
ALGEBRAIC STRUCTURES WITH UNBOUNDED CHERN
NUMBERS

STEFAN SCHREIEDER AND LUCA TASIN

Abstract. We determine all Chern numbers of smooth complex projective varieties

of dimension ≥ 4 which are determined up to finite ambiguity by the underlying smooth

manifold. We also give an upper bound on the dimension of the space of linear com-

binations of Chern numbers with that property and prove its optimality in dimension

four.

1. Introduction

To each n-dimensional complex manifold X and for each partition m of n, one can

associate a Chern number cm(X). In 1954, Hirzebruch asked which linear combinations

of Chern and Hodge numbers are topological invariants of smooth algebraic varieties.

Recently, this problem has been solved by Kotschick [10, 11] for what concerns the

Chern numbers and by Kotschick and the first author [12] in full generality.

Generalizing the Hirzebruch problem, Kotschick asks which Chern numbers of smooth

complex projective varieties are determined by the underlying smooth manifold up to

finite ambiguity [9, pp. 522]. Such a boundedness statement is known for cn and c1cn−1
in arbitrary dimension n, since these Chern numbers can be expressed in terms of Hodge

numbers [14] and so they are bounded by the Betti numbers. The first nontrivial in-

stance of Kotschick’s boundedness question concerns therefore the Chern number c31 in

dimension 3. In a recent preprint [1], Cascini and the second author show that in many

cases this number is indeed bounded by the topology of the smooth projective threefold.

Conversely, there are no known examples of a smooth manifold such that the set of

Chern numbers with respect to all possible complex algebraic structures is known to be

unbounded. In this paper we produce such examples in dimensions ≥ 4.

Theorem 1. In complex dimension 4, the Chern numbers c4, c1c3 and c22 of a smooth

complex projective variety are the only Chern numbers cm which are determined up to

finite ambiguity by the underlying smooth manifold. In complex dimension n ≥ 5, only

cn and c1cn−1 are determined up to finite ambiguity by the underlying smooth manifold.
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The dimension four case of the above theorem might be surprising. Indeed, it was

observed by Kotschick that the Chern numbers of a minimal smooth projective fourfold

of general type are bounded by the underlying smooth manifold, see Remark 9 below.

Based on an MMP approach, similar to the one given in [1] for threefolds, one might

expect that this boundedness statement holds more generally for all fourfolds of general

type, which is the largest class in the Kodaira classification. This compares to Theorem

1 as the examples we are using there are of negative Kodaira dimension.

By Theorem 1, only very few Chern numbers of high dimensional smooth complex

projective varieties are bounded by the underlying smooth manifold. This changes con-

siderably if we are asking for all linear combinations of Chern numbers with that prop-

erty. Indeed, the space of such linear combinations contains the Euler characteristics

χp = χ(X,Ωp
X), as well as all Pontryagin numbers in even complex dimensions. In

dimension four, the Euler characteristics χp and Pontryagin numbers span a space of

codimension one in the space of all Chern numbers. Therefore, Theorem 1 implies:

Corollary 2. Any linear combination of Chern numbers which on smooth complex pro-

jective fourfolds is determined up to finite ambiguity by the underlying smooth manifold

is a linear combination of the Euler characteristics χp and the Pontryagin numbers.

Using bordism theory, we provide in Corollary 15 a nontrivial upper bound on the

dimension of the space of linear combinations of Chern numbers which are determined

up to finite ambiguity by the underlying smooth manifold. Our upper bound is in

general bigger than the known lower bound; determining all bounded linear combinations

therefore remains open in all dimensions n ≥ 3 other than n = 4.

It was known for some time that the boundedness question for Chern numbers be-

haves differently in the non-Kähler setting. Indeed, LeBrun showed [13] that there is

a smooth 6-manifold with infinitely many (non-Kähler) complex structures such that

c1c2 is unbounded, which cannot happen for complex Kähler structures. In Corollary 11

we use products with LeBrun’s examples and Theorem 1 to conclude that in complex

dimension n ≥ 4, the topological Euler number cn is the only Chern number which on

complex manifolds is bounded by the underlying smooth manifold.

