
HOLOMORPHIC ONE-FORMS WITHOUT ZEROS ON THREEFOLDS

FENG HAO AND STEFAN SCHREIEDER

Abstract. We show that a smooth complex projective threefold admits a holomorphic

one-form without zeros if and only if the underlying real 6-manifold is a C∞-fibre bundle

over the circle, and we give a complete classification of all threefolds with that property.

Our results prove a conjecture of Kotschick in dimension three.

1. Introduction

1.1. Holomorphic one-forms and fibre bundles over the circle. For a smooth

complex projective variety X we may consider the following conditions:

(A) X admits a holomorphic one-form without zeros;

(B) X admits a real closed 1-form without zeros; or, by Tischler’s theorem [Ti70] equiv-

alently, the underlying differentiable manifold is a C∞-fibre bundle over the circle.

Note that while (A) is an algebraic condition on X, condition (B) is a differential geo-

metric one which by [Ti70] characterizes the smooth manifold which underlies X as

[0, 1]×M/ ∼, where M is a closed manifold of real dimension 2 dim(X)− 1 and where

0×M is identified with 1×M via some diffeomorphism of M .

While (A) ⇒ (B) is clear, Kotschick conjectured [Kot13] that both condition might

be equivalent to each other. In [Sch19], the second author developed an approach to this

conjecture, showing that (B) implies

(C) there is a holomorphic one-form ω ∈ H0(X,Ω1
X) such that for any finite étale cover

τ : X ′ → X, the sequence

H i−1(X ′,C) ∧ω
′
// H i(X ′,C) ∧ω

′
// H i+1(X ′,C)

given by cup product with ω′ := τ ∗ω is exact for all i.

Moreover, all three conditions above coincide in dimension two [Sch19, Theorem 1.3]. In

this paper, we address the much more difficult case of threefolds.

Theorem 1.1. Let X be a smooth complex projective threefold. Then all three conditions

above are equivalent to each other: (A) ⇔ (B) ⇔ (C).
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In the appendix to this paper, we explain how the argument in [Sch19] can be gener-

alized to show that (C) is also implied by the following weak version of (B):

(B’) X is homotopy equivalent to a CW complex Y that admits a continuous map

f : Y → S1 to the circle which is a finite Q-homology fibration, i.e. Rif∗Q are local

systems of finite-dimensional Q-vector spaces for all i.

Since (B) ⇒ (B’) is clear (c.f. [Ti70]), this implies by Theorem 1.1 the following:

Corollary 1.2. Let X be a smooth complex projective threefold. Then (A) ⇔ (B’). In

particular, the question whether X carries a holomorphic one-form without zeros depends

only on the homotopy type of X.

1.2. Classifying threefolds whose underlying 6-manifolds fibre over the circle.

Theorem 1.1 follows from the following strong classification result.

Theorem 1.3. If X is a smooth complex projective threefold, any of the conditions (A),

(B), (B’) and (C) is equivalent to the following:

(D) the minimal model program for X yields a birational morphism σ : X → Xmin to a

smooth projective threefold Xmin, such that:

(1) σ : X → Xmin is a sequence of blow-ups along smooth elliptic curves that are

not contracted via the natural map to the Albanese variety Alb(Xmin).

(2) There is a smooth morphism π : Xmin → A to a positive-dimensional abelian

variety A.

(3) If κ(X) ≥ 0, then a finite étale cover τ : X ′ → Xmin splits into a product

X ′ ' A′ × S ′, where S ′ is smooth projective and A′ is an abelian variety such

that for all s′ ∈ S ′, the natural composition

A′ ' A′ × {s′} ↪→ A′ × S ′ ' X ′ τ // Xmin π // A

is a finite étale cover.

(4) If κ(X) = −∞, then one of the following holds:

(i) Xmin admits a smooth del Pezzo fibration over an elliptic curve;

(ii) Xmin has the structure of a conic bundle f : Xmin → S over a smooth

projective surface S which satisfies (A) ⇔ (B) ⇔ (C). Moreover, f is

either smooth, or A is an elliptic curve and the degeneration locus of f is

a disjoint union of smooth elliptic curves on S which are étale over A (via

the map S → A induced by π).

