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Introduction

This course is an introduction to algebraic geometry. That is, we study the geometry of zero
sets of polynomials in several variables over some field k. For k = R, the following examples
are familiar from high school:

{x2 + y2 − 1 = 0} or {y − x2 = 0}.

Generalizing the first example, we get

{xn + yn − 1 = 0}.

The question whether for k = Q and n ≥ 3, this last example has any solution besides
the trivial ones (i.e. (x, y) = (1, 0) and (x, y) = (0, 1) if n is odd and (x, y) = (±1, 0) and
(x, y) = (0,±1) if n is even) is known as Fermat’s Last Theorem. For a very long time, this
was one of the most famous open problems in number theory, which has only been solved in
the 1990s by Andrew Wiles.

The above simple example shows that for arbitrary fields k, understanding the zero sets of
polynomial equations has immediately an arithmetic flavour. To turn the problem into a
geometric one, we keep our favourite polynomial equations (e.g. those chosen above), but we
replace the arbitrary field k by its algebraic closure k. Once we understand the geometry and
shape of the solutions over k, one can recover the solutions over k as the Gal(k/k)-invariants.

So for the first part of the course, which will be devoted to varieties over algebraically closed
fields, we will always assume that k is algebraically closed. Our aim is then to study the
zero set of polynomial equations over k from a geometric point of view. The most important
technical tool will be commutative algebra. The reader is assumed to have basic knowledge
of commutative algebra (e.g. to the extent of [1]); we will however try to clearly state without
proofs the facts from commutative algebra that we use.

Disclaimer. These are rough lecture notes that I have written for the preparation of the
Algebraic Geometry I class that I have taught at LMU München during the WS 2018/19.
The notes may contain many typos and actual mistakes. If you find any, please send me an
email: schreieder@math.lmu.de

1 Algebraic sets and affine varieties

Let k be an algebraically closed field.

Definition 1.1. Let n ∈ N. The affine n-space over k is the set

An := Ank := {(a1, . . . , an) ∈ kn | ai ∈ k}.

Polynomials f ∈ k[x1, . . . , xn] can be regarded as functions f : An → k.

Remark 1.2. If f, g ∈ k[x1, . . . , xn] induce the same function on An, then f − g is a polyno-
mial that vanishes identically on An. Since k is algebraically closed, one can easily show that
this implies f = g as polynomials.

Definition 1.3. Let I ⊂ k[x1, . . . , xn] be any subset. The associated (affine) algebraic set is

V (I) := {a ∈ An | f(a) = 0 for all f ∈ I}.

A subset X ⊂ An is called algebraic if X = V (I) for some subset I ⊂ k[x1, . . . , xn].
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Remark 1.4. It follows immediately that V (I) coincides with the affine algebraic set of the
ideal that is generated by I. In particular, we do not loose anything if we consider only affine
algebraic sets V (I) associated to ideals I ⊂ k[x1, . . . , xn]. Moreover, since k[x1, . . . , xn] is
noetherian by Hilbert’s basis theorem, I = (f1, . . . , fr) is generated by finitely many polyno-
mials and so

V (I) = {f1 = · · · = fr = 0}
is the zero set of finitely many polynomials.

Example 1.5. The following sets X ⊂ An are algebraic:

X = ∅, X = An and X = {a},

where a ∈ An is a point.

The next lemma shows that intersections and unions of two algebraic sets are again algebraic.

Lemma 1.6. Let I, J ⊂ k[x1, . . . , xn] be ideals. Then,

(a) V (I ∩ J) = V (IJ) = V (I) ∪ V (J);

(b) V (I ∪ J) = V (I + J) = V (I) ∩ V (J).

Proof. This follows easily from the definitions. To prove (a), let x ∈ V (IJ). Then for any
f ∈ I ∩ J we have f2 ∈ IJ and so f2(x) = 0. Hence, f(x) = 0 and so x ∈ V (I ∩ J). This
shows V (IJ) ⊂ V (I ∩ J).

Next, let x /∈ V (I) ∪ V (J). Then there are polynomials f ∈ I and g ∈ J with f(x) 6= 0
and g(x) 6= 0. Hence, fg(x) 6= 0 and so x /∈ V (I ∩ J), because fg ∈ I ∩ J . This proves
V (I ∩ J) ⊂ V (I) ∪ V (J).

Finally, V (I) ∪ V (J) ⊂ V (IJ) is clear, which finishes the proof of (a).

To prove (b), note first that V (I ∪ J) = V (I + J) because I + J is the ideal generated by I
and J . Next, V (I + J) ⊂ V (I) ∩ V (J) is clear. For the converse inclusion, let x /∈ V (I + J).
Then there are some elements f ∈ I and g ∈ J with (f + g)(x) 6= 0. Hence, f(x) 6= 0 or
g(x) 6= 0. This shows V (I) ∩ V (J) ⊂ V (I + J), as we want.

Corollary 1.7. Finite unions and arbitrary intersections of algebraic subsets of An are alge-
braic.

Proof. For finite intersections and finite unions, this follows from the previous lemma. Sim-
ilarly, part (b) follows easily from the Hilbert basis theorem (i.e. the fact that any ideal in
k[x1, . . . , xn] is finitely generated) and part (b) of the previous lemma.

By the corollary, the algebraic subsets of An are the closed sets of some topology on An, which
we call Zariski topology.

Definition 1.8. The Zariski topology on An is the topology whose closed subsets are exactly
the algebraic subsets. That is, U ⊂ An is open if its complement is algebraic.

Note that the Zariski topology induces (via the subspace topology) a topology on any alge-
braic set X ⊂ An; this topology is also called Zariski topology.

Recall from general topology that a topological space X is irreducible if it cannot be written
as union of two proper closed subsets: X 6= X1 ∪X2 with Xi ( X closed.

Definition 1.9. An affine algebraic variety is an irreducible closed subset X ⊂ An. That is,
X is algebraic and cannot be written as the union of two proper non-empty algebraic subsets.
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Definition 1.10. Let X ⊂ An be an arbitrary subset. We define the ideal

I(X) := {f ∈ k[x1, . . . , xn] | f(x) = 0 for all x ∈ X}.

Lemma 1.11. Let X ⊂ An and S ⊂ k[x1, . . . , xn] be arbitrary subsets. Then,

(a) X ⊂ V (I(X)) and S ⊂ I(V (S));

(b) V (I(X)) = X is the closure of X, i.e. the smallest closed subset containing X.

Proof. To prove (a), note that for each f ∈ I(X), f(x) = 0 for all x ∈ X and so X ⊂ V (I(X)).
Moreover, for any f ∈ S we have f(x) = 0 for all x ∈ V (S) and so S ⊂ I(V (S)). This proves
(a).

To prove (b), note that V (I(X)) is closed and contains X by part (a). Hence, X ⊂ V (I(X)).
Conversely, let X = V (S) for some subset S ⊂ k[x1, . . . , xn]. Then

V (I(X)) ⊂ V (I(V (S))) ⊂ V (S) = X,

by part (b). Altogether, V (I(X)) = X, as we want.

Proposition 1.12. An affine algebraic set X is a variety if and only if I(X) is a prime ideal
in k[x1, . . . , xn].

Proof. ”⇒”: Let X be a variety and let f · g ∈ I(X). Then X ⊂ V (fg) = V (f) ∪ V (g) by
the lemma. Hence,

X = (X ∩ V (f)) ∪ (X ∩ V (g))

is the union of two closed subsets. SinceX is irreducible, we may wlog assume thatX∩V (f) =
X and so f vanishes on X. That is, f ∈ I(X) and so I(X) is prime.

”⇐”: Suppose X = A ∪ B with non-empty proper closed subsets A,B ( X. We can pick
points a ∈ A, b ∈ B with a /∈ B, b /∈ A.

For any subset S ⊂ An, V (I(S)) = S by Lemma 1.11. Since A and B are closed by assump-
tions, V (I(A)) = A and V (I(B)) = B. Since a /∈ B and b /∈ A, we find an element f ∈ I(B)
with f(a) 6= 0 and g ∈ I(A) with g(b) 6= 0. But then fg ∈ I(X) with f /∈ I(X) and g /∈ I(X),
because fg vanishes on X, while neither f nor g vanishes separately on X. Hence, I(X) is
not a prime ideal, as we want.

Recall the following result from commutative algebra (see e.g. [1]), where we emphasize that
k is assumed to be an algebraically closed field.

Theorem 1.13 (Hilbert Nullstellensatz). Let J ⊂ k[x1, . . . , xn] be an ideal. Then,

(a) V (J) = ∅ ⇔ J = k[x1, . . . , xn];

(b) I(V (J)) =
√
J ;

(c) if J ⊂ k[x1, . . . , xn] is a maximal ideal, then J = (x1 − a1, . . . , xn − an) for some ai ∈ k,
i.e. J is the ideal of functions that vanish at a single point of An.

Corollary 1.14. There are bijections

{affine algebraic subsets X ⊂ An} ←→ {radical ideals J ⊂ k[x1, . . . , xn]},

{affine algebraic varieties X ⊂ An} ←→ {prime ideals J ⊂ k[x1, . . . , xn]},
{points p ∈ An} ←→ {maximal ideals J ⊂ k[x1, . . . , xn]}

induced by X 7→ I(X) with inverse J 7→ V (J).
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Proof. The first bijection follows from Lemma 1.6 and the Hilbert Nullstellensatz. The second
bijection follows from this and Proposition 1.12. For the last bijection, note that by the
Nullstellensatz, V (J) is a point if J is a maximal ideal. Conversely, let p = (p1, . . . , pn) be a
point, then

k[x1, . . . , xn]→ k, f 7→ f(p)

is a surjective homomorphism of rings with kernel I(p). Hence, k[x1, . . . , xn]/I(p) ∼= k is a
field and so I(p) is maximal. This concludes the proof.

We aim to prove the following, which justifies to restrict our attention to varieties.

Theorem 1.15. Any affine algebraic set is a union of finitely many algebraic varieties.

The above theorem can be seen as consequence of the primary decomposition theorem for
ideals in noetherian rings and Proposition 1.12 above. A more elementary proof uses the
following definition.

Definition 1.16. A topological space X is noetherian if any chain of closed subsets

· · · ⊂ Xn ⊂ Xn−1 ⊂ · · · ⊂ X2 ⊂ X1 ⊂ X

becomes stationary, i.e. Xn = Xn+1 for all n sufficiently large.

Lemma 1.17. Affine space An is noetherian.

Proof. Let
· · · ⊂ Xn ⊂ Xn−1 ⊂ · · · ⊂ X2 ⊂ X1 ⊂ An

be a chain of closed subsets. Then

(0) ⊂ I(X1) ⊂ I(X2) ⊂ · · · ⊂ I(Xn−1) ⊂ I(Xn) ⊂ · · · ⊂ k[x1, . . . , xn]

is a chain of ideals. This chain becomes stationary, because k[x1, . . . , xn] is noetherian by
Hilbert’s basis theorem. Hence, I(Xn) = I(Xn+1) for sufficiently large n and so Xn = Xn+1

for sufficiently large n, because V (I(X)) = X by Lemma 1.11.

Since subspaces of noetherian spaces are obviously noetherian, we get the following.

Corollary 1.18. Any affine algebraic set X ⊂ An together with the Zariski topology is a
noetherian topological space.

The key property of noetherian topological spaces that we will use is the following simple
lemma.

Lemma 1.19. Let X be a noetherian topological space. Then X can be written as the finite
union of irreducible topological spaces.

Proof. For a contradiction, we assume that the statement fails for X. Then X is not irre-
ducible and so X = X1∪X2 for non-empty closed subsets Xi ( X. Moreover, either X1 or X2

is not irreducible and so it admits a similar decomposition. Repeating this argument, we find
an infinite chain of closed subsets of X that does not become stationary, which contradicts
the fact that X is noetherian.

Proof of Theorem 1.15. By Corollary 1.18, any algebraic subset X ⊂ An is noetherian. The
result follows therefore from the lemma above.
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2 Regular maps of affine varieties

Recall that the natural functions on An are those that are given by polynomials. Similarly,
if X ⊂ An is algebraic, the natural functions on X are given by restrictions of polynomials.

Definition 2.1. Let X ⊂ An be an algebraic set. A function f : X → k is regular if there
is a polynomial F ∈ k[x1, . . . , xn] with f(x) = F (x) for all x ∈ X. The set of all regular
functions on X is denoted by k[X].

Note that k[X] is in a natural way a ring, where addition and multiplication are defined
pointwise. Moreover, there is a natural surjective ring homomorphism

k[x1, . . . , xn]→ k[X], F 7→ F |X

The krnel of the above surjection is given by all polynomials F with F |X = 0. By definition,
this is exactly I(X) and so we get an isomorphism

k[x1, . . . , xn]/I(X) ∼= k[X].

Remark 2.2. By Corollary 1.14, we see that k[X] is always reduced. Moreover, k[X] is an
integral domain (resp. a field) if and only if X is a variety (resp. a point).

Definition 2.3. Let X ⊂ An and Y ⊂ Am be affine algebraic sets. A map φ : X → Y is
called regular map if φ = (f1, . . . , fm) for regular functions fi ∈ k[X]. A regular map φ is an
isomorphism if it has an inverse which is also regular.

We note that a regular map φ : X → A1 is nothing but a regular function.

Lemma 2.4. Let φ : X → Y be a regular map. Then

φ∗ : k[Y ]→ k[X], f 7→ f ◦ φ

is a ring homomorphism.

Proof. The main point to prove here is that φ∗ is well-defined. For this we need to show that
f ◦ φ is regular for all f ∈ k[Y ]. Let φ = (f1, . . . , fn), then f ◦ φ = f(f1, . . . , fn) is regular,
because f and fi are regular and so they are given by restriction of polynomial functions.
This shows that φ∗ is well-defined and one easily checks that it is a ring homomorphism.

The following result describes some of the most basic properties of regular maps.

Theorem 2.5. Let φ : X → Y be a regular map between affine algebraic sets. Then

(i) φ is a continuous map;

(ii) φ∗ is injective if and only if φ(X) = Y ;

(iii) φ∗ is surjective if and only if φ : X
∼→ φ(X) and φ(X) ⊂ Y is closed;

(iv) φ is an isomorphism if and only if φ∗ : k[Y ]→ k[X] is an isomorphism.

In order to prove this theorem, we will use the following notation, which generalizes V (I)
from above.

Definition 2.6. Let X be an affine algebraic set and let I ⊂ k[X] be a subset. Then we put

VX(I) = {x ∈ X | f(x) = 0 for all f ∈ I}.
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As before, it suffices to consider the above definition in the case where I is an ideal. If J is
the preimage of I via the surjection k[x1, . . . , xn] → k[X], then we have VX(I) = V (J). In
particular, the closed subsets of X are precisely those that are of the form VX(I) for some
(reduced) ideal I ⊂ k[x1, . . . , xn] with I(X) ⊂ I.

Proof of Theorem 2.5. Item (i) follows from the equality

φ−1(VY (I)) = VX(φ∗(I) · k[X])

for I ⊂ k[Y ]. (For this note that if I = (f1, . . . , fr), then the ideal φ∗(I) · k[X] is generated
by (φ∗f1, . . . , φ

∗fr).

Item (ii):

”⇒:” Suppose that φ(X) ⊂ VY (f) for some f ∈ k[Y ]. Then φ∗f = 0 and so f = 0 because
φ∗ is injective by assumptions.

”⇐:” Suppose φ∗f = 0 for some f ∈ k[Y ]. Then φ(X) ⊂ VY (f) ⊂ Y . Since φ(X) = Y , we
get VY (f) = Y and so f = 0, as we want.

Item (iv):

”⇒”: If φ : X → Y is an isomorphism, then φ−1 is regular and so φ∗ has as inverse (φ−1)∗,
which shows that φ∗ is an isomorphism.

”⇐”: Suppose that φ∗ : k[Y ] → k[X] is an isomorphism with inverse (φ∗)−1 : k[X] → k[Y ].
Since φ∗ is a k-algebra homomorphism, so is (φ∗)−1; that is, (φ∗)−1(λ · f) = λ(φ∗)−1(f) for
all λ ∈ k and f ∈ k[X]. Suppose that X ⊂ An with affine coordinates t1, . . . , tn on An. We
may then consider the map

ψ : Y → An, y 7→ (f1(y), . . . , fn(y))

where fi := (φ∗)−1(ti). One easily checks that ψ(Y ) ⊂ X and that ψ is in fact an inverse of
φ. This proves (iv).

Item (iii):

”⇒”: Let Z := VY (ker(φ∗ : k[Y ]→ k[X])). Then, φ(X) ⊂ Z by definition and so φ : X → Z

is a morphism. Moreover, k[Z] = k[Y ]/ ker(φ∗) and so φ∗ : k[Z]
∼→ k[X] since φ∗ is surjective.

This shows φ : X
∼→ Z by (iv), as we want.

”⇐”: Suppose that Z ⊂ Y is a closed subset such that φ factors as X
∼→ Z ⊂ Y . Then

φ∗ : k[Y ] → k[X] ∼= k[Z] ∼= k[Y ]/I(Z), and so φ∗ is onto. This concludes the proof of the
theorem.

3 Rational maps of affine varieties

Let X ⊂ An be an affine algebraic variety. Then the ideal I(X) is prime and so k[X] ∼=
k[x1, . . . , xn]/I(X) is an integral domain. In particular, we may form the fraction field
Frac(k[X]), which is a field that contains k[X].

Definition 3.1. Let X be an affine algebraic variety. Then k(X) := Frac(k[X]) is the field
of rational functions on X.

We say that an element ϕ ∈ k(X) is regular at x ∈ X if there are regular functions f, g ∈ k[X]

with ϕ = f
g such that g(x) 6= 0.

Lemma 3.2. Let X be an affine variety. A rational function ϕ ∈ k(X) is regular (i.e.
ϕ ∈ k[X]) if and only if it is regular at any point of X.
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Proof. If ϕ is regular, then it is clearly regular at any point. Conversely, assume that ϕ ∈ k(X)
is regular at any point. Consider I := {f ∈ k[X] | f · ϕ ∈ k[X]}. This is clearly an ideal
and we need to show that 1 ∈ I, i.e. I = k[X]. By the Nullstellensatz, this is equivalent
to showing that VX(I) = ∅. So for a contradiction, assume that there is some x ∈ X with

f(x) = 0 for all f ∈ I. Since ϕ is regular at x, we have ϕ = f
g for some regular functions f

and g with g(x) 6= 0. But then g ∈ I and so x /∈ VX(I), a contradiction.

Definition 3.3. Let X be an affine algebraic variety, ϕ ∈ k(X) a rational function. Then
the domain dom(ϕ) of ϕ is the set of points where ϕ is regular.

Lemma 3.4. Let X be an affine algebraic variety. Then dom(ϕ) ⊂ X is open and non-empty
(hence dense) for all ϕ ∈ k(X).

Proof. To see that dom(ϕ) is open, we simply note that

dom(ϕ) = X \ VX(I),

where I := {f ∈ k[x1, . . . , xn] | fϕ ∈ k[X]}.
To see that it is non-empty, note that ϕ = f

g for some f, g ∈ k[X] with g 6= 0. Since g is not

identically zero, there is a point x ∈ X where g does not vanish and so x ∈ dom(ϕ). This
concludes the proof of the lemma.

Definition 3.5. Let X ⊂ An be an affine algebraic variety and let Y ⊂ Am be an affine
algebraic set. A rational map

ϕ : X 99K Y

is given by ϕ = (ϕ1, . . . , ϕm) for some rational functions ϕi ∈ k(X), such that ϕ(x) ∈ Y for
all

x ∈ dom(ϕ) :=
m⋂
i=1

dom(ϕi).

A rational map ϕ is called dominant if ϕ(dom(ϕ)) is dense in Y .

Remark 3.6. By the above lemma, dom(ϕi) is nonempty open for all i. It follows that
dom(ϕ) is non-empty open as well (because any two non-empty open subsets of an irreducible
topological space have nonzero intersection, see Exercise 3 on sheet 1).