Section 3 of this paper contains a systematic treatment of the Chern numbers of projec-

tive bundles. Theorem 1 is based on these results and the existence of certain projective

bundles over threefolds which admit infinitely many different algebraic structures. An

important observation here is that the Chern numbers of the base do not matter too

much. To obtain unbounded Chern numbers for the projective bundles it is enough to

have a three-dimensional base with unbounded first Chern class, its Chern numbers may

well be independent of the complex structures chosen. This is in contrast to Kotschick’s

work [11], where bundles over surfaces with varying signatures are used, cf. Remark 8.
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2. Dolgachev surfaces

We recall here some basic properties of Dolgachev surfaces. For a detailed treatment

see [2, 6] and [5, Sec. I.3].

Let S ⊆ P2 × P1 be a generic element of the linear series ∣O(3,1)∣. That is, S is

isomorphic to the blow-up of P2 at the nine intersection points of two generic degree three

curves and the second projection π ∶ S //P1 is an elliptic fibration with irreducible fibres.

For each odd integer q ≥ 3, the Dolgachev surface Sq is realised applying logarithmic

transformations of order 2 and q at two smooth fibres of π. The surface Sq comes with

an elliptic fibration πq ∶ Sq //P1, which away from the two multiple fibers is isomorphic

to the one of S. For a proof of the following proposition, see [5, Sec. I.3] and the references

therein.

Proposition 3. The Dolgachev surface Sq is a simply connected algebraic surface with

(1) h2,0(Sq) = 0 and b2(Sq) = 10,

(2) c21(Sq) = 0 and c2(Sq) = 12,

(3) c1(Sq) = (q − 2)Gq, where Gq ∈H2(Sq,Z) is a nonzero primitive class,

(4) the intersection pairing on H2(Sq,Z) is odd of type (1,9).

Proposition 3 has two important consequences that we will use in this paper. Firstly,

since h1,0(Sq) = h2,0(Sq) = 0, it follows that the first Chern class is an isomorphism

c1 ∶ Pic(Sq) ∼ // H2(Sq,Z).

Hence, every element of H2(Sq,Z) can be represented by a holomorphic line bundle.

Secondly, let us denote the smooth manifold which underlies Sq by Mq. By item (4)

in Proposition 3, Wall’s theorem [20] implies the existence of a smooth h-cobordism Wq

between M3 and Mq.

Although we will not need this here, let us mention that the homeomorphism type

of Mq does not depend on q by Freedman’s classification theorem of simply connected

4-manifolds. However, generalizing a result of Donaldson, Friedman–Morgan showed [5]

that Mq and Mq′ are never diffeomorphic for q ≠ q′.

3. Chern numbers of projective bundles

In this section we systematically treat the Chern numbers of projective bundles. Most

of the results are taken from the first author’s thesis [15]; we formulate and use them for

holomorphic vector bundles over complex manifolds, but they hold more generally for

arbitrary complex vector bundles over stably almost complex manifolds.

Let B be a complex manifold of dimension n+1−k and let E be a holomorphic vector

bundle of rank k on B. The Segre class of E is the inverse of its total Chern class; we
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denote it by

α ∶= (1 + c1(E) + . . . + ck(E))−1 ∈H∗(B,Z).
The degree 2k-component of α is denoted by αk ∈H2k(B,Z).

For a = (a1, . . . , ap) ∈ Np, we denote its weight by ∣a∣ = ∑ai. With this notation in

mind, we put

f(a) ∶= ∑
d∈Np

(
p

∏
i=1

(k − di
k − ai

)cdi(E))α(∣a∣−∣d∣−(k−1)),(1)

where d = (d1, . . . , dp), and where we use the convention (a
b
) = 0, if b < 0 or a < b. The

above definition yields a cohomology class in H2(∣a∣−(k−1))(B,Q); it is motivated by the

following result.

Proposition 4. Let m = (m1, . . . ,mp) be a partition of n = dim(P(E)). Then the m-th

Chern number of the projective bundle P(E) is given by

cm(P(E)) = ∑
j1,...,jp

cj1(B) ⋅ . . . ⋅ cjp(B) ⋅ f(m1 − j1, . . . ,mp − jp),

where the right hand side is identified with its evaluation on the fundamental class of B.

Proof. Let π ∶ P(E) //B be the projection morphism and Tπ be the tangent bundle

along the fibres of π, that is, Tπ = ker(π∗), where π∗ ∶ TP(E) // π∗TX . By the Whitney

formula, the total Chern classes are related by

c(P(E)) = c(Tπ) ⋅ π∗c(B).