Note that (D)⇒ (A), because a general one-form on X has no zeros by (D1) and (D2).

Since (A)⇒ (B)⇒ (B’) is clear and (B’)⇒ (C) is known (see [Sch19] and Theorem A.1

in the Appendix), in order to prove Theorems 1.1 and 1.3, it thus suffices to show (C)
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⇒ (D). In the course of our proof, we will obtain the following refined version of (A) ⇔
(C).

Theorem 1.4. Let X be a smooth complex projective threefold and let ω ∈ H0(X,Ω1
X)

be a holomorphic one-form on X. Then the following are equivalent:

(1) ω has no zero on X;

(2) for any étale cover τ : X ′ → X, the sequence given by cup product with ω′ := τ ∗ω

H i−1(X ′,C) ∧ω
′
// H i(X ′,C) ∧ω

′
// H i+1(X ′,C)

is exact for all i.

The implication (1) ⇒ (2) is a result of Green and Lazarsfeld which holds in arbi-

trary dimensions, see [GL87, Proposition 3.4]. The converse implication (2) ⇒ (1) has

previously been proven in dimension two by the second author in [Sch19, Theorem 1.3].

Theorem 1.4 has the following interesting consequence.

Corollary 1.5. For a holomorphic one-form ω ∈ H0(X,Ω1
X) on a smooth complex

projective threefold X, the condition that ω has no zeros on X is a topological one which

depends only on the cohomology class [ω] ∈ H∗(X,C) of ω and the homotopy type of X.

By the above corollary, if ω is a holomorphic one-form without zeros on a smooth

projective threefold X, then for any smooth projective threefold X ′ which is deformation

equivalent to X, and for any one-form ω′ ∈ H0(X ′,Ω1
X′) that is obtained via parallel

transport of ω with respect to some path, ω′ has no zeros on X ′. This is interesting

already in the case where X = X ′.

1.3. Around a theorem of Popa and Schnell. Recall that items (D1) and (D2)

imply condition (A). Hence, Theorem 1.3 shows in particular that (D1) and (D2) imply

conditions (D3) and (D4). For this reason, Theorem 1.3 has the following consequence;

we give the details of the argument in Section 9 below.

Corollary 1.6. Let f : X → A be a smooth morphism from a smooth projective threefold

X to an abelian variety A. If κ(X) ≥ 0, then there is a smooth projective threefold X ′

with the structure of an analytic fibre bundle f ′ : X ′ → A over A, such that X and X ′

are birational over A.

Passage to a birational model of X is necessary; the example of suitable minimal del

Pezzo fibrations over elliptic curves shows that the assumption κ(X) ≥ 0 is necessary as

well.

By [Ue75, Theorem 15.1], the Kodaira dimension is additive for analytic fibre bundles

and so, in the situation of Corollary 1.6, we have κ(X) = κ(F ), where F denotes a fibre

of f . Hence, κ(X) ≤ dim(F ), which is a special case of a celebrated result of Popa
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and Schnell [PoSch14] (with earlier results in [Za97, LZ05, HK05]), who showed that a

smooth projective variety X has Kodaira dimension κ(X) ≤ dim(X)− d, if it admits a

d-dimensional linear subspace V ⊂ H0(X,Ω1
X) of holomorphic one-forms such that any

nonzero ω ∈ V has no zeros on X.

The results in this paper lead us to the following two conjectures, which by the afore-

mentioned additivity of Kodaira dimensions in analytic fibre bundles [Ue75, Theorem

15.1] would generalize Popa–Schnell’s result.

Conjecture 1.7. Let X be a smooth projective variety which admits a holomorphic one-

form without zeros. Then X is birational to a smooth projective variety X ′ which admits

a smooth morphism X ′ → A to a positive-dimensional abelian variety A.

Conjecture 1.8. Let f : X → A be a smooth morphism from a smooth projective

variety X to an abelian variety A. If κ(X) ≥ 0, then, up to birational equivalence, f is

an analytic fibre bundle.

Conjectures 1.7 and 1.8 hold for surfaces by [Sch19, Corollary 3.2] and for threefolds by

item (D2) in Theorem 1.3 and Corollary 1.6. If the fibres of f are of general type, a weak

form of Conjecture 1.8 had been proven by Popa–Schnell in arbitrary dimensions, see

[PoSch14, Corollary 3.2]. Moreover, [PoSch14, Corollary 3.2] easily implies Conjecture

1.8 if the fibres of f are curves.

