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Abstract. A conjecture of Kotschick predicts that a compact Kähler manifold X

fibres smoothly over the circle if and only if it admits a holomorphic one-form without

zeros. In this paper we develop an approach to this conjecture and verify it in dimension

two. In a joint paper with Hao [HS19], we use our approach to prove Kotschick’s

conjecture for smooth projective threefolds.

1. Introduction

This paper is motivated by the following conjecture of Kotschick [Ko13].

Conjecture 1.1. For a compact Kähler manifold X, the following are equivalent.

(A) X admits a holomorphic one-form without zeros;

(B) X admits a real closed 1-form without zeros; or, by Tischler’s theorem [Ti70] equiv-

alently, the underlying differentiable manifold is a C∞-fibre bundle over the circle.

The implication (A) ⇒ (B) is clear; the possibility of the converse implication (B) ⇒
(A) is asked in [Ko13]. Condition (B) is equivalent to asking that the smooth manifold

that underlies X is a quotient M × [0, 1]/ ∼, where M is a closed real manifold of odd

dimension and M×0 is identified with M×1 via some diffeomorphism of M . Kotschick’s

conjecture relates this purely topological condition with the complex geometric condition

that X has a holomorphic one-form without zeros.

The purpose of this paper is to related Kotschick’s conjecture to the following condition

(C) there is a holomorphic one-form ω ∈ H0(X,Ω1
X), such that for any finite étale cover

τ : X ′ → X, the sequence

H i−1(X ′,C)
∧ω′−−→ H i(X ′,C)

∧ω′−−→ H i+1(X ′,C),

given by cup product with ω′ := τ ∗ω, is exact for all i.
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This is motivated by a theorem of Green and Lazarsfeld [GL87, Proposition 3.4], who

proved the implication (A) ⇒ (C). Our first result is the following, which in view of

Green and Lazarsfeld’s theorem yields some positive evidence for Conjecture 1.1.

Theorem 1.2. For any compact Kähler manifold X, we have (B) ⇒ (C).

By the above theorem, in order to prove Kotschick’s conjecture, it would be enough

to show that (C) implies (A). Compared to the original implication (B) ⇒ (A), this

has the major advantage that (C) and (A) are complex geometric conditions, while (B)

is not. More precisely, it is natural to wonder whether a one-form ω ∈ H0(X,Ω1
X)

which satisfies condition (C) must be without zeros. This would have the remarkable

implication that the question whether ω has zeros depends only on the de Rham class

of ω and the homotopy type of X. We show that this is true for surfaces.

Theorem 1.3. Let X be a compact Kähler surface. If ω ∈ H0(X,Ω1
X) satisfies condition

(C), then it has no zeros. In particular, Conjecture 1.1 holds for compact Kähler surfaces.

The proof of Theorem 1.3 uses classification of surfaces. In the Appendix to this paper,

written jointly with Lin, we give however a more general and direct argument which does

not rely on classification results, see Theorem A.1 below.

In joint work with Hao [HS19], we use the approach developed here to prove Conjecture

1.1 for smooth projective threefolds.

The following theorem proves some partial results in arbitrary dimension.

Theorem 1.4. Let X be a compact connected Kähler manifold with a holomorphic one-

form ω such that the complex (H∗(X,C),∧ω) given by cup product with ω is exact. Then

the analytic space Z(ω) given by the zeros of ω ∈ H0(X,Ω1
X) has the following properties.

(1) For any connected component Z ⊂ Z(ω) with d = dimZ,

Hd(Z, ωX |Z) = 0.

In particular, ω does not have any isolated zero.

(2) If f : X → A is a holomorphic map to a complex torus A such that ω ∈ f ∗H0(A,Ω1
A),

then f(X) ⊂ A is fibred by tori.

Ein and Lazarsfeld [EL97, Theorem 3] showed that the image of a morphism f : X → A

to a complex torus A is fibred by tori if χ(X,ωX) = 0 and dim f(X) = dimX. In item

(2) above we obtain the same conclusion without any assumption on f , but where we

replace χ(X,ωX) = 0 by the stronger condition on the exactness of (H∗(X,C),∧ω).

Theorem 1.2 and item (2) in the above theorem imply for instance that a Kähler

manifold X with simple Albanese torus Alb(X) and with b1(X) > 2 dim(X) does not

admit a C∞-fibration over the circle. Similarly, we obtain the following corollary in the

projective case.
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Corollary 1.5. Let X be a smooth complex projective variety such the manifold which

underlies X fibres smoothly over the circle. Then there is a surjective holomorphic mor-

phism f : X → A to a positive-dimensional abelian variety A.