Definition 3.7. Let X and Y be affine varieties, ϕ : X 99K Y a rational map. Then ϕ is
birational (or a birational isomorphism) if there is a rational map ψ : Y 99K X such that
ψ ◦ ϕ and ϕ ◦ ψ are the identity maps wherever they are defined.

Let ϕ : X → Y be a dominant rational map. Then we can define a pullback map on rational
functions:

ϕ∗ : k(Y )→ k(X), π 7→ π ◦ ϕ.

Note that this is a homomorphism of fields and so it is always injective (because fields have
non nontrivial ideals). Note also that it is essential that ϕ is dominant for this definition, as
otherwise, there is a regular function g ∈ k[Y ] with g ◦ϕ = 0 and so the pullback of 1

g cannot

be defined.

Lemma 3.8. Let ϕ : X 99K Y be a dominant rational map between affine algebraic varieties.
Then the following are equivalent:

(i) ϕ is birational;
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(ii) ϕ∗ : k(Y )→ k(X) is an isomorphism of fields.

Proof. This is similar to Theorem 2.5, see Exercise sheet 3.

While rational functions and rational maps among affine varieties are very natural, their
definition takes us automatically outside of the world of affine varieties. Indeed, rational
functions and rational maps are only defined on non-empty open subsets of affine varieties
and such sets might in general not be affine varieties themselves. This leads to the following
definition.

Definition 3.9. (1) A quasi-affine algebraic set X ⊂ An is an open subset of an affine
algebraic set. A quasi-affine variety is a quasi-affine algebraic set that is irreducible.

(2) A regular function φ : X → k is a function which locally around each point x can be
written as ϕ = F

G for some polynomials F,G ∈ k[t1, . . . , tn] with G(x) 6= 0. The set of
regular functions is denoted by k[X]

(3) A regular map between quasi-affine algebraic sets X ⊂ An and Y ⊂ Am is a map φ : X →
Y given by φ = (φ1, . . . , φm) for some regular functions φi ∈ k[X]. The map φ is an
isomorphism if it has an inverse that is also regular.

Example 3.10. Let X := A2 \ {0}. Then the inclusion i : X ↪→ A2 induces an isomorphism
k[A2] ∼= k[X], see Exercise sheet 3. Since i is not an isomorphism, it follows from Theorem
2.5 that X is not isomorphic to an affine variety.

The above example shows that not every quasi-affine set is affine. A key property of quasi-
affine varieties is the fact that they look at least locally like affine varieties.

Lemma 3.11. Let X be a quasi-affine algebraic set and let x ∈ X be a point. Then there is
an open subset U ⊂ X with x ∈ U which is isomorphic to an affine algebraic set.

Proof. Note that X ⊂ X is an open subset of some affine algebraic set X ⊂ An. Let
Z := X \X. Since x /∈ Z, we may find a function f ∈ I(Z) ⊂ k[X] with f(x) 6= 0. Hence,
U := X \ V (f) is an open neighbourhood of x, which is isomorphic to an affine variety by
Exercise sheet 3.

Proposition 3.12. Let X and Y be affine algebraic varieties. Then the following are equiv-
alent:

(i) X and Y are birational;

(ii) there are non-empty open subsets U ⊂ X and V ⊂ Y that are isomorphic.

Proof. (i) ⇒ (ii): Let ϕ : X 99K Y be a rational map with inverse ψ : Y 99K X. Then,
U = dom(ϕ) ⊂ X and V := dom(ψ) ⊂ Y are open and we have morphisms ϕ|U : U → Y and
ψ|V : V → X. Let U ′ := ϕ|−1U (V ), then the composition of ϕ|U ′ : U ′ → V ⊂ Y with ψ|V is

well-defined and so it must be the identity, because ψ is an inverse of ϕ. Let V ′ = ψ|−1V (U ′),
then the above observation shows that ϕ(U ′) ⊂ V ′ and so we get morphisms

ϕ|U ′ : U ′ → V ′ and ψ|V ′ : V ′ → U ′.

These morphisms must be inverses of each other, because ψ = ϕ−1 as rational maps (and so
ψ ◦ ϕ and ϕ ◦ ψ are the identity wherever they are defined). This proves (ii).
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(ii) ⇒ (i): Let U ⊂ X and V ⊂ Y be open subsets with an isomorphism

φ : U
∼→ V.

Let Y ⊂ Am and let φ = (φ1, . . . , φm) for some φi ∈ k[U ]. By definition, locally around a

given point of U we have φi = fi
gi

for some polynomials fi, gi. We thus get a rational map(
f1
g1
, . . . ,

fn
gn

)
: U 99K V

which coincides with φ on a non-empty open subset (which is automatically dense). The
same is true for the inverse of φ and so we find that X and Y are birational, as we want.

Example 3.13. Let f ∈ k[x1, x2] be an irreducible quadratic polynomial. Then X := V (f) ⊂
A2 is birational to A1.

Proof. Wlog, we may assume that 0 ∈ X. For s ∈ k, let Ls := V (sx1 − x2) ⊂ A2 be the line
through the origin of slope 1

s . Let (x1, x2) ∈ X ∩Ls, then x2 = sx1 and f(x1, sx1) = 0. For a

Zariski open subset of s ∈ A1, we have that f(x1, sx1) is a quadratic polynomial in x1. Since
(0, 0) ∈ X, we find

f(x1, sx1) = x1 · (a(s)x1 − b(s))
for some polynomials a(s) and b(s). But then we get rational maps

ϕ : X 99K A1, (x1, x2) 7→
x2
x1

and

ψ : A1 99K X, s 7→
(
b(s)

a(s)
, s
b(s)

a(s)

)
that are inverses of each other.

4 Quasi-projective varieties

One essential draw back of affine or quasi-affine varieties is that they are not proper; a term
that we will define only next semester, but which you should think of as an algebraic analogue
of compactness. To see why affine varieties should not be thought of as compact objects, note
that they have a lot of non-constant global regular functions, while compact objects should
have only constant global functions (compare this with the fact that a connected compact
complex manifold has only constant global holomorphic functions). More concretely, if we
have k = C and X ⊂ An is an affine algebraic variety over C which is not a point, then in the
usual Euclidean topology, X is not compact, because it is unbounded.

The lack of compactness is reflected in the fact that intersection theory does not work well
on affine or quasi-affine varieties. For instance, two distinct lines in A2 meet in a single point,
unless they are parallel and so do not meet at all. This implies that by moving two lines in
the plane in a ’continuous’ way, their intersection may jump from one point to the emtpy
set, which is a very unpleasant behaviour. Intuitively the point is that two parallel lines still
meet, but they meet at some point at infinity and one should add these points to obtain a
compact space.

The above discussion motivates us to introduce projective n-space Pn, which you should think
of as a natural ”compactification” of An in which intersection products work much better.
For instance, we will see that any two distinct lines in P2 meet in exactly one point.
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Definition 4.1. Let k be a field. Projective n-space over k is given by

Pnk :=
(
An+1 \ {0}

)
/ ∼

where x ∼ y if there is some λ ∈ k∗ with x = λy. We denote the equivalence class of
x = (x0, . . . , xn) by [x0 : · · · : xn].

If no confusion is likely, we usually suppress the ground field in our notation and write Pn

instead of Pnk .

Note that a point [x0 : · · · : xn] ∈ Pn has at least one non-zero entry, i.e. Xi 6= 0 for at least
one i. Moreover, for any λ ∈ k∗,

[x0 : x1 : · · · : xn] = [λ · x0 : λ · x1 : · · · : λ · xn].

Let x0, . . . , xn be coordinates on An+1. Then any point on Pn is of the form [x0 : · · · : xn]
with xi 6= 0 for some i and we call the xi homogeneous coordinates on Pn.

Consider the inclusion An ↪→ Pn given by

(x1, . . . , xn) 7→ [1 : x1, · · · : xn].

The complement is naturally isomorphic to Pn−1 and so we find inductively a decomposition

Pn = An t Pn−1 = An t An−1 t · · ·A1 t A0.

If F ∈ k[x0, . . . , xn] is a non-zero polynomial, then F (x) and F (λx) are in general different
and so F does not yield a function on Pn. However, if F is homogeneous of degree d, then
F (λx) = λdF (x) and so at least the condition F (x) = 0 is well-defined for a point x ∈ Pn.
This gives rise to the following.

Definition 4.2. Let I ⊂ k[x0, x1, . . . , xn] be a homogeneous ideal (i.e. an ideal generated by
homogeneous elements). Then

V (I) := {x ∈ Pn | F (x) = 0 for all F ∈ I ⊂ k[x0, . . . , xn] homogeneous}

is a projective algebraic set.

Definition 4.3. Conversely, if X ⊂ Pn is a projective algebraic set, then

I(X) := {F ∈ k[x0, . . . , xn] | F homogeneous with F (x) = 0 for all x ∈ X}

is the (homogeneous) ideal of X. The homogeneous coordinate ring of X is given by

S[X] := k[x0, . . . , xn]/I(X).

Note that the homogeneous coordinate ring S[X] of a projective algebraic set behaves quite
different from the ring of regular functions k[X] of an affine algebraic set X, because elements
of S[X] cannot be regarded as functions on X. We have nonetheless the following.

Proposition 4.4. Consider the graded ring S := k[x0, . . . , xn], where |xi| = 1 for all i. Let
S+ :=

⊕
d≥1 Sd and consider a homogeneous ideal I ⊂ S. Then,

(i) V (I) = ∅ if and only if S+ ⊂
√
I;

(ii) if X := V (I) is non-empty, then I(X) =
√
I.

11



Proof. The ideal I defines an affine algebraic subset Y := VAn+1(I) ⊂ An+1. Considering the
projection π : An+1 \ {0} → Pn, we see that V (I) ⊂ Pn is empty if and only if Y ⊂ {0}. By

the Nullstellensatz, the latter is equivalent to S+ ⊂
√
I, which proves (i).

To prove (ii), note that π : Y \ {0} → X is surjective (with fibre A1 above each point of

X) and that I(Y ) =
√
I by the Nullstellensatz. Since any homogeneous polynomial that

vanishes on X also vanishes on Y , we find I(X) ⊂ I(Y ). Conversely, any homogeneous
f ∈ I(Y ) vanishes on X. Finally, I(Y ) is homogeneous (e.g. because I is homogeneous and

I(Y ) =
√
I, or because Y is homogeneous in the sense that if y ∈ Y then λy ∈ Y for all

λ ∈ k) and so I(X) = I(Y ) =
√
I. This concludes the proposition.

Definition 4.5. (1) A quasi-projective algebraic set is an open subset of a projective alge-
braic set.

(2) A projective variety is an irreducible projective algebraic set.

(3) A quasi-projective variety is an open subset of a projective variety.

Definition 4.6. Let X be a quasi-projective algebraic set.

(1) A function φ : X → k is regular if locally around every point x ∈ X it is given by F
G

for homogeneous polynomials F and G of the same degree. The set of regular functions,
denoted by k[X], is a ring.

(2) Suppose that X is irreducible, i.e. a quasi-projective variety. A rational function φ :
X 99K k is the equivalence class of a pair (U, φ), where U ⊂ X is non-empty and open,
and φ ∈ k[U ] is a regular function. Two pairs (U, φ) and (V, ψ) are equivalent if there is
some non-empty open subset W ⊂ U ∩V with φ|W = ψ|W . The set of rational functions,
denoted by k(X), is a field.

Remark 4.7. Let X be a quasi-projective variety. Then any rational function φ ∈ k(X) can
be written as fraction φ = F

G where F and G are homogeneous polynomials of the same degree
with G 6= 0. Note however that this description is not unique, i.e. a single rational function
might have several descriptions as such a fraction.

Definition 4.8. Let X and Y be quasi-projective algebraic sets.

(1) A regular map φ : X → Y is a continuous map such that φ∗(f) ∈ k[φ−1(U)] for all
U ⊂ Y open and f ∈ k[U ]. A regular map φ : X → Y is an isomorphism if it admits an
inverse that is also regular.

(2) Suppose that X is irreducible. A rational map φ : X 99K Y is the equivalence class of
a regular map φU : U → Y for some non-empty open subset U ⊂ X. A rational map
φ : X 99K Y is birational if Y is irreducible and if φ admits a rational inverse.

Proposition 4.9. Let X ⊂ Pnk and Y ⊂ Pmk be quasi-projective algebraic sets and let φ :
X → Y be a map. Then the following are equivalent:

(a) φ is regular;

(b) locally around each x ∈ X we have φ|U = [F0 : · · · : Fm]|U for some homogeneous
polynomials F0, . . . , Fm of the same degree.

Proof. ”(a) ⇒ (b)”:

For x ∈ X, consider y := φ(x) ∈ Y . Wlog y = [y0 : · · · : ym] with y0 6= 0, i.e. y is contained

in the open subset V = Y \ VY (t0). Hence, φ∗( tit0 ) is regular and so it coincides with Fi
Gi

near
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x, where Fi, Gi are polynomials of the same degree with Gi(x) 6= 0. Hence, locally at x we
have

φ = [1 :
F1

G1
: · · · : Fm

Gm
] = [G :

F1G

G1
: · · · : FmG

Gm
]

where G = G1 · · ·Gm.

”(b) ⇒ (a)”:

To see that φ is continuous, it suffices to check this locally on X and so it suffices to see that
φ|U = [F0 : · · · : Fm]|U : U → Y is continuous, where Fi are polynomials of the same degree
without common zero on U . The latter is clear because

φ|−1U (VY (F )) = VU (F (F0, . . . , Fm)).

Next, let V ⊂ Y be any open subset and let f ∈ k[V ]. Then we need to see that φ∗f is
regular on φ−1(V ). That’s a local condition on φ−1(V ). For x ∈ φ−1(V ), we have φ|U = [F0 :
· · · : Fm]|U locally on some x ∈ U ⊂ φ−1(V ), where Fi are homogeneous of the same degree.
Since f is regular at φ(x), it is locally at φ(x) given by f = H

G for homogeneous polynomials
G,H of the same degree. Then,

φ∗f =
H(F0, . . . , Fm)

G(F0, . . . , Fm)

is regular near x, as we want. This concludes the proof of the proposition.

Corollary 4.10. Let X ⊂ Pn be a quasi-projective variety and let Y ⊂ Pm be a quasi-
projective algebraic set. Then a rational map φ : X 99K Y is uniquely determined by [F0 :
· · · : Fm] on some non-empty open subset U ⊂ X where the homogeneous polynomials Fi have
no common zero.

Proposition 4.11. (a) Quasi-affine sets are quasi-projective.

(b) Quasi-projective algebraic sets are covered by affine algebraic sets.

Proof. Let t0, . . . , tn be homogeneous coordinates on Pn and let Ui := Pn \ V (ti). Then
Pn =

⋃
Ui is an open covering and

φi : Ui → An, [x0 : · · · : xn] 7→ (
x0
xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)

is an isomorphism, with inverse

ψi : An → Ui, (t0, . . . , t̂i, . . . , tn) 7→ (t0 : · · · : 1 : · · · : tn).

This proves (a). Item (b) follows then from item (a) and Lemma 3.11. This concludes the
proof of the proposition.

Example 4.12. We have k[Pn] = k. In particular, any regular map Pn → Am is constant.

Proof. Let X := Pn and let φ ∈ k[X] be a regular function on X. For each x ∈ X, we then
have φ = Fx

Gx
locally at x for homogeneous polynomials Fx, Gx ∈ k[x0, . . . , xn] of the same

degree with Gx(x) 6= 0. Since k[x0, . . . , xn] is a UFD, we may further assume that Fx and
Gx are coprime.

Fix some x ∈ X. If Gx has degree zero, then we are done. Otherwise, there will be a point

y ∈ X with Gx(y) = 0. On some non-empty open subset of X,
Fy

Gy
and Fx

Gx
coincide and so

FyGx = FxGy ∈ k[x0, . . . , xn]

Since gcd(Fx, Gx) = 1 and gcd(Fy, Gy) = 1, we find that Gx | Gy and so Gy(y) = 0, which is
a contradiction. This proves our claim.
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Example 4.13. The conic curve X := V (t1t2 − t20) ⊂ P2 is isomorphic to P1.

Proof. The isomorphism is given by projection to the line V (x2):

φ : X → P1, [x0 : x1 : x2] 7→ [x0 : x1].

Note that this is indeed a regular map, because

[x0 : x1] = [x20 : x0x1] = [x1x2 : x0x1] = [x2 : x0].

The inverse is given by

ψ : P1 → X, [y0 : y1] 7→ [y0 : y1 :
y20
y1

] = [y0y1 : y21 : y20].

Example 4.14 (Cremona transformation). The map

φ : P2 99K P2, [x0 : x1 : x2] 7→ [
1

x0
:

1

x1
:

1

x2
] = [x1x2 : x0x2 : x0x1]

is a birational automorphism of P2. This map is called Cremona transformation.

Example 4.15 (Projection from a point). Let t0, . . . , tn be homogneneous coordinates on Pn.
Identify V (tn) ⊂ Pn with Pn−1 and let y ∈ Pn be a point that does not lie on Pn−1. Then the
morphism

φ : Pn \ {y} → Pn−1, x 7→ (line through x and y) ∩ Pn−1,

induces a rational map Pn 99K Pn−1.

Proof. Up to applying a linear transformation, we may assume that y = [0 : · · · : 0 : 1]. We
then have

φ[x0 : · · · : xn] = [x0 : · · · : xn−1],

which is clearly a rational map Pn 99K Pn−1 which restricts to a morphism on Pn \ {y}, as
we want.

Example 4.16 (Blow-up of An in the origin). Let φ : An 99K Pn−1 be given by

(x1, . . . , xn) 7→ [x1 : · · · : xn].

Let Γφ ⊂ An×Pn be the closure of the graph of φ (i.e. the closure of the graph of the morphism
that is given by φ restricted to An \ {0}). Then Bl0An := Γφ is called the blow-up of An in 0
and π : Bl0An → An is called the blow-down map. This map has the following properties:

(1) φ−1(0) ∼= Pn−1;

(2) π induces an isomorphism Bl0An \ π−1(0) ∼= An \ {0}.

Proof. It suffices to prove φ−1(0) ∼= Pn−1, the remaining claim is clear. To prove this, let
L ⊂ An be a line through 0. Then φ(L \ {0}) = x is a single point and so L× x ⊂ Γφ, which
shows that x ∈ Pn−1, as claimed.
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5 Dimension

5.1 Definition and basic properties

Recall the following simple lemma from differential geometry.

Lemma 5.1. Let X be a connected real manifold. Then dimX is the supremum over all
` ∈ N such that there is a chain of connected closed submanifolds

∅ 6= Z0 ( Z1 ( · · · ( Z` ⊂ X

Because of singularities, we cannot literally use the above lemma as a definition for the
dimension of an algebraic variety. However, after replacing ”connected” by ”irreducible”, this
perfectly works and gives rise to the following definition for the dimension of an arbitrary
Noetherian topological space.

Definition 5.2. Let X be a Noetherian topological space. Then the dimension of X is the
supremum over all ` ∈ N such that there is a chain of non-empty closed irreducible subsets

∅ 6= Z0 ( Z1 ( · · · ( Z` ⊂ X

This should be compared to the Krull dimension of a ring.

Definition 5.3. Let R be a commutative ring. The Krull dimension of R is the supremum
over all ` such that there is a chain of prime ideals

p` ( p`−1 ( · · · ( p0 ( R.

If X is an affine variety, then a closed subset Z ⊂ X is irreducible if and only if I(Z) ⊂ k[X]
is prime. This shows the following.

Lemma 5.4. Let X be an affine variety. Then,

dim(X) = dim k[X].

From commutative algebra, we use (without proof) the following basic fact about the Krull
dimension of finitely generated integral k-algebras.

Theorem 5.5 (Krullscher Hauptidealsatz). Let R be a finitely generated integral k-algebra.
Then,

(a) dimR <∞;

(b) if 0 6= f ∈ R is not a unit, then dim(R/(f)) = dimR− 1.

Example 5.6. Let p ∈ An be a point. Then dim({p}) = 0.

Proof. This follows immediately from the definitions.

