
TORSION ORDERS OF FANO HYPERSURFACES

STEFAN SCHREIEDER

Abstract. We find new lower bounds on the torsion orders of very general Fano hy-

persurfaces over (uncountable) fields of arbitrary characteristic. Our results imply that

unirational parametrizations of most Fano hypersurfaces need to have very large degree.

Our results also hold in characteristic two, where they solve the rationality problem for

hypersurfaces under a logarithmic degree bound, thereby extending a previous result of

the author from characteristic different from two to arbitrary characteristic.

1. Introduction

Let X be a projective variety over a field k. The torsion order Tor(X) of X is the

smallest positive integer e, such that e times the diagonal of X admits a decomposition

in the Chow group of X ×X, that is,

e∆X = [z ×X] +B ∈ CHdimX(X ×X),

where z ∈ CH0(X) is a zero-cycle of degree e and B is a cycle on X × X that does

not dominate the second factor. If no such decomposition exists, we put Tor(X) = ∞.

If k is algebraically closed, then Tor(X) is the smallest positive integer e such that for

any field extension L of k, the kernel of the degree map CH0(XL)→ Z is e-torsion, and

Tor(X) =∞ if no such integer exists. This notion goes back to Bloch [Blo79] (using an

idea of Colliot-Thélène) and Bloch–Srinivas [BS83], and has for instance been studied in

[ACTP13] and [Voi15], and in the above form by Chatzistamatiou–Levine [CL17] and

Kahn [Kah17].

The torsion order is a stable birational invariant of smooth projective varieties; it

is finite if X is rationally connected and it is 1 if X is stably rational. Moreover, if

f : Y → X is a generically finite morphism, then Tor(X) divides deg(f) · Tor(Y ). In

particular, the degree of any unirational parametrization of X is divisible by Tor(X).

The torsion order is a powerful invariant of rationally connected varieties, which we

would like to compute for interesting classes of varieties. In particular, it is desirable to
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do so for smooth hypersurfaces Xd ⊂ PN+1
k of degree d ≤ N + 1. By a result of Roitman

[Roi72] and Chatzistamatiou–Levine [CL17, Proposition 5.2], we have

Tor(Xd) | d! .(1)

This yields an upper bound which holds over any field k.

Finding lower bounds for Tor(Xd) over algebraically closed fields is in general a difficult

problem. By a result of Chatzistamatiou–Levine [CL17, Theorem 8.2], building on earlier

work of Totaro [Tot16] and Kollár [Kol95], the torsion order of a very general complex

hypersurface Xd ⊂ PN+1
C of degree d ≥ pjdN+2

pj+1
e is divisible by pj, where p denotes a

prime number. This yields non-trivial lower bounds roughly in degrees d > 2
3
N . In

[Sch19b], the author dealt with lower degrees by showing that the torsion order of a

very general hypersurface Xd ⊂ PN+1
C of degree d ≥ log2N + 2 and dimension N ≥ 3 is

divisible by 2. This paper generalizes that result as follows.

Theorem 1.1. Let k be an uncountable field. Then the torsion order of a very general

Fano hypersurface Xd ⊂ PN+1
k of degree d ≥ 4 is divisible by every integer m ≤ d− log2N

that is invertible in k.

The first new case concerns very general quintic fourfolds X5 ⊂ P5
k over (algebraically

closed) fields of characteristic different from 3, for which we get 3 | Tor(X5). If char k = 0,

then Tor(X5) is also divisible by 2 and 5 (see [Tot16] and [CL17, Theorem 8.2]) and so

our result determines all prime factors of Tor(X5) by (1).

The strength of Theorem 1.1 lies in its asymptotic behaviour for large N . To illustrate

this, let X100 ⊂ P100
C be a very general complex hypersurface of degree 100. Then

Tor(X100) is divisible by

25 · 33 · 52 · 7 ·
∏
p≤89
p prime

p = 718 766 754 945 489 455 304 472 257 065 075 294 400,

while it was previously only known to be divisible by 23 · 32 · 52 · 7 · 11 = 138 600.

Even though smooth hypersurfaces Xd ⊂ PN+1
C of degree d with d! ≤ log2(N + 1) are

known to be unirational [HMP98, BR19], very general Fano hypersurfaces of large degree

are conjecturally not unirational. While this paper does not solve this problem, it does

show that for most Fano hypersurfaces, unirational parametrizations need to have enor-

mously large degree, strengthening previous bounds on this problem: In [Kol95, Theorem

4.3], Kollár gave lower bounds on the degree of a uniruled parametrization of high-degree

Fano hypersurfaces, and, relying on [Tot16], Chatzistamatiou–Levine produced slightly

better bounds for unirational parametrizations in [CL17, Theorem 8.2].

In [Sch19b] it was shown that very general hypersurfaces of dimension N ≥ 3 and

degree d ≥ log2N + 2 are stably irrational over any uncountable field of characteristic
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different from two. This improved [Kol95, Tot16] in characteristic 6= 2, but the Kollár–

Totaro bound d ≥ 2dN+2
3
e remained the best known result in characteristic two.

Applying Theorem 1.1 to m = 3, this paper solves the rationality problem for hyper-

surfaces in characteristic two under a logarithmic degree bound.

Corollary 1.2. Let k be an uncountable field of characteristic two. Then a very general

hypersurface X ⊂ PN+1
k of degree d ≥ log2N + 3 is stably irrational.

The method of this paper is flexible and applies to other types of varieties as well. To

illustrate this, we include here the example of cyclic covers of projective space.

Theorem 1.3. Let k be an uncountable field and let m ≥ 2 be an integer that is invertible

in k. Then the torsion order of a cyclic m : 1 cover X → PNk branched along a very

general hypersurface of degree d ≥ log2N + 2m− 2 (with m | d) is divisible by m.

In particular, under the above degree bound, very general cyclic m : 1 covers are stably

irrational. Even for k = C, this extends previous results on this problem substantially,

see [Kol96, CTP16b, Oka19].

The above results are proven via a version of the degeneration technique that the

author developed in [Sch19a, Sch19b] and which improved the method of Voisin [Voi15]

and Colliot-Thélène–Pirutka [CTP16a]. An essential ingredient in this approach is the

construction of varieties that have nontrivial unramified cohomology.

Constructing rationally connected varieties with nontrivial unramified cohomology is

a subtle problem. In degree two, the first examples are due to Saltman [Sal84]. Build-

ing on [AM72], the first examples in degree three and with Z/2-coefficients have been

constructed in [CTO89]. This has later been generalized to arbitrary degrees and Z/`-
coefficients for any prime ` in [Pey93, Aso13]. Starting with [CTO89], all these con-

structions rely on norm varieties attached to symbols in Milnor K-theory mod `. Norm

varieties attached to symbols of length two are Brauer–Severi varieties. For ` 6= 2, such

varieties have large degree, compared to their dimensions, which hints that they are not

useful for our purposes. Moreover, for symbols of length at least three, norm varieties

for ` 6= 2 are very intricate objects, whose construction, due to Rost, relies inductively

on the Bloch–Kato conjecture in lower degrees, see [SJ06]. The situation is special for

` = 2, where norm varieties are Pfister quadrics, which are much simpler objects. Pfister

quadrics are used in [Sch19b], which explains the restriction to the prime 2.

This paper introduces for any integer m large classes of hypersurfaces with unramified

Z/m-cohomology, see Theorem 5.3 below. As in [Sch19b], an important ingredient is

a quite flexible degeneration argument which allows to prove nontriviality of certain

classes without any deep result from K-theory, see item (3) in Theorem 5.3. Besides

the ideas from [Sch19b], the main new ingredient of this paper is the definition and
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usage of universal relations in Milnor K-theory, see Definition 3.1 below. Our approach

is elementary, works for any positive integer m (not necessarily prime) and does not

rely on norm varieties, nor on Voevodsky’s proof of the Bloch–Kato conjectures. As an

important example, the concept of universal relations in Milnor K-theory allows us to

prove the following result of independent interest, which generalizes a famous vanishing

result in the theory of Pfister forms to analogous forms of higher degree.