1.4. Why one-forms? Theorem 1.3 yields a complete classification of all smooth com-

plex projective threefolds with a one-form without zeros, and Corollary 1.2 shows that

this is in fact a topological property. It is natural to wonder if such a classification is pos-

sible also for forms of higher degree. For top differential forms, this essentially amounts

to classifying Calabi-Yau threefolds, and it is a famous open problem to show that such

varieties come in finitely many topological types. The remaining case is that of two-forms

without zeros. Two-forms on threefolds have previously been studied by Campana and

Peternell [CaPe00] who found infinitely many examples of smooth projective threefolds

of general type (see e.g. [CaPe00, Example 1.3.3]) which carry two-forms without zeros.

This suggests that a classification is probably impossible in this case.

1.5. A remark on the Kähler case. It is conceivable that the methods of this paper

allow to prove analogues of Theorems 1.1, 1.3 and 1.4 also in the case of Kähler threefolds.

The main technical difficulty that one has to overcome is the fact that short exact

sequences of abelian varieties always split after étale cover, while this is in general not

true for short exact sequences of arbitrary complex tori. As a consequence, item (D3) in

Theorem 1.3 does not remain true in the Kähler setting, but we expect that under the

Kähler assumption, one can still prove that in item (D3) there is a smooth morphism as

in item (D2) which is in fact an analytic fibre bundle.
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Conventions and notation. We work over the field of complex numbers. A variety

is an integral separated scheme of finite type over C. A minimal model is a projective

variety X with terminal Q-factorial singularities such that KX is nef.

2. Preliminaries

2.1. Analytic fibre bundles. A proper morphism f : X → S of complex manifolds

(or smooth complex projective varieties), is an analytic fibre bundle, if it is analytically

locally isomorphic to a product of the base with a typical fibre F . The isomorphism type

of f is determined by a cocycle in H1(S,Aut(F )). Moreover, by a well-known result of

Fischer and Grauert [FG65], a proper morphism f : X → S of complex manifolds is an

analytic fibre bundle if and only if it is isotrivial, i.e. all fibres are isomorphic to each

other.

2.2. Basic properties of condition (C). In [Sch19, Theorems 1.2 and 1.5], the second

author proved the following two theorems, which are the starting point of our investiga-

tion.

Theorem 2.1 ([Sch19]). For any compact Kähler manifold X, we have (B) ⇒ (C).

Theorem 2.2 ([Sch19]). Let X be a compact Kähler manifold with a holomorphic one-

form ω such that the complex (H∗(X,C),∧ω) given by cup product with ω is exact. Then

the analytic space Z(ω) given by the zeros of ω ∈ H0(X,Ω1
X) has the following properties.

(1) For any connected component Z ⊂ Z(ω) with d = dimZ,

Hd(Z, ωX |Z) = 0.

In particular, ω does not have any isolated zero.

(2) If f : X → A is a holomorphic map to a complex torus A such that ω ∈ f ∗H0(A,Ω1
A),

then f(X) ⊂ A is fibred by tori.

We will also use the following lemma, which is also crucial in [Sch19, Theorem A.1].

Lemma 2.3. Let X be a compact Kähler manifold and let f : X → A be a morphism to

a complex torus A which is generated by the image f(X). Assume that there is a one-

form α ∈ H0(A,Ω1
A), such that (H∗(X,C),∧f ∗α) is exact. If there is a prime divisor

D ⊂ X with dim(f(D)) = 0, then A is an elliptic curve and D is linearly equivalent to

some rational multiple of a general fibre of f .

Proof. Let a : X → Alb(X) be the Albanese morphism. Then there is a morphism

π : Alb(X) → A with f = π ◦ a. Let B ⊂ Alb(X) the subtorus generated by a(D).
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Since f(D) is a point, a(D) is contracted by π to a point and so π factors through

Alb(X)→ Alb(X)/B. Hence, up to replacing A by Alb(X)/B, we may assume that

A = Alb(X)/B. (1)

Then there is a natural short exact sequence

0 //H1,0(A) //H1,0(Alb(X)) //H1,0(B) // 0.