Example 5.7. dim An = n

Proof. Proof by induction on n. For n = 0, the statement follows from the previous example.
For n > 0, note that

dim k[x1, . . . , xn]− 1 = dim k[x1, . . . , xn]/(xn) ∼= k[x1, . . . , xn−1]

by Theorem 5.5. Hence, dim An = dim An−1 + 1 by Lemma 5.4. This proves the claim by
induction on n.
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As a first application of the concept of dimension and the above result from commutative
algebra, we prove the following weak version of Bezout’s theorem.

Corollary 5.8. Let F1, F2 ∈ k[x0, x1, x2] be two homogeneous non-constant polynomials and
let Xi := V (Fi) ⊂ P2. Then X1 ∩X2 6= ∅.

Proof. We need to prove VP2(F1, F2) 6= ∅, or equivalently {0} 6= VA3(F1, F2). The latter
follows clearly if we can prove dimVA3(F1, F2) ≥ 1. Replacing F1 by one of its irreducible
factors, we see that we may without loss of generality assume that F1 is irreducible in R :=
k[x0, x1, x2]. Hence, R′ := R/(F1) is a finitely generated integral k-algebra and so Theorem
5.5 implies

dim(R′/(F 2)) =

{
1 if F 2 6= 0;

2 if F 2 = 0,

where F 2 ∈ R′ denotes the image of F2 via the projection R → R′, and where we note that
F 2 is not a unit in R′, because it vanishes at 0 ∈ VA3(F1). This proves the corollary by
Lemma 5.4, because the ring of regular functions of VA3(F1, F2) is nothing but R′/(F 2).

Remark 5.9. Corollary 5.8 says that the intersection of two hypersurfaces in P2 is non-
empty. The example of two parallel lines X1 = V (x1) and X2 = V (x1 − 1) in A2 shows that
the statement does not hold in affine space, i.e. two hypersurfaces in A2 do not need to meet
nontrivially.

Remark 5.10. The proof of Corollary 5.8 easily generalizes to show more generally that
the intersection of two hypersurfaces in Pn has dimension at least n − 2. (To see this one
has to use that the affine cone of a projective algebraic set has dimension one more than the
projective set – this assertion might appear on exercise sheet 5.)

The definition of the dimension of a topological space implies easily the following lemma.

Lemma 5.11. Let X be a nonempty irreducible Noetherian topological space and let X =⋃
i Ui be an open covering. Then dimX = supi dimUi.

Proof. Clearly, dimX ≥ dimUi for all i. It thus suffices to prove dimX ≤ supi dimUi. For
this, let

Z0 ( Z1 ( · · · ( Zn ⊂ X
be a chain of irreducible closed subsets. We need to prove n ≤ dimUi for some i and we
will do so by induction on n. If n = 0, we have 0 ≤ dimUi whenever Ui is non-empty. In
the induction step, we assume n > 0 and assume that we have proven our claim for chains
of length at most n− 1 and for arbitrary open coverings of nonempty irreducible Noetherian
topological spaces. In particular, applying this to the open covering of Zn−1 that is induced
by the Ui’s, we know by induction that there is an index i0 such that

n− 1 ≤ dim(Zn−1 ∩ Ui0).

Since X is irreducible, the non-empty open subset Ui0 ⊂ X is dense and so it cannot be
contained in Zn−1. We thus find that

Zn−1 ∩ Ui0 ( Ui0 .

Hence, dim(Ui0) ≥ 1 + dim(Zn−1 ∩ Ui0) ≥ n, which proves our claim. This concludes the
proof of the lemma.

The following result collects some important technical properties of the dimension of quasi-
projective varieties.
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Theorem 5.12. Let X be a quasi-projective algebraic variety. Then,

(a) if X is affine and f ∈ k[X] such that ∅ 6= VX(f) ( X, then

dim(VX(f)) = dimX − 1;

(b) in the notation of item (a), any irreducible component of VX(f) has dimension dimX−1;

(c) if U ⊂ X is a non-empty open subset, then dimX = dimU .

Proof. Item (a) follows from Lemma 5.4 and Theorem 5.5.

Item (b) follows from items (a) and (c), as follows: Let VX(f) = Z1 ∪ · · · ∪ Zr be the
decomposition into irreducible components, i.e. each Zi is irreducible and Zi is not contained
in Zj for i 6= j. Up to renumeration, it suffices to prove dim(Z1) = dim(X)− 1.

It is easy to see that Z1 is not contained in
⋃r
i=2 Zi (otherwise Z1 ⊂ Zi for some i ≥ 2, as

Z1 is irreducible, which is a contradiction) and so there is a function g ∈ I(
⋃r
i=2 Zi) which

does not vanish identically on Z1. Hence, U := X \ VX(g) is a non-empty open subset which
is isomorphic to an affine variety (by exercise sheet 3). Moreover,

VU (f |U ) = VX(f) ∩ U = Z1 ∩ U

is irreducible. We thus find from item (a) that

dim(Z1 ∩ U) = dimU − 1.

Moreover, by item (c), we have dimU = dimX and dim(Z1 ∩ U) = dimZ1, which proves

dimZ1 = dimX − 1

as we want.

It remains to prove item (c). Clearly, for any non-empty open subset U ⊂ X we have
dimU ≤ dimX. The converse is a little bit tricky and we will prove it by induction on
dimX. Note first that we can cover X by affine open subsets X =

⋃
i Ui. By Lemma 5.11,

we get supi dimUi = dimX. We may thus without loss of generality assume that X is affine
(because we know that the dimension can at most go down if we shrink our open subset).

Let U ⊂ X be non-empty open, where X is affine and denote the complement of U in X by
Z := X \U . Let Z =

⋃r
i=1 Zi be the decomposition of Z into its irreducible components. By

induction on r we may assume that Z is irreducible. Pick a point x ∈ U . Since x /∈ Z, there
is a function f ∈ k[X] which vanishes at x but which is not contained in I(Z), i.e. it does not
vanish identically along Z. (Draw a picture!) Hence, Z is not a component of VX(f) and

VX(f) ∩ U 6= ∅.

We can choose an irreducible component V of VX(f) with

dimV = dimVX(f) = dimX − 1,

where the last equality follows from Lemma 5.4 and Theorem 5.5. By assumptions, Z is
not contained in V and we claim that also the converse holds, i.e. V is not contained in Z.
Indeed, if it was, then V ( Z and so dimX − 1 = dimV < dimZ, because V is closed and
irreducible. Hence, dimZ = dimX, which is absurd, because Z ( X and Z is closed and
irreducible. So by induction, (using that V is irreducible), we find

dimV = dim(V ∩ U).
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Since dimV = dimX − 1, we find that

dimX − 1 = dim(V ∩ U) ≤ dimU − 1,

where the last inequality uses that V ∩ U ( U is an irreducible closed subset. Hence,

dimX ≤ dimU,

as we want. This concludes the proof of the theorem.

5.2 Relation to the transcendence degree of field extensions

The next results relates the concept of dimension to field theory. For this we recall that for
any field extension K of k, one can find a transcendence basis, i.e. a collection of algebraically
independent elements (zi)i∈I with zi ∈ K such that K is an algebraic extension of the subfield
k(zi | i ∈ I) ⊂ K. Moreover, the cardinality of I is independent of the chosen basis and it is
called the transcendence degree of K over k:

trdegk(K) = |I|.

We will use the following fact from algebra, see [4, Theorem 4.7A] and the references therein.

Theorem 5.13 (Existence of separating transcendence basis). Let k be a perfect field (e.g.
algebraically closed) and let K/k be a finitely generated field extension. Then there is a
transcedence basis z1, . . . , zn of K/k such that K is separable over k(z1, . . . , zn). In particular,
K is a simple algebraic extension of k(z1, . . . , zn).

This theorem from algebra has the following consequence.

Corollary 5.14. Let X be a quasi-projective algebraic variety (as always over an algebraically
closed field k), and let n := trdegk(k(X)). Then X is birational to an irreducible hypersurface
in An+1. In particular,

dimX = n = trdegk(k(X)).

Proof. By Theorem 5.13, we can find a separating transcedence basis z1, . . . , zn ∈ k(X) of
k(X)/k. Then, k(X) is a finite separable extension of k(z1, . . . , zn) and so it is normal, that
is, it is generated by a single element zn+1 ∈ k(X). Let f ∈ k(z1, . . . , zn)[t] be the minimal
polynomial of zn+1. Then, k(X) is isomorphic to the fraction field of k(z1, . . . , zn)[t]/f(t).
Note that f is a polynomial in t whose coefficients are fractions of polynomials in k[z1, . . . , zn].
Multiplying through the denominators of all those fractions, we may assume that there is a
polynomial F ∈ k[t1, . . . , tn+1] with f(t) = F (z1, . . . , zn, t). We may further assume that F
is irreducible. This implies that the hypersurface V (F ) ⊂ An+1 is irreducible (because F is)
and has the same function field as X. Hence, X is birational to V (F ) (see Exercise sheet
3), which proves the first claim in the corollary. It follows in particular that X and V (F )
have isomorphic non-empty open subsets, see Proposition 3.12. Hence, dimX = dimV (F )
by Theorem 5.12. Since dimV (F ) = n+ 1− 1 by Lemma 5.4 and Theorem 5.5, we get that
dimX = n, as we want. This completes the proof of the corollary.

Example 5.15. Let X ⊂ Pn be a quasi-projective algebraic set. Then, dimX = 0 if and
only if X is a finite collection of points.

Proof. If X consists of finitely many points, then dimX = 0 is clear. For the converse,
assume that dimX = 0. Up to replacing X by an irreducible component with top dimension,
we may assume that X is irreducible. By Corollary 5.14, X is birational to an irreducible
hypersurface in A1, hence to a point. This implies that X is already isomorphic to a point
(e.g. because two birational varieties have isomorphic non-empty open subsets by Proposition
3.12), which proves our claim.
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5.3 The theorem on the dimension of fibres

The following theorem uses the concept of dimension to describe some of the most basic
properties of regular maps f : X → Y between quasi-projective algebraic varieties. Up to
replacing Y by the closure of the image of f (which must be irreducible because X is), we
may assume that f is dominant. For a point y ∈ Y we then define the fibre

Xy := f−1(y)

of f above y as preimage of y under f .

Here is the main theorem of this section.

Theorem 5.16. Let f : X → Y be a dominant regular map between quasi-projective varieties
of dimensions d := dimX and e := dimY . Then,

(1) for any y ∈ f(X), dimXy ≥ d− e;

(2) there is a non-empty open subset U ⊂ Y , such that dimXy = d− e for all y ∈ U ;

Recall the example of Bl0An → An (see Example 4.16), which shows that the dimension of
the fibres can indeed jump in general.

Proof of Theorem 5.16. We first prove item (1). For this, let d = dimX, e = dimY and fix
a point y ∈ f(X). Choose a preimage x ∈ Xy of y. We want to prove dimXy ≥ d − e. Up
to replacing Y by an affine open neighbourhood V of y and X by an open neighbourhood of
x in f−1(V ), we may assume without loss of generality that X and Y are affine. The idea
is now to prove the theorem by induction on dimY . For this we choose a nonzero regular
function φ ∈ k[Y ] on Y which vanishes on y. Choose an irreducible component S of

f−1XY (φ) = VX(f∗φ)

with dimSy = dimXy. By Theorem 5.12, dimS = d− 1. Let T ⊂ Y be the closure of f(S).
Then,

f |S : S → T

is a dominant regular map between quasi-projective varieties. By induction, dimSy ≥ dimS−
dimT . Since dimS = d− 1 and dimT ≤ e− 1, we find

dimXy = dimSy ≥ d− 1− (e− 1) = d− e.

This proves item (1).

We prove item (2) next. This is done in several steps.

Lemma 5.17. Wlog X and Y are affine.

Proof. We may clearly assume that Y is affine. Next, we can choose Z ( X closed such that
W := X \Z is non-empty and affine. Let Z = Z1 ∪ · · · ∪Zr be the irreducible components of
Z. We may assume that f(Zi) is dense in Y for i = 1, . . . , s and it is not dense for i ≥ s+ 1,
where s ≤ r is some integer.

For i ≤ s, we consider the dominant morphism fi : Zi → Y induced by f . By induction on
dimX, ∃ Ui ⊂ Y open such that

dim f−1i (y) = dimZi − dimY < dimX − dimY
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for all y ∈ Ui.
Hence, if we can prove the theorem for f |W : W → Y , then there is an open subset U ⊂ Y
with

dim(f |−1W (y)) = dimW − dimY = dimX − dimY

for all y ∈ U . It then follows that the following open subset will work for f : X → Y :

U ∩
s⋂
i=1

Ui ∩
r⋂

i=s+1

(Y \ f(Zi))

This proves the lemma.

From now on we assume that X and Y are affine and f : X → Y is a dominant morphism.
Since f is dominant,

f∗ : k[Y ]→ k[X]

is injective and so we get an injection of fields k(Y ) ⊂ k(X). Let d = dimX and e := dimY .
Since k(X) has transcendence degree d over k, while k(Y ) has transcendence degree e over k,
we can find elements φ1, . . . , φd−e ∈ k(X) that are algebraically independent over k(Y ). Up
to shrinking X (which we can by the proof of the above lemma), we may assume φi ∈ k[X] for
all i = 1, . . . , d− e. Consider the subring k[φ1, . . . , φd−e] ⊂ k[X], generated by φ1, . . . , φd−e.
Since k[X] is finitely generated over k, there are finitely many elements φd−e+1, . . . , φm ∈ k[X]
which generate k[X] over k[φ1, . . . , φd−e]. That is,

k[φ1, . . . , φm] = k[X].

Let y ∈ Y and let M be an irreducible component of f−1(y). Then M is an affine variety
with

k[M ] = k[φ1|M , . . . , φm|M ].

Since φd−e+1, . . . , φ|d are algebraic over k(Y )(φ1, . . . , φd−e), we find (after multiplication with
denominators) that φd−e+1, . . . , φ|d are algebraic over the ring k[Y ][φ1, . . . , φd−e], i.e. there
are algebraic relations

Fj(φ1, . . . , φd−e)(φj) = 0

where
Fj ∈ k[Y ][t1, . . . , td−e][t]

are polynomials whose coefficients are functions on Y .

Idea: The hope is now that these algebraic relations remain nontrivial (i.e. not all coefficients
of the polynomials vanish) for all y contained in some Zariski open subset U of Y . If we can
show this, then the field extension k(M)/k(φ1|M , . . . , φd−e|M ) is algebraic for all y ∈ U . If
so, then trdeg(k(M)/k) ≤ d − e and so dimM ≤ d − e. Hence, dim f−1(y) ≤ d − e for all
y ∈ U and so equality holds by item (1). We have thus seen that item (2) of the theorem
follows once we can prove the following lemma.

Lemma 5.18. There is some dense open subset U ⊂ Y , such that for all y ∈ Y and for all
components M of f−1(y) with dimM = dim f−1(y), the field extension

k(M)/k(φ1|M , . . . , φd−e|M )

is algebraic for all y ∈ U .
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Proof. To prove the lemma, we need to find some dense open U ⊂ Y such that for all
j ≥ d− e+ 1, the polynomial

Fj |M (φ1|M , . . . , φd−e|M )(t)

is nonzero for all y ∈ U .

Note first that the restriction of functions on Y to M are constant and so the coefficients of
Fj |M (t1, . . . , td−e)(t) are constant. Let then αj ∈ k(φ1, . . . , φd−e) be the leading term of

Fj |M (φ1|M , . . . , φd−e|M )(t),

viewed as a polynomial in t.

The lemma follows then from the following

Claim 1. There is some open dense subset Uj ⊂ Y , such that αj |M 6= 0 for all y ∈ Uj.

To prove the above claim, we use an argument similar to the one used in the proof of (1).
Let Z1, . . . , Zr be the irreducible components of VX(αj) and assume that f(Zi) ⊂ Y is dense
for i ≤ s and not dense for i ≥ s + 1. By Theorem 5.12, dimZi = dimX − 1. By induction
on dimX, for all i ≤ s, there is some open dense subset Vi ⊂ X such that for all y ∈ Vi,

dim(f |−1Zi
(y)) = dimZi − dimY < dimX − dimY.

Hence,

Uj :=

s⋂
i=1

Vi ∩
r⋂

i=s+1

(Y \ f(Zi))

does the job. This proves the above claim and so the lemma follows.

This concludes the proof of the theorem.

The above theorem has several interesting consequences; we collect some of those in what
follows.

Corollary 5.19. Let f : X 99K Y be a dominant rational map between quasi-projective
varieties. Then dimX ≥ dimY .

Proof. This follows from Theorem 5.16, applied to the morphism φ : dom(φ) → Y , because
dom(φ) ⊂ X is non-empty open and so it has the same dimension as X by Theorem 5.12.
Alternatively, we can also argue that φ∗ : k(Y )→ k(X) is a nontrivial field homomorphism,
hence an injection of fields and so

dimX = trdegkk(X) ≥ trdegkk(Y ) = dimY.

Remark 5.20. The above corollary shows in particular that in algebraic geometry there is
nothing like space filling curves.

Corollary 5.21. The image of a quasi-projective variety under a regular map is a finite
disjoint union of quasi-projective varieties.
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Proof. We prove this by induction on dimX. Let f : X → Y be a regular map between
quasi-projective varieties. Up to replacing Y by the closure of f(X) (which is automatically
irreducible), we may assume that f is dominant. By Theorem 5.16, f(X) contains an open
subset U ⊂ Y . Let Z = Y \U be its complement. It has finitely many irreducible components
and we let Z ′ ⊂ Z be one such component. The subset f−1(Z ′) ⊂ X is closed and so it has
finitely many irreducible components X1, . . . , Xr. Since Xi ( X is closed and irreducible,
dimXi < dimX and so the induction hypothesis applies to the morphism f |Xi : Xi →
f(Xi) ⊂ Z ′ that is induced by f . This proves the corollary by induction.

Corollary 5.22. Let f : X → Y be a surjective regular map between quasi-projective vari-
eties. Then the subset

Pl := {y ∈ Y | dim(Xy) ≥ l}

is closed in Y for all l ≥ 0. In other words, the function y 7→ dim(Xy) is upper semi-
continuous.

Proof. Let d = dimX and e = dimY . By Theorem 5.16, Pd−e = Y and Pd−e−1 = ∅. By
induction on l, it then suffices to prove that Pd−e+1 is closed in Y . That is, we need to prove
that Y \ Pd−e+1 is open. By Theorem 5.16, this set contains at least an open subset U and
the openness can then be proven by applying Theorem 5.16 to the map induced by f on the
components of f−1(Y \U), noting that by induction on dimX, we may assume that we know
the corollary in lower dimension. The details are not difficult but slightly cumbersome and
so we leave them to the reader.

6 Images of projective varieties are closed

The main result of this section is the following theorem.

Theorem 6.1. Let X be a projective variety and let f : X → Y be a regular map, where Y
is a quasi-projective variety. Then f(X) ⊂ Y is closed.

This has the following important consequences.

Corollary 6.2. Let f : X → Y be a regular map between quasi-projective varieties. If X is
a projective variety, then the image f(X) is a projective variety as well.

Proof. Since Y is quasi-projective, there is an injective regular map Y ↪→ Pm. The corollary
therefore follows from the above theorem, applied to the composition X → Y ↪→ Pm.

Corollary 6.3. Any regular function on a projective variety is constant.

Proof. If f ∈ k[X] is a regular function, then we get a regular map f : X → A1. By Theorem
6.1, f(X) is closed. Since X is irreducible, so is f(X). Hence, f(X) is either a point or A1.
The latter is impossible, because the image of the composition X → A1 ↪→ P1 must be closed
as well. This proves the corollary.

Corollary 6.4. Let f : X → Y be a regular map from a projective variety X to an affine
variety Y . Then f is constant, i.e. f(X) is a single point of Y .

Proof. This follows immediately from Corollary 6.3, applied to xi ◦ F , where xi is the i-th
coordinate function on Y ⊂ An.
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6.1 Products

Recall from the Exercise sheet, that there is an inclusion

ι : Pn × Pm ↪→ P(n+1)(m+1)−1, ([x0, . . . , xn], [y0, . . . , ym]) 7→ [..., xiyj , ...].