Corollary 1.4. Let µ1, . . . , µn ∈ L be nonzero elements of a field L. Consider the

hypersurface Xµ1,...,µn ⊂ P2n−1
L of degree m, given by∑

ε∈{0,1}n
(−µ1)ε1(−µ2)ε2 . . . (−µn)εn · ymφ(ε) = 0,

where φ(ε) =
∑n

i=1 εi · 2i−1. If Xµ1,...,µn is integral (e.g. if 1
m
∈ L), then

(µ1, . . . , µn) ∈ ker(KM
n (L)/m //KM

n (L(Xµ1,...,µn))/m).

Asok’s examples [Aso13] with nontrivial unramified Z/`-cohomology in degree n have

dimension N � `n, which grows rapidly with n. For any given prime ` and integer

N ≥ 3, this led Asok [Aso13, Question 4.5] to ask for general restrictions on the pos-

sible degrees in which rationally connected complex varieties of dimension N can have

nontrivial unramified Z/`-cohomology. This is a quite subtle problem already for ratio-

nally connected threefolds, where by a result of Voisin [Voi06] and Colliot-Thélène–Voisin

[CTV12, Théorème 1.2], it boils down to understanding the possible Brauer groups, see

[Aso13, Remarks 4.7, 4.8 and 4.10].

As a consequence of our proof of Theorem 1.1, we obtain the following uniform result

in arbitrary dimension; the case m = 2 is due to [Sch19b, Theorem 1.5].

Theorem 1.5. Let m,n ≥ 2 and N ≥ 3 be integers with log2(m+ 1) ≤ n ≤ N + 1−m.

Then there is a rationally connected smooth complex projective variety X of dimension N

such that the n-th unramified cohomology Hn
nr(C(X)/C,Z/m) of X contains an element

of order m.

It is natural to wonder whether the upper bound in the above theorem is sharp. For

instance, is the unramified Z/2-cohomology of a rationally connected smooth complex

projective variety X trivial in degree n = dimX?

Remark 1.6. The main results of this paper are formulated over uncountable fields.

However, our proofs show that for any field k with Q(t) ⊂ k or Fp(t, s) ⊂ k, there

are hypersurfaces as in Theorems 1.1 and 1.3 that are defined over k, and it is easy to

extract explicit equations for these examples. Moreover, the varieties in Theorem 1.5

may be chosen to be defined over Q.
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2. Preliminaries

2.1. Conventions. A variety is an integral separated scheme of finite type over a field.

For a scheme X, we denote its codimension one points by X(1). A property holds for

a very general point of a scheme if it holds at all closed points inside some countable

intersection of open dense subsets.

2.2. Degenerations. Let R be a discrete valuation ring with fraction field K and alge-

braically closed residue field k. Let X → SpecR be a proper flat morphism with generic

fibre X and special fibre Y . Then we say that X degenerates to Y . We also say that

the base change of X to any larger field degenerates (or specializes) to Y . For instance,

if X → B is a proper flat morphism of varieties over an algebraically closed uncountable

field, then the fibre Xt over a very general point t ∈ B degenerates to the fibre X0

for any closed point 0 ∈ B in the above sense, see e.g. [Sch19a, §2.2]. In particular,

a very general hypersurface X ⊂ Pn+1
k over an algebraically closed uncountable field k

specializes to any given hypersurface of the same dimension and degree over k.

2.3. Alterations. Let Y be a variety over an algebraically closed field k. An alteration

of Y is a proper generically finite surjective morphism τ : Y ′ → Y , where Y ′ is a non-

singular variety over k. De Jong [deJ96] proved that alterations always exist. Later,

Gabber showed that one can additionally require that deg(τ) is prime to any given

prime ` 6= char(k). Temkin [Tem17, Theorem 1.2.5] generalized this further, ensuring

that deg(τ) is a power of the characteristic of k (or one if char(k) = 0).

2.4. Milnor K-theory. Let L be a field. Recall that Milnor K-theory KM
n (L) of L in

degree n ≥ 2 is defined as the quotient of (L∗)⊗n, where L∗ denotes the multiplicative

group of units in L, by the subgroup generated by tensors of the form a1⊗ · · · ⊗ an with

ai + ai+1 = 1 for some 1 ≤ i ≤ n − 1. Moreover, KM
0 (L) = Z and KM

1 (L) = L∗. The

image of a tensor a1 ⊗ · · · ⊗ an in KM
n (L) is denoted by (a1, . . . , an). The direct sum

KM
∗ (L) :=

⊕
n≥0K

M
n (L) has a natural product structure, induced by the tensor product.

For an integer m ≥ 2, the defining relation for Milnor K-theory implies the following

basic relation in Milnor K-theory mod m, see [Mil70, Lemma 1.3].

Lemma 2.1. Let L be a field and let b1, . . . , bn ∈ L∗ such that
∑
bi = cm for some c ∈ L.

Then (b1, . . . , bn) = 0 ∈ KM
n (L)/m.

Let A be a ring and let A∗ be the multiplicative group of units in A. We define Km
n (A)

as the quotient of (A∗)⊗n by the subgroup generated by a1 ⊗ · · · ⊗ an with ai + ai+1 = 1

for some 1 ≤ i ≤ n− 1. If A is a field, then this definition coincides with the one above.

If A → B is a homomorphism of rings, then we obtain an induced homomorphism

KM
n (A) → KM

n (B). In particular, if A is an integral domain with fraction field L, then
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there is a natural map ψL : KM
n (A) → KM

n (L), and if A is local with residue field κ,

then there is a natural map ψκ : KM
n (A)→ KM

n (κ).

Lemma 2.2. Let A be a regular local ring with fraction field L and residue field κ. Then

for any integer m ≥ 1, we have

ker
(
ψL : KM

n (A)/m //KM
n (L)/m

)
⊆ ker

(
ψκ : KM

n (A)/m //KM
n (κ)/m

)
.

Proof. By [CT95, Lemma 2.1.5(a)], it suffices to prove the lemma in the case where A is

a complete discrete valuation ring. In this case, let π ∈ A be a uniformizer. This induces

a residue homomoprhism ∂π : KM
n+1(L)/m→ KM

n (κ)/m, such that for α ∈ KM(A)/m,

ψκ(α) = ∂π((π)⊗ ψL(α)),

where (π) ∈ KM
1 (L)/m = L∗/(L∗)m, see [Mil70, Lemma 2.1]. This immediately shows

ker(ψL) ⊂ ker(ψκ), as we want. �

2.5. Galois cohomology and unramified cohomology. Let L be a field. Letm be an

integer that is invertible in L and assume for simplicity that L contains a primitive m-th

root of unity. We denote by H i(L,Z/m) the Galois cohomology of the absolute Galois

group of L with the trivial action on Z/m. Kummer theory induces an isomorphism

H1(L,Z/m) ' L∗/(L∗)m = KM
1 (L)/m which is canonical up to the choice of a primitive

m-th root of unity of L. By [BT73], this induces via cup products a morphism of graded

rings

KM
∗ (L)/m //H∗(L,Z/m).(2)

(In fact, this map is an isomorphism by the Bloch–Kato conjecture, proven by Voevodsky,

but we will not use this fact in this paper.) By slight abuse of notation, we denote the

image of a class (a1, . . . , an) ∈ KM
∗ (L)/m in H∗(L,Z/m) by the same symbol.

Let A be an integral domain in which m is invertible and let L := FracA be its fraction

field. Since H i(L,Z/m) coincides with the étale cohomology of SpecL with values in

Z/m, there is a natural pullback map H i
ét(SpecA,Z/m)→ H i(L,Z/m). If A is a regular

local ring, this map is injective, see e.g. [CT95, Lemma 2.1.5(b) and §3.6].

Lemma 2.3. Let A be a regular local ring and let m be an integer that is invertible in

A. Then the natural map

H i
ét(SpecA,Z/m) //H i(FracA,Z/m)(3)

is injective.

For any discrete valuation ν on L, such that m is invertible in the residue field κ(ν),

there is a residue map

∂ν : Hn(L,Z/m) //Hn−1(κ(ν),Z/m),
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which is compatible with the aforementioned residue map in Milnor K-theory. If A := Oν
denotes the valuation ring of ν, then the kernel of ∂ν is given by the image of the injective

map (3) from Lemma 2.3, see e.g. [CT95, §3.6].