If OE(−1) denotes the tautological bundle of P(E), then we have the exact sequence

0 //OE(−1) // π∗E //Tπ ⊗OE(−1) // 0.

It follows that the total Chern classes of Tπ and π∗E ⊗OE(1) coincide. Hence,

c(Tπ) =
k

∑
i=0
π∗ci(E)(1 + y)k−i,

where y = c1(OE(1)). Setting bi ∶= π∗ci(B) and ei ∶= π∗ci(E), we can write

c(P(E)) = (∑
j≥0
bj)(∑

i≥0
ei(1 + y)k−i) ,

and so

c(P(E)) = ∑
i,j,l≥0

(k − i
l

)eibjyl.

The m-th Chern number is hence given by

cm(P(E)) =
p

∏
t=1

∑
it+jt+lt=mt

(k − it
lt

)eitbjtylt ,
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where it, jt, lt ≥ 0, and where we identify the right hand with its evaluation on the

fundamental class of P(E). Substituting lt =mt − it − jt, we obtain

cm(P(E)) =
p

∏
t=1
∑
it,jt

( k − it
mt − it − jt

)eitbjtymt−it−jt

=
p

∏
t=1
∑
it,jt

( k − it
k + jt −mt

)eitbjtymt−it−jt

= ∑
j1,...,jp

∑
i1,...,ip

p

∏
t=1

( k − it
k + jt −mt

)eitbjtymt−it−jt

= ∑
j1,...,jp

∑
i1,...,ip

(
p

∏
t=1

( k − it
k + jt −mt

)eitbjt) y∑
p
t=1(mt−it−jt)

= ∑
j1,...,jp

bj1⋯bjp ∑
i1,...,ip

(
p

∏
t=1

( k − it
k + jt −mt

)eit) y∑
p
t=1(mt−it−jt).

For any 0 ≤ m ≤ n and any ω ∈ H2(n−m)(B,Z), the product ωym coincides with the

top-degree component of ωαyk−1, see [16, Lem. 2.2]. This simplifies the above expression

of the m-th Chern number of P(E) to

cm(P(E)) = ∑
j1,...,jp

bj1⋯bjp ∑
i1,...,ip

(
p

∏
t=1

( k − it
k + jt −mt

)eit)αyk−1,

where on the right hand side only the term in cohomological degree 2n is considered.

The statement follows since on any fibre of π the class yk−1 evaluates to 1. �

Proposition 4 reduces the computation of Chern numbers of projective bundles to

the computation of f(a) defined in (1). It is easy to see that f(a) is invariant under

permutations of (a1, . . . , ap). In fact, if σ is a bijection of {1, . . . , p}, we have

f(a1, . . . , ap) = ∑
d∈Np

(
p

∏
i=1

(k − di
k − ai

)cdi(E))α(∣a∣−∣d∣−(k−1))

= ∑
d∈Np

(
p

∏
i=1

(k − dσ(i)
k − aσ(i)

)cdσ(i)(E))α(∣a∣−∣d∣−(k−1)) = f(aσ(1), . . . , aσ(p)),

where d = (d1, . . . , dp). Moreover, f(a) is possibly nonzero only for k − 1 ≤ ∣a∣ ≤ n and

0 ≤ ai ≤ k, and a simple argument shows f(a) = 0 for ai = k. For small values of ∣a∣, we

are able to compute f(a) explicitly as follows.

Lemma 5. Denoting by ei ∶= ci(E) the i-th Chern class of E, we have the following:

(1) f(a) = ∏p
i=1 (

k
ai
) , if ∣a∣ = k − 1,

(2) f(a) = 0 , if ∣a∣ = k,

(3) f(a) = (∏p
i=1 (

k
ai
)) ⋅ ((∑s<t asat) − k) ⋅ ( 1

k2 e
2
1 − 2

k(k−1)e2) , if ∣a∣ = k + 1.
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Proof. The first assertion is immediate from the definition. The second assertion can

either be checked by a computation, or, alternatively one can argue as follows. For any

line bundle L on B, P(E) and P(E ⊗L) are isomorphic. For ∣a∣ = k the expression f(a)
has cohomological degree two and so it is a multiple of e1. Specializing the base manifold

B to an elliptic curve, Proposition 4 shows that for any line bundle L on B, f(a) is

invariant under replacing E by E ⊗L. The claim follows because no nontrivial multiple

of e1 has this property.