The following example of Debarre, Jiang and Lahoz shows that the étale covers in

condition (C) are necessary to make Theorem 1.3 true.

Example 1.6 ([DJL17, Example 1.11]). Let C1, C2 be smooth projective curves with

g(C1) > 1 and g(C2) = 1 and automorphisms ϕi ∈ Aut(Ci) of order two such that Ci/ϕi
has genus one for i = 1, 2. Then the quotient

X := (C1 × C2)/(ϕ1 × ϕ2)

has the same rational cohomology ring as an abelian surface, and so ∧ω is exact on

cohomology for any non-zero ω ∈ H0(X,Ω1
X). However, if ω is obtained as pullback via

the map π : X → C1/ϕ1, then it vanishes along the multiple fibres of π, which lie above

the branch points of C1 → C1/ϕ1.

Remark 1.7. This paper raises the question whether condition (C) implies (A). In view

of [GL87, Proposition 3.4] it is natural to wonder whether more generally, a holomorphic

one-form ω ∈ H0(X,Ω1
X) such that for any finite étale cover τ : X ′ → X

H i−1(X ′,C)
∧τ∗ω−−−→ H i(X ′,C)

∧τ∗ω−−−→ H i+1(X ′,C)

is exact for all i < c implies that codimX(Z(ω)) ≥ c. This goes back to [BWY16], where

it is asked whether equality always holds in [BWY16, Theorem 1.1]. However, blowing-up

a point in Z(ω) easily produces counterexamples to this conjecture.

Why the Kähler assumption? The Kähler assumption in Conjecture 1.1 is essential.

For instance, a Hopf surface X is a compact complex surface with H0(X,Ω1
X) = 0, whose

underlying differentiable manifold is diffeomorphic to S1×S3, and so it satisfies (B) but

not (A).

Acknowledgement. I am grateful to Dieter Kotschick for sending me the preprint

[Ko13] in spring 2013, where he poses the problem about the equivalence of (A) and (B) in

Conjecture 1.1. I am also grateful to Rui Coelho, Feng Hao, Dieter Kotschick and Anand

Sawant for useful conversations and to Hsueh-Yung Lin, Mihnea Popa, Christian Schnell

and Botong Wang for useful comments. This work is supported by the DFG Grant

“Topologische Eigenschaften von Algebraischen Varietäten” (project no. 416054549).

Notation. For a holomorphic one-form ω on a Kähler manifold X, we denote by Z(ω)

the (possibly non-reduced) analytic space given by the zeros of ω, viewed as a section of

the vector bundle Ω1
X .
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2. Proof of Theorem 1.2

Let X be a smooth connected manifold. We denote by Loc(X) the group of local

systems on X whose stalks are one-dimensional C-vector spaces. Since local systems on

the interval are trivial, the choice of a base point s ∈ S1 induces a canonical isomorphism

Loc(S1) ∼= C∗. Hence, if we fix a base point x ∈ X, then for any L ∈ Loc(X), any

continuous map γ : S1 → X with γ(s) = x yields a canonical element γ∗L ∈ Loc(S1) ∼=
C∗, which, as one checks, depends only on the homotopy class of γ. This construction

gives rise to the so called monodromy representation, which (since X is connected)

induces an isomorphism between Loc(X) and the character variety

Char(X) := Hom(π1(X, x),C∗) ∼= H1(X,C∗).

If L ∈ Loc(X), then the associated complex line bundle has locally constant transition

functions, hence it admits a flat connection and so the first Chern class c1(L) must be

torsion. The long exact sequence associated to the short exact sequence 0→ Z→ C→
C∗ → 0 of locally constant sheaves on X thus shows that Loc(X) is isomorphic to an

extension of a finite group by the connected subgroup Loc0(X) ⊂ Loc(X) which contains

the trivial local system. Moreover,

Loc0(X) ∼=
H1(X,C)

H1(X,Z)
∼= (C∗)b1(X).

coincides with the subgroup {L ∈ Loc(X) | c1(L) = 0}.