Assume now that L = k(X) is the function field of a k-variety X and let Val(L/k)

be the set of all valuations on L that are induced by a prime divisor on some normal

birational model of X. The unramified Z/m-cohomology of X in degree n is defined as

Hn
nr(k(X)/k,Z/m) := {α ∈ Hn(k(X),Z/m) | ∂να = 0 ∀ν ∈ Val(k(X)/k)}.

This subgroup of Hn(k(X),Z/m) is a stable birational invariant of X, see [CTO89].

Let γ ∈ Hn
nr(k(X)/k,Z/m) be unramified and let E ⊂ X be a subvariety whose

generic point x lies in the smooth locus of X. Then γ lifts uniquely to a class in the

cohomology of SpecOX,x (see Lemma 2.3) and so it can be restricted to the closed point

to give a class in Hn(κ(x),Z/m) = Hn(k(E),Z/m) that we denote by γ|x or γ|E.

3. Universal relations in Milnor K-theory modulo m

Fix a base field k and a natural number m ≥ 2. For integers n, s ≥ 1, let

Rn,s := k[x1, x2, . . . , xn, y1, . . . , ys]

be the polynomial ring over k in n + s variables and let Ln,s := FracRn,s be its field of

fractions.

Definition 3.1. A universal relation in Milnor K-theory modulo m over the field k is

an identity

(x1, . . . , xn) = λ · (a1, . . . , an) ∈ KM
n (Ln,s)/m,(4)

for some polynomials a1, . . . , an ∈ Rn,s and λ ∈ (Z/m)∗.

3.1. General properties. The terminology in Definition 3.1 is due to the following

property.

Lemma 3.2. Let (4) be a universal relation in Milnor K-theory modulo m over the field

k. Let L be a field extension of k and let φ : Rn,s → L be a morphism of k-algebras such

that φ(xi) and φ(ai) are invertible in L for all i = 1, . . . , n. Then,

(φ(x1), . . . , φ(xn)) = λ · (φ(a1), . . . , φ(an)) ∈ KM
n (L)/m.

Proof. The morphism φ yields a morphism of schemes ϕ : SpecL → SpecRn,s = An+s
k .

Let x ∈ An+s
k be the image of ϕ. Then the field L is an extension of the residue field

κ(x) of x and so there is a natural homomorphism KM
n (κ(x))/m→ KM

n (L)/m. In order

to prove the lemma, we may thus without loss of generality assume L = κ(x) and so ϕ

denotes the inclusion of the scheme-point x ∈ An+s
k .
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Let A be the local ring of An+s
k at x. Since φ(xi), φ(ai) ∈ L∗, we get xi, ai ∈ A∗ and so

(x1, . . . , xn)− λ(a1, . . . , an) ∈ KM
n (A)/m.(5)

This element lies in the kernel of KM
n (A)/m → KM

n (FracA)/m, because FracA = Ln,s
and (4) is a universal relation. It thus follows from Lemma 2.2 that (5) lies in the kernel

of KM
n (A)/m→ KM

n (L)/m, because L = κ(x) is the residue field of the local ring A by

assumption. This concludes the lemma. �

The following proposition shows that universal relations allow to construct varieties

whose function fields kill a given symbol in Milnor K-theory modulo m.

Proposition 3.3. Let (4) be a universal relation in Milnor K-theory modulo m over the

field k in degree n ≥ 1. Let L be a field extension of k and let µ1, . . . , µn ∈ L∗. Let s′

be a positive integer and let φ : Rn,s → L[y1, . . . , ys′ ] a homomorphism of k-algebras with

φ(xi) = µi and φ(ai) 6= 0 for all i = 1, . . . , n. Let c ∈ L[y1, . . . , ys′ ] be nonzero such that

F := cm −
n∑
i=1

φ(ai) ∈ L[y1, . . . , ys′ ]

is irreducible and let W be a projective model of {F = 0} ⊂ As′
L . Then

(a) (µ1, . . . , µn) ∈ ker
(
KM
n (L)/m //KM

n (L(W ))/m
)
.

(b) Let Y be a variety over L and let ι : Y → W be a morphism of L-varieties such that

the image ι(ηY ) of the generic point of Y lies in the regular locus of W . Then

(µ1, . . . , µn) ∈ ker
(
KM
n (L)/m //KM

n (L(Y ))/m
)
.

Proof. Since F is irreducible, W is integral and so it is regular at the generic point. In

particular, item (a) is a special case of (b). Nonetheless, we will prove (a) first. For this,

we denote by φ(ai) the image of ai ∈ Rn,s in L(W ). Since c 6= 0 and φ(ai) 6= 0 for all i,

we find φ(ai) 6= 0 for all i. Hence,

(φ(x1), . . . , φ(xn)) = λ · (φ(a1), . . . , φ(an)) ∈ KM
n (L(W ))/m

by Lemma 3.2, and so this class vanishes by Lemma 2.1 because
∑

i φ(ai) is an m-th

power in L(W ) by the definition of F . This proves item (a) because φ(xi) = µi for all i.

To prove item (b), let w = ι(ηY ) ∈ W be the image of the generic point of Y . Let

A = OW,w be the local ring of W at w. By assumption, A is a regular local ring. Since

µi ∈ L∗ ⊂ A∗ for all i,

(µ1, . . . , µn) ∈ ker(KM
n (A)/m //KM

n (L(W ))/m)

by item (a) proven above. Applying Lemma 2.2, we then find

(µ1, . . . , µn) ∈ ker(KM
n (A)/m //KM

n (κ(w))/m).
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Item (b) stated in the proposition follows from this because L(Y ) is a field extension of

κ(w) and so the natural map KM
n (L)/m //KM

n (L(Y ))/m factors through KM
n (κ(w))/m.

This concludes the proof of the proposition. �

3.2. Examples. The simplest example of a universal relation modulo m is given by

(x1) = (x1y
m
1 ) ∈ KM

1 (L1,1)/m.

The next lemma allows to produce universal relations in Milnor K-theory mod m in

arbitrary degree by starting with a single relation in low degree.

Lemma 3.4. Let (x1, . . . , xn) = λ · (a1, . . . , an) ∈ KM
n (Ln,s)/m be a universal relation

in degree n. Then

(x1, . . . , xn, xn+1) = λ ·

(
a1, . . . , an, xn+1

(
yms+1 −

n∑
i=1

a′i

))
∈ KM

n+1(Ln+1,2s+1)/m,

is a universal relation in degree n+ 1, where a′i := ai(x1, . . . , xn, ys+2, . . . , y2s+1).

Proof. Since (x1, . . . , xn) = λ · (a1, . . . , an) ∈ KM
n (Ln,s)/m, we have(

x1, . . . , xn, xn+1

(
yms+1 −

n∑
i=1

a′i

))
= λ ·

(
a1, . . . , an, xn+1

(
yms+1 −

n∑
i=1

a′i

))
in KM

n (Ln+1,2s+1)/m. The claim in the lemma is thus equivalent to(
x1, . . . , xn, y

m
s+1 −

n∑
i=1

a′i

)
= 0 ∈ KM

n (Ln+1,2s+1)/m.(6)

Relabelling the y-coordinates in the universal relation (x1, . . . , xn) = λ · (a1, . . . , an)

shows by Lemma 3.2 that (x1, . . . , xn) = λ · (a′1, . . . , a′n) ∈ KM
n (Ln+1,2s+1)/m and so (6)

is equivalent to

λ ·

(
a′1, . . . , a

′
n, y

m
s+1 −

n∑
i=1

a′i

)
= 0 ∈ KM

n (Ln+1,2s+1)/m,

which holds by Lemma 2.1. This concludes the proof of the lemma. �

To illustrate the above result, start with the trivial relation (x1) = (x1y
m
1 ) in degree

one. Applying the lemma, we arrive at the relation

(x1, x2) = (x1y
m
1 , x2y

m
2 − x1x2y

m
3 ) ∈ KM

2 (L2,3)/m

in degree two. Applying the lemma once again, we get the universal relation

(x1, x2, x3) = (x1y
m
1 , x2y

m
2 − x1x2y

m
3 , x3y

m
4 − x1x3y

m
5 − x2x3y

m
6 + x1x2x3y

m
7 )

in KM
3 (L3,7)/m. Repeating this process inductively, we are led to the universal relation

in degree n from Proposition 4.1 below.
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4. Fermat–Pfister forms

Let k be a field and m ≥ 2 an integer. For n ≥ 1, we define the n-th Fermat–Pfister

form of degree m (and with coefficients in the polynomial ring k[x1, . . . , xn]) as

Pfm,n(y0, . . . , y2n−1) :=
∑

ε∈{0,1}n
(−x1)ε1(−x2)ε2 . . . (−xn)εn · ymφ(ε),(7)

where φ : {0, 1}n → {0, 1, . . . , 2n − 1} denotes the bijection given by

φ(ε) =
n∑
i=1

εi · 2i−1.