It remains to prove (3). Since ∣a∣ = k + 1, we have

f(a) = ∑
∣d∣=0

(
p

∏
i=1

(k − di
k − ai

)edi)α2 + ∑
∣d∣=1

(
p

∏
i=1

(k − di
k − ai

)edi)α1 + ∑
∣d∣=2

(
p

∏
i=1

(k − di
k − ai

)edi)α0,

which gives

f(a) = (
p

∏
i=1

(k
ai
))(α2 +

p

∑
s=1

as
k
e1α1 +

p

∑
s=1

as(as − 1)
k(k − 1) e2α0 +∑

s<t

asat
k2

e21α0) .

Noting that

α1 = −e1 and α2 = e21 − e2,
we can write

f(a) = (
p

∏
i=1

(k
ai
))((∑

s<t
asat −

p

∑
s=1
ask + k2)

e21
k2

+ (
p

∑
s=1
as(as − 1) − k(k − 1)) e2

k(k − 1)) .

The result follows now easily from ∑ps=1 as = k + 1 and ∑ps=1 a2s = (k + 1)2 − 2∑s<t asat. �

In the construction of our examples, we will need the following easy estimate, which

proves positivity of the constant appearing in f(a) for ∣a∣ = k + 1.

Lemma 6. Let k ≥ 2 be an integer. For any partition a = (a1, . . . , ap) of k + 1 with

0 ≤ ai ≤ k for all i, the expression

(
p

∏
i=1

(k
ai
)) ⋅ (∑

s<t
asat − k)(2)

from Lemma 5 is nonnegative; it is positive if additionally ai < k for all i.

Proof. The product ∏p
i=1 (

k
ai
) is positive since 0 ≤ ai ≤ k for all i. It thus suffices to

consider

∑
s<t
asat − k.(3)

Here we may ignore all as that are zero. After reordering, we may therefore assume

1 ≤ a1 ≤ a2 ≤ . . . ≤ ap ≤ k.

If p = 2, then

a1 ⋅ a2 − k = a1(k + 1 − a1) − k
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is a negatively curved quadratic equation in a1 with zeros at a1 = k and a1 = 1 and so

the assertion follows because a1 = 1 implies a2 = k.

If p ≥ 3, then

∑
s<t
asat ≥

p

∑
s=2
a1as + apap−1 ≥

p

∑
s=2
as + a1 = k + 1 > k.

Thus, (3) is positive, which finishes the prove of the lemma. �

4. Proof of Theorem 1

In the notation of Section 2, for any odd integer q ≥ 3 we have a smooth h-cobordism

Wq between M3 and Mq which induces an isomorphism H2(S3,Z) ≃ H2(Sq,Z). Using

this isomorphism, we fix a class

ω ∈H2(S3,Z) ≃H2(Sq,Z)

of positive square. Since the intersection pairing on S3 has type (1,9), it follows that

the orthogonal complement of ω is negative definite. Hence, G2
q = 0 implies

ω ⋅Gq ≠ 0

for all q. Via the first Chern class, each Sq carries a unique holomorphic line bundle Lq
with c1(Lq) = ω.

Let C be a smooth curve of genus g ≥ 0 and consider the threefold

Yq ∶= Sq ×C.

This threefold carries the holomorphic vector bundle

Eq ∶= (pr∗1(Lq) ⊗ pr∗2OC(1)) ⊕O⊕r
Yq

(4)

of rank r+1, whereOC(1) denotes some degree one line bundle on C. The projectivization

Xq ∶= P(Eq)

is a smooth complex projective variety of dimension n ∶= r + 3.

Proposition 7. If n ≥ 3, then the oriented diffeomorphism class of the smooth manifold

which underlies Xq is independent of q. If n = 4, then the Chern numbers c41(Xq) and

c21c2(Xq) are unbounded in q. If n ≥ 5, then the m’s Chern number cm(Xq) is unbounded

in q for all partitions m = (m1, . . . ,mp) of n with 1 ≤mi ≤ n − 2 for all i.