2.1. Local systems associated to closed 1-forms and Novikov’s inequality. If α

is a closed complex valued 1-form on X, then we can construct a local system L(α) ∈
Loc0(X) as follows. Consider the twisted de Rham complex (A∗X,C, d+∧α), where AkX,C
denotes the sheaf of complex valued C∞-differential k-forms on X, and where ∧α acts

on a k-form β via β 7→ α ∧ β. There is an open covering U = {Ui}i∈I of X such that

α|Ui
= dgi for some smooth function gi on Ui. For a k-form β on Ui, we then have

(d + ∧α)(β) = 0 if and only if d(egiβ) = 0. This shows that the twisted de Rham

complex (A∗X,C, d + ∧α) is exact in positive degrees and it resolves a sheaf L(α) whose

sections above Ui are given by all smooth functions f with d(egif) = 0, i.e. f = e−gic

for some constant c ∈ C. Hence, L(α) ∈ Loc(X) is a local system with stalk C on X.

Moreover, c1(L(α)) = 0 because the cocycle (gi − gj) ∈ Č1(U , (A0
X)×) maps to zero in

H2(X,Z) and so

L(α) ∈ Loc0(X), (1)

as we want.
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Since L(α) is resolved by the Γ-acyclic complex (A∗X,C, d+ ∧α), we find that

Hk(X,L(α)) = Hk((A∗(X,C), d+ ∧α)), (2)

where Ak(X,C) = Γ(X,AkX,C). In view of (2), we can define the Novikov Betti numbers

bi(α) of α as follows, cf. [Pa87] or [Fa04]:

bk(α) := dimCH
k(X,L(α)).

A closed 1-form α on X is Morse if locally at each zero x ∈ Z(α) of α, α = dh for some

Morse function h. If α is Morse, its Morse index at a zero x is defined as the Morse index

of h and we denote by mi(α) the number of zeros of α of Morse index i. The Novikov

inequalities then state the following, see [Pa87, Theorem 1]:

Theorem 2.1 (Novikov’s inequalities). Let X be a closed manifold and let α be a closed

1-form on X. Suppose that α is Morse in the above sense. Then for sufficiently large

t ∈ R, mi(α) ≥ bi(tα). In particular, if α has no zeros, then for t� 0,

H i(X,L(tα)) = 0 for all i.

2.2. Local systems associated to holomorphic 1-forms. Let now X be a compact

Kähler manifold. For any holomorphic 1-form ω on X, ω is closed and so we get a local

system L(ω) as above. This induces a short exact sequence

0 −→ H0(X,Ω1
X) −→ Loc0(X) −→ Pic0(X) −→ 0, (3)

where Loc0(X)→ Pic0(X) is given by L 7→ L⊗C OX .

Lemma 2.2. Let X be a compact Kähler manifold and let ω ∈ H0(X,Ω1
X) be a holo-

morphic 1-form. Let c ∈ Z ∪ {∞} be maximal such that

H i−1(X,C)
∧ω−→ H i(X,C)

∧ω−→ H i+1(X,C)

is exact for all i < c. Then the local system L(ω) associated to ω satisfies H i(X,L(ω)) =

0 for all i < c. Moreover, if c 6=∞, then Hc(X,L(ω)) 6= 0.

Proof. The local system L(ω) is resolved by the following complex

(Ω∗X , ∂ + ∧ω) := 0 −→ Ω0
X

∂+∧ω−−−→ Ω1
X

∂+∧ω−−−→ . . .Ωn
X−1

∂+∧ω−−−→ Ωn
X → 0.

To see that this complex is exact in positive degrees, one uses that locally ω = dh and so

for any local holomorphic form β, we have dehβ = eh(dβ+dh∧β) and so ∂β+ω∧β = 0

if and only if dehβ = 0 and we can use the holomorphic Poincaré lemma to prove the

claim. Hence,

H i(X,L(ω)) = Hi(X, (Ω∗X , ∂ + ∧ω)).
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There is a spectral sequence

′Ep,q
1 := Hp(X,Ωq

X)⇒ Hp+q(X, (Ω∗X , ∂ + ∧ω)).

The differential d1 :′ Ep,q
1 →′ Ep,q+1

1 is induced by ∂ + ∧ω. Since ∂ acts trivially on
′Ep,q

1 := Hp(X,Ωq
X), we find that d1 = ∧ω. It thus follows from [GL87, Proposition 3.7]

that the above spectral sequence degenerates at the second page, i.e. ′E2 = ′E∞.