Since dim(f(D)) = 0, [D] ∧ f ∗α = 0 and so by exactness of ∧f ∗α we get

[D] = a∗β ∧ f ∗α

Since [D] is a real class, [D] = a∗β ∧ f ∗α. This implies

[D] ∧ a∗β = 0.

That is, the pullback of the holomorphic one-form β is identically zero on D. Since

B ⊂ Alb(X) is generated by a(D), it follows that β restricts to zero on B and so it lies

in the image of H1,0(A). That is, β lies in the image of f ∗ and so

[D] ∈ f ∗H2(A,Q).

This implies that there is a line bundle L on A with f ∗L ' OX(jD) for some integer

j ≥ 1. Let Z → f(X) be the normalization and let i : Z → A be the natural map. Since

X is normal, f induces a morphism f ′ : X → Z. Applying the Stein factorization to f ′,

we conclude that there is a positive integer m (equal to the degree of the finite map in

the Stein factorization of f ′) and a natural isomorphism

H0(X, f ∗L) ' H0(Z, i∗L⊗m).

Since f ∗L ' OX(jD) is effective, we find that i∗L⊗m admits a section s whose pullback

to X vanishes along D with multiplicity jm. Since f(D) is a point, i({s = 0}) is a point

as well. Since i : Z → A is finite, {s = 0} is a point and so Z is a curve. This implies

that f(X) must be a curve as well. Since f(X) is a curve, its normalization is an elliptic

curve by exactness of (H∗(X,C),∧f ∗α). Since f(X) ⊂ A, it must be a smooth elliptic

curve and since it generates A, the latter is an elliptic curve as well. Since L is a line

bundle on the elliptic curve A, f ∗L ' OX(jD) implies that D is linearly equivalent to a

rational multiple of a general fibre of f . This concludes the lemma. �

Corollary 2.4. In the situation of Lemma 2.3, the Stein factorization of f yields a

morphism g : X → E to an elliptic curve E with irreducible fibres.

Proof. Since A is an elliptic curve, the Stein factorization of f yields a morphism g : X →
C to a smooth projective curve C. By assumptions, there is a one-form β ∈ H0(C,Ω1

C)

such that (H∗(X,C),∧g∗β) is exact. This implies g(C) = 1. Applying Lemma 2.3 to
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the irreducible components of the fibres of g then shows that g has irreducible fibres, as

we want. �

Lemma 2.5. Let X be a compact Kähler threefold which satisfies (C). Then

c1c2(X) = c3(X) = 0.

Proof. Condition (C) implies immediately χ(X,Ωp
X) = 0 for all p and so the claim follows

from Riemann–Roch. �

3. Reduction to minimal threefolds or Mori fibre spaces

Proposition 3.1. Let X be a smooth complex projective threefold with a one-form ω ∈
H0(X,Ω1

X) such that (H∗(X,C),∧ω) is exact. If KX is not nef and X does not carry

the structure of a Mori fibre space, then there is a smooth projective threefold Y such

that X is the blow-up of Y along a smooth elliptic curve E. Moreover, if ω′ ∈ H0(Y,Ω1
Y )

denotes the one-form induced by ω, then (H∗(Y,C),∧ω′) is exact and ω′|E is nonzero.

Proof. If KX is not nef and X does not carry the structure of a Mori fibre space, then

by [Mor82, Theorem 3.3], there is a divisorial contraction f : X → Y whose exceptional

divisor E has one of the following two properties:

• f |E : E → f(E) is a P1-bundle over a smooth curve C = f(E), Y is smooth and

X = BlCY ;

• f(E) is a point.

Moreover, in both cases, E contains a curve which has negative self-intersection with E.

It thus follows from Lemma 2.3, applied to the Albanese map of X, that E cannot be

contracted to a point and so f must be the blow-up along a smooth curve C ⊂ Y . The

formula for the cohomology of blow-ups shows that exactness of (H∗(X,C),∧ω) implies

that (H∗(Y,C),∧ω′) is exact, C is an elliptic curve and ω′|C is nonzero. This concludes

the proposition. �

Corollary 3.2. Let X be a smooth complex projective threefold which satisfies condition

(C). Then there is a smooth projective threefold Xmin with a birational morphism σ :

X → Xmin, which is given as a sequence of blow-ups along smooth elliptic curves that

are not contracted via the natural map to Alb(Xmin). Moreover, Xmin satisfies (C) and

it is either minimal or a Mori fibre space.