The image of this inclusion is closed, which allows us to put the structure of a (quasi-)
projective algebraic set on the product of (quasi-) projective algebraic sets.

Lemma 6.5. (1) The closed subsets of Pn × Pm are those that are cut by a bunch of poly-
nomials

F (x0, . . . , xn, y0, . . . , ym)

that are homogeneous in the x-, as well as in the y-coordinates.

(2) The closed subsets of Pn × Am are those that are cut out by a bunch of polynomials

F (x0, . . . , xn, y1, . . . , ym)

that are homogeneous in the x coordinates.

Proof. The second item follows from the first by restriction to Am ⊂ Pm. To prove the
first item, note that by definition, any closed subset of Pn × Pm is cut out by a bunch of
functions of the form F ◦ ι, where F ∈ k[z0, . . . , znm−1] is homogeneous. Clearly, the function
F ◦ι([x], [y]) can be written as a polynomial in the coordinates x0, . . . , xn of Pn and y0, . . . , ym
of Pm, which is homogeneous and of the same degree in both sets of variables.

On the other hand, if G(x, y) is a polynomial in the xi and yj which is homogeneous in both
sets of variables of degrees d and e with d 6= e, then this still defines a subset of Pn×Pm. Such
a subset is algebraic, as we can replace G by the set of polynomials yd−ej G for j = 0, . . . ,m,
where we assumed wlog that d > e.

Corollary 6.6. The image ι(An × Am) carries the natural structure of an affine variety on
An × Am ∼= An+m. In particular, the product on affine varieties X ⊂ An and Y ⊂ Am

constructed as above coincides with the naive product

X × Y ⊂ An+m.

Corollary 6.7. Let X any Y be projective algebraic sets and let S ⊂ X and T ⊂ Y be closed.
Then S × Y and X × T are closed in X × Y . In particular, the topology on X × Y is finer
than the product topology.

Proof. This is an immediate consequence of the previous lemma.

Corollary 6.8. If X and Y are irreducible, then so is X × Y .

Proof. Suppose that X × Y = Z ∪ Z ′ for closed subsets Z,Z ′ ⊂ X × Y . Let

U := {y ∈ Y | X × {y} ⊂ Z} and U ′ := {y ∈ Y | X × {y} ⊂ Z ′}.

By the previous corollary, for any y ∈ Y , Z ∩ X × {y} and Z ′ ∩ X × {y} are closed in
X ∼= X × {y}. Since X is irreducible the equation

X × {y} = (Z ∩X × {y}) ∪ (Z ′ ∩X × {y′})
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thus shows that Y = U ∪U ′. Hence, Y = U ∪U ′. Since Y is irreducible, we may wlog assume
U = Y . Since X × U ⊂ Z and Z is closed, we get

X × U ⊂ Z.

We thus conclude Z = X × Y if we can prove

X × U = X × Y.

But if that was false, then there is a point (a, b) ∈ X×Y that is not contained in X × U . That
means that there is a bihomogeneous polynomial F (x, y) with F |X×U = 0 but F (a, b) 6= 0.
Hence, F (a, y) is a homogeneous polynomial in the y coordinates which vanishes on U but
not on b. Hence, U ( Y , which is a contradiction. This proves the corollary.

In the above notation, set U := X \ S and V := Y \ T , then U × V ⊂ X × Y is open. If
U ⊂ An and V ⊂ Am are affine, then U × V has a natural structure of an affine variety and
one checks that this structure coincides with the one defined as open subset of X × Y .

Example 6.9. Note that the topology on X × Y is not the product topology! For instance,

A1 × A1 ∼= A2

has many more proper closed subsets than only unions of sets of the form x×A1 and A1× y.

6.2 Proof of Theorem 6.1

Before we prove the theorem, we need the following lemma.

Lemma 6.10. Let f : X → Y be a regular map between quasi-projective varieties. Then the
graph

Γf := {(x, f(x)) ∈ X × Y | x ∈ X}

is closed in X × Y .

Proof. We have Y ⊂ Pm for some m. Since closed subsets of X × Pm pullback to closed
subsets in X × Y , it suffices to prove the statement in the case where Y = Pm. Consider the
map

g : X × Pm → Pm × Pm, (x, p) 7→ (f(x), p).

Clearly, g is regular and the preimage of the diagonal ∆Pm := {(p, p) | p ∈ Pm} is nothing
but Γf . It thus suffices to prove that ∆m

P is closed in Pm × Pm, which is simple to check.
This concludes the lemma.

We are now ready to prove the theorem.

Proof of Theorem 6.1. Consider the map f : X → Y and let Γf ⊂ X × Y be the graph of f .
By Lemma 6.10, Γf is closed in X × Y . Consider the projection

p : X × Y → Y, (x, y) 7→ y.

Note that we have p(Γf ) = f(X). The theorem follows therefore from the following stronger
statement.

Theorem 6.11. Let X,Y be quasi-projective varieties. If X is a projective variety, then the
projection p : X × Y → Y is a closed map, i.e. it takes closed sets to closed sets.
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Proof. Since X is projective, there is some embedding X ⊂ Pn such that X is closed in Pn.
It follows that it suffices to prove the theorem in the case where X = Pn. Since closedness is
a local property, and since any quasi-projective variety can be covered by open subsets, it is
furthermore enough to prove the theorem in the case where Y is affine. In that case, Y ⊂ Am

is a closed subset of some affine space and so it is actually enough to prove the theorem in
the special case X = Pn and Y = Am.

Let Z ⊂ Pn×Am be a closed subset. By Lemma 6.5, Z is cut out by finitely many polynomials

Fi(x0, . . . , xn, y1, . . . , ym) ∈ k[x0, . . . , xn, y1, . . . , ym]

with i = 1, . . . , r, which are homogeneous in the x-coordinates. Therefore, a point a ∈ An

does not lie in p(Z) if and only if

{x ∈ Pn | Fi(x, a) = 0 ∀i}

is empty. This is equivalent to asking that the homogeneous ideal

Ja := 〈Fi(x0, . . . , xn, a1, . . . , am) | i = 1, . . . , r〉 ⊂ k[x0, . . . , xn]

satisfies VPn(J) = ∅. By Proposition 4.4, the latter is equivalent to

S+ :=
⊕
d≥1

Sd ⊂
√
Ja,

where Sd denotes the degree d part of the graded ring S := k[x0, . . . , xn]. This in turn is
equivalent to

Sd ( Ja

for all d ≥ 1. (Exercise!)

To prove the theorem, it thus suffices to show that the set of points y ∈ Am with

Sd ⊂ Ja
for some d is open in Am. Since arbitrary unions of open sets are open, it is in fact enough
to prove that for fixed d ≥ 1, the set of points y ∈ Am with

Sd ⊂ Ja
is open in Am.

Let di be the homogeneous degree of Fi(x, y) in the x variables. For any partition s :=
(s0, . . . , sn) of s by nonnegative integers si ≥ 0, we consider the monomial

xs :=
∏
i

xsii

and denotes its degree by |s| =
∑
si. The piece Sd is generated by all monomials of degree

|s| = d as above.

We thus find that Sd ⊂ Ja is equivalent to the fact that the map

L(a) :=
r⊕
i=1

Sd−di −→ Sd

which on Sd−di is given by multiplication with Fi(x, a) is surjective. The above map is a linear
map of vector spaces which is given by a matrix whose coefficients depend polynomially on
the point a ∈ An. The linear map L(a) is surjective if its rank is full, i.e. if at least one
of the N × N minors (N = dimk Sd) has nonzero determinant. Each such determinant is
a polynomial equation in the coordinates of the point a ∈ An. Asking that at least one of
these equations is nonzero is an open condition on a ∈ An. This concludes the proof of the
Theorem.
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7 Local properties and smoothness

7.1 Localization and local rings

We start by recalling the following concept from commutative algebra.

Definition 7.1. Let A be a commutative ring and let S ⊂ A be a multiplicatively closed
subset, i.e. 1 ∈ S and s, t ∈ S ⇒ st ∈ S. Then the localization S−1A of A at S is defined as

S−1A := (A× S)/ ∼

where (x, s) ∼ (y, t) if and only if there is some u ∈ S with u(xt− ys) = 0.

The equivalence class of (x, s) is denoted by x
s .

Note that the element u in the definition of the relation ∼ is needed when you want to check
that the relation is transitive.

Note that S−1A is a commutative ring with ring structure

x

s

y

t
=
xy

st
and

x

s
+
y

t
=
xt+ ys

st
.

Example 7.2. If A is a domain, i.e. has no zero-divisors, then S := A\{0} is a multiplicative
set and

S−1A ∼= Frac(A).

Example 7.3. If S contains 0, then S−1A = {01} is the zero ring.

Example 7.4. If f ∈ A, then S := {fn | n ∈ Z≥0} is a multiplicatively closed set (because
f0 = 1 by definition). The localization S−1A is usually denoted by

Af := S−1A.

Its elements are of the form x
f i

with i ≥ 0.

Example 7.5. If p ⊂ A is a prime ideal, then S := A \ p is a multiplicatively closed set and
the localization S−1A is denoted by

Ap := S−1A.

The next example is a special case of the previous one. It is of fundamental importance to
algebraic geometry!

Example 7.6. If X is an affine algebraic set and Z ⊂ X is a closed and irreducible subset
(e.g. a point), then the local ring of X at Z is defined as the localization of k[X] at the prime
(!) ideal I(Z):

OX,Z := k[X]I(Z).

That is, the elements of OX,Z are fractions f
g , where f, g ∈ k[X] are regular functions on X

and g does not vanish identically along Z, i.e. g /∈ I(Z).

If X is irreducible, then OX,Z ⊂ k(X) is the subring of all rational functions ϕ ∈ k(X) with
dom(ϕ)∩Z 6= ∅. That is, we are looking at all rational functions on X that are regular (hence
actual functions) along some non-empty open subset of Z.
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Remark 7.7. In commutative algebra, you learn that there is a natural correspondence

{prime ideals q ⊂ A with q ⊂ p} ↔ {prime ideals of Ap},

given by mapping a prime ideal q ⊂ A contained in p to the ideal in Ap that is generated by x
1

with x ∈ p. In geometric terms, if A = k[X] and Z ⊂ X is closed and irreducible, the prime
ideals of OX,Z correspond to those closed irreducible subsets S ⊂ X that contain Z.

Since OX,Z is not a finitely generated k-algebra in general, there is no affine k-variety Y
with k[Y ] = OX,Z . This is unfortunate, as it would be good to have a geometric object that
corresponds to the localization of X at Z. We will see next semester that the language of
schemes allows us to associated with any ring A a space (called affine scheme)

SpecA

whose points are the prime ideals of A. In particular, the points of Spec(OX,Z) will correspond
to the subvarieties of X that contain Z.

Definition 7.8. Let X be a quasi-projective algebraic set, x ∈ X. The local dimension of X
at x is given by

dimxX := max
x∈Z⊂X

dimZ,

where Z ⊂ X runs through all irreducible components that contain x.

Lemma 7.9. Let X be an affine algebraic set. Then,

(a) there is a natural isomorphism

OX,x −→ {(ψ,U) | x ∈ U,U ⊂ X is open, ψ ∈ k[U ]}/ ∼

where (ψ,U) ∼ (ϕ, V ) if there is an open subset W ⊂ U ∩ V which contains x and such
that ψ|W = ϕ|W .

(b) If U ⊂ X is open, x ∈ U , then OU.x ∼= OX,x.

(c) dim(OX,x) = dimxX.

Proof. Item (a) is easy. Item (b) follows from (a). Item (c) follows from the previous remark.

7.2 Zariski tangent space

Definition 7.10. Let X ⊂ An be an affine algebraic set, x = (x1, . . . , xn) ∈ X, I(X) =
〈f1, . . . , fr〉. Then the tangent space TX,x ⊂ An of X at x ∈ X is given by

TX,x := V (dxf1, . . . , dxfr),

where dxfj ∈ k[t1, . . . , tn] is the linear polynomial that appears as linear term of fj in its

Taylor expansion around x, i.e. dxfj :=
∑n

j=1
∂fi
∂xj

(x)(tj − xj).

Note that by definition, TX,x is a linear subspace of An for all x ∈ X.

Example 7.11. If X := V (f) ⊂ An with f ∈ k[t1, . . . , tn] irreducible, x ∈ X, then

TX,x = V

 n∑
j=1

∂f

∂xj
(x)(tj − xj)

 ,

has dimension ≥ n− 1. Moreover, equality holds if and only if ∂f
∂xj

(x) 6= 0 for at least one j.
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Lemma 7.12. In the above example, the set of points

Xsm := {x ∈ X | dim(TX,x) = n− 1}

is open and dense in X.

Proof. Note that X \Xsm is given by VX( ∂f∂x1 , . . . ,
∂f
∂xn

) and so it is closed. That is, Xsm is
open. To prove that it is dense, we need to show that it is nonempty. If not, then

V (f) ⊂ V (
∂f

∂x1
, . . . ,

∂f

∂xn
).

Hence,

rad((
∂f

∂x1
, . . . ,

∂f

∂xn
)) ⊂ rad((f)) = (f)

where the last equality holds because f is irreducible. This implies ∂f
∂xi
∈ (f) = 0 for

all i by degree reasons. This is already a contradiction in characteristic zero. However,
in characteristic p, polynomials like

∑
xpi are nonzero but have zero derivative. In fact,

∂f
∂xi
∈ (f) = 0 tells us that

f(x1, . . . , xn) = g(xp1, . . . , x
p
n)

for some polynomial g, where p is the characteristic of k. But then f(x) = g̃(x)p, where g̃ is
given by replacing the coefficients of g by p-th roots (which is possible because k = k), and
so f is not irreducible. This concludes the lemma.

Proposition 7.13. Let X be an affine algebraic set, x ∈ X. Then the map

ψ : I(x) −→ T ∗X,x, f 7→ dxf

induces an isomorphism
I(x)/I(x)2 −→ T ∗X,x.

Proof. To see that ψ is well-defined, we need to check that ψ(f) = 0 for any f ∈ I(X).
But this follows immediately from the definition of TX,x and the product rule dx(fg) =
f(x)dxg + g(x)dxf .

Once we know that ψ is well-defined, it is clear that it is surjective, because the linear maps
given by restricting the coordinate functions ti to TX,x lie in the image of ψ.

It remains to check that ker(ψ) = I(x)2. The inclusion I(x)2 ⊂ ker(ψ) follows again from
the product rule dx(fg) = f(x)dxg + g(x)dxf . It remains to check ker(ψ) ⊂ I(x)2. For this,
let f ∈ ker(ψ). That is, f ∈ I(x) with dxf = 0. We can write f = L+ g, where l is a linear
polynomial and g ∈ I(x)2. Then dxf = dxL = L vanishes by assumption. That is,

L ∈ I(V (dxf1, . . . , dxfr)) = (dxf1, . . . , dxfr)

where I(X) = 〈f1, . . . , fr〉. Hence,

L =
∑

λjdxfj .

But then consider
L−

∑
j

λjfj .

This is a regular function on X which lies in I(x)2 and so L ∈ I(x)2, because
∑

j λjfj restricts

to zero on X. Hence, f ∈ I(x)2, which concludes the proof of the proposition.
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Definition 7.14. Let X be a quasi-projective algebraic set, x ∈ X.

(1) TX,x := TU,x for any affine open neighbourhood U ⊂ X of x ∈ X;

(2) OX,x := OU,x for any affine open neighbourhood U ⊂ X of x ∈ X;

(3) x is a smooth point of X if dim(TX,x) = dimxX; the set of smooth points on X is denoted
by Xsm;

(4) x is a singular point of X, if it is not a smooth point; the set of singular points on X is
denoted by Xsing.

Note that the above definition of TX,x is well-defined up to isomorphism because of the
intrinsic description of the tangent space given in Proposition 7.13 above. Similarly, OX,x is
well defined by the description of the local ring of an affine variety in Lemma 7.9 above.

Let us also recall the following fact from commutative algebra, see e.g. [1, Proposition 2.8].

Theorem 7.15 (Nakayama’s Lemma). Let (A,m) be a local ring and let M be a finitely
generated A-module. If the images of x1, . . . , xn ∈M generate the A/m vector space M/mM ,
then x1, . . . , xn generate M .

Corollary 7.16. Let X be a quasi-projective algebraic set, x ∈ X. Then,

dimxX ≤ dim(TX,x).

Proof. Let n = dimk(TX,x). Then there are n regular functions f1, . . . , fn ∈ I(x) such that
the images of fi in I(x)/I(x)2 form a basis of

T ∗X,x
∼= I(x)/I(x)2.

By Nakayama’s lemma, the maximal ideal mx of the local ring OX,x is generated by f1, . . . , fn.
Using Krull’s Hauptidealsatz (which applies to non-units in integral domains), we find

dim(OX,x) = 1 + dim(OX,x/(f1)).

The right hand side is the local ring of Z := VX(f1) ⊂ X at x. Moreover, dxf2, . . . , dxfn
generate TZ,x = TX,x ∩ V (dxf1). By induction on n, we may thus assume that

dimZ ≤ dim(TZ,x) = n− 1.

By Krulls Hauptidealsatz, dimX = 1 + dimZ, and so dimX ≤ dim(TX,x), as we want.

Definition 7.17. A local ring A with maximal ideal m is regular if m can be generated by
dimA many elements.

Fact from algebra: A regular local ring is a UFD.

Corollary 7.18. Let X be a quasi-projective variety. Then x ∈ X is smooth if and only if
the local ring OX,x is regular.

Proof. After shrinking we may assume that X is affine. The corollary then follows from
Nakayama’s lemma and Proposition 7.13 above, as in the proof of the Corollary above. More
precisely, if OX,x is regular, then the maximal ideal mx ⊂ OX,x can be generated by dimX
many elements f1, . . . , fn, then the images of f1, . . . , fn in mx/m

2
x generate the cotangent

space T ∗X,x and so dimTX,x ≤ n and we see that equality holds by the above corollary.

Conversely, if mx/m
2
x has dimension n = dimX, then let f1, . . . , fn ∈ mx be elements whose

images generate that vector space. By Nakayama’s lemma, mx = (f1, . . . , fn) and so OX,x is
regular.
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Remark 7.19. Next semester, we will define a concept of smoothness that works in greater
generality, and in particular also over fields that are not algebraically closed. It is however
important to note that this generalization will not be equivalent to the local rings being reg-
ular, i.e. the above corollary will not hold anylonger. In fact, smoothness will be a stronger
condition than asking that all local rings are regular. However, after all, the two notions will
differ only over non-perfect fields.

7.3 Varieties are generically smooth

Theorem 7.20. Let X be a quasi-projective variety. Then

Xsm := {x ∈ X | x is a smooth point of X}

is an open dense subset of X.

Proof. Since the problem is local on X, we may assume that X ⊂ An is affine. Since X is
birational to a hypersurface V (f) ⊂ Ad+1 with f irreducible and d = dimX, we deduce from
Lemma 7.12 that Xsm 6= ∅.
Let TX := {(x, v) ∈ X × An | v ∈ TX,x}. This is an algebraic set, as it is cut out by the
equations

dxf =

n∑
i

∂f

∂ti
(x)(ti − xi),

where f runs through generators of I(X). Projection to the first factor yields a regular map

p : TX → X,

whose fibre above x ∈ X is TX,x. If TX was irreducible, then the theorem would immediately
follow from the fact that

{x ∈ X | dim(p−1(x)) ≥ dimX + 1}

is closed in X. However, TX will not be irreducible in general (think about a curve X with
a singular point). Nonetheless, the argument is very similar to this original idea and reduces
the problem to the theorem on the dimension of fibres.

Let Z be an irreducible component of Xsing ⊂ X. We have to show that every z ∈ Z is a
singular point of X.

Lemma 7.21. There is an irreducible component W of p−1(Z) such that TX,x ⊂ W for a
dense set of points x ∈ Z with dim(TX,x) < dimX. Moreover, p|W : W → Z is surjective.