Our assumption implies ′Ep,q
2 = 0 for p+ q < c and so H i(X,L(ω)) = 0 for i < c. Let

us now assume c 6=∞. By the definition of c,

Hc−1(X,C)
∧ω−→ Hc(X,C)

∧ω−→ Hc+1(X,C)

is not exact. Since ω ∈ H1,0(X) is of type (1, 0), the above complex respects the Hodge

decomposition and so we find that there must be some j such that

Hj−1,c−j(X)
∧ω−→ Hj,c−j(X)

∧ω−→ Hj+1,c−j(X)

is not exact. Hence ′Ej,c−j
2 6= 0. Since ′Ej,c−j

2 = ′Ej,c−j
∞ , we get Hc(X,L(ω)) 6= 0, as we

want. This concludes the lemma. �

2.3. Proof of Theorem 1.2. Let X be a compact Kähler manifold which admits a real

closed one-form α without zeros, i.e. condition (B) in Conjecture 1.1 holds. Since the

pullback of α via a finite étale cover is again a real closed one-form without zeros, in

order to prove (C), it suffices to show that X carries a holomoprhic one-form ω such that

∧ω is exact on cohomology. For this, we may without loss of generality assume that X

is connected.

Since α has no zero on X, Theorem 2.1 implies that there is a local system L ∈ Loc0(X)

that has no cohomology. By the generic vanishing theorems [GL87, GL91, Ar92, Si93],

the locus of those local systems that have some cohomology are subtori, translated by

torsion points, see [Wa16, Theorem 1.3]. It follows that for general ω ∈ H0(X,Ω1
X), the

local system L(ω) has no cohomology. It thus follows from Lemma 2.2 that

H i−1(X,C)
∧ω−→ H i(X,C)

∧ω−→ H i+1(X,C)

is exact for all i, as we want. This finishes the proof of Theorem 1.2.

Remark 2.3. Botong Wang points out that one can bypass the use of Theorem 2.1 in

the above argument by showing directly that if X is a C∞-fibre bundle over the circle,

then the pullback of a general local system on the circle has no cohomology on X.

Remark 2.4. Let X be a compact connected Kähler manifold. As we have used above,

the results in [GL87] imply that (H∗(X,C),∧ω) is exact if and only if L(ω) has no

cohomology. The locus of such local systems is well understood by generic vanishing

theory. In particular, [Wa16, Theorem 1.3] implies that the locus of those holomorphic
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one-forms ω ∈ H0(X,Ω1
X) for which (H∗(X,C),∧ω) is not exact is a finite union of

linear subspaces of the form f ∗i H
0(Ti,Ω

1
Ti

), where fi : X → Ti is a finite collection

of holomorphic maps to complex tori Ti. As a special case we see that if there is one

holomorphic one-form ω on X which makes (H∗(X,C),∧ω) exact, then this holds for all

forms in a non-empty Zariski open subset of H0(X,Ω1
X).

3. The case of surfaces

Proof of Theorem 1.3. LetX be a compact Kähler surface with a one-form ω ∈ H0(X,Ω1
X)

such that for any finite étale cover τ : X ′ → X,

H i−1(X ′,C)
∧ω′−→ H i(X ′,C)

∧ω′−→ H i+1(X ′,C) (4)

is exact for all i, where ω′ := τ ∗ω. This implies χ(X,Ωp
X) = 0 for all p and so c2(X) = 0.

Replacing X by its connected components, we may without loss of generality assume

that X is connected. The classification of surfaces (see [BHPV04, Chapter VI.1]) thus

shows that only the following cases occur.

Case 1. X is birational to a ruled surface over a curve C of positive genus.

Case 2. X is a minimal bi-elliptic surface or a complex 2-torus.

Case 3. X is a minimal properly elliptic surface.

In Case 1, exactness of (4) implies that X is birational to a ruled surface over an

elliptic curve C. This implies b1(X) = 2. Since e(X) = 0, we conclude b2(X) = 2 and so

X is a minimal ruled surface over an elliptic curve. In particular, since ω is nonzero, it

must be a holomorphic one-form without zeros.

In Case 2, any nontrivial holomorphic one-form on X has no zeros and so we are done

because exactness of (4) implies ω 6= 0, as before.