Proof. This is a direct consequence of Proposition 3.1, where we note that an elliptic

curve E on a smooth projective variety X is contracted via the Albanese map of X if

and only if any holomorphic one-form on X restricts trivially on E. �
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By Proposition 3.1 and Corollary 3.2, the proof of Theorems 1.3 and 1.4 reduce to the

case where X is either minimal, or it admits the structure of a Mori fibre space.

The following corollary of the above discussion generalizes the main result of Luo and

Zhang in [LZ05].

Corollary 3.3. A smooth projective threefold X which satisfies condition (A), (B) or

(C) is not of general type.

Proof. Since (A) ⇒ (B) is clear and (B) ⇒ (C) by [Sch19] (see Theorem 2.1), we may

assume that X satisfies (C). For a contradiction, we assume that X is of general type.

By Corollary 3.2, we may additionally assume that X is minimal. By the Miyaoka–Yau

inequality,

0 > c3
1(X) ≥ 8

3
c1c2(X).

This contradicts Lemma 2.5, which concludes the corollary. �

4. 1-forms on threefolds of non-negative Kodaira dimension

In the case of non-negative Kodaira dimension, our main results will follow from:

Theorem 4.1. Let X be a smooth complex projective threefold of non-negative Kodaira

dimension and with KX nef. Assume that X satisfies condition (C).

Then there is a finite étale covering τ : X ′ → X which splits into a product X ′ '
A′ × S ′, where A′ is an abelian variety of positive dimension.

The proof of the above theorem occupies the following three sections and the final

arguments will be summarized in Section 7. Before we turn to the proofs, let us note

the following consequence.

Corollary 4.2. In the notation of Theorem 4.1, let ω ∈ H0(X,Ω1
X) be the one-form

from condition (C). Then the following holds:

(1) up to passing to a finite étale covering of X ′, we may assume that A′ is simple

and τ ∗ω restricts to a nonzero form on A′ × {s} for all s ∈ S ′;
(2) S ′ is smooth projective with κ(S ′) = κ(X);

(3) τ ∗ω has no zeros on X ′ and so ω has no zeros on X;

(4) There is a smooth morphism π : X → A to an abelian variety A such that for

any s′ ∈ S ′, the composition

A′ ' A′ × {s′} ↪→ A′ × S ′ ' X ′ τ // X π // A (2)

is finite étale.
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Proof. We have

τ ∗ω ∈ H0(X ′,Ω1
X′) ' H0(A′,Ω1

A′)⊕H0(S ′,Ω1
S′).

To see that τ ∗ω restricts to a nonzero form on A′ × {s} for all s ∈ S ′, it suffices to

show that it does not map to zero under the projection to H0(A′,Ω1
A′). If it does map

to zero, then S ′ satisfies the equivalent conditions (A) ⇔ (B) ⇔ (C). This implies by

[Sch19, Corollary 3.2] that some étale cover of S ′ splits off a positive-dimensional simple

abelian variety and the restriction of the pullback of ω to that factor is non-trivial, as

we want. Hence, up to passing to another étale cover and replacing the decomposition

X ′ ' A′ × S ′ by another one, we may assume that τ ∗ω restricts to a nonzero form on

A′ × {s} for all s ∈ S ′. Up to passing to another finite étale cover of X ′, we may by

the complete reducibility theorem also assume that A′ is simple and so item (1) of the

corollary holds.

Since τ is étale and X is smooth, so is X ′. Since X ′ ' A′×S ′, S ′ is smooth of Kodaira

dimension κ(S ′) = κ(X ′) = κ(X), as claimed in item (2). Moreover, item (3) is an

immediate consequence of item (1).