Proof. We first prove the assertion concerning the diffeomorphism type of the manifold

which underlies Xq; this part of the proof follows an argument used in [9] and [11].
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Fix an odd integer q ≥ 3 and consider the h-cobordism Wq. It follows from the expo-

nential sequence for smooth functions that complex line bundles on Wq are classified by

H2(Wq,Z). Hence, we can find a complex line bundle L on Wq with

c1(L) = ω ∈H2(S3,Z) ≃H2(Wq,Z).

Since the isomorphism H2(S3,Z) ≃ H2(Sq,Z) is induced by Wq, it follows that the

restriction of L to each of the boundary components of Wq coincides with the complex

line bundle which underlies the holomorphic line bundle L3 resp. Lq on S3 resp. Sq.

Let us first consider the case C ≃ P1. The product Wq × P1 is a simply connected

h-cobordism between M3 × P1 and Mq × P1. It carries the complex vector bundle

E ∶= (pr∗1 L⊗ pr∗2OP1(1)) ⊕C⊕r.

The restrictions of this bundle to the boundary components of Wq ×P1 coincide with the

complex vector bundle which underlies the holomorphic vector bundle in (4). Hence, the

projectivization P(E) is a simply connected h-cobordism between the simply connected

oriented 2n-manifolds which underly X3 and Xq. It thus follows from the h-cobordism

theorem [17] that these smooth 2n-manifolds are orientation-preserving diffeomorphic,

as we claimed.

The above argument proves the first assertion in the proposition for g = 0. For g ≥ 1,

one can use the s-cobordism theorem [7]. More precisely, since π1(Mq ×C) = π1(C) and

since the Whitehead group Wh(π1(C)) is trivial [3, Thm. 1.11], the s-cobordism theorem

applies and we can conclude as before.

In order to prove the second assertion, we use the computational tools given in Propo-

sition 4 and Lemma 5 together with the positivity result in Lemma 6. Note that it suffices

to compute cm(Xq) modulo all terms that do not depend on q. For ease of notation, we

identify cohomology classes on Sq via pullback with classes on Yq. Using this notation,

and fixing a point c ∈ C, we obtain

c1(Yq) = c1(Sq) + (2 − 2g) ⋅ [Sq × c],
c2(Yq) = c2(Sq) + (2 − 2g) ⋅ c1(Sq) ⋅ [Sq × c],
c3(Yq) = (2 − 2g) ⋅ c2(Sq) ⋅ [Sq × c].

In the above formulas, only c1(Sq) = (q − 2)Gq depends on q.

In the notation of Proposition 4 and Lemma 5, the rank of Eq is denoted by k = r + 1.

Recall that for any partition a of r + i the class f(a) is a cohomology class in H2i(Yq).
By Lemma 5, this class is always independent of q, and it vanishes if additionally i = 1.

For any partition m = (m1, . . . ,mp) of n = r + 3 with mi ≥ 1 for all i, the m-th Chern
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number of Xq is computed in Proposition 4. Using Lemma 5, we obtain

cm(Xq) = c1(Yq) ⋅∑
j

f(m1 − j1, . . . ,mp − jp) + r(m),(5)

where j = (j1, . . . , jp) runs through all partitions of 1 by nonnegative integers, and where

r(m) is an integer which depends on the partition m of n but not on q. Explicitly,

r(m) ∶=f(m1, . . . ,mp) + c1(Yq)c2(Yq) ⋅∑
h

f(m1 − h1, . . . ,mp − hp)

+ c3(Yq) ⋅∑
l

f(m1 − l1, . . . ,mp − lp),

where h = (h1, . . . , hp) runs through all partitions of 3 by nonnegative integers such

that hi = 2 for one i ∈ {1, . . . , p}, and l = (l1, . . . , lp) runs through all partitions of 3 by

nonnegative integers such that li = 3 for one i ∈ {1, . . . , p}. In this calculation we used

that c1(Yq)3 = 0 and that the formula for cm(Xq) has no nontrivial contribution by terms

of the form c1(Yq)2 ⋅ f(a) or c2(Yq) ⋅ f(a), since f(a) vanishes when a has weight ∣a∣ = k,

see Lemma 5. In order to see that r(m) does indeed not depend on q, it suffices to note

that the terms f(a), c1(Yq)c2(Yq) and c3(Yq) are all independent of q.

