix

d−1
i+1 if char(k) | d.

Example A.1. Let t, u, v ∈ k. We consider the homogeneous polynomial F ∈
k[x0, . . . , xN+1], given as follows, where Rev, Rodd and R′ are as above.

• If d ≥ n+ 2 is even, then

F := u ·

⎛⎝t2

(
n∑

i=0

x
d/2
i

)2

+Rev

⎞⎠+ v ·R′.
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• If d ≥ n+ 2 is odd, then

F := u ·

⎛⎝t2x1

(
n∑

i=0

x
d−1
2

i

)2

+Rodd

⎞⎠+ v ·R′.

Theorem A.2. Let N ≥ 3, write N = n + r, and let d ≥ n + 2 be integers as
above. Let k be a field with char(k) �= 2 and of transcendence degree at least one
if char(k) = 0 and two otherwise. We specialize the elements t, u, v ∈ k, used in
Example A.1, as follows:

• If char(k) = 0, let t ∈ k be an element that is transcendental over the prime
field of k and let u, v ∈ Z be different prime numbers such that v � d.

• If char(k) = p ≥ 3, let s, t ∈ k be elements that are algebraically independent
over the prime field Fp ⊂ k and let u, v ∈ Fp[s] be coprime irreducible
polynomials.

Then X := {F = 0} ⊂ PN+1
k , where F is as in Example A.1, is smooth and stably

irrational over k.

Proof. Setting u = 0, we see that X degenerates to {R′ = 0}, which is a smooth
hypersurface by construction. Hence,X is smooth. Let Z be the specialization ofX,
given by v = 0. As in the proof of Theorem 8.1, Propositions 5.1, 6.1, and 7.1 imply
that this hypersurface satisfies the assumptions of Proposition 3.1. (This requires
us to rename the coordinates y1, . . . , yr+1 used in Section 7 by xn+1, . . . , xn+r+1.)
Hence, we conclude that X is not stably rational over k, as we want. �

Theorem A.3. In the above notation, assume that r = 2n−2, i.e., N = 2n+n−2,
and let d ≥ n+2 be an integer. Let k be a field with char(k) �= 2 and of transcendence
degree at least one if char(k) > 0. We specialize the elements t, u, v ∈ k, used in
Example A.1, as follows:

• If char(k) = 0, set t := 1, and let u, v ∈ Z be different primes such that
v � d.

• If char(k) = p ≥ 3, let s ∈ k be transcendental over the prime field Fp ⊂ k,
set t := 1, and let u, v ∈ Fp[s] be coprime irreducible polynomials.

Then X := {F = 0} ⊂ PN+1
k , where F is as in Example A.1, is smooth and stably

irrational over k.

Proof. Setting u = 0, we see that X degenerates to {R′ = 0}, which is a smooth
hypersurface by construction. Hence, X is smooth. Let Z be the specialization of
X, given by v = 0. As in the proof of Theorem 8.3, Lemma 4.3 and Propositions
5.1 and 7.1 imply that this hypersurface satisfies the assumptions of Proposition
3.1. (This requires us to rename the coordinates y1, . . . , y2n−1 used in Section 7 by
xn+1, . . . , xn+2n−1.) Hence, we conclude that X is not stably rational over k, as we
want. �
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