Our definition generalizes the famous quadratic forms of Pfister [Pfi65] to higher degrees.

We denote the coefficient in front of yi by ci and get

Pfm,n(y0, . . . , y2n−1) =
2n−1∑
i=0

ciy
m
i .(8)

By definition, c0 = 1, c1 = −x1 and c2n−1 = (−1)nx1 · · ·xn.

For n ≥ 1, we have

Pfm,n(y0, . . . , y2n−1) = Pfm,n−1(y0, . . . , y2n−1−1)− xn · Pfm,n−1(y2n−1 , . . . , y2n−1),

where we set Pfm,0(y0) := ym0 . Inductively, this yields

Pfm,n(y0, . . . , y2n−1) = ym0 −
n∑
i=1

ai,(9)

where

ai := xi · Pfm,i−1(y2i−1 , . . . , y2i−1).(10)

Proposition 4.1. Let k be a field and let ai ∈ k[x1, . . . , xi, y1, . . . , y2i−1] be as in (10).

Then,

(x1, . . . , xn) = (a1, . . . , an) ∈ KM
n (Ln,2n−1)/m,

is a universal relation in Milnor K-theory modulo m over k.

Proof. We aim to prove the proposition by induction on n. For n = 1, the proposition is

saying that (x1) = (x1y
m
1 ), which is clear. We now assume that the proposition is proven

for some n ≥ 1 and we aim to prove it for n + 1. Applying Lemma 3.4 to the given

universal relation in degree n, we obtain

(x1, . . . , xn, xn+1) =

(
a1, . . . , an, xn+1

(
ym2n −

n∑
i=1

a′i

))
,(11)
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in KM
n (Ln+1,2n+1−1)/m, where

a′i = ai(x1, . . . , xn, y2n+1, . . . , y2n+1−1) = xi · Pfm,i−1(y2n+2i−1 , . . . , y2n+2i−1).

The recursive relation (9) implies

ym2n −
n∑
i=1

a′i = Pfm,n(y2n , y2n+1, . . . , y2n+1−1)

and so

xn+1

(
ym2n −

n∑
i=1

a′i

)
= xn+1 Pfm,n(y2n , y2n+1, . . . , y2n+1−1) = an+1

by (10). Hence, (11) simplifies to

(x1, . . . , xn, xn+1) = (a1, . . . , an, an+1) ∈ KM
n (Ln+1,2n+1−1)/m,

as we want. This concludes the proposition. �

We are now in the position to prove Corollary 1.4 stated in the introduction.

Proof of Corollary 1.4. Let k be the prime field of L and consider the polynomial ring

Rn,2n−1 = k[x1, . . . , xn, y1, . . . , y2n−1] from Section 3. Let φ : Rn,s → L[y0, y1, . . . , y2n−1]

be the morphism of k-algebras, given by φ(xi) = µi and φ(yj) = yj for all i and j. Let fur-

ther ai ∈ Rn,2n−1 be as in (10), so that the universal relation (x1, . . . , xn) = (a1, . . . , an) ∈
KM
n (Ln,2n−1)/m holds by Proposition 4.1. By (9), the hypersurface Xµ1,...,µn from Corol-

lary 1.4 is given by

ym0 −
n∑
i=1

φ(ai) = 0.

By assumption, Xµ1,...,µn is integral and so ym0 −
∑n

i=1 φ(ai) is irreducible. Since φ(xi) =

µi ∈ L∗ and φ(ai) 6= 0, it thus follows from item (a) in Proposition 3.3 that

(µ1, . . . , µn) ∈ ker(KM
n (L)/m //KM

n (L(Xµ1,...,µn))/m).

This proves Corollary 1.4. �

Note that in Corollary 1.4, the integer m is not assumed to be invertible in L. Adding

this assumption, Xµ1,...,µn is automatically integral and in fact smooth over L and we

obtain the following stronger statement.

Corollary 4.2. Let L be a field in which m is invertible and let µ1, . . . , µn ∈ L∗. Consider

the smooth hypersurface Xµ1,...,µn ⊂ P2n−1
L of degree m, given by∑

ε∈{0,1}n
(−µ1)ε1(−µ2)ε2 . . . (−µn)εn · ymφ(ε) = 0,
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where φ(ε) =
∑n

i=1 εi · 2i−1. Let Y be a variety over L which admits a morphism ι : Y →
Xµ1,...,µn of L-varieties. Then

(µ1, . . . , µn) ∈ ker
(
KM
n (L)/m //KM

n (L(Y ))/m
)
.

Proof. Let k be the prime field of L and recall Rn,s = k[x1, . . . , xn, y1, . . . , ys] from section

3. Let φ : Rn,2n−1 → L[y0, . . . , y2n−1] be the morphism of k-algebras with φ(xi) = µi and

φ(yj) = yj for all i = 1, . . . , n and j = 1, . . . , 2n − 1.

Note that W := Xµ1,...,µn is defined by the Fermat–Pfister form Pfm,n(y0, . . . , y2n−1) of

degree m from (7), where xi is replaced by µi for i = 1, . . . , n. Hence, by (9),

W =

{
ym0 −

n∑
i=1

φ(ai) = 0

}
⊂ P2n−1

L ,

where ai = xi Pfm,n(y2i−1 , . . . , y2i−1). Recall also that (x1, . . . , xn) = (a1, . . . , an) ∈
KM
n (Ln,2n−1)/m is a universal relation in Milnor K-theory modulo m by Proposition 4.1.

Since µi 6= 0 for all i and m is invertible in L, W = Xµ1,...,µn is smooth over L by the

Jacobi criterion. In particular, the image ι(ηY ) ∈ W of the generic point of Y lies in the

regular locus of W and so Corollary 4.2 follows from item (b) in Proposition 3.3. �

5. Unramified cohomology via universal relations

Definition 5.1. Let k be a field. A homogeneous polynomial g ∈ k[x0, x1, . . . , xn] is of

twisting type modulo m if for all i = 0, 1, . . . , n:

• g contains the monomials xdeg g
i nontrivially;

• g is an m-th power modulo xi.

An inhomogeneous polynomial b ∈ k[x1, . . . , xn] is of twisting type modulo m if its

homogenization in k[x0, x1, . . . , xn] has this property.

Note that the degree of a polynomial which is of twisting type modulo m must be a

multiple of m. The following slightly technical lemma will be crucial.

Lemma 5.2. Let b ∈ k[x1, . . . , xn] be an inhomogeneous polynomial of twisting type

modulo m. Let x ∈ S(1) be a codimension one point of some normal birational model S of

Pnk . Let z ∈ Pnk be the image of x under the birational map S 99K Pnk and assume that z is

the generic point of the intersection of c ≥ 1 coordinate hyperplanes {xi1 = · · · = xic = 0}
with 0 ≤ i1 < · · · < ic ≤ n. Then b becomes an m-th power in the fraction field of the

completion ÔS,x of the local ring of S at x.

Proof. Let g ∈ k[x0, x1, . . . , xn] be the homogeneous polynomial of twisting type given

by homogenization of b. The existence of z implies c ≤ n and so there is some index



TORSION ORDERS OF FANO HYPERSURFACES 13

0 ≤ i0 ≤ n with xi0(z) 6= 0. Let b′ be the inhomogeneous polynomial, given by setting

xi0 = 1 in g. Then

b

(
x1

x0

,
x2

x0

, . . . ,
xn
x0

)
= g

(
x0

x0

,
x1

x0

,
x2

x0

, . . . ,
xn
x0

)
=

(
xi0
x0

)deg g

· g
(
x0

xi0
,
x1

xi0
, . . . ,

xn
xi0

)
=

(
xi0
x0

)deg g

· b′
(
x0

xi0
,
x1

xi0
, . . . ,

x̂i0
xi0

, . . . ,
xn
xi0

)
.