Proof. Let W1, . . . ,Wr be the irreducible components of p−1(Z) ⊂ TX . Let further Ai :=
{x ∈ Z | TX,x ⊂ Wi}. Since TX,x is irreducible for all x, it must be contained in at least one
Wi and so

Z =
⋃
Ai.

Since Z is an irreducible component of Xsing, we know that it contains a dense set S ⊂ Z of
points x ∈ Z with dim(TX,x) > dimX. Hence,

S =
⋃

(Ai ∩ S).

Taking closures, we get

Z = S =
⋃

(Ai ∩ S).
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Since Z is irreducible, Z = (Ai ∩ S) for some i. This proves that there is a component
W = Wi which has the first property claimed in the lemma.

To prove that p(W ) = Z, it suffice to show that Z × {0} ⊂W . To prove this, note that

Z × {0} ∩W

is closed, as it is given by intersecting two closed subsets of X×An and it contains a dense set
of Z×{0}, as it contains any x×{0} with the property that TX,x ⊂W . Hence, Z×{0}∩W
and so p(W ) = Z, as we want. This proves the lemma.

Let W ⊂ p−1(Z) be the component of the lemma. Consider

p : W → Z.

This is a surjective regular map between quasi-projective varieties and so we know that

dimWz ≥ dimW − dimZ

for all z ∈ Z and equality holds over some non-empty open subset V ⊂ Z. By construction,
V contains a point z ∈ V such that Wz = TX,z has dimension greater than dimX. Hence,

dimW − dimZ > dimX

and we deduce that for all x ∈ X,

dim(TX,x) ≥ dimWx ≥ dimW − dimZ > dimX.

Hence, Z ⊂ Xsing and the theorem is proven.

Example 7.22. Let f =
∑n

i=0 x
d
i ∈ k[x0, . . . , xn+1]. Then the hypersurface X := V (f) ⊂

Pn+1 is smooth of dimension n, provided that the characteristic of k does not divide d.

Proof. Exercise.

Example 7.23. Let f =
∑n

i=0 x
d
i ∈ k[x1, . . . , xn+1] and let d ≥ 1 be an integer which is

coprime to the characteristic of k. Consider the hypersurface X := V (f) ⊂ An+1. Then
X \ {0} is smooth of dimension n, provided that the characteristic of k does not divide d.

Consider the blow-up τ : Bl0An+1 → An+1 and let X ′ := τ−1(X \ {0}). Then X ′ is smooth
and birational to X.

Proof. Exercise.

Example 7.24 (Nodal singularity). Let X = V (x22 − x31 − x21) and assume that the charac-
teristic of k is different from 2 and 3. Then Xsing = {(0, 0)}.

Proof. Note that x22 = x21(x1 − 1). Use this to draw a picture of X.

Let f = x22− x31− x21. A point p ∈ X is singular if and oly if ∂f
∂xi

(p) = 0 for i = 1, 2. We have

∂f

∂x1
= −3x21 − 2x1

and
∂f

∂x2
= 2x2.
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Since we assume that k has characteristic different from 2 and 3, p = (p1, p2) ∈ Xsing implies
p2 = 0 and p1(3p1 + 2) = 0. Since p = (0, 0) ∈ X, we deduce that (0, 0) ∈ Xsing. The only
other possibility is p = (0, −23 ), but this point satisfies

f(0,
−2

3
) =

23 − 223

33
=
−4

33
6= 0

because the characteristic is different from 2 and 3. This proves Xsing = {(0, 0)}, as claimed.

Example 7.25 (Elliptic curve). Let X := V (f) ⊂ P2 be a plane curve where f is irreducible
of degree 3. If X is smooth, then it is called an elliptic curve. An explicit example is given
for instance by f = x0x

2
2−x31−x30, or by f = x30 +x31 +x32 as in one of the previous examples.

Example 7.26 (The locus of smooth hypersurfaces is open and dense among all hypersur-
faces). Let Sd ⊂ k[x0, x1, . . . , xn+1] denote the vector space of homogeneous polynomials of
degree d. Then the projectivization P(Sd) is a natural parameter space for all hypersurfaces
X ⊂ Pn+1, i.e. for any point [f ] ∈ P(Sd), we get a hypersurface X = V (f) ⊂ Pn+1. The
locus of those points [f ] ∈ P(Sd) such that V (f) is singular is closed, see theorem below. To
show that the complement of this locus is open and dense, it thus suffices to find one hyper-
surface of given degree that is smooth. We have done so already in the case where d and the
characteristic of k are coprime, but the statement is true in general.

Theorem 7.27. Let n, d be positive integers and let Sd ⊂ k[x0, x1, . . . , xn+1] denote the vector
space of homogeneous polynomials of degree d. The locus those points [f ] ∈ P(Sd) such that
V (f) is singular is closed in P(Sd).

Proof. Let X ⊂ Pn+1 × P(Sd) be the universal hypersurface, given by the equation

X = V (
∑
I

aIx
I) ⊂ Pn+1 × P(Sd),

where x0, . . . , xn+1 denote the coordinates on Pn+1, for any partition I = (i0, . . . , in+1) of d by

non-negative integers, we write xI =
∏
l x

il
l and the aI denote the homogeneous coordinates

on P(Sd). By construction, the fibre of the projection p : X → P(Sd) above [f ] is given by
V (f) ⊂ Pn+1.

For j = 0, . . . , n+ 1, we may consider the hypersurface

Xj := V (
∑
I

aI
∂xI

∂xj
) ⊂ Pn+1 × P(Sd).

The intersection

X sing := X ∩
n+1⋂
j=0

Xj

is closed subset of Pn+1 × P(Sd) and so it is a projective algebraic set. It follows that the
image of X sing under the second projection

pr2 : Pn+1 × P(Sd)→ P(Sd)

is closed. This proves the theorem, because V (f) ⊂ Pn+1 is singular if and only if [f ] ∈
pr2(X sing).

32



Remark 7.28. One can show that X sing has codimension n+2 in Pn+1×P(Sd), even though
it is cut out by n+3 equations. The point is that we have Euler’s formula, which tells us that

d · f =

n+1∑
j=0

xj ·
∂f

∂xj
(x)

and so X ⊂
⋂n+1
j=0 Xj.

8 Finite maps and normal varieties

Definition 8.1. Let X,Y be quasi-projective algebraic sets. A regular map

f : X → Y

is finite, if for all y ∈ Y there is some affine open neighbourhood V ⊂ Y of y, such that
U := f−1(V ) is affine and f |U : U → V induces a finite map of rings f∗ : k[V ] → k[U ], i.e.
the pullback map f∗ makes k[U ] a finitely generated k[V ]-module.

Example 8.2. If X,Y are irreducible and f : X → Y is surjective and finite, then dimX =
dimY . Indeed, let y ∈ Y and let x ∈ f−1(y) be a preimage of y. Let V ⊂ Y be an affine open
neighbourhood of y, such that U := pr−11 (V ) is affine and k[U ] is a finite k[V ] module. Since
f is surjective k[V ] ↪→ k[U ] is a subring. Since k[U ] is a finite k[V ]-module, k(U) is a finite
field extension of k(V ) and so both fields have the same transcendence degree over k. Hence
dimX = dimU = dimV = dimY , as claimed.

Example 8.3. The projection pr1 : A2 → A1 is not finite.

Example 8.4. Let ` be a positive integer, then

f : P1 → P1, [x0 : x1] 7→ [x`0 : x`1]

is finite.

Proof. Covering P1 with the standard open subsets, we see that it suffices to show that
A1 → A1, t 7→ t` is finite. This is clear, because k[t] is a finite k[t`]-module.

Definition 8.5. Let R be an integral domain, K := FracR the fraction field of R. We say
that R is normal, if it is integrally closed in K, i.e. if f ∈ R[t] is a monic polynomial and
α ∈ K is a zero of that polynomial, then α ∈ R.

Example 8.6. The ring Z[
√

5] is not integrally closed, because the monic polynomial x2−x−1

has the zero α = 1+
√
5

2 ∈ Q(
√

5) which does not lie in Z[
√

5].

For an integral domain R, we have the following facts from commutative algebra.

• R is normal ⇔ Rp is normal ∀ primes p ⊂ R ⇔ Rm is normal ∀ maximal ideals m ⊂ R.

• If R is a UFD (e.g. a regular ring), then it is normal. (easy!)

• If (R,m) is a local ring of dimension one which is noetherian, then R is normal if and
only if R is a DVR, i.e. if and only if it is a principal ideal domain which has exactly
one non-zero maximal ideal m (in particular m = (π) is principal).

Definition 8.7. A quasi-projective variety X is normal, if OX,x is normal for all x ∈ X.
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Example 8.8. If X is smooth, then it is normal.

Theorem 8.9. Let X be a quasi-projective variety. If X is normal, then

dimXsing ≤ dimX − 2.

Proof. W.l.o.g. X is affine and n = dimX. For a contradiction, suppose there is an irreducible
component Z ⊂ Xsing of dimension n− 1.

Claim 2. After shrinking X, we may assume that the maximal ideal of OX,Z is generated by
a regular function u ∈ k[X].

Proof. Let p := I(Z) ⊂ K[X]. Since X is normal, the local ring OX,Z = k[X]p is a normal of
dimension one, hence a DVR. That is, the maximal ideal p ·k[X]p is generated by one element
f
g ∈ k[X]p. Here, g does not vanish identically along Z. Replacing X by the complement of

VX(g), we may then assume that there is an element u ∈ k[X] whose image in k[X]p generates
p · k[X]p.

Note that the variety Z is generically smooth and so there is a smooth point x ∈ Zsm. Hence,
the maximal ideal of OZ,x is generated by n− 1 = dimZ many elements g1, . . . , gn−1 ∈ OZ,x.
Since X is affine, the restriction map k[X] → k[Z] is onto and induces a surjection on local
rings OX,x → OZ.x. We may thus choose elements gi ∈ OX,x which maps to gi ∈ OZ,x. It
then follows that the maximal ideal of OX,x is generated by

g1, . . . , gn−1, u

and so OX,x is a regular local ring. Hence, x ∈ Xsm, as we want.

Definition 8.10. Let X and X ′ be quasi-projective varieties. A regular map f : X ′ → X is
a normalization, if X ′ is normal and f is birational and finite.

Theorem 8.11. Let X be an affine variety. Then there is a unique normalization f : X ′ →
X.

Proof. Let R = k[X] and let S ⊂ k(X) be the integral closure of R ⊂ k(X). Then FracS =
FracR = k(X). Moreover, S is a finitely generated R-module and so it is a finitely generated
k-algebra, since R is. That is,

S ∼= k[x1, . . . , xn]/I

for some ideal I. In particular, there is an affine variety X ′ with k[X ′] = S. There is a regular
map f : X ′ → X such that f∗ : k[X]→ k[X ′] corresponds to the inclusion R ⊂ S. Hence, f
is finite and birational and X ′ is normal, as we want.

Proposition 8.12. Let f : X 99K Y be a rational map from a normal variety X to a projective
variety Y ⊂ Pm. Then, f is defined in codimension one. That is, dim(X \ dom(f)) ≤
dimX − 2.

Proof. We know that dom(f) ⊂ X is open. Let Z be a component of X \ dom(f). We need
to show that dimZ ≤ dimX − 2. For a contradiction, we assume that this is not the case.
Then dimZ = 1.

Since Y ⊂ Pm is closed, the rational map f is given by

f = [f0 : · · · : fm]

where fi ∈ k(X) are rational function ons X. Since X is normal, the local ring OX,Z is normal
of dimension one, hence a DVR with maximal ideal mX,Z = (π). Moreover, OX,Z ⊂ k(X)
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is the subring of rational functions on X that are defined at some point of Z. In particular,
FracOX,Z = k(X) and so we can write

fi = εi · πai

for some unit εi ∈ OX,Z and integers ai ∈ Z. Up to reordering, we may assume that
a0 ≤ a1 ≤ · · · ≤ an. We then have

f = [f0 : · · · : fm] = [f0π
−a0 : · · · : fmπ−a0 ] = [ε0 : ε1π

a1−a0 : . . . εmπ
am−a0 ].

Since each εi and π are regular functions on some open subset which intersects Z nontrivially,
and since εi does not vanish identically along Z, we see that f is regular at some point of Z
(namely where each εi and π is defined and where ε0 does not vanish). This contradicts the
assumption that Z consists of points where f is not defined.

Corollary 8.13. Let X and Y be two projective normal (or smooth) curves. If X and Y are
birational, then they are isomorphic.

Proof. Let f : X 99K Y be a birational map with rational inverse g : Y 99K X. Since X and
Y are projective and normal, f and g are defined away from a subset of codimension two by
the above proposition. Hence f and g are defined everywhere because X and Y are curves.
Hence, f is a regular map with regular inverse g and so it is an isomorphism, as we want.

9 Divisors, Class groups and Bezout’s Theorem

9.1 Prime divisors and valuations

Definition 9.1. Let X be a quasi-projective variety of dimension n > 0.

(1) A prime divisor is an irreducible codimension one subvariety D ⊂ X.

(2) DivX := free abelian group, freely generated by the prime divisors on X.

(3) D ∈ DivX is effective (denoted by D ≥ 0) if D =
∑

i aiDi with ai ≥ 0.

Recall the following important definition from commutative algebra.

Definition 9.2. Let K/k be a field extension. A discrete valuation of K/k is a non-zero
map

ν : K∗ → Z

such that

• ν(f) = 0 if f ∈ k;

• ν(fg) = ν(f) + ν(g);

• ν(f + g) ≥ min(ν(f), ν(g)).

We have the following basic lemma.

Lemma 9.3. In the above notation, the subring Oν := {f ∈ K∗ | ν(f) ≥ 0} ∪ {0} is a DVR,
i.e. it is a principal ideal domain with exactly one non-zero maximal ideal mν := {f ∈ K∗ |
ν(f) > 0} ∪ {0}. Conversely, if R ⊂ K is a DVR with maximal ideal m = (π), then there is
a unique discrete valuation ν : K∗ → Z whose valuation ring is R.
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Proof. The first claim, saying that Oν is DVR is an easy fact from commutative algebra (see
e.g. [1]). It essentially boils down to the observation that an element in Oν \ {0} is invertible
if and only if it has trivial valuation, and so Oν has a unique maximal ideal, which is zero if ν
is the zero map and it is principal, generated by any element with minimal positive valuation,
otherwise.

For the second claim, note first that any element in R can be uniquely written as ε · πr for
some unit ε ∈ R and some r ≥ 0. We may then define ν(ε · πr) = r. Since Frac(R) = K, any

ϕ ∈ K can be written as ϕ = f
g with g 6= 0 and f, g ∈ R and so we can extend the above

definition to arbitrary nonzero ϕ = f
g ∈ K via

ν

(
f

g

)
= ν(f)− ν(g).

It is clear from the definition, that R \ {0} consists of exactly those elements of K∗ which
have non-negative valuation. Hence R = Oν , as we want. This concludes the lemma.

An important example of discrete valuations are given by divisors on normal varieties as
follows.

Example 9.4. Let X be a normal quasi-projective variety, D a prime divisor on X. Then
there is a discrete valuation

νD : k(X)∗ → Z

which measures the order of zeros or poles of a rational function generically along D.

Proof. To begin with, let us pick an open affine subset U ⊂ X which intersects D. Then
OX,D = k[U ]I(D∩U). Since X is normal, this local ring is normal of dimension one, hence it
is a DVR. In particular, its maximal ideal mX,D is generated by a single element π ∈ OX,D.
If f ∈ OX,D, i.e. f is a regular function on some open subset of X which meets D, then we
have f = ε · πr for some unit ε ∈ OX,D and some r ≥ 0. We then define

νD(f) = νD(ε · πr) = r

Recall that OX,D = k[U ]I(D∩U) and so

Frac(OX,D) = Frac(k[U ]I(D∩U)) = k(U) = k(X).

That is, any rational function ϕ ∈ k(X) can be written as

ϕ =
f

g

with f, g ∈ OX,D, g 6= 0 and we define

νD(ϕ) = νD

(
f

g

)
= νD(f)− νD(g).

That is, νD measures the order of poles or zero of a rational function (generically) along D.
It is clear from the definition, that

νD : k(X)∗ → Z

is a discrete valuation with valuation ring OX,D ⊂ k(X). Since OX,D does not depend on the
affine open subset U ⊂ X which meets D from above, we see that νD does not depend on U .
This concludes the proof.
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9.2 The divisor class group

Definition 9.5. Let X be a normal quasi-projective variety. For f ∈ k(X)∗ we set

Div(f) :=
∑
D⊂X

νD(f)D,

where D ⊂ X runs through all prime divisors on X.

The next lemma shows that the above sum is finite; equivalently, Div(f) ∈ Div(X).

Lemma 9.6. Let X be a normal quasi-projective variety. For any f ∈ k(X)∗, we have
Div(f) ∈ Div(X).

Proof. We need to show that the sum in the definition of Div(f) is finite. Since X can be
covered by finitely many affine varieties, it suffices to treat the case where X is affine. Then
f = g

h for regular functions g, h ∈ k[X] with h 6= 0. The algebraic set VX(g) ∪ VX(h) has
finitely many irreducible components D1, . . . , Dr. We have shown earlier that any component
of an algebraic subset that is cut out by one equation has codimension one and so each Di

is a prime divisor on X. Moreover, since νD(f) measures the zeros, resp. poles of f along
D, we find that it vanishes for all D 6= Di and so Div(f) is a finite sum, as we want. This
concludes the proof of the lemma.

The discussion so far allows us to define the following very important invariant of quasi-
projective varieties.

Definition 9.7. Let X be a quasi-projective variety. The class group of X is defined by

Cl(X) := Div(X)/ ∼,

where D1 ∼ D2 ⇔ there is some rational function f ∈ k(X)∗ with Div(f) = D1 −D2.

Note that Cl(X) is an abelian group which often allows us to distinguish non-isomorphic
varieties. Indeed, if f : X → Y is an isomorphism, then it maps codimension one subvarieties
on X to those on Y and we get an isomorphism

f∗ : Div(X)
∼−→ Div(Y ), D 7→ f∗D

which respects the above equivalence relation and so it descends to an isomorphism

f∗ : Cl(X)
∼−→ Cl(Y ).

More generally, for any regular map f : X → Y beweteen quasi-projective varieties, we may
define f∗ : Div(X)→ Div(Y ) and this will descend to class groups. By linearity, it suffices to
define f∗ on a prime divisor D ⊂ X. Here we set f∗D = 0 if f(D) ⊂ Y is not of codimension
one and

f∗D = deg(D → f(D)) · f(D)

otherwise, where deg(D → f(D)) denotes the degree of the field extension k(f(D)) ⊂ k(D).

Example 9.8. Cl(An) = 0.

Proof. Let D ⊂ An be a prime divisor. Choose an irreducible element f ∈ I(D) ⊂ k[t1, . . . , tn]
(possible because I(D) is prime). Then D ⊂ V (f), but V (f) is irreducible because

k[t1, . . . , tn]/(f)

is a domain and so D = V (f). Hence, D ∼ 0. This proves Cl(An) = 0.
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Example 9.9. Let X ⊂ An be an affine variety such that k[X] is a UFD. Then Cl(X) = 0.

Proof. Same proof as above.

Remark 9.10. Let X ⊂ An be an affine variety. If X is smooth, then OX,x is regular, hence
a UFD for all x ∈ X, but this does not imply that k[X] is a UFD. In particular, Cl(X)
might be large. An explicit example is given by any affine piece of a smooth elliptic curve,
e.g. X = V (x22 − (x1 + 1)x1(x1 − 1)) ⊂ A2. (We will probably prove this later.)

Lemma 9.11. Let X be a normal quasi-projective variety, f ∈ k(X). Then f is regular on
X if and only if Div(f) ≥ 0.