In Case 3, the condition c2(X) = 0 implies by [BHPV04, Proposition III.11.4] that X

admits a fibration π : X → C to a curve C such that the reduction of any fibre of π is

isomorphic to a smooth elliptic curve, but where multiple fibres are allowed. Let F be a

general fibre of π : X → C. Suppose for the moment that the one-form ω restricts to a

nonzero form on F . In particular, the Albanese map a : X → Alb(X) does not contract

F and the reduction of any fibre of a is isomorphic to F . Moreover, the restriction of ω

to F does not depend on the fibre and so it is nonzero everywhere. That is, ω has no

zeros.

It remains to deal with the case where ω restricts to zero on the fibres of π : X → C.

In this case, ω = π∗α for a one-form α on C. Since cup product with ω is exact, C must

be an elliptic curve. If π is smooth, then ω has no zeros. Otherwise, ω vanishes along

the multiple fibres of π. We may thus assume that π has at least one multiple fibre.

The multiple fibres of π give rise to a orbifold structure on C. Since C is an elliptic

curve, this orbifold is good and so there is a finite orbifold covering C ′ → C such that
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the orbifold structure on C ′ is trivial, see e.g. [CHK00, Corollary 2.29]. Let X ′ be the

normalization of the base change X ×C C ′. Then, X ′ is a smooth surface, X ′ → X

is étale and X ′ → C ′ is an elliptic surface without singular fibres, see e.g. [BHPV04,

Proposition III.9.1]. Since τ : X ′ → X is finite étale, (H∗(X ′,C),∧ω′) is exact for

ω′ := τ ∗ω by assumptions. On the other hand, since π has singular fibres, C ′ → C is a

branched covering with nontrivial branch locus and so C ′ is a curve of genus ≥ 2. This

is a contradiction, because ω′ is a pullback of a one-form from C ′. This finishes the proof

of Theorem 1.3. �

Corollary 3.1. Let X be a compact connected Kähler surface with a holomorphic one-

form ω such that (H∗(X,C),∧ω) is exact. Then ω has no zeros and (X,ω) is given by

one of the following:

(a) X is a minimal ruled surface over an elliptic curve;

(b) X is a complex 2-torus;

(c) X is a minimal elliptic surface f : X → C such that one of the following holds:

(i) f is smooth, C is an elliptic curve and ω ∈ f ∗H0(C,Ω1
C);

(ii) f is quasi-smooth, i.e. all singular fibres are multiple fibres, and the restriction

of ω to the reduction of any fibre of f is nonzero.

Proof. The classification into types (a), (b) and (c) follows directly from the proof of

Theorem 1.3, where we note that bi-elliptic surfaces fall in the class (ci). The fact that

ω has no zeros follows from this classification. �

Corollary 3.2. In the notation of Corollary 3.1, assume that X is projective. Then,

(d) X admits a smooth morphism to a positive-dimensional abelian variety;

(e) if κ(X) ≥ 0, then there is a finite étale cover τ : X ′ → X which splits into a product

X ′ = A′ × S ′, where A′ is a positive-dimensional abelian variety and S ′ is smooth

projective.

Proof. Note that item (d) is clear in cases (a), (b) and (ci) of Corollary 3.1. It remains

to deal with case (cii). In this case, since X and hence Alb(X) are projective, Alb(X) is

isogeneous to E×Jac(C), where E is an elliptic curve which is isogeneous to the reduction

of any fibre of f . It follows that there is a morphism g : X → E which restricts to an

isogeny on the reduction of each fibre of f : X → C. Since ω restricts non-trivially to

the reduction of any fibre of f , the morphism g : X → E must be smooth, as we want.

It clearly suffices to prove item (e) in the case (c) of Corollary 3.1. In this case, there

is a finite étale cover X ′ → X, such that Alb(X ′) ∼= E× Jac(C ′) for a smooth projective

curve C ′ which maps finitely to C. Moreover, the Albanese map identifies X ′ to the

product E × C ′, as we want. This concludes the corollary. �
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4. Proof of Theorem 1.4

4.1. Preliminaries. We will use the following lemma.

Lemma 4.1. Let K∗ be a bounded complex of sheaves on a manifold X. Let Z,Z ′ ⊂ X

be closed subsets with Z ∩ Z ′ = ∅, such that

suppHi(K∗) ⊂ Z ∪ Z ′

for all i. Then the differentials dr : Ep,q
r → Ep+r,q−r+1

r in the spectral sequence

Ep,q
2 = Hp(X,Hq(K∗))⇒ Hp+q(X,K∗)

respect the natural decompositions

Ep,q
2 = Hp(Z,Hq(K∗)|Z)⊕Hp(Z ′,Hq(K∗)|Z′).