Since g is of twisting type modulo m, deg(g) is divisible by m and so b becomes an m-th

power in Frac ÔS,x if and only if this holds for b′. For this reason we may without loss

of generality assume that i0 = 0. In particular, the inhomogenization b given by setting

x0 = 1 in g will be defined at z. Since g contains the monomials xdeg g
i nontrivially for

all i = 0, . . . , n, it follows that the image b of b in κ(z) is nontrivial. Moreover, b is an

m-th power, as g is an m-th power modulo xi for all i and c ≥ 1 by assumption. The

result thus follows from Hensel’s lemma, applied to ÔS,x. �

For n = 2 and m = 2, the equation of a conic tangent to the three coordinate lines

in P2 is of twisting type, see [HPT18]. An instructive example for arbitrary m and n is

given by

g = Gm + xem−n0 x1 · · ·xn,(12)

where G is homogeneous of degree e with em > n and G contains xei nontrivially for all

i = 0, 1, . . . , n. For m = 2, this simple but flexible example was used very succesfully in

[Sch19b]. The general idea of tangentially meeting degeneracy loci goes back to Artin–

Mumford [AM72] and has since then been used by many authors, see e.g. [CTO89, Pir18,

Sch19a].

Theorem 5.3. Let m ≥ 2, n, s ≥ 1 be integers and let k be an algebraically closed

field in which m is invertible. Let (x1, . . . , xn) = λ · (a1, . . . , an) ∈ KM
n (Ln,s)/m be

a universal relation in Milnor K-theory modulo m over k and let b ∈ k[x1, . . . , xn] be

an inhomogeneous polynomial of twisting type modulo m, see Definitions 3.1 and 5.1.

Assume that the polynomial

F := b−
n∑
i=1

ai ∈ Rn,s = k[x1, . . . , xn, y1, . . . , ys](13)

is irreducible and let W be a projective model of {F = 0} ⊂ An+s
k such that projection to

the xi-coordinates induces a morphism h : W → Pnk . Let Y be a projective variety over

k together with a morphism ι : Y → W , such that

• the image ι(ηY ) of the generic point of Y lies in the smooth locus of W ;
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• the composition f := h ◦ ι : Y //Pnk is surjective.

Then

α := (x1, . . . , xn) ∈ Hn(k(Pn),Z/m)

has the following properties.

(1) The pullback f ∗α ∈ Hn
nr(k(Y )/k,Z/m) is unramified over k.

(2) For any generically finite morphism of k-varieties τ : Y ′ → Y and any subvariety

E ⊂ Y ′ which meets the smooth locus of Y ′ and which does not dominate Pn via

f ◦ τ , we have

(τ ∗f ∗α)|E = 0 ∈ Hn(k(E),Z/m).

(3) Assume that there is a discrete valuation ring R ⊂ k with residue field κ and a

proper flat R-scheme Y → SpecR with Y ' Y×Rk. Assume further that f : Y →
Pnk extends to a morphism Y → PnR whose base change f0 : Y0 := Y ×R κ→ Pnκ to

the special point of SpecR admits a rational section ξ : Pnκ 99K Y0 whose image

lies generically in the smooth locus of Y0. Then f ∗α ∈ Hn
nr(k(Y )/k,Z/m) has

order m, i.e., e · f ∗α 6= 0 for all e = 1, 2, . . . ,m− 1.

Proof. Since E ⊂ Y ′ in item (2) meets the smooth locus of Y ′, we may without loss of

generality assume that Y ′ is normal. Replacing Y by its normalization, we may then

assume that Y is normal as well (because τ : Y ′ → Y factors through the normalization of

Y , once Y ′ is normal). By the same argument as at the beginning of the proof of [Sch19b,

Proposition 5.1], item (1) and (2) follow if we can show that for any codimension one

point y ∈ Y (1), which does not map to the generic point of Pnk ,

∂y(f
∗α) = 0 ∈ Hn−1(κ(y),Z/m) and (f ∗α)|y = 0 ∈ Hn(κ(y),Z/m).(14)

To prove (14), let us fix y ∈ Y (1) as above and let c denote the number of coordinate

hyperplanes {xi = 0} ⊂ Pnk which contain the point f(y). By [Mer08, Proposition 1.6],

we may also choose a normal birational model S of Pnk , such that y maps via the induced

rational map Y 99K S to a codimension one point x ∈ S(1) on S.

Let us first assume that f(y) ∈ Pnk has codimension c. Then f(y) must be the generic

point of an intersection of c coordinate hyperplanes. (In particular, we have c ≥ 1,

because f(y) is not the generic point of Pnk .) Since b is of twisting type modulo m, it

follows from Lemma 5.2 that b becomes an m-th power in the fraction field L := Frac ÔS,x
of the completion ÔS,x of the local ring of S at x.

Let Yη and Wη be the generic fibres of f : Y → Pnk and h : W → Pnk , respectively.

These are varieties over the field k(Pn). Since L is a field extension of k(Pn), we can

consider the L-varieties

(Yη)L := Yη ×k(Pn) L and (Wη)L := Wη ×k(Pn) L.
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Since b = cm for some c ∈ L, we find that (Wη)L is birational to{
cm −

n∑
i=1

ai = 0

}
⊂ As

L.

The morphism ι : Y → W induces a morphism (ιη)L : (Yη)L → (Wη)L and the image

of the generic point of (Yη)L lies in the smooth locus of (Wη)L, by assumption. Since

(x1, . . . , xn) = λ · (a1, . . . , an) ∈ KM
n (Ln,s)/m is a universal relation modulo m over k,

we thus deduce from Proposition 3.3, applied to the natural morphism φ : Rn,s → L[Yη],

induced by k[x1, . . . , xn] ⊂ L, that

(x1, . . . , xn) ∈ ker
(
KM
n (L)/m //KM

n (L(Yη))/m
)
.(15)

Let now ÔY,y be the completion of Y at the codimension one point y. Then the fraction

field Frac ÔY,y is a field extension of L(Yη) and so (15) implies

(x1, . . . , xn) ∈ ker
(
KM
n (L)/m //KM

n

(
Frac ÔY,y

)
/m
)
.

Mapping this identity to cohomology via (2), we find that f ∗α lies in the kernel of the

natural map

ϕ : Hn(k(Y ),Z/m) //Hn(Frac ÔY,y,Z/m).

The residue of f ∗α at y factors through ϕ, and so ∂yf
∗α = 0. This implies

ϕ(f ∗α) = 0 ∈ Hn
ét(Spec ÔY,y,Z/m) ⊂ Hn(Frac ÔY,y,Z/m),

where the latter inclusion follows from Lemma 2.3. Hence, the restriction (f ∗α)|y factors

through ϕ as well and so (f ∗α)|y = 0, which concludes (14) in this case.

It remains to deal with the case where f(y) ∈ Pnk has codimension less than c (e.g.

this happens if c = 0). Using homogeneous coordinates, we have α =
(
x1
x0
, . . . , xn

x0

)
. Fix

some j ∈ {1, . . . , n}. Multiplying each entry of α by (x0/xj)
m, we find

α =

(
xm−1

0 x1

xmj
, . . . ,

xm−1
0

xm−1
j

, . . . ,
xm−1

0 xn
xmj

)
.

Since k is algebraically closed, (−1) ∈ (K∗)m and so (a, a) = 0 for any a ∈ k(Pn)∗, see

Lemma 2.1. Applying this to a = (x0/xj)
m−1, the above identity simplifies to

α =

(
x1

xj
, . . . ,

xm−1
0

xm−1
j

, . . . ,
xn
xj

)
= −

(
x1

xj
, . . . ,

x0

xj
, . . . ,

xn
xj

)
.

Since it suffices to prove (14) after changing the sign of α, we may thus, up to relabelling

the coordinates, without loss of generality assume that x1, . . . , xc vanish at f(y), while

x0, xc+1, . . . , xn do not vanish at f(y).