Proof. Since both assertions are local, we may wlog assume that X is affine. If f is regular,
then Div(f) ≥ 0 is clear as f does not have any poles. Conversely, suppose that Div(f) ≥ 0.
Then νD(f) ≥ 0 for all D ⊂ X. Hence, f ∈ k(X) lies in the localization k[X]I(D) for all
prime divisors D ⊂ X. But the prime divisors on X are via D 7→ I(D) ins one to one
correspondence to the prime ideals of height one in k[X] and so

f ∈
⋂
p

k[X]p,

where the intersection runs through all prime ideals of height one. It is a deep result from
commutative algebra that the latter intersection coincides with k[X], and so f is regular.

Example 9.12. Let n ≥ 1. Then we have Cl(Pn) ∼= Z[H], generated by the class of a
hyperplane H ⊂ Pn.

Proof. Let H := V (x0) ⊂ Pn be a hyperplane. Then H ∼= Pn−1 is irreducible of codimension
one. Thus H is a prime divisor on Pn.

We show now that the class of H generates Cl(Pn). For this, let D ⊂ Pn be a prime divisor.
Pick an irreducible homogeneous polynomial F ∈ I(D) ⊂ k[x0, . . . , xn]. One easily checks
that V (F ) ⊂ Pn is irreducible and contains D, hence D = V (F ). But then the rational
function ϕ = F

xdegF
0

has divisor

Div(ϕ) = D − degF ·H

and so D ∼ degF ·H, as we want.

Next, we show that the class of H generates Cl(Pn) freely. To see this, assume that m ·H ∼ 0
for some m ∈ Z. We need to prove that m = 0. For a quick proof, we may after possibly
replacing ϕ by ϕ−1 assume that m is non-negative and so ϕ is regular by the previous lemma.
But any regular function on Pn is constant and so m = 0.

We give a second proof, which does not rely on the above lemma (and hence not on the hard
fact from commutative algebra, that we used there). By assumptions, there is a rational
function ϕ ∈ k(Pn) with Div(ϕ) = mH. We can find homogeneous polynomials F and G
of the same degree such that ϕ = F

G . We may assume here that F and G have no factor in
common and so we can write

F =
∏

F aii and G =
∏

G
bj
j

where ai, bj ≥ 1 and the Fi and Gj are irreducible homogeneous polynomials which are
mutually coprime. Hence,

Div(ϕ) = Div

(∏
F aii∏
G
bj
j

)
=
∑
i

aiV (Fi)−
∑
j

bjV (Gj).
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Here, V (Fi) and V (Gj) are prime divisors which are mutually distinct because the Fi and
Gj are mutually coprime. Since Div(ϕ) = mH, we find that

mH =
∑
i

aiV (Fi)−
∑
j

bjV (Gj).

This is an equality in Div(Pn) and so we conclude bj = 0 for all j. Hence, degG = 0. But
then also degF = 0 and so ϕ is constant. Since Div(ϕ) = mH, we conclude m = 0, as we
want.

9.3 Bezout’s theorem

Let X be a smooth projective curve, i.e. a smooth projective variety of dimension one. A
divisor D on X is nothing but a Z-linear combination of points on X:

D =
∑
i

ai[xi],

with ai ∈ Z and xi ∈ X. We define the degree of D as

degD =
∑

ai.

This yields a group homomorphism

deg : DivX −→ Z.

Theorem 9.13. Let X be a smooth projective curve and let ϕ ∈ k(X) be a rational function
on X. Then deg(Div(ϕ)) = 0. In particular, the degree of a divisor induces a well-defined
homomorphism

deg : Cl(X) −→ Z.

Proof. The rational function ϕ corresponds to a rational map

ϕ : X 99K P1.

Since X is normal, ϕ is defined in codimension one (exercise!) and so it is a morphism
ϕ : X → P1. We may assume that ϕ is non-constant and so it is surjective, because its image
is closed in P1 since X is projective. We have the following fact that we will use without
proof.

Fact 1. Let f : X → Y be a surjective regular map between projective curves. For y ∈ Y let
f−1(y) = {x1, . . . , xr} be its preimages. Let π ∈ OY,y be a local parameter, i.e. a generator
of mY,y. For each i, consider f∗ : OY,y → OX,xi and let

ai := ν(f∗π)

be the vanishing order of f∗π at xi. Then,

r∑
i=1

ai = deg([k(X) : k(Y )])

does not depend on y ∈ Y .
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The fact implies that ϕ−1([0 : 1]) and ϕ−1([1 : 0]) have the same degree, where each point in
the preimage is counted with the correct multiplicity. In particular,

deg(Div(ϕ)) = 0,

as we want.

We aim to apply the above theorem to prove a version of Bezout’s theorem. For this, let
F,G ∈ k[x0, x1, x2] be non-constant irreducible (or more general, square-free, which means
that in the decomposition of F and G into powers of irreducible factors, each irreducible factor
appears with exponent one) homogeneous polynomials, and consider the corresponding plane
curves

X := V (F ) ⊂ P2 and Y := V (G) ⊂ P2.

We assume that X and Y have no component in common and aim to compute the number of
intersection points X ∩ Y , counted with the correct multiplicities. For simplicity, we assume
that X is smooth (for the general case, one may pass to the normalization of X which is a
smooth projective model of X). We then define ](X ∩ Y ) as follows. Let E ∈ k[x0, x1, x2] be
a homogeneous polynomial of degree degG, such that

VP2(F,G,E) = ∅.

Then

f :=
G

E
|X ∈ k(X)

is a rational function whose divisor of zeros and poles

Div(f) = D −D′

with D,D′ ≥ 0 and such that D and D′ have no point in common, has the property that D
does not depend on E. We may then define

](X ∩ Y ) = degD.

Theorem 9.14 (Bezout’s Theorem). In the above notation

](X ∩ Y ) = degF · degG.

Proof. Let L ∈ k[x0, x1, x2] be a linear homogeneous polynomial such that V (L) is not
tangent to X at any x ∈ X. (This is possible, because the lines in P2 are parametrized by
P(k[x0, x1, x2](1)) ∼= P2, while the lines that are tangent to X correspond to the image of the
regular map

X → P(k[x0, x1, x2](1)), x 7→ dxF

and so they form a subset of dimension at most one of P(k[x0, x1, x2](1)) ∼= P2.) We may
additionally assume that

V (F,G,L) = ∅.

Hence, in the definition of ](X ∩ Y ) we can take E = LdegG. Then,

f :=
G

E
|X ∈ k(X)

is a rational function on X and we can write

Div(f) = D −D′
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where D,D′ ≥ 0 are effective and have no points in common. By the previous theorem,

](X ∩ Y ) = degD = degD′.

Since L is not tangent to X at any point, we have for all x ∈ X ∩ V (L) that

dxL : TX,x → k

is surjective. For x ∈ X ∩V (L), we conclude that the image of L in mX,x/m
2
X,x is a generator

and so L generates the maximal ideal mX,x ⊂ OX,x by Nakayama’s lemma. Since V (F,G,L) =
∅, G does not vanish at x ∈ X ∩ V (L) and so

G

LdegG
∈ Frac(OX,x),

where G ∈ OX,x is a unit and L ∈ OX,x is a uniformizer. Hence, x ∈ X ∩ V (L) appears in
Div(f) with coefficient −degG and so we conclude

](X ∩ Y ) = degD′ = degG · ](V (L) ∩X),

where ](V (L) ∩X) denotes the number of intersection points of V (L) and X. Since for all
x ∈ V (L) ∩X, the image of L in OX,x is a uniformizer, we find that L vanishes of order one
at x. Equivalently, the homogeneous polynomial F which cuts out X vanishes of order one
at x ∈ V (L). That is, the restriction of F to V (L) ∼= P1 is a polynomial of degree degF
without multiple zeros and so it has exactly degF many zeros. That is,

](V (L) ∩X) = degF

and so
](X ∩ Y ) = degF · degG,

as we want.

10 Sheaves

Let X be a topological space.

Definition 10.1. A pre-sheaf F of abelian groups on X consists of an abelian group F(U)
for each open subset U ⊂ X and a group homomorphism τU,V : F(U) −→ F(V ) for any
nested open subsets V ⊂ U of X, with the following properties:

(a) F(∅) = 0,

(b) τU,U = idF(U);

(c) τU,V ◦ τV,W = τU,W for any open subsets W ⊂ V ⊂ U of M .

Elements of F(U) are called sections of F over U . The τU,V are called restriction maps; one
often writes τU,V (s) = s|V for s ∈ F(U).

A pre-sheaf of vector spaces, rings, etc. is defined in an analogous way.

The most important examples of presheaves of abelian groups are functions on some space
with values in an abelian group. Before we list some examples, note that a presheaf F of
functions on some space satisfies the following properties:

For any open subset U ⊂ X and any open covering U =
⋃
i∈I Ui, all of the above examples

have the following crucial properties:
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(i) If f, g ∈ F(U) with f |Ui = g|Ui for all i ∈ I, then f = g;

(ii) If fi ∈ F(Ui) with fi|Ui∩Uj = fj |Ui∩Uj for all i, j, then there is a unique section f ∈ F(U)
with f |Ui = fi.

Definition 10.2. A pre-sheaf F of abelian groups (or vector spaces, rings, etc.) on X is
called sheaf, if (i) and (ii) above hold.

Examples.

(1) Let G be an abelian group.

(a) The (locally) constant presheaf GX on X with values in G is given by

GX(U) = {f : U → G | f is locally constant}

for all open subsets U ⊂ X. This presheaf is a sheaf. Note that GX(U) = Gr, where
r denotes the number of connected components of U .

(b) The naive constant presheaf GnaivX on X with values in G, given by

GnaivX (U) = {f : U → G | f is constant}.

This presheaf is not a sheaf.

(c) The skyscraper presheaf G{x} with values in G and supported on a point x ∈ X is
given by

G{x}(U) =

{
0 if x /∈ U
G if x ∈ U.

This is a sheaf of abelian groups on X.

(d) If G carries a topology, e.g. G = R with the euclidean topology, then the presheaf
C0X,G of continuous functions on X with values in G is given by

C0X,G(U) := {f : U → G | f is continuous}.

This is a sheaf of abelian groups on X.

(2) Let X be a smooth manifold, then the presheaf C∞X of smooth real valued functions on
X is given by

C∞X (U) = {f : U → R | f is smooth}.
This presheaf is a sheaf of rings on X.

(3) Let X be a quasi-projective variety, then the presheaf OX of regular functions on X is
given by

OX(U) = k[U ] = {f : U → k | f is regular}.
This presheaf is a sheaf of rings on X.

To understand sheaves locally at a point, it is important to consider their stalks, defined as
follows.

Definition 10.3. Let X be a topological space, F a presheaf of abelian groups on X and let
x ∈ X be a point. The stalk of F at x is defined as the direct limit

Fx := lim
x∈U
F(U).

That is, elements in Fx are represented by pairs (U, s), where U ⊂ X is an open neighbourhood
of x and s ∈ F(U) is a section of F over U . Two pairs (U, s) and (U ′, s′) represent the same
element if there is an open subset x ∈ V ⊂ U ∩ U ′ such that s|V = s′|V .
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Lemma 10.4. The stalk Fx is an abelian group, with group law

[(U, s)] + [(V, t)] = [(U ∩ V, s|U∩V + t|U∩V )]

Proof. We essentially only have to check well-definedness of the group law, which is easy.
Indeed, once this is done, the neutral element is [(U, 0)] for any x ∈ U ⊂ X and the inverse
of [(U, s)] is [U,−s].

Example 10.5. Let X be a quasi-projective variety. Then the stalk OX,x of OX at a point
x ∈ X is nothing but the local ring of X at x.

Definition 10.6. Let F and G be presheaves of abelian groups on a topological space X. A
presheaf homomorphism ϕ : F −→ G is a collection of group homomorphisms ϕU : F(U) −→
G(U) with ϕU (s)|V = ϕV (s|V ) for all V ⊂ U and all s ∈ F(U). The homomorphism ϕ is an
isomorphism if there is a presheaf homomorphism ψ : G → F with ϕ ◦ψ = id and ψ ◦ϕ = id.

If F and G are sheaves, then a sheaf homomorphism ϕ is a homomorphism of the underlying
presheaves. More over, ϕ is an isomorphism of sheaves if it is an isomorphism of presheaves.

If ϕ : F → G is a homomorphism of presheaves, then there is an induced homomorphism of
abelian groups

ϕx : Fx → Gx, [(U, s)] 7→ [(U,ϕU (s))].

Definition 10.7. A sequence of homomorphisms of presheaves/sheaves

F → G → H

is exact if for all x ∈ X the induced sequence of stalks

Fx → Gx → Hx

is an exact sequence of abelian groups. In particular, ϕ : F → G is injective/surjective if the
induced homomorphism on all stalks is injective/surjective.

The most important difference between sheaves and presheaves is that sheaves are deter-
mined by their stalks, while presheaves are not. More precisely, there are homomorphisms of
presheaves (as we will see later) that are isomorphisms on all stalks (i.e. they are injective
and surjective), but which are not isomorphisms of presheaves. One of the main advantages
of sheaves is that this does not happen for sheaves.

Lemma 10.8. Let ϕ : F → G be a homomorphism of sheaves. Then ϕ is an isomorphism if
and only if it is injective and surjective.

Proof. If ϕ is an isomorphism, then there is an inverse ψ of ϕ and so for each x ∈ X, ψx is
an inverse of ϕx. Hence, ϕx is an isomorphism.

Let us conversely assume that ϕ is injective and surjective. Then ϕx : Fx → Gx is an
isomorphism of abelian groups for all x ∈ X. We aim to show that for all open subsets
U ⊂ X,

ϕU : F(U)→ G(U)

is an isomorphism. For this we need to check injectivity and surjectivity and both statements
are easy consequences of the sheaf axioms. This concludes the lemma.
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If ϕ : F −→ G is a sheaf homomorphism, then the kernel ker(ϕ), defined via

ker(ϕ)(U) = ker(ϕU ),

is a sheaf. The analogous definitions for the image and the cokernel do in general not give
sheaves, but only presheaves. This makes it necessary to introduce sheafifications, which is
a canonical way of passing from a presheaf to a sheaf without changing the corresponding
stalks.

Proposition 10.9. Let F be a presheaf on a topological space X. There is a sheaf F+ and
a morphism θ : F → F+ of presheaves, with the following universal property: for any sheaf
G and for any morphism of presheaves ϕ : F → G, there is a unique morphism of sheaves
ψ : F+ → G with ϕ = ψ ◦ θ.

The pair (F+, θ) is unique up to unique isomorphism; it is called the sheafification of F .
Moreover, θ induces an isomorphism on stalks.

Proof. We construct F+ as follows. For any open subset U ⊂ X, let F+(U) be the set of
functions

s : U →
⋃
x∈U
Fx

with s(x) ∈ Fx such that for each x ∈ U there is some open subset x ∈ V ⊂ U and a section
t ∈ F(V ) with s(y) = ty for all y ∈ V .

One checks easily that F+ with the natural restriction maps is a sheaf and that the natural
morphism of presheaves θ : F → F+ has the properties claimed in the proposition. The
uniqueness of (F+, θ) is a formal consequence of the uniqueness of ψ in the universal property
of (F+, θ).

Definition 10.10. A subsheaf F ⊂ G of a sheaf G is a sheaf such that for all open subsets
U ⊂ X, F(U) ⊂ G(U) is a subgroup and the restriction maps of F are given by restricting
the restriction maps of G to these subgroups.

Definition 10.11. Let ϕ : F → G be a morphism of sheaves of abelian groups on a topological
space X.

(1) the kernel of ϕ is the subsheaf of F , given by

ker(ϕ)(U) = ker(ϕU : F(U)→ G(U));

(2) the image of ϕ is the sheaf given as sheafification of the presheaf

U 7→ im(ϕU : F(U)→ G(U));

(3) the cokernel of ϕ is the sheaf given as sheafification of the presheaf

U 7→ coker(ϕU : F(U)→ G(U));

(4) if F is a subsheaf of G and ϕ is the natural inclusion, then the quotient sheaf G/F is
given by coker(ϕ), i.e. it is given as sheafification of

U 7→ G(U)/F(U).

Lemma 10.12. Let ϕ : F → G be a morphism of sheaves of abelian groups on a topological
space X.
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(1) ϕ is injective if and only if ker(ϕ) = 0;

(2) ϕ is surjective if and only if im(ϕ) = 0.

Proof. This is an immediate consequence of the fact that injectivity/surjectivity are defined
on the level of stalks and sheafifications do not change stalks.

Definition 10.13. Let f : X → Y be a continuous map of topological spaces.

(1) Let F be a sheaf on X. The pushforward sheaf, or direct image sheaf f∗F is the sheaf
which on an open subset V ⊂ Y is given by

f∗F(V ) = F(f−1(V )).

Note that this is well-defined because f−1(V ) ⊂ X is open, as f is continuous. Note also
that this definition yields indeed a sheaf.

(2) Let G be a sheaf on Y . The inverse image sheaf f−1G is the sheaf on X associated to the
presheaf

U 7→ lim
V⊃f(U)

G(V )

on X.

Examples.

(1) The stalks of f−1G are given by

(f−1G)x ∼= Gf(x).

(2) If f : Y ↪→ X is an embedding (e.g. open or closed), then we write G|Y := f−1G. If f is
an open embedding, then for all U ⊂ Y open, we have G|Y (U) = G(U).

(3) If Y = {pt.} is a single point, then f∗F is isomorphic to the constant sheaf with value
F(X) on Y .

(4) If G ∼= GY is a constant sheaf, then f−1G ∼= GX is constant as well.

(5) If F is constant, then f∗F is not necessarily constant. For instance, let f : R→ R be the
map t 7→ t2 in the Eucledian topology. Then

(f∗ZR)t =


0 if t < 0;

Z if t = 0;

Z⊕ Z if t > 0.

11 OX-modules: quasi-coherent, coherent, locally free

Definition 11.1. Let X be a quasi-projective algebraic variety.

(1) A sheaf M of OX-modules is a sheaf of abelian groups so that for all open subsets U ⊂
X the group M(U) has the structure of an OX-module which is compatible with the
corresponding restriction morphisms, i.e. for any open subsets V ⊂ U ⊂ X and any
sections s ∈M(U) and f ∈ OX(U) we have

(f · s)|V = f |V · s|V .
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(2) A morphism ϕ :M→M′ of OX-modules is a morphism of sheaves such that

ϕU :M(U)→M′(U)

is a morphism of OX(U)-modules for all U ⊂ X open.

(3) A OX-module is locally free of rank r if for any x ∈ X there is an open neighbourhood
x ∈ U ⊂ X such that there is an isomorphism of OU -modules:

M|U ∼= O⊕rU .

The most important example of a OX -module is constructed as follows.

Example 11.2. Let X be an affine algebraic variety with ring of regular functions R := k[X].

Let M be an R-module. We define a sheaf M̃ of OX-modules on X as follows.

For any x ∈ X, consider the localization MI(x) of M at the maximal ideal I(x) ⊂ R. For

U ⊂ X open, let M̃(U) be the set of all functions

s : U →
⋃
x∈U

MI(x)

with s(x) ∈ MI(x) and such that for any x ∈ U there is an element mx ∈ M and a function
fx ∈ R with fx(x) 6= 0 such that on some open neighbourhood x ∈ V ⊂ U \ VU (fx) of x, we
have s(y) = m

f for all y ∈ U . Since each MI(x) is an RI(x)-module, pointwise addition and

scalar multiplication endows M̃ with the structure of an OX-module.

Proposition 11.3. Let X be an affine algebraic variety with ring of regular functions R :=
k[X] and let M be an R-module.

(a) The stalk of M̃ at x ∈ X is isomorphic to MI(x).

(b) Let f ∈ R be a nonzero function and consider the open subset Uf := X \ {VX(f)}. Then,

M̃(Uf ) ∼= Mf

is the localization of M at the multiplicative system S = {fn | n ∈ N}.

(c) M̃(X) = M .

Proof. For a reference, see the argument in [4, Chapter II, Proposition 2.2].

Item (c) is an immediate consequence of (b). Similarly, item (a) is a consequence of (b),
because the open subsets of the form Uf form a basis in the topology and so it suffices to use
them in the computation of the direct limit

M̃x = lim
x∈U⊂X

M̃(U).