Proof. Let i : Z → X and j : Z ′ → X be the inclusions. Then the natural map of

complexes

K∗ � i∗i
−1K∗ ⊕ j∗j−1K∗

is a quasi-isomorphism. This proves the lemma, because the spectral sequence depends

only on the class of K∗ in the derived category of sheaves on X. �

4.2. Item (1) of Theorem 1.4. Let X be a compact connected Kähler manifold and

let ω be a holomorphic one-form on X with associated local system L(ω). Recall the

isomorphism

Hk(X,L(ω)) ∼= Hk(X, (Ω∗X , ω ∧ −)).

The above hypercohomology is computed by a spectral sequence with E2-page

Ep,q
2 := Hp(X,Hq(K∗))⇒ Hp+q(X,L(ω)), (5)

where K∗ := (Ω∗X , ω∧−) andHq(K∗) denotes the q-th cohomology sheaf of that complex.

In particular, Hq(K∗) = 0 if ω ∧− is exact on holomorphic q-forms and the latter holds

if ω has no zeros. More precisely, this shows that Hq(K∗) are sheaves that are supported

on the zero locus Z(ω) of ω.

Lemma 4.2. We have Hn(K∗) ∼= Ωn
X |Z.

Proof. Locally ω =
∑n

i=1 fidxi. We are interested in the cokernel of

Ωn−1
X → Ωn

X , α 7→
n∑
i=1

fidxi ∧ α.

The image of the above map is clearly spanned by fidx1 ∧ · · · ∧ dxn with i = 1, . . . , n.

Hence, Hn(K∗) is the quotient of Ωn
X by the subsheaf IZ ⊗OX

Ωn
X , where IZ denotes the

ideal sheaf of Z. Hence,

Hn(K∗) ∼= Ωn
X ⊗OX

OZ = Ωn
X |Z .
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This proves the lemma. �

Proof of item (1) in Theorem 1.4. Let Z ⊂ Z(ω) be a connected component of the zero

locus of ω. Then we can write Z(ω) = Z ∪Z ′, where Z and Z ′ are disjoint closed subsets

of X.

Consider the spectral sequence (5). By Lemma 4.2, we have

Hd(X,Ωn
X |Z) ↪→ Ed,n

2 .

Using Lemma 4.1, one easily checks that this term survives on the infinity page and we

get

Hd(X,Ωn
X |Z) ↪→ Ed,n

∞ .

By Lemma 2.2, exactness of (H∗(X,C),∧ω) implies H i(X,L(ω)) = 0 for all i. Hence,

Ed,n
∞ = 0, and so Hd(Z,Ωn

X |Z) = 0, as we want. �

Corollary 4.3. Let X be a compact Kähler manifold and let ω ∈ H0(X,Ω1
X) such that

the complex (H∗(X,C),∧ω) given by cup product with ω is exact. Let Z ⊂ Z(ω) be a

connected component of the zero locus of ω, and let d = dimZ. Then

Hd(Z ′, ωX |Z′) = 0,

for any irreducible component Z ′ of the reduced scheme Zred.

Proof. Consider the long exact sequence, associated to the short exact sequence

0 −→ ωX |Z ⊗ IZ′ −→ ωX |Z −→ ωX |Z′ −→ 0.

By item (1), Hd(Z, ωX |Z) = 0. Moreover, Hd+1(Z, ωX |Z⊗IZ′) = 0 because of dimension

reasons. This implies Hd(Z ′, ωX |Z′) = 0, as we want. �

Corollary 4.4. Let X be a compact Kähler manifold with a holomorphic map f : X → A

to a complex torus A. Let ω ∈ H0(A,Ω1
A) such that the complex (H∗(X,C),∧f ∗ω) given

by cup product with f ∗ω is exact.

Then the restriction of ω to f(X) ⊂ Alb(X) does not vanish at a point y ∈ f(X) such

that the fibre F := f−1(y) is smooth with trivial normal bundle (the locus of such points

y ∈ f(X) is Zariski dense in f(X)).

Proof. Assume that ω vanishes at a point y ∈ f(X) such that the fibre F := f−1(y)

is smooth with trivial normal bundle. Then F ⊂ Z(f ∗ω)red is a connected component.