It remains to prove (4). Consider the Albanese map a : X → Alb(X). Since A′ is

simple and τ ∗ω restricts non-trivially to A′ × {s′} for all s′ ∈ S ′, we find that for all

s′ ∈ S ′, the image of the natural composition

A′ ' A′ × {s′} ↪→ A′ × S ′ ' X ′ τ // X a // Alb(X)

is the translate of an abelian subvariety of Alb(X) that is isogeneous to A′. Since Alb(X)

is projective, there is a quotient map Alb(X)→ A such that for all s′ ∈ S ′, the natural

composition

A′ ' A′ × {s′} ↪→ A′ × S ′ ' X ′ τ // X a // Alb(X) // //A

is finite étale. We then define π : X → A as composition of the Albanese map of X with

the projection Alb(X) // //A. With this definition, the composition (2) is finite étale for

all s′ ∈ S. This implies that π ◦ τ : X ′ → A is smooth. Since τ is étale, it follows that π

is smooth as well, as we want. This proves (4), which concludes the corollary. �

5. Proof of Theorem 4.1 for κ(X) = 2

In this section we aim to prove Theorem 4.1 in the case where κ(X) = 2.

5.1. Preliminaries on elliptic threefolds.

Definition 5.1. An elliptic threefold is a normal projective threefold X with a morphism

f : X → S to a normal projective surface whose general fibre is an elliptic curve. We

say that f has trivial (or no) monodromy, if R1f∗Q restricts to a trivial local system over

some non-empty (Zariski) open subset U ⊂ S.
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Lemma 5.2. Let f : X → S be an elliptic threefold with trivial monodromy and such

that X has rational singularities (e.g. terminal singularities). Then the general fibre of

f is not contracted via the Albanese morphism a : X → Alb(X).

Proof. Since X has rational singularities, the Albanese morphism of any resolution X̃ of

X factors through X, and so a is defined. The lemma then follows from Deligne’s global

invariant cycle theorem (see e.g. [Voi03, Theorem 4.24]) applied to X̃, which implies that

X̃ carries a holomorphic one-form which restricts nontrivially on the general fibre of the

natural map X̃ → S. �

We will need the following result, c.f. [Gra94, Theorem 2.7].

Proposition 5.3. Let X be terminal threefold with KX nef of Kodaira dimension two and

with Iitaka fibration f : X → S. If c1c2(X) = 0, then f has only finitely many singular

fibers which are not multiples of a smooth elliptic curve. Moreover, the j-invariants of

the smooth fibres of f are constant.

Proof. The Iitaka fibration f : X → S is a morphism by the abundance conjecture

[Ka92]. In particular, there is a very ample divisor A on S such that KX = λf ∗A

for some positive rational number λ. Let C ⊂ S be a general element of |A| and let

Y := f−1(C). Since S is normal and X is terminal, it follows from Bertini’s theorem

that Y and C are smooth. Moreover, f |Y : Y → C is a minimal elliptic surface of

Kodaira dimension one, because X is minimal of Kodaira dimension two and Iitaka

fibration f . Since Y is smooth and contained in the smooth locus of X, we have a short

exact sequence of vector bundles on Y :

0 //TY //TX |Y // f ∗OS(A)|Y // 0.

Applying the Whitney sum formula, we deduce that the second Chern number of Y is

given by

c2(Y ) = c2(X)|Y − c1(Y )f ∗A|Y = (−λ)−1c1c2(X)− c1(Y )f ∗A2.

By adjunction, c1(Y ) = (c1(X) − f ∗A)|Y , and so c1(Y )f ∗A2 = 0, as it is a multiple of

f ∗A3 = 0. Since c1c2(X) = 0, we conclude c2(Y ) = 0 from the above formula. Hence,

Y is a minimal surface of Kodaira dimension one with c2(Y ) = 0. Since c2(Y ) coincides

with the sum of the Euler numbers of the singular fibres of Y → C, we find by Kodaira’s

classification of singular fibres (see [BHPV]) that any singular fibre of Y → C is a

multiple of a smooth elliptic curve. This implies that the j-invariant j : C 99K P1 is not

dominant and so it must be constant. This proves the proposition. �

We have the following important structure theorem of Nakayama. To state it, recall

that an elliptic threefold f : X → S is a standard elliptic fibration if X is Q-factorial



HOLOMORPHIC ONE-FORMS WITHOUT ZEROS ON THREEFOLDS 11

and terminal, f is equi-dimensional and KX ∼Q f
∗(KS + ∆) for an effective Q-divisor ∆

such that (S,∆) is log terminal.