Now the same argument as in Case 2 of the proof of [Sch19b, Proposition 5.1] applies;

we repeat it for convenience of the reader.
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First recall the normal birational model S of Pnk , such that y maps to a codimension

one point x ∈ S(1) on S. Since x0, xc+1, . . . , xn do not vanish at f(y), we get

∂xα = (∂x (x1, . . . , xc)) ∪ (xc+1, . . . , xn) ∈ Hn−1(κ(x),Z/m),

see e.g. [Sch19b, Lemma 2.1]. Since f(y) has codimension less than c and k is algebraically

closed, Hn−c(κ(f(y)),Z/m) = 0. Hence, (xc+1, . . . , xn) = 0 ∈ Hn−c(κ(f(y)),Z/m) and

so ∂xα = 0 by the above formula. Since ∂yα is up to a multiple given by the pullback

of ∂xα (see e.g. [CT95, Proposition 3.3.1]), we find that ∂yf
∗α = 0. Moreover, the

restriction f ∗α|y is given by pulling back the restriction α|x ∈ Hn(κ(x),Z/m), which

vanishes because κ(x) has cohomological dimension less than n, since k is algebraically

closed. This proves (14), which establishes items (1) and (2) of Theorem 5.3.

To prove (3), we assume for a contradiction that for some e ∈ {1, 2, . . . ,m− 1},

e · f ∗α = 0 ∈ Hn(k(Y ),Z/m).(16)

Since k is algebraically closed, Hn(k(Y ),Z/n) → Hn(K(Y ),Z/n) is injective for any

algebraically closed field extension K of k. We may thus without loss of generality assume

that k is the algebraic closure of FracR. Note also that the assumptions in (3) are stable

under base change via an extension of discrete valuation rings R ⊂ R′. Replacing R by

its completion R̂, Y → SpecR by the corresponding base change and k by the algebraic

closure of R̂, we may thus assume that R is complete. Since Hn(k(Y ),Z/m) is the

direct limit limLH
n(L(Y ),Z/m), where L runs through all finitely generated extensions

of FracR, there is a finite field extension L of FracR such that

e · f ∗α = 0 ∈ Hn(L(Y ),Z/m).(17)

Replacing R by its integral closure in L (which is again a discrete valuation ring because

R is complete, see [EGAIV, Théorème 23.1.5 and Corollaire 23.1.6]), Y → SpecR by the

corresponding base change and κ by the induced finite field extension, we may finally

assume that L = FracR in (17).

By assumption, there is a rational section ξ : Pnκ → Y0 such that the image y0 = ξ(ηPnκ)

of the generic point of Pnκ is contained in the smooth locus of Y0. Since R is a discrete

valuation ring and Y0 is the special fibre of the proper flat morphism Y → SpecR,

we find that y0 is contained in a unique irreducible component Y ′0 of Y0 and Y0 must be

generically reduced along Y ′0 . In particular, the local ring A := OY,ηY ′0 of Y at the generic

point of Y ′0 is a discrete valuation ring with fraction field L(Y ). This implies that the

natural map

Hn
ét(SpecA,Z/m) //Hn(L(Y ),Z/m)



TORSION ORDERS OF FANO HYPERSURFACES 17

is injective, see Lemma 2.3. Since e ·f ∗α lies in the image of the above map, (17) implies

0 = e · f ∗α ∈ Hn
ét(SpecA,Z/m). Restricting this to the special point of SpecA, we get

e · f ∗0α = 0 ∈ Hn(κ(Y ′0),Z/m).

Let B be the local ring of Y0 at the generic point of the image of the section ξ : Pnκ 99K Y0.

Since the image of ξ is generically contained in the component Y ′0 of Y0 and in the smooth

locus of Y0, B is a regular local ring with fraction field κ(Y ′0) and so the natural map

Hn
ét(SpecB,Z/m) //Hn(κ(Y ′0),Z/m)

is injective, see Lemma 2.3. Moreover, e ·f ∗0α is contained in the image of the above map

and so

e · f ∗0α = 0 ∈ Hn
ét(SpecB,Z/m).

After restriction to the closed point of SpecB and pulling this back to κ(Pn) via the

rational section ξ : Pnκ 99K Y0, we find

e · α = 0 ∈ Hn(κ(Pn),Z/m),

because e · ξ∗f ∗0α = e · α. Since α = (x1, . . . , xn), this statement is false, as one shows

by induction on n by taking the residue along xn = 0. This contradicts (16), which

completes the proof of the theorem. �

Remark 5.4. Starting with any universal relation (x1, . . . , xn) = λ · (a1, . . . , an) ∈
KM
n (Ln,s)/m, Theorem 5.3 produces hypersurfaces in An+s

k with nontrivial unramified

Z/m-cohomology whose degree is roughly the maximum of mbn+1
m
c (the degree of g in

(12)) and the degrees of the ai. One source of examples for universal relations is given

by Lemma 3.4, but the notion is much more general than that. For instance, if ai for

i = 1, . . . , n is as in (10), then a similar argument as in Lemma 3.4 shows that for any

1 ≤ i ≤ n:

(x1, . . . , xn) =

(
a1, . . . , ai−1, ai ·

(
ym2n −

i−1∑
j=1

a′j

)
, ai+1, . . . , an

)
∈ KM

n (Ln,2n+2i−1)/m

where a′j = aj(x1, . . . , xn, y2n+2j−1 , . . . , y2n+2j−1). Since deg ai = i + m, the maximum

of the degrees of the entries in the above relation coincides with those of (x1, . . . , xn) =

(a1, . . . , an) from Proposition 4.1 as long as i ≤ (n − m + 1)/2, but the number of y-

variables involved in the above relation is larger. We will however not be able to use

such relations in the proof of Theorem 1.1, because the hypersurface in P2n+2i−1
K over

K = k(x1, . . . , xn) given by the projective closure of F = 0 with F as in (13) is not

smooth over K.
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6. Degeneration

The following proposition generalizes [Sch19b, Proposition 3.1] to degenerations with

reducible special fibres. The result is a variant of the author’s improvement [Sch19a]

of the method of Voisin [Voi15] and Colliot-Thélène–Pirutka [CTP16a]. The original

method of Voisin and Colliot-Thélène–Pirutka had been generalized to degenerations

with reducible special fibres by Totaro [Tot16].

Proposition 6.1. Let R be a discrete valuation ring with fraction field K and alge-

braically closed residue field k. Let X → SpecR be a proper flat R-scheme with geometric

generic fibre Xη = X ×R K and special fibre X0 = X ×R k. Assume that Xη is integral.

Let Y ⊂ Xred
0 be an irreducible component of the reduction of X0 and assume that X0 is

reduced at the generic point of Y . Let m ≥ 2 be an integer that is invertible in k and let

τ : Y ′ → Y be an alteration whose degree is coprime to m. Suppose that for some n ≥ 1

there is a class γ ∈ Hn
nr(k(Y )/k,Z/m) of order m such that

(τ ∗γ)|E = 0 ∈ Hn(k(E),Z/m) for any subvariety E ⊂ τ−1(Y ∩Xsing
0 ).

Then the torsion order of Xη is divisible by m.

Proof. We may assume that e := Tor(Xη) is finite. Since torsion orders remain unchanged

under passage from an algebraically closed field to a bigger field (see [CL17, Lemma

1.11]), we may after replacing R by its completion assume that R is complete. The

decomposition of e ·∆Xη in the Chow group of Xη ×Xη holds already over a finite field

extension L of Frac(R), and so Xη ×L has torsion order e for some finite extension L of

Frac(R), where Xη = X ×R K denotes the generic fibre. Since R is a complete discrete

valuation ring, the integral closure R′ of R in L is again a complete discrete valuation

ring, see [EGAIV, Théorème 23.1.5 and Corollaire 23.1.6]. Replacing R by the base

change to R′, we may thus assume that the generic fibre Xη has torsion order e (note

that this does not change the special fibre).