By construction of Eq, we have c2(Eq) = 0 and

c1(Eq) = ω + [Sq × c].

This implies

c1(Yq) ⋅ c1(Eq)2 = 2(q − 2)Gq ⋅ ω ⋅ [Sq × c] + (2 − 2g)ω2 ⋅ [Sq × c].

This number is unbounded in q since Gq ⋅ω is nonzero for all q and the second summand

does not depend on q. It follows from Lemmas 5 and 6 that (5) is unbounded in q as

long as one of the partitions

a ∶= (m1 − j1, . . . ,mp − jp)

that appears in (5) satisfies mi − ji < k = n − 2.

If n > 4, then this condition is equivalent to mi ≤ n − 2 for all i.

If n = 4, then the above condition is only satisfied for c41 and c21c2, as we want in the

proposition. �

Proof of Theorem 1. Recall that the Chern numbers cn and c1cn−1 are linear combina-

tions of Hodge numbers [14, Prop. 2.3], which on Kähler manifolds are bounded in terms

of the Betti numbers of the underlying smooth manifold. Therefore, if n ≥ 5, the theorem

follows from Proposition 7.

In complex dimension n = 4, the second Pontryagin number is given by

p2 = c22 − 2c1c3 + 2c4.(6)
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This number depends only on the underlying oriented smooth 8-manifold; changing the

orientation changes p2 by a sign. Since c1c3 and c4 are already known to be bounded by

the underlying smooth manifold, the same conclusion holds for c22. By Proposition 7, c41
and c21c2 are unbounded, which finishes the proof of Theorem 1. �

Remark 8. It easily follows from item (2) in Lemma 5 that the Chern numbers of a

projective bundle over any surface remain bounded while changing the algebraic structure

of the base. This explains why in our approach we had to use a base of dimension at

least three.

Remark 9. The examples used in the proof of Theorem 1 are ruled and so they have

negative Kodaira dimension. This compares to an observation of Kotschick which implies

that in dimensions three and four the Chern numbers of a minimal projective manifold

of general type are bounded by the underlying smooth manifold. Using the Miyaoka–Yau

inequality, this boundedness statement was proven by Kotschick [9, p. 522 and p. 525]

under the stronger assumption of ample canonical class. His argument applies because

the inequality used holds more generally for arbitrary minimal projective manifolds of

general type [19, 21].

Remark 10. Kollár [8, Thm. 4.2.3] proved that on a smooth manifold with b2 = 1, the

set of deformation equivalence classes of algebraic structures is finite, hence the Chern

numbers are bounded. Conversely, it was observed by Friedman–Morgan [4] that the self-

product of a Dolgachev surface yields an example of a smooth 8-manifold where the set

of deformation equivalence classes of algebraic structures is infinite because the order of

divisibility of the canonical class can become arbitrarily large. The Chern numbers of

these examples are however bounded.

5. Some applications

The following corollary combines Theorem 1 with LeBrun’s examples [13].

Corollary 11. In complex dimension n ≥ 4, the topological Euler number cn is the only

Chern number which on complex manifolds is bounded by the underlying smooth manifold.

Proof. The Chern number cn is clearly bounded by the underlying topological space.

Conversely, LeBrun [13] showed that there is a sequence (Ym)m≥1 of complex structures

on the 6-manifold S2×M , where M denotes the 4-manifold which underlies a complex K3

surface, such that c1c2(Ym) is unbounded, whereas c31(Ym) and c3(Ym) are both bounded.

It follows by induction on n that Ym × (P1)n−3 has unbounded c1cn−1. One also checks

that c22(Ym×P1) is unbounded. This finishes the proof of Corollary 11 by Theorem 1. �
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It is not known whether on complex manifolds c31 is bounded by the underlying smooth

manifold. As in the case of smooth complex projective varieties, c31 is the only Chern

number where unboundedness remains open. We emphasize however that Corollary

11 talks only about Chern numbers cm and not about their linear combinations. The

boundedness question for linear combinations of Chern numbers of complex manifolds

remains open in general, but a partial result can be deduced from Section 6 below.

The next two corollaries generalize an observation of Kotschick [11, Rem. 20], asserting

that the Chern number cn1 in dimension n ≥ 3 does not lie in the span of the Euler

characteristics χp.