That is,

M̃x = lim
x∈Uf⊂X

M̃(Uf ) = lim
x∈Uf⊂X

Mf = lim
f∈R,f(x)6=0

Mf = MI(x).

It remains to prove item (b). Any element of Mf is of the form m
fn for some m ∈ M and

n ∈ N. It follows immediately from the definition, that such an element gives rise to a section

of M̃ over Uf . We thus get a map

ϕ : Mf → M̃(Uf ).
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We claim that ϕ is injective. Indeed, suppose that ϕ( mfn ) = 0. This means that

m

fn
= 0 ∈MI(x)

for all x ∈ U . But for x ∈ U , MI(x) is isomorphic to the localization of the Rf -module Mf

at the maximal ideal I(x)Rf . That is, the morphism of Rf -modules

Rf →Mf , 1 7→ m

fn

is zero when localized at any maximal ideal of Rf . But for a morphism of modules over a
ring, being zero is a local property which can checked at all maximal ideals this implies that
the above homomorphism is already zero, and so m

fn = 0, as we want.

The hard part is to show that ϕ is surjective. Conversely, let s ∈ M̃(Uf ). By assumptions,
there is an open cover Uf =

⋃
i∈I Vi such that s|Vi = mi

gi
for some mi ∈ M and fi ∈ R with

VVi(gi) = ∅. Shrinking Vi further, we may assume Vi = Ufi := X \ V (fi) for some fi ∈ R.

Since gi does not vanish on Vi, V (gi) ⊂ V (fi) and so fi ∈ I(V (fi)) ⊂ I(V (gi)) =
√

(gi). So
up to replacing fi by some power fni , we get fi ∈ (gi) and so fi = cigi with ci ∈ R. Replacing
mi by cimi, we may thus assume fi = gi. That is, s is given on Ufi by mi

fi
. On overlaps

Ufi ∩ Ufj = Ufifj , these elements need to coincide and so

mi

fi
=
mj

fj
∈Mfifj

by the injectivity proven above. The above equality means

(fifj)
n(fjmi − fimj) = 0

for some n > 0 which depends on i and j.

Since U is a noetherian topological space, we may also assume that the index set I is fi-
nite. hence, we can choose n in the above equality so large that it works for all i and j
simultaneously. That is,

fni f
n+1
j mi − fn+1

i fnj mj = 0

for all i, j. Replacing fi by fn+1
i and mi by fni mi, we do not change the elements mi

fi
and the

above identity simplifies to
fjmi − fimj = 0.

for all i, j. Since Uf =
⋃
Ufi , we have that

f ∈ I(V (f)) = I(V (f1, . . . , fr)) =
√

(f1, . . . , fr).

Up to replacing f by some power, we may thus assume that

f =
∑

cifi

for some ci ∈ R. For

m :=
∑

cimi,

we then have
fjm =

∑
i

cimifj =
∑
i

cifimj = fmj

and so m

f
=
mj

fj
∈Mfj

This shows that the section s ∈ M̃(U) coincides with ϕ(mf ), as we want.
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Corollary 11.4. In the notation of the previous proposition, the OX-module R̃ is isomorphic
to OX .

Proof. There is a natural map of sheaves

ψ : R̃→ OX ,

which is an isomorphism because it is an isomorphism on all stalks, since OX,x = RI(x) by

definition and M̃x = RI(x) by the previous proposition.

Definition 11.5. Let X be a quasi-projective variety. A OX-module M is quasi-coherent, if

for each x ∈ X there is an affine open neighbourhood x ∈ U ⊂ X, such that M|U ∼= M̃ for
some OX(U)-module M . If M is finitely generated, then M is called coherent.

Examples

(1) OX is a coherent OX -module by the corollary above. It follows from this that any locally
free OX -module is coherent. By the Exercise sheet 12, we thus see that the sheaf of
regular sections of an algebraic vector bundle of rank r on X is a coherent OX -module
for any r ∈ N.

(2) Let Y ⊂ X be a closed subvariety of a quasi-projective variety X. Let IY ⊂ OX be the
subsheaf of regular functions on X that vanish along Y . Then IY is coherent, because if

X is affine, then IY ∼= Ĩ(Y ) is the coherent sheaf associated to the k[X] = OX(X)-module
I(Y ) ⊂ k[X], which is finitely generated because k[X] is noetherian.

We have the following technical result, whose proof we will have to skip, even though it is
not hard, see [4, Chapter II, Proposition 5.4].

Proposition 11.6. Let X be a quasi-projective variety and let M be a quasi-coherent OX-
module on X. Then for any open affine subset U ⊂ X, the natural map

M̃(U)→M|U

is an isomorphism of OX-modules.

With the help of the above result, we can easily see that quasi coherent OX -modules on affine
varieties have a very pleasant behaviour.

Corollary 11.7. Let X be an affine variety and let

0→M1 →M2 →M3 → 0

be a short exact sequence of quasi-coherent OX-modules. Then the induced sequence on global
sections

0→M1(X)→M2(X)→M3(X)→ 0

is exact.

Proof. By the above proposition,Mi
∼= M̃i for some k[X]-modules Mi. The exactness of the

above sequence of OX -modules means that the corresponding sequence on stalks is exact.
By Proposition 11.3, we have (Mi)x ∼= (Mi(X))I(x) for all x ∈ X. Hence, the sequence of
k[X]-modules

0→M1(X)→M2(X)→M3(X)→ 0

becomes exact after localization at all maximal ideals of k[X], and so it was already exact to
begin with, because this is a local property, see [1, Chapter 3, page 40].
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12 Differential forms

Let R be a k-algebra. We define the R-module Ω1
R/k of Kähler differentials of R (over k) as

quotient Ω1
R/k = M/N of the free R-module M with basis given by symbols df where f ∈ R

by the submodule N ⊂M that is generated by the elements

d(f + g)− df − dg, d(fg)− fdg − gdf, da

for all f, g ∈ R and a ∈ k.

Lemma 12.1. If R is a finitely generated k-algebra, generated by elements t1, . . . , tn ∈ R,
(e.g. R = k[X] for an affine variety X ⊂ An), then the symbols dt1, . . . , dtn generate Ω1

R/k

as an R-module.

Proof. By assumption, any element f ∈ R can be expressed as polynomial in the ti. The
product rule shows that df =

∑ ∂f
∂ti
dti, where ∂f

∂ti
denotes the formal derivative of a polynomial

with respect to the symbol ti. This proves the lemma.

Lemma 12.2. Let ω =
∑
fidgi ∈ Ω1

R/k. Then for all x ∈ X the element ω(x) =
∑
fi(x)dxgi ∈

T ∗X,x is well-defined, i.e. independent of the representative
∑
fidgi of ω.

Proof. Clear.

Lemma 12.3. Let X be an affine variety with ring of regular functions R = k[X] and let
f ∈ R be a nonzero regular function on X. Then there is a natural isomorphism of Rf -
modules (Ω1

R/k)f
∼= Ω1

Rf/k
.

Proof. There is a natural map

ϕ : (Ω1
R/k)f −→ Ω1

Rf/k
,

∑
i gidhi
fm

7→
∑
i

gi
fm

dhi

of Rf -modules. This is surjective, because of the relation

d
g

fn
=
fndg + gdfn

f2n
.

To prove injectivity, assume that ∑
i

gi
fm

dhi = 0 ∈ Ω1
Rf/k

.

This means that the symbol
∑

i
gi
fmdhi can be written as a linear combination of symbols

d(
h

fm
+

g

fn
)− d h

fm
− d g

fn
, d(

h

fm
g

fn
)− h

fm
d
g

fn
− g

fn
d
h

fm
, da.

Using the above relation d g
fn = fndg+gdfn

f2n
, we find that

∑
i
gi
fmdhi = 0 in the localization of

Ω1
R/k at f , as we want.

Corollary 12.4. In the above notation, (Ω1
R/k)I(x)

∼= Ω1
RI(x)/k
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Proof. This is a formal consequence of the above lemma:

(Ω1
R/k)I(x) = lim

f∈R, f(x)6=0
(Ω1

R/k)f
∼= lim

f∈R, f(x) 6=0
Ω1
Rf/k

= Ω1
RI(x)/k

.

Definition 12.5. Let X be a quasi-projective variety. For x ∈ X, we put Ω1
X,x := Ω1

OX,x/k
.

We then define the sheaf Ω1
X of regular differential forms on X via

Ω1
X(U) = {ω : U → tx∈UΩ1

X,x | ω(x) ∈ Ω1
X,x, locally ω =

∑
fidgi}.

Natural multiplication with regular functions turns Ω1
X into an OX-module.

Proposition 12.6. The OX-module Ω1
X has the property that for any affine open subset

U ⊂ X,

Ω1
X |U ∼= Ω̃1

k[U ]/k.

In particular, Ω1
X is a coherent OX-module.

Proof. W.l.o.g. X = U is affine. Let R = k[X]. By the above corollary, we have Ω1
RI(x)/k

=

(Ω1
R/k)I(x). To prove the proposition, it now suffices to see that the local condition for the

functions
s : U → tx∈UΩ1

RI(x)/k
= tx∈U (Ω1

R/k)I(x)

that we used in the definition of Ω1
X and Ω̃1

R/k coincide. To see the latter, we only have to

note that if ω =
∑
gidfi, then gi = ai

bi
and fi = ci

di
for regular functions ai, bi, ci, di ∈ R on X

and the product rule shows that∑ ai
bi
d
ci
di

=
∑ ai

bi
· didci + ciddi

di
=
aididci + aiciddi

bidi
.

This sum of fractions can be rewritten as a single fraction of an element of Ω1
R/k by a function

on X that does not vanish locally at the given point, which is exactly the local condition that

appeared in the definition of Ω̃1
R/k.

Example 12.7. Ω1
An
∼= O⊕nAn

Proof. Let R = k[t1, . . . , tn]. Then Ω1
R/k is a free R-module with basis dt1, . . . , dtn. Hence

the result, because Ω1
An = Ω̃1

R/k.

Proposition 12.8. Let X be a smooth quasi-projective variety of dimension n. Then Ω1
X is

a locally free OX-module of rank n on X.

Proof. Pick a point x0 ∈ X. We need to show that Ω1
X is free in some neigbourhood of x0.

After shrinking X assume that it is affine. Hence, X = V (f1, . . . , fm) ⊂ AN for some
polynomials f1, . . . , fm ∈ k[t1, . . . , tN ]. Consider the Jacobian matrix

J(f1, . . . , fm)(x) :=

(
∂fi
∂tj

(x)

)
i,j

.
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The module Ω1
R/k is generated by the symbols dt1, . . . , dtN . On the other hand, since dfi = 0

for all i, we have the relations ∑
j

∂fi
∂tj

dtj = 0

for all i. Putting all these equations into a single one, it is convenient to consider the Jacobian
matrix

J(f1, . . . , fm) =

(
∂fi
∂tj

)
i,j

.

This is a N ×m-matrix with

J(f1, . . . , fm) ·


dt1
dt2
...

dtN

 = 0.

Recall also that by definition, for every x ∈ X the tangent space TX,x is a translate of the
kernel of the linear map given by J(f1, . . . , fN ). Since X is smooth of dimension n, we know
that for all x ∈ X,

rk(J(f1, . . . , fm)(x)) = N − n.
Hence, up to reordering of the coordinates ti, we may assume that

J(f1, . . . , fm)(x) =

(
∗ A(x)
∗ ∗

)
where A(x) is an (N − n) × (N − n)-matrix which is invertibel at our given point x0 ∈ X.
Being invertible is a Zariski open condition and so we may after shrinking X assume that
A(x) is invertible for all x ∈ X.

But then

0 =

(
A(x)−1 0

0 0

)
·
(
∗ A(x)
∗ ∗

)
·


dt1
dt2
...

dtN

 =

(
∗ 1
0 0

)
·


dt1
dt2
...

dtN

 .

Hence, for all i = n+ 1, . . . , N ,

dti =

n∑
i=1

λi(x)dti

for some regular functions λi on X. This shows that the R-module Ω1
R/k is generated by

dt1, . . . , dtn. It remains to prove that there are no relations among these symbols. Indeed,
suppose that

n∑
i=1

gidti = 0

for some regular functions gi ∈ R. By the first part, dxt1, . . . , dxtn form a basis of the
cotangent space T ∗X,x for all x ∈ X. Evaluating the above identity at x ∈ X we get

n∑
i=1

gi(x)dxti = 0

and so gi(x) = 0 for all x ∈ X and all i. Hence, gi = 0 for all i, as we want. This completes
the proof of the proposition.
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If M = Rr is a free R-module, we can define ΛpRM as R-module with generated by symbols
m1 ∧ · · · ∧mr which satisfy the usual conditions. This way, we can define a for any locally
free OX -module the exterior product ΛpOX

M as (the sheafification of)

U 7→ ΛpOX(U)M(U).

Definition 12.9. Let X be a smooth quasi-projective variety. Then Ωp
X := ΛpΩ1

X is the sheaf
of regular p-forms.

If n = dimX, then ωX := Ωn
X is the canonical sheaf (or canonical line bundle).

Note that ωX is a locally free OX -module of rank 1 on X.

Definition 12.10. Let X be a smooth projective variety. Then its geometric genus is defined
by

pg(X) := dimk(Γ(X,ωX)),

where Γ(X,ωX) = ωX(X) denotes the space of global sections of ωX . If X is a curve, we call
the geometric genus simply genus and denote it by g(X) := dimk(Γ(X,ωX)).

Example 12.11. Let X = P1. Then g(X) = 0.

Proof. We need to prove that Γ(P1,Ω1
P1) = 0. For this let ω ∈ Γ(P1,Ω1

P1). Consider the

standard open covering P1 = U0 ∪ U1 with Ui = P1 \ V (ti = 0). The rational functions
u0 = t1

t0
and u1 = t0

t1
satisfy

k[U0] = k[u0] and k[U1] = k[u1].

On Ui, we have
ω|Ui = gi(ui)dui

for some polynomial ui. Note that U01 = U0∩U1 is isomorphic to A1\{0} with ring of regular
functions k[U01] = k[u0, u

−1
0 ] = k[u−11 , u1] with u0 = u−11 . Hence, on U01, we get

g0(u0)du0 = g1(u1)du1 = g1(u
−1
0 )d

1

u0
= du0

and so
g0(u0) = g1(u

−1
0 )u−20 .

Since gi is a polynomial for each i, the above equality is only possible if gi = 0 for all i.
Hence, ω = 0, as we want.

Example 12.12. Let X = V (x30 + x31 + x32) ⊂ P2, where we assume that char(k) 6= 3. Then
ωX ∼= OX and so g(X) = 1.

Proof. Let Uij := X \ V (xi, xj). Then X = U01 ∪ U02 ∪ U12. On U01 we have the regular
functions u = x1

x0
and v = x2

x0
and we consider the regular differential form

ω01 :=
du

v2

on U0,1.

On U02, u, v are regular as well. Since u3 + v3 + 1 = 0, we have

3u2du+ 3v2dv = 0
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and so using that 3 is invertible in k, we get

du

v2
=
−dv
u2

=: ω02

where we note that ω1 is regular on U02. Finally, on U12, we have the regular functions u−1

and u
v . On U01 ∩ U12, we have du−1 = −u−2du

du

v2
=
u2

v2
d(u−1) =: ω12

which extends to a regular differential form ω12 on U12. Altogether, we have constructed a
nontrivial global section ω of ωX with

ω|Uij = ωij .

Looking at the local expressions above, one easily checks that ωij generates the k[Uij ]-module
Ω1
Uij/k

. We thus get a surjective morphism of OX -modules ϕ : OX → ωX , which on U ⊂ X

is given by
ϕU : OX(U)→ ωX(U), f 7→ f · ω.

Since X is a smooth curve, ωX = Ω1
X is locally free of rank one and so the above surjection

must be injective, hence an isomorphism. This concludes the proof of the example.

13 Line bundles and divisors

Operations on OX -modules: Let M and M′ be OX -modules. Then M⊗M′ is the OX -
module that is given as sheafification of

U 7→ M(U)⊗OX(U)M′(U).

Also, Hom(M,M′) is the OX -module, given by

U 7→ HomOU
(M|U ,M′|U ),

where HomOU
(M|U ,M′|U ) denotes the OX(U)-module given by the group of homomor-

phisms between the OU -modules M|U and M′|U . Moreover,

M∨ := Hom(M,OX)

and if M′ is locally free, then

Hom(M,M′) ∼=M∨ ⊗M′

Definition 13.1. Let X be a quasi-projective variety. By slight abuse of notation, we call a
locally free OX-module L of rank one a line bundle on X.

Let L and L′ be line bundles on X. Then L ⊗ L′ is again a line bundle on X. Similarly,
L∨ := Hom(L,OX) is a line bundle on X. Since

L∨ ⊗ L ∼= Hom(L,L),

this line bundle admits a section without zeros and so it is trivial:

L ⊗ L∨ ∼= OX .
Altogether, we see that the set of isomorphism classes of line bundles on X, denoted by PicX,
is an abelian group under ⊗.

Let now X be normal. Recall that for a divisor D ∈ Div(X), we have the OX -module OX(D),
given by

OX(D)(U) = {f ∈ k(X) | Div(f) +D ≥ 0}.
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Definition 13.2. Let D ∈ Div(X) be a divisor on X. We say that D is a Cartier divisor, if
OX(D) is locally free (of rank one).

Proposition 13.3. If X is smooth, then OX(D) is locally free of rank one. That is, any
divisor on X is Cartier.

Proof. Let x ∈ X. We need to find a neighbourhood x ∈ U ⊂ X of x, such that OX(D)|U ∼=
OU . Since X is smooth, OX,x is a regular local ring. Let D =

∑
i aiDi be a decomposition

into prime divisors Di ⊂ X. Up to shrinking X, we may assume x ∈ Di for all i. Each prime
divisor Di thus corresponds to a prime ideal

pi ⊂ OX,x,

consisting of all functions defined in some neighbourhood of x, which vanish along Di. Since
OX,x is a regular local ring, the height one prime ideal pi is principal:

pi = (gi)

for some gi ∈ OX,x (in fact, any gi ∈ pi irreducible will do the job). Up to shrinking X, we
may assume that X is affine and gi ∈ k[X] is regular on X for each i. Then

g :=
∏
i

gaii ∈ k(X)

satisfies Div(g) = D and so OX(D) ∼= OX by exercise 2c on sheet 11. This concludes the
proposition.

Note that OX(D)⊗OX(D′) ∼= OX(D+D′). Hence, if X is smooth, we get a homomorphism
of groups

Div(X)→ Pic(X), D 7→ OX(D)

and we know by Exercise 2 on sheet 11 that this descends to an injective group homomorphism

Cl(X) ↪→ Pic(X), [D] 7→ OX(D).

We aim to prove that this map is an isomorphism. To this end we need to show that the
above map is surjective, that is, any line bundle on a smooth quasi-projective variety comes
from a divisor.

Definition 13.4. Let L be a line bundle on a quasi-projective variety X. A rational section
of L is (the equivalence class of) a section s of L over some non-empty open subset U ⊂ X.

Let L be a line bundle on a normal quasi-projective variety X. Let s ∈ L(U) be a rational
section of L. Then

Div(s) ∈ Div(X)

is defined as follows. Let X =
⋃
Ui be an affine open covering of X such that there are

isomorphisms
ϕi : L|Ui −→ OUi .

Then
Div(s)|Ui := Div(ϕi(s)).

These definitions are compatible, because on Uij := Ui ∩ Uj , the composition

ϕij := ϕi ◦ ϕ−1j : OUij → OUij
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is an isomorphism and so Div(f) = Div(ϕij(f)). Hence,

Div(ϕj(s))|Uij = Div(ϕij(ϕj(s)))|Uij = Div(ϕi(s))|Uij .

This proves that the divisors Div(s)|Ui := Div(ϕi(s)) glue together to give a divisor

Div(s) ∈ Div(X).

The surjectivity of
Cl(X)→ Pic(X), [D] 7→ OX(D).

in the case where X is smooth, then follows form the following.