Let A := OX ,y be the local ring of X at the generic point y ∈ X of Y . Since X0 is a

Cartier divisor on X which is reduced at y, it follows that X is regular at y. Hence, A is

a discrete valuation ring with fraction field K(Xη). Let δXη ∈ CH0(Xη ×K(Xη)) be the

class induced by the diagonal. By assumption,

e · δXη = z ×K(Xη) ∈ CH0(Xη ×K(Xη))

for a zero-cycle z ∈ CH0(Xη) of degree e. Applying Fulton’s specialization map on Chow

groups [Ful98, §20.3] to the proper flat family XA → SpecA, given by base change of

X → SpecR, we find that

e · δY = z0 × k(Y ) ∈ CH0(X0 × k(Y ))(18)
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for some zero-cycle z0 ∈ CH0(X0) of degree e, where δY denotes the class of the diagonal

of Y . Let U ⊂ Y be the complement of Y ∩ Xsing
0 . Since X0 is reduced at the generic

point of Y , U is a non-empty open subset of Y . Let U ′ := τ−1(U) ⊂ Y ′. Note that

U is smooth by construction, and so we can pullback cycle classes (modulo rational

equivalence) via U ′ → U (see [Ful98, §8]). Since U → X0 is an open embedding, it is flat

and so we can pullback cycles (resp. cycle classes) via this map as well. Altogether, we

can pullback (18) to U ′ × k(Y ) via the natural map U ′ × k(Y )→ X0 × k(Y ). Applying

the localization exact sequence associated to U ′ ⊂ Y ′, we get

e · τ ∗δY = zY ′ × k(Y ) + z′ ∈ CH0(Y ′ × k(Y )),(19)

for some zero-cycle zY ′ ∈ CH0(Y ′) (not necessarily of degree e anymore) and a zero-cycle

z′ ∈ CH0(Y ′ × k(Y )) which is supported on

(Y ′ \ U ′)× k(Y ) = τ−1(Y ∩Xsing
0 )× k(Y ).

The end of the proof is now as in [Sch19b, Proposition 3.1]: the pairing (see [Mer08,

§2.4]) of the unramified cohomology class τ ∗γ ∈ Hn
nr(k(Y ′)/k,Z/m) with the right hand

side of (19) vanishes, because τ ∗γ vanishes when restricted to closed points of Y ′ (because

k = k) or to subvarieties of τ−1(Y ∩ Xsing
0 ) (by assumption), while the left hand side

evaluates to

e · 〈τ ∗δY , τ ∗γ〉 = e · 〈τ∗τ ∗δY , γ〉 = e · deg(τ) · γ ∈ Hn(k(Y ),Z/m).

Hence, e · deg(τ) · γ = 0. Since γ has order m and deg(τ) is coprime to m, this is only

possible if e is divisible by m, as we want. This completes the proof. �

7. Proof of main results

Theorem 1.1 stated in the introduction follows from the following slightly stronger

statement.

Theorem 7.1. Let k be an uncountable field and let m ≥ 2 be an integer that is invertible

in k. Let N ≥ 3 be an integer and write N = n + r with 2n−1 − 2 ≤ r ≤ 2n − 2. Then

the torsion order of a very general Fano hypersurface Xd ⊂ PN+1
k of degree d ≥ m+ n is

divisible by m.

Remark 7.2. The bounds on r in Theorem 7.1 ensure that any integer N ≥ 3 can be

written uniquely as a sum N = n + r as in the theorem. In the proof of Theorem 7.1

below, only the upper bound on r will be used, while the lower bound only appears for

convenience as it yields the strongest results on the divisibility of the respective torsion

orders in fixed dimension N .
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Proof. Replacing k by its algebraic closure, we may assume that k is algebraically closed.

Denote by x0, . . . , xn, y1, . . . , yr+1 homogeneous coordinates of PN+1
k . Let k′ ⊂ k be the

algebraic closure of the prime field of k and let G ∈ k′[x0, . . . , xn] be a general homoge-

neous polynomial of degree dn+1
m
e. Let t ∈ k be transcendental over k′ (if char(k) = 0,

we may also take t to be a prime number coprime to m), and consider

g(x0, . . . , xn) := tm ·Gm − (−1)nx
mdn+1

m
e−n

0 x1x2 . . . xn,(20)

which is a homogeneous polynomial of degree deg(g) = mdn+1
m
e ≤ m+n in k′[x0, . . . , xn].

Since G ∈ k′[x0, . . . , xn] is general, g is of twisting type, see Definition 5.1.

We first deal with the case d = m+n. Consider the hypersurface Z := {F = 0} ⊂ PN+1
k

of degree m+ n, given by

F := g(x0, . . . , xn) · xm+n−deg(g)
0 +

r∑
i=1

xn−deg ci
0 ci(x1, . . . , xn)ymi + (−1)nx1x2 · · ·xnymr+1,

where ci(x1, . . . , xn) ∈ k[x1, . . . , xn] denote the coefficients of the Fermat–Pfister form

(8). The hypersurface Z is integral, because g is not divisible by xi for any i. Consider

the r-plane P := {x0 = x1 = · · · = xn = 0} ⊂ PN+1 and let Y := BlPZ. This blow-up is

a hypersurface in BlP (PN+1) ' P(OPn(−1)⊕O⊕(r+1)
Pn ), given by the equation

g(x0, . . . , xn) · xm+n−deg(g)
0 zm0 +

r∑
i=1

xn−deg ci
0 ci(x1, . . . , xn)zmi + (−1)nx1x2 · · ·xnzmr+1 = 0,

(21)

where z0 is a local coordinate that trivializes OPn(−1) and z1, . . . , zr+1 trivialize O⊕(r+1)
Pn .

In the above coordinates, the exceptional divisor D ⊂ BlPZ is given by z0 = 0. Projec-

tion to the xi-coordinates yields a morphism f : Y → Pnk whose generic fibre Yη is the

smooth hypersurface of degree m and dimension r + 1 over K = k(x1, . . . , xn), given by

setting x0 = 1 in (21).

To emphasize the dependence on the integers n and r, we write Y = Yn,r for the

projective variety given by (21). Then Yn,r ⊆ Yn,2n−2 because r ≤ 2n− 2. We claim that

Theorem 5.3 applies to Y = Yn,r and W = Yn,2n−2.

Recall that Pfm,n(y0, . . . , y2n−1) =
∑2n−1

j=0 cjy
m
j by (8) with c2n−1 = (−1)nx1 . . . xn.

Setting x0 = z0 = 1 in (21), we thus see that W = Yn,2n−2 is birational to the affine

hypersurface, given by

g(1, x1, . . . , xn) + Pfm,n(0, y1, y2, . . . , y2n−1) = 0.

By (9), the above equation can be rewritten as

g(1, x1, . . . , xn)−
n∑
i=1

ai = 0
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where ai = xi Pfm,i−1(y2i−1 , . . . , y2i−1) is as in (10). By Proposition 4.1, we have the

universal relation

(x1, . . . , xn) = (a1, . . . , an) ∈ KM
n (Ln,2n−1)/m.

Since the generic fibre of W → Pnk is smooth and contains the image of the generic

point of Y ↪→ W , we conclude that item (1) and (2) of Theorem 5.3 apply to Y = Yn,r
and W = Yn,2n−2. To see that item (3) in Theorem 5.3 applies as well, consider a

discrete valuation ring R = k′[t](t) ⊂ k with parameter t and residue field κ = k′.

Since Y is defined by the equation (21) whose coefficients are all contained in R and

whose reduction modulo t is nonzero, it is immediate that Y extents to a proper flat

R-scheme Y → SpecR, where Y is the hypersurface defined by (21) inside the projective

bundle P
(
OPnR(−1)⊕O⊕(r+1)

PnR

)
over PnR. Since the morphism f : Y → Pnk is induced

by projection to the xi-coordinates, f extends to a morphism of R-schemes Y → PnR.

The reduction Y0 := Y ×R κ with morphism f0 : Y0 → Pnκ given by projection to the

xi-coordinates admits a rational section ξ : Pnκ 99K Y0, defined by setting y0 = yr+1 = 1

and yj = 0 for 1 ≤ j ≤ r. Since m is invertible in k, the generic fibre of f0 is smooth and

so ξ(ηPnκ) is contained in the smooth locus of Y0. Hence, the assumptions of item (3) in

Theorem 5.3 are satisfied as well and we conclude that

f ∗(x1, . . . , xn) ∈ Hn
nr(k(Y )/k,Z/m)

has order m.