Corollary 12. A Chern number cm lies in the span of the Euler characteristics χp and

the Pontryagin numbers if and only if

cm ∈ {c1cn−1, cn} or cm ∈ {c22, c1c3, c4} .

Proof. The assertion is clear for n ≤ 2, and it follows for n = 3 because the space of the

Euler characteristics χp is spanned by c1c2 and c3, and there are no Pontryagin numbers.

If n ≥ 4, then it follows immediately from Theorem 1 and the fact that c1cn−1 and cn lie in

the span of the Euler characteristics χp, and c22 lies in the span of the Euler characteristics

and Pontryagin numbers in dimension four. �

Corollary 13. The Chern numbers c1cn−1 and cn are the only Chern numbers that lie

in the span of the χp’s. No Chern number in even complex dimensions lies in the span

of the Pontryagin numbers.

Proof. The fact that c1cn−1 and cn are the only Chern numbers that lie in the span of

the χp’s follows from Corollary 12 and the observation that in dimension n = 4, the span

of the Euler characteristics χp has a basis given by c4, c1c3 and 3c22 + 4c21c2 − c41, and so it

does not contain c22.

The assertion about the Pontryagin numbers in dimension n = 2 follows from p1 =
c21 − 2c2. For n ≥ 4, it suffices by Corollary 11 to show that cn is not a Pontryagin

number. This follows for example from [10, Thm. 5] and the fact that the signature is

not a multiple of cn. �

6. On the space of bounded linear combinations

In this section we give an upper bound on the dimension of the space of linear com-

binations of Chern numbers of smooth complex projective varieties that are bounded by

the underlying smooth manifold. For this purpose we determine the complex cobordism

classes of the manifolds Xq constructed in Section 4 in terms of suitable generators of
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ΩU
∗ ⊗Q. This approach is based on the fact that in complex dimension n, the Chern num-

bers are complex cobordism invariants which form a basis of the dual space of ΩU
n ⊗Q,

see [18, p. 117].

Consider the elements α1 ∶= P1, α2 ∶= P2 and

αn ∶= P(OA(1) ⊕On−2A ),

where A denotes an abelian surface and OA(1) denotes some ample line bundle on A.

It follows from Lemma 2.3 in [16] that the Milnor number sn(αn) is nonzero. By the

structure theorem of Milnor and Novikov [18, p. 128], (αn)n≥1 is therefore a sequence of

generators of the complex cobordism ring with rational coefficients. That is,

ΩU
∗ ⊗Q ≃ Q[α1, α2, . . .].

Let us consider the bundle Eq on Yq of rank n − 2 and the corresponding n-dimensional

projective bundle Xq ∶= P(Eq) from Section 4.

Proposition 14. There is an unbounded function gn(q) in q such that the following

identity holds in ΩU
n ⊗Q:

Xq = gn(q) ⋅ α1αn−1 + ε,

where ε ∈ ΩU
n ⊗Q denotes a rational cobordism class which does not depend on q.

Proof. Let m be a partition of n. By (5) and since c1(Yq) = c1(Sq) + (2 − 2g)[Sq × c], we

have

cm(Xq) = ∑
∣j∣=1

c1(Sq) ⋅ f(m1 − j1, . . . ,mp − jp) + r′(m),(7)

where

r′(m) ∶= ∑
∣j∣=1

(2 − 2g)[Sq × c] ⋅ f(m1 − j1, . . . ,mp − jp) + r(m)

is an integer which does not depend on q; in both summations, j = (j1, . . . , jp) runs

through all partitions of 1 by nonnegative integers.

We now aim to compare the Chern numbers of Xq with those of α1αn−1. To this end,

let us consider the product B ∶= P1×A together with the vector bundle pr∗2OA(1)⊕On−3B .

The projectivization

P(pr∗2OA(1) ⊕On−3B )

has class α1αn−1 in ΩU
∗ . By Proposition 4 we find

cm(P(pr∗2OA(1) ⊕On−3B )) = f(m1, . . . ,mp) + ∑
∣j∣=1

c1(B) ⋅ f(m1 − j1, . . . ,mp − jp),
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because ci(A) = 0 for all i ≥ 1. In the above calculation, f(m1, . . . ,mp) is a cohomology

class of degree 6 which is actually a pullback from the second factor of B and hence

vanishes. Comparing the above result with (7) therefore proves

cm(Xq) = gn(q) ⋅ cm(α1αn−1) + r′(m),

for some rational number gn(q) which depends on q. Since r′(m) does not depend on q,

it follows from Proposition 7 that gn(q) is unbounded in q.