Proposition 13.5. Let L be a line bundle on a normal quasi-projective variety X, and let
s ∈ L(U) be a rational section. Then the divisor D := Div(s) has the property that

L ∼= OX(D).

Proof. Consider the map
ψ : OX(D)→ L

of OX -modules, given by
OX(D)(U)→ L(U), f 7→ f · s.

Note that this is well-defined, because

Div(f · s)|U = Div(f)|U + Div(s)|U ≥ 0

and so f · s ∈ L(U) is a regular section of L over U .

To see that ψ is an isomorphism, consider the map φ : L → OX(D) given by

φU : L(U)→ OX(D)(U), t 7→ f,

where f ∈ k(X) is the rational function given by t = fs. Clearly, φ is an inverse of ψ and so
the latter is an isomorphism, as claimed. This proves the proposition.

Definition 13.6. Let X be a smooth quasi-projective variety. Then the canonical divisor is
given by

KX = Div(s),

where s is a rational section of the canonical bundle ωX .

Note that
OX(KX) ∼= ωX

and so KX is unique up to linear equivalence. That is, the class of KX in Cl(X) is unique.

Example 13.7. KP1 = −2 ·H, where H is the class of a point on P1.

Proof. This follows from the computation that proved g(P1) = 0:

Consider the standard open covering P1 = U0 ∪ U1 with Ui = P1 \ V (ti = 0). The rational
functions u0 = t1

t0
and u1 = t0

t1
satisfy

k[U0] = k[u0] and k[U1] = k[u1].

On U0, we have the differential form
ω = du0
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which has no zeros and poles on U0.

Note that U01 = U0 ∩ U1 is isomorphic to A1 \ {0} with ring of regular functions k[U01] =
k[u0, u

−1
0 ] = k[u−11 , u1] with u0 = u−11 . Hence, on U01, we get

ω = du0 = du−11 =
−du1
u21

and so
Div(ω) = −2 · [0 : 1]

as claimed.

If X is a smooth projective curve, then

deg : Cl(X)→ Z

is well-defined and so we get a new numerical invariant of smooth projective curves, the
degree of KX .

Proposition 13.8. Let X ⊂ P2 be a smooth projective curve of degree d. Then

deg(KX) = d · (d− 3).

Proof. By assumption, there is an irreducible homogeneous polynomial F ∈ k[x0, x1, x2] of
degree d such that

X = VP2(F ).

Let Ui := X \ V (xi). On U0 we have regular functions y1 = x1
x0

and y2 = x2
x0

. Putting

f := F (1, y1, y2), we get
k[U0] = k[y1, y2]/f

and

0 = df =
∂f

∂y1
dy1 +

∂f

∂y2
dy2.

Since X is smooth, the above partials have no common zero on X and so the rational
differential form

ω :=
1
∂f
∂y1

dy2 = − 1
∂f
∂y2

dy1

on X satisfies Div(ω)|U0 = 0.

On U1 we have the regular functions z0 = x0
x1

and z2 = x2
x1

. Putting g := F (z0, 1, z2), we have

k[U1] = k[z0, z2]/g.

Moreover,
F (x0, x1, x2) = xd1g(z0, z2) = xd0f(y1, y2),

where y1 = z−10 and y2 = z2
z0

. Hence,

g(z0, z2) = zd0f(z−10 ,
z2
z0

)

and so
∂g

∂z2
(z0, z2) = zd−10

∂f

∂y2
(z−10 ,

z2
z0

)
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Hence,

ω =
1
∂f
∂y2

dy1 = zd−10

1
∂g
∂z2

dz−10 = −zd−30

1
∂g
∂z2

dz0.

Since ∂g
∂z0

dz0 = − ∂g
∂z2

dz2, we also find

ω = zd−30

1
∂g
∂z0

dz2.

Since the partials of g have no common zero on U1, we thus altogether conclude that

Div(ω)|U1 = (d− 3) · V (z0) ∩ U1.

Up to a linear change of coordinates, we may from the beginning assume that [0 : 0 : 1] /∈ X
and so X = U1 ∪ U0. Moreover, V (z0) ∩ U1 = V (x0) ∩X and so

KX = Div(ω) = (d− 3) · V (x0) ∩X

By Bezout’s theorem, deg(KX) = (d− 3)d, as claimed.

14 Riemann–Roch theorem for curves

Let X be a smooth projective curve and let D be a divisor on X. We then define

h0(X,D) := h0(X,OX(D)) := dimk(Γ(X,OX(D))).

Remark 14.1. The above notation is motivated by the fact that for any sheaf F on a topo-
logical space X, Γ(X,F) = H0(X,F) coincides with the 0-th sheaf cohomology of F . In the
case where X is a quasi-projective variety and F is a quasi-coherent OX-module, we define
these cohomology groups in Section 15 below.

The most powerful tool in the study of divisors or line bundles on a smooth projective curve
X is the Riemann-Roch theorem, which states the following.

Theorem 14.2. Let X be a smooth projective curve, D a divisor on X. Then,

h0(X,D)− h0(X,KX −D) = degD + 1− g(X)

We will now collect a few consequences of that theorem. To this end note that h0(X,D) =
0 if degD < 0. Hence, the above theorem allows us to compute h0(X,D) explicitly if
deg(KX −D) = degKX − degD < 0.

(1) Applying the theorem to D = KX , we find that g(X)− 1 = degKX + 1− g(X) and so

g(X) =
degKX + 2

2

In particular, this implies that a smooth projective curve X ⊂ P2 of degree d has genus

g(X) =
d(d− 3) + 2

2
=

(d− 1)(d− 2)

2
.
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(2) If D ≥ 0 is an effective divisor on P1, then

h0(P1, D) = degD + 1.

(3) If X is a smooth projective curve of genus 0, then X ∼= P1.

Proof. Let x, y ∈ X and consider the divisor D = x − y ∈ Div(X). Since g(X) = 0, we
have degKX = −2 and so h0(X,KX −D) = 0. Hence, Riemann–Roch yields

h0(X,D) = degD + 1− g(X) = 1.

That is, there is a rational function ϕ ∈ k(X) with

Div(ϕ) +D ≥ 0

Since D as well as Div(ϕ) are divisors of degree zero, we must have

Div(ϕ) = −D.

If x 6= y, then ϕ yields a rational map X 99K P1 of degree one and one checks that this
is an isomorphism (see some previous Exercise sheet). Hence, X ∼= P1 as claimed.

(4) An elliptic curve is a smooth projective curve X with g(X) = 1. We claim that any
elliptic curve X has the following properties:

ωX ∼= OX and h0(X,D) = degD for all D ≥ 0.

Proof. First note that ωX ∼= OX is equivalent to KX ∼ 0. Since g(X) = 1, we have
h0(X,KX) = 1. That is, there is a rational function ϕ ∈ k(X) with

Div(ϕ) +KX ≥ 0.

On the other hand, degKX = 0 because g(X) = 1 and so the above inequality must be
an equality:

Div(ϕ) +KX = 0.

Hence, KX ∼ 0, as claimed. For the second claim, note that D ∼ 0 if degD = 0
and D ≥ 0. We may thus assume degD > 0. Then h0(X,KX − D) = 0 and so
h0(X,D) = degD + 1, as claimed.

(5) Let X be an elliptic curve, pick a point x0 ∈ X and let Cl0(X) := ker(deg : Cl(X)→ Z).
Then there is a natural bijection

φ : X → Cl0(X), x 7→ x− x0.

In particular, X carries the structure of a group.

Proof. Note that φ is injective, as otherwise there was a rational function ϕ ∈ k(X) with
Div(ϕ) = x − x0 for x 6= x0 and this implies X ∼= P1, hence g(P1) = 0. Next, we need
to prove surjectivity. That is, for any divisor D of degree zero we need to find x ∈ X
with D ∼ x − x0. To this end, consider the divisor D′ := D + x0 of degree one. By
Riemann-Roch, h0(X,D′) = 1 and so there is a rational function ϕ ∈ k(X) with

D′′ := Div(ϕ) +D′ ≥ 0.

Note that deg(D′′) = deg(D′) = 1. Since D′′ is effective, we find that D′′ = x for a point
x ∈ X. But then

x− x0 = Div(ϕ) +D

and so D ∼ x− x0, as claimed.
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(6) Let X be an elliptic curve. Then there is an irreducible cubic polynomial F ∈ k[x0, x1, x2]
such that X is isomorphic to the plane curve VP2(F ) ⊂ P2.

Sketch of Proof. Pick a point x ∈ X and consider for n ≥ 0 the divisor Dn = 3 · x on X.
By Riemann-Roch, we have h0(X,Dn) = n and there are by definition natural inclusions

H0(X,Dn−1) ⊂ H0(X,Dn).

We deduce that H0(X,D1) is generated by a constant rational function ϕ1 = λ 6= 0.
Moreover, H0(X,D2) is generated by ϕ1 and by a rational function ϕ2 which has a pole
of order two at x and is regular otherwise. Finally H0(X,D3) is generated by ϕ1, ϕ2 and
by a rational function ϕ3 which has a pole of order three at x and is regular otherwise.

Consider now the rational map

ϕ := [ϕ1 : ϕ2 : ϕ3] : X 99K P2.

Since each ϕi is regular away from x, ϕ is regular away from x. Moreover, in some
njeighbourhood of x, we have

ϕ = [
ϕ1

ϕ3
:
ϕ2

ϕ3
: 1]

which shows that ϕ is regular at x. This shows that ϕ is a regular map, as claimed.

Next we aim to show that ϕ is an embedding. For this we need to see that ϕ separates
points and tangent directions and both statements follow from the fact that

h0(X, 3x−D′) = 1

for any degree two divisor D′.

Now that we know that ϕ embeds X as a plane curve in P2, we deduce e.g. from the
formula for the degree of the canonical divisor of smooth plane curves, that the degree
of the respective curve must be three. This completes the proof.

15 Cohomology of quasi-coherent sheaves

15.1 Definition and easy examples

Let X be a topological space, F a sheaf on X. Let X =
⋃r
i=1 Ui be a finite open covering ,

denoted by U . For every open subset {i0, i1, . . . , ip} ⊂ {1, . . . , r}, put

Ui0,...,ip := Ui0 ∩ · · · ∩ Uip

We then define
Cp := Cp(U ,F) := ⊕i0<···<ipF(Ui0,...,ip)

together with maps
dp : Cp → Cp+1, (si0,...,ip) 7→ (tj0,...,jp+1),

where

tj0,...,jp+1 :=

p+1∑
l=0

(−1)lsj0,...,ĵl,...,jp+1
|Uj0,...,jp+1

.

This way we get a complex
0→ C0 → C1 → C2 → . . .
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The cohomology groups of this complex are called Cech cohomology groups of F with respect
to the cover U :

Hp(U ,F) :=
ker(dp : Cp → Cp+1)

im(dp : Cp−1 → Cp)
.

We will use the following theorem as a black box for now.

Theorem 15.1. Let X be quasi-projective variety and let U and U ′ be finite coverings by
affine open subsets of X. Then for any quasi-coherent sheaf F , there are natural isomorphisms

Hp(U ,F) ∼= Hp(U ′,F).

In the above theorem, the assumption that F is quasi-coherent is essential, as it guarantees
that taking global sections on affine pieces is right exact. By the above theorem, we can make
the following definition of sheaf cohomology in the case of quasi-coherent sheaves.

Definition 15.2. Let X be a quasi-projective variety and let F be a quasi-coherent OX-
module on X. Then the sheaf cohomology of F is defined by

H i(X,F) := H i(U ,F).

The next lemma explains the notation h0(X,F) = dimk(Γ(X,F)), used before, where we
recall that Γ(X,F) = F(X) denotes the space of global sections of F .

Lemma 15.3. We have H0(X,F) = Γ(X,F).

Proof. For any open covering U of X, we have

H0(U ,F) = F(X)

as a consequence of the sheaf axioms. This concludes the proof of the lemma.

Example 15.4. Let X = P1, then H1(X,OX) = 0 and H1(X,ωX) ∼= k.

Proof. Consider the affine open cover X = U0 ∪U1 with Ui = P1 \ V (ti). On U0 we have the
affine coordinate u0 = t1

t0
and on U1, we have the affine coordinate u1 = u−10 .

The Cech complex for H i(X,OX) reads:

0→ OX(U0)⊕OX(U1)
d0→ OX(U0 ∩ U1)→ 0,

where d0(f, g) = g − f . Note that

OX(U0) = k[u0], OX(U1) = k[u1] = k[
1

u0
], k[U0, U1] = k[u0, u

−1
0 ].

Hence, H1(X,OX) = coker(d0) = 0, as claimed.

Next, the Cech complex for H i(X,ωX) reads:

0→ Ω1(U0)⊕ Ω1(U1)
d0→ Ω1(U0 ∩ U1)→ 0,

where d0(α, β) = β − α. Note that

Ω1(U0) = k[u0]du0, Ω1(U1) = k[u1]du1 = k[u−10 ]
−1

u20
du0, Ω1(U0 ∩ U1) = k[u0, u

−1
0 ]du0.

Hence,

H1(X,ωX) = coker(d0) ∼=
du0
u0

k ∼= k.
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15.2 Four important theorems

The most important property of cohomology is the existence of long exact sequences associ-
ated to short exact sequences of sheaves on X, as follows.

Theorem 15.5. Let X be a quasi-projective variety and let 0 → F1 → F2 → F3 → 0 be a
short exact sequence of quasi-coherent OX-modules. Then there is a long exact sequence

· · · → Hp(X,F1)→ Hp(X,F2)→ Hp(X,F3)→ Hp+1(X,F1)→ . . .

Sketch of proof. Fix an affine open covering U of X. As a matter of fact that we will prove
next term, the intersections Ui0,...,ip are all affine.

Let C∗i be the Cech complex of Fi with respect to U . The short exact sequence of sheaves
then induces a short exact sequence of complexes

0→ C∗1 → C∗2 → C∗3 → 0;

the zero on the right is here due to the fact that taking global sections of quasi-coherent
sheaves on affine varieties is exact, as we have seen on one of the exercise sheets. Note that
the maps C∗i → C∗i+1 respect the differentials and so they are really maps of complexes.
The long exact sequence in cohomology is now a consequence the snake lemma, as we recall
below.

Lemma 15.6. Let R be a commutative ring. Consider a commutative diagram of R-modules

M1

d1
��

f //M2

d2
��

g //M3

d3
��

// 0

0 //M ′1
f ′ //M ′2

g′ //M ′3

with exact rows. Then there is an induced exact sequence

ker(d1)→ ker(d2)→ ker(d3)→ coker(d1)→ coker(d2)→ coker(d3).

Proof. This is standard. The boundary map ker(d3)→ coker(d1) is constructed via diagram
chasing. The remaining maps are induced by f, g, f ′ and g′ and exactness is checked directly
via diagram chasing.

Corollary 15.7. Let R be a commutative ring. Let 0 → C∗1
f→ C∗2

g→ C∗3 → 0 be an exact

sequence of complexes of R-modules C∗i that are bounded to the left, i.e. Cji = 0 for all j << 0.
Then there is an induced long exact sequence in cohomology

· · · → H i(C∗1 )→ H i(C∗2 )→ H i(C∗3 )→ H i+1(C∗1 )→ . . .

Proof. Let dij : Cij → Ci+1
j denote the differential in Cj . We construct

· · · → H i(C∗1 )→ H i(C∗2 )→ H i(C∗3 )

by induction on i. Since the complexes are bounded to the left, the induction start is clear.
Suppose now that the above long exact sequence is constructed up to index i. Consider the
commutative diagram

coker(di−11 )

di1
��

f i // coker(di−12 )

di2
��

gi // coker(di−13 )

di3
��

// 0

0 // ker(di+1
1 )

f i+1
// ker(di+1

2 )
gi+1

// ker(di+1
3 )
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with exact rows. The snake lemma then yields an exact sequence

· · · → H i(C∗1 )→ H i(C∗2 )→ H i(C∗3 )→ H i+1(C∗1 )→ H i+1(C∗2 )→ H i+1(C∗3 ).

This concludes the proof of the corollary.

In the remainder of this section, we state mostly without proofs some of the most important
properties (besides the existence of long exact sequences mentioned above) of sheaf cohomol-
ogy of quasi-coherent sheaves.

First of all, as a consequence of the definition, resp. the theorem above which lead us to make
the definition, we find the following result, originally due to Serre.

Theorem 15.8. Let X be an affine variety, then Hk(X,F) = 0 for all k > 0 and any
quasi-coherent OX-module F .

We also have the following theorem of Grothendieck, which we state without proof.

Theorem 15.9. Let X be a quasi-projective variety of dimension n. Then for any quasi-
projective F on X and for any integer p > n, we have

Hp(X,F) = 0.

Next, we state without proof Serre-duality.

Theorem 15.10. Let X be a smooth projective variety, n = dimX and E a locally free
OX-module on X. Then there are natural isomorphisms

Hp(X, E) ∼= Hn−p(X,ωX ⊗ E∨)∗.

16 Proof of Riemann–Roch for curves

Let F be a quasi-coherent sheaf on a quasi-projective variety X. We write

hi(X,F) := dimkH
i(X,F).

If X is projective and F is coherent, then these dimensions are finite. We then define the
Euler characteristic of F via

χ(X,F) :=
∑

(−1)ihi(X,F).

This is a finite sum, because hi(X,F) = 0 for i < 0 or i > dimX. If F = OX(D), we also
write hi(X,D) := hi(X,OX(D)). By Serre duality, hi(X,D) = hn−i(X,KX − D) if X is
smooth projective of dimension n.

With the above notation, the Riemann–Roch theorem for curve reads as follows.

Theorem 16.1. Let X be a smooth projective curve and let D ∈ Div(X). Then,

χ(X,OX(D)) = h0(X,D)− h0(X,KX −D) = degD + 1− g(X).

Proof. Step 1. The case where D = 0.

Proof. Since h0(X, 0) = 1 and h0(X,KX) = g(X), the theorem is trivially true in this
case.
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Step 2. Let D′ := D − x. Then

χ(X,D′) = χ(X,D)− 1

and so the theorem holds for D if and only if it holds for D′. In particular, the theorem holds
for D if it holds for D − x or D + x.

Proof. Consider the short exact sequence of sheaves

0→ OX(D′)→ OX(D)
β−→ kx → 0,

where β is defined as follows. Let a ∈ Z be the maximal integer such that D − ax ≥ 0.
Then local sections of OX(D) around x have a pole/zero of order at most a. If π ∈ OX,x
is a local parameter, i.e. a generator of the maximal ideal mX,x, then for any local section
ϕ ∈ OX(D)(U) in a suitable neighbourhood x ∈ U ⊂ X of x, we have that πa · ϕ is regular
at x and so

β(ϕ) := πaϕ(x) ∈ k
is well-defined. This defines β. Since λπ−a is for any λ ∈ k a local section of OX(D) at
x, we find that β is injective and the kernel is obviously given by the subsheaf OX(D′) ⊂
OX(D). This proves that the above sequence is a short exact sequence of quasi-coherent
OX -modules (note that the skyscraper sheaf kx is quasi-coherent, as it corresponds to the
module OX,x/mX,x), and so we get a long exact sequence

0→ H0(X,D′)→ H0(X,D)→ H0(X, kx)→ H1(X,D′)→ H1(X,D)→ 0

where we use that H1(X, kx) = 0, because we can use an affine open covering of X such that
x is not contained in the intersection of any two distinct open subsets and so Cp = 0 for all
p ≥ 1. The above exact sequence implies

0 = h0(X,D′)− h0(X,D) + 1− h1(X,D′) + h1(X,D).

That is
χ(X,D′) + 1 = χ(X,D)

and so the claim in step 2 follows.

Step 3. The general case.

Proof. Write D = D′ −D′′ for effective divisors D′, D′′ that have no points in common. We
prove the theorem by induction on |D| := degD′ + degD′′. If |D| = 0, then D = 0 and so
the theorem follows from step 1. Otherwise, there is a point x ∈ X such that |D − x| < |D|
or |D+x| < |D|. By step 2, the theorem holds for D if and only if it holds for D−x or D+x
and so we find by induction that it holds for D. This finishes the proof of the theorem.
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