Recall that Y = BlPZ is birational to the hypersurface Z := {F = 0} ⊂ PN+1
k from

above and so the above unramified class yields a class

γ ∈ Hn
nr(k(Z)/k,Z/m)

of order m. Let τ ′ : Y ′ → Y be an alteration of degree coprime to m (which exists by

[Tem17, Theorem 1.2.5] because m is invertible in k) and let τ : Y ′ → Z be the induced

alteration of Z (which has the same degree as τ ′). Let E ⊂ Y ′ be a closed subvariety

with τ(E) ⊂ Zsing. If τ ′(E) ⊂ Y does not dominate Pnk via f : Y → Pnk , then

τ ∗γ|E = 0 ∈ Hn(k(E),Z/m)

by item (2) in Theorem 5.3. Otherwise, the natural map E → Pnk induced by f ◦ τ ′ is

surjective and we denote its generic fibre by Eη. The alteration τ ′ induces a morphism

τ ′η : Eη //Yη,

where Yη denotes the generic fibre of f : Y → Pnk . Since Yη is smooth (because m is

invertible in k), τ(E) ⊂ Zsing implies that

τ ′η(Eη) ⊂ Dη,
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where Dη denotes the generic fibre of f |D : D → Pnk , and where we recall that D ⊂ Y

denotes the exceptional divisor of the blow-up Y = BlPZ → Z. As explained above,

D is given by setting z0 = 0 in (21) and so Dη ⊂ Prk(Pn) is the hypersurface over k(Pn),

given by
r∑
i=1

ci(x1, . . . , xn)zmi + (−1)nx1x2 · · ·xnzmr+1 = 0.

Hence, Dη is a subvariety of the hypersurface Xx1,...,xn ⊂ P2n−1
L over L = k(Pn) from

Corollary 4.2 and so the natural map Eη → Dη induced by τ ′η induces a morphism

ι : Eη → Xx1,...,xn of L-varieties. It thus follows from Corollary 4.2 that

(x1, . . . , xn) ∈ ker(KM
n (k(Pn))/m //KM

n (k(Pn)(Eη))/m).

Since k(Pn)(Eη) = k(E), we conclude by mapping this via (2) to cohomology that

τ ∗γ|E = 0 ∈ Hn(k(E),Z/m).

Altogether, this shows that the hypersurface Z ⊂ PN+1
k of degree d satisfies the as-

sumption on the special fibre in the degeneration technique of Proposition 6.1 and so

any integral hypersurface which degenerates to Z (in the sense of Section 2.2) has tor-

sion order divisible by m. This applies in particular to very general hypersurfaces of

degree d = m+n in PN+1
k (see Section 2.2), which concludes the proof in the case where

d = m+ n.

If d > n+m, then a very general hypersurface of degree d in PN+1
k degenerates to the

union of Z from above with {xd−m−n0 = 0}. Note that the preimage f−1{x0 = 0} ⊂ Y

does not dominate Pnk . Using item (2) in Theorem 5.3, we thus conclude as before that

for any subvariety E ⊂ τ−1(Zsing ∪ {x0 = 0}), τ ∗γ|E = 0. Hence, Proposition 6.1 applies

and we get m | e as before. This concludes the proof of the theorem. �

Proof of Theorem 1.5. Let us now assume that k = C and let m,n ≥ 2 and N ≥ 3 be

integers with log2(m+ 1) ≤ n ≤ N + 1−m. We aim to construct a rationally connected

smooth complex projective variety X such that Hn
nr(C(X)/C,Z/m) contains an element

of order m. Replacing X by a product with projective space, we see that it suffices to

deal with the case where

N = n− 1 +m and 2n ≥ m+ 1.

Let r := m−1. Then r ≤ 2n−2 and so we may consider the projective variety Y = Yn,r

such that Hn
nr(C(Y )/C,Z/m) contains an element of order m from the proof of Theorem

1.1. There is a morphism f : Y → Pn whose generic fibre is a smooth hypersurface

of degree m in Pr+1
C(Pn), given by the equation (21). Since m = r + 1, a general fibre

of f is Fano and so it is rationally chain connected, see [Cam92, KMM92] or [Kol96,

Theorem V.2.1], and hence rationally connected because k = C, see [KMM92] or [Kol96,



TORSION ORDERS OF FANO HYPERSURFACES 23

Theorem IV.3.10]. It thus follows from the Graber–Harris–Starr theorem [GHS02] that

any resolution X of Y is a rationally connected variety of dimension N = n + r. Since

X is birational to Y , Hn
nr(C(X)/C,Z/m) = Hn

nr(C(Y )/C,Z/m) contains an element of

order m, as we want. This concludes the proof of Theorem 1.5. �

8. Cyclic covers

Theorem 1.3 follows from the following slightly more general result.

Theorem 8.1. Let k be an uncountable field and let m be an integer that is invertible in

k. Let N ≥ 3 be an integer and write N = n+ r with 2n−1− 2 ≤ r ≤ 2n− 2. Consider a

cyclic m : 1 cover X → PNk branched along a very general hypersurface of degree d with

m | d. If d ≥ n+ 2m− 2, then the torsion order of X is divisible by m.

Proof. Replacing k by its algebraic closure, we may assume that k is algebraically closed.

Let x0, . . . , xn, y2, . . . , yr+1 be homogeneous coordinates of PN (note that we left out y1).

Let d ≥ n + 2m − 2 be an integer that is divisible by m. Let g ∈ k[x0, . . . , xn] be the

polynomial from (20) and consider the cyclic m : 1 cover Z → PN branched along the

hypersurface {F = 0} ⊂ PN given by

F := xm−1
1 g · xd−deg(g)−m+1

0 + xm−1
1

r∑
i=2

xd−2m+1−deg ci
0 ciy

m
i + (−1)nxd−m−n+1

0 x2 . . . xny
m
r+1,

where ci ∈ k[x1, . . . , xn] is as in (8). (Since deg(g) = mdn+1
m
e and deg(ci) < n for all

i ≥ r, the condition d ≥ n+ 2m− 2 ensures that the exponents of x0 are non-negative.)

The cyclic cover Z → PN is given by the equation ym1 = F , where y1 is a new variable.

Note that Z contains the (r− 1)-dimensional hyperplane P := {x0 = · · · = xn = y1 =

0} ⊂ Z. The blow-up Y := BlPZ admits a morphism f : Y → Pn given by projection

to the xi-coordinates. In suitable weighted projective space, Y is given by the global

equation

ym1 = xm−1
1 g·xd−deg(g)−m+1

0 ym0 +xm−1
1

r∑
i=2

xd−2m+1−deg ci
0 ciy

m
i +(−1)nxd−m−n+1

0 x2 . . . xny
m
r+1,

and the exceptional divisor of the blow-up Y → Z is given by y0 = 0. Multiplying the

above equation with x1 and absorbing xm1 into the yi variables whenever possible, we

find after setting x0 = y0 = 1 that Y is birational to the affine hypersurface in AN+1,

given by

x1y
m
1 = g +

r∑
i=2

ciy
m
i + (−1)nx1x2 . . . xny

m
r+1.
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Since c1 = −x1 by (8), this is exactly the hypersurface used in the proof of Theorem 1.1.

The same argument as in the proof of that result now shows that

γ := f ∗(x1, . . . , xn) ∈ Hn
nr(k(Y )/k,Z/m)

is an unramified class of order m. Moreover, for any alteration τ ′ : Y ′ → Y , the induced

alteration τ : Y ′ → Z has the property that for any subvariety E ⊂ τ−1(Zsing), τ ∗γ|E = 0.

Hence, Proposition 6.1 implies that m divides the torsion order of a cyclic m : 1 cover

of PNk , branched along a very general hypersurface of degree d, as the latter specializes

to Z above, see Section 2.2. This concludes the proof. �
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nalité stable, Annales Sc. Éc. Norm. Sup. 49 (2016), 371–397.

[CTP16b] J.-L. Colliot-Thélène and A. Pirutka, Revêtements cycliques qui ne sont pas stable-

ment rationnels, Izvestiya RAN, Ser. Math. 80 (2016), 35–47. (English translation:

arXiv:1506.00420v2.)

[CTV12] J.-L. Colliot-Thélène and C. Voisin, Cohomologie non ramifiée et conjecture de Hodge entière,

Duke Math. J. 161 (2012), 735–801.

[deJ96] A.J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. IHÉS 83 (1996), 51–93.
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