Since the Chern numbers in dimension n form a basis of the dual space of ΩU
n ⊗Q,

there is a cobordism class ε ∈ ΩU
n ⊗Q with cm(ε) = r′(m) for all partitions m of n. Since

r′(m) does not depend on q, the same holds true for ε. Using the duality between the

Chern numbers and ΩU
n ⊗Q once again, we deduce the identity

Xq = gn(q) ⋅ α1αn−1 + ε

in ΩU
n ⊗Q. This finishes the proof of the proposition, since gn(q) is unbounded in q. �

Let us now consider the graded ideal

I∗ ∶= ⟨α1αk ∣ k ≥ 3⟩

in ΩU
∗ ⊗Q. By Proposition 14, any linear combination of Chern numbers in dimension

n which on smooth complex projective varieties is bounded by the underlying smooth

manifold vanishes on In and hence descends to the quotient (ΩU
n ⊗Q)/In. Denoting by

p(n) the number of partitions of n by positive natural numbers, we get the following.

Corollary 15. In dimension n ≥ 4, the space of linear combinations of Chern num-

bers which on smooth complex projective varieties are bounded by the underlying smooth

manifold has dimension at most

dim(ΩU
n ⊗Q) − dim(In) = p(n) − p(n − 1) + ⌊n + 1

2
⌋ .

Proof. We need to show that

dim(In) = p(n − 1) − ⌊n + 1

2
⌋ .

Clearly

dim ⟨α1αk ∣ k ≥ 1⟩n = p(n − 1),
and we have to subtract the number of partitions of n − 1 by 1 and 2, which is ⌊n+1

2
⌋ .

This concludes the corollary. �

Finally, let us compare the upper bound from Corollary 15 with the lower bound

which is given by all Euler characteristics χp and all Pontryagin numbers in even complex

dimension. For this purpose, consider the ideal

J ∗ ∶= ⟨α2k+1 ∣ k ≥ 1⟩ + ⟨α1α2k ∣ k ≥ 2⟩
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in ΩU
∗ ⊗Q which is generated by all α2k+1 with k ≥ 1 and all α1α2k where k ≥ 2. It is

easily seen that the Euler characteristics χp as well as the Pontryagin numbers vanish on

J ∗. By [12, Cor. 4] the signature is the only linear combination of Pontryagin numbers

which is contained in the span of the Euler characteristics χp. A simple dimension count

therefore shows that the Euler characteristics and Pontryagin numbers in dimension n

form the dual space of

(ΩU
n ⊗Q)/J n.

We note that the inclusion In ⊆ J n is proper for all n ≥ 3 with the exception of n = 4,

where equality holds.
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“Gute Strukturen in der höherdimensionalen birationalen Geometrie”. Both authors are

member of the SFB/TR 45.

References

[1] P. Cascini and L. Tasin, On the Chern numbers of a smooth threefold, Preprint, arXiv:1412.1686.

[2] I. Dolgachev, Algebraic surfaces with q = pg = 0, Algebraic surfaces, 97–215, C.I.M.E. Summer Sch.,

76, Springer, Heidelberg, 2010.

[3] F.T. Farrell and L.E. Jones, Rigidity in geometry and topology, Proc. of the ICM, Vol. I, II (Kyoto,

1990), Math. Soc. Japan, Tokyo, 1991, 653–663.

[4] R. Friedman and J.W. Morgan, Algebraic surfaces and 4-manifolds: some conjectures and specula-

tions, Bulletin of the AMS 18 January 1988.

[5] R. Friedman and J.W. Morgan, On the diffeomorphism types of certain algebraic surfaces. I, J.

Differential Geom. 27 (1988), no. 2, 297–369.

[6] R. Friedman and J.W. Morgan, Smooth four-manifolds and complex surfaces, Ergebnisse der Math-

ematik und ihrer Grenzgebiete (3), 27. Springer-Verlag, Berlin, 1994. x+520 pp.
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