This contradicts Corollary 4.3, because

HdimF (F, ωX |F ) = HdimF (F, ωF ) 6= 0,

by Serre duality, where we used that F has trivial normal bundle. �
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4.3. Item (2) of Theorem 1.4. Let f : X → A be a holomorphic map to a complex

torus A and assume that there is a one-form ω ∈ f ∗H0(A,Ω1
A) such that (H∗(A,C),∧ω)

is exact. Since exactness is an open property, (H∗(A,C),∧ω′) is exact for any general

ω′ ∈ f ∗H0(A,Ω1
A).

Let Y := f(X) and fix a general point y ∈ Y . There are countably many non-trivial

linear subspaces

{0} 6= Wi ⊂ TA,y

such that there is a morphism of complex tori πi : A→ Bi with ker((dπi)y) = Wi.

For a contradiction, we assume that Y is not fibred by tori. This implies that the

tangent space TY,y does not contain any of the Wi. We may thus choose a one-form

ω′ ∈ H0(A,Ω1
A), such that ω′ vanishes on TY,y ⊂ TA,y, but which is non-trivial on each

Wi. Let Z ⊂ Z(ω′) be an irreducible component which contains y. Then ω′ vanishes on

Z and hence on the subtorus 〈Z〉 ⊂ A, generated by Z. If Z was positive-dimensional,

then T〈Z〉,y = Wi for some i, which contradicts the fact that ω′ does not vanish on Wi.

Hence, Z is zero-dimensional and so y is an isolated zero of ω′|Y . But this implies that

a small perturbation of ω′|Y has an isolated zero in some neighbourhood of y. Hence, a

general one-form ω ∈ H0(A,Ω1
A) has the property that Z(ω|Y ) contains a general point

of Y as a connected component. This contradicts Corollary 4.4, which finishes the proof.

Appendix, written jointly with Hsueh-Yung Lin

In this appendix we prove the following.

Theorem A.1. Let X be a compact connected Kähler manifold. Assume that ω ∈
H0(X,Ω1

X) satisfies condition (C). Then dimZ(ω) ≤ dimX − 2.

By Theorem 1.4, we also have 1 ≤ dimZ(ω). If dimX = 2, the above theorem

thus implies Z(ω) = ∅, which yields a new proof of Theorem 1.3, without using the

Enriques-Kodaira classification.

We start with the following auxiliary result; the same argument appeared in the last

two paragraphs in the proof of Theorem 1.3, as well as in [HS19, Proposition 6.4].

Lemma A.2. Let X be a compact connected Kähler manifold with a morphism f :

X → E to an elliptic curve E with irreducible fibres. Assume that there is a one-form

α ∈ H0(E,Ω1
E) such that ω := f ∗α satisfies condition (C). Then f has reduced fibres.

Proof. Let ∆ be the set of points t ∈ E such that f−1(t) is a multiple fibre and let mt be

its multiplicity. This gives rise to an orbifold structure on E. Since E is an elliptic curve,

this orbifold sutrcture is good (see e.g. [CHK00, Corollary 2.29]) and so there is a finite

cover C → E which locally above each point of t ∈ ∆ is ramified of order mt. A local

computation shows that the normalization X̃ of X ×E C is étale over X, cf. [BHPV04,
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Proposition III.9.1]. There is a natural map f̃ : X̃ → C and our assumptions imply that

there is a one-form ω ∈ H0(C,Ω1
C) such that (H∗(X̃,C),∧f̃ ∗ω) is exact. This implies

g(C) = 1 and so ∆ = ∅, as we want. �

Proof of Theorem A.1. Assume for the contrary that there is a prime divisor D ⊂ Z(ω).

Let f : X → A be a morphism to a complex torus such that ω = f ∗α for some α ∈
H0(A,Ω1

A), and assume that dimA is minimal with that property.

Since ω|D = 0, we have α|〈f(D)〉 = 0, where 〈f(D)〉 ⊂ A denotes the subtorus generated

by f(D). Hence, ω is the pullback of a one-form from A/〈f(D)〉. Minimality of dimA

thus shows that f(D) is a point. It then follows from [HS19, Lemma 2.4] that A is an

elliptic curve. Moreover, up to replacing f by its Stein factorization, we may by [HS19,

Corollary 2.5] assume that all fibres of f are irreducible. Hence, f has reduced fibres

by Lemma A.2. Since A is an elliptic curve, Z(ω) is contained in the singular locus of

f , which has codimension at least two, because the fibres of f are reduced. This is a

contradiction, which concludes the theorem. �
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