Theorem 5.4 ([Nak02, Theorem A.1]). Let f : X → S be an elliptic threefold. Then

there is a proper birational morphism S ′ → S and a standard elliptic fibration f ′ : X ′ →
S ′ that is birational to f over S, such that KX′ is semi-ample over S.

Lemma 5.5. Let f : X → S be an elliptic threefold, such that X is terminal, Q-factorial

and KX is f -nef. Let S ′ → S and f ′ : X ′ → S ′ be as in Theorem 5.4. Then there is

a smooth open subset U ′ ⊂ S ′, whose complement in S ′ is zero-dimensional, and such

that the base change X ′U ′ := f ′−1(U ′) is a smooth threefold. Moreover, for any such open

subset U ′ ⊂ S ′, the natural birational map X ′U ′ 99K X induces an isomorphism

π1(X ′U ′) ' π1(Xsm),

where Xsm ⊂ X denotes the smooth locus of X.

Proof. Since f ′ is a standard elliptic fibration, X ′ has only terminal Q-factorial singu-

larities, f ′ is equi-dimensional and S ′ is normal. In particular, X ′ and S ′ have isolated

singularities. Hence, there is an open subset U ′ ⊂ S ′ whose complement in S ′ is zero-

dimensional, and such that the base change X ′U ′ := f ′−1(U ′) is smooth.

Let now U ′ ⊂ S ′ be any such subset. Since KX′ is semi-ample over S, it is in particular

nef over S. Hence, X and X ′ are birational minimal models over S and so they are

isomorphic in codimension one, see e.g. [KM08, Theorem 3.52(2)]. Since S ′ \ U ′ is zero-

dimensional and f ′ is equi-dimensional, X ′ \X ′U ′ is at most one-dimensional. Since X ′

and X are isomorphic in codimension one, we conclude the same for X ′U ′ and X, and

hence also for X ′U ′ and Xsm, because X is terminal and so it has isolated singularities.

Since X ′U ′ and Xsm are smooth, this implies π1(X ′U ′) ' π1(Xsm), as we want. �

5.2. Condition (C) implies trivial monodromy after étale cover.

Lemma 5.6. Let X be a smooth projective threefold with KX nef of Kodaira dimension

two and with Iitaka fibration f : X → S. Assume that (C) holds for X. If f has

non-trivial monodromy, then f is equi-dimensional.

Proof. Assume that f has non-trivial monodromy. Since any variation of Hodge structure

of weight one and rank two with a nonzero section is trivial, this implies that R1f∗Q
has no generically non-zero section. Hence, the general fibre of f is contracted via the

Albanese map a : X → Alb(X). This implies that a factors rationally through f .

Since S is the base of the Iitaka fibration, it has at most klt singularities, hence rational

singularities, and so any rational map from S to Alb(X) is a morphism. That is, a factors

through f . Hence, any prime divisor D ⊂ X which maps to a point on S is contracted
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to a point by the Albanese map of X. Lemma 2.3 then shows that Alb(X) is an elliptic

curve and D is numerically equivalent to a rational multiple of a fibre of a. Since D is

contracted by f , f also contracts a general fibre of a. Hence f factors through a, which

is impossible because S is a surface. This proves the lemma. �

Remark 5.7. The condition on the monodromy is necessary in Lemma 5.6. To see

this, let S be a canonical surface with ample canonical bundle and a single node as

singularity, and with minimal resolution S̃ → S. Then for any elliptic curve E, the

product X := S̃ × E is a minimal threefold of Kodaira dimension two which satisfies

(C), but the Iitaka fibration of X is given by the natural map X → S, which is not

equi-dimensional.

We are now able to prove the following, which is the main result of Section 5.2.

Proposition 5.8. Let f : X → S be an elliptic threefold, with X smooth and KX nef.

Assume that X satisfies (C). Then there is a finite étale cover τ : X̃ → X, such that

the elliptic fibration f̃ : X̃ → S̃ that is induced by f via Stein factorization has trivial

monodromy.

Proof. By Lemma 5.6, we may assume that f is equi-dimensional. By Proposition 5.3,

f is generically isotrivial and only finitely many singular fibers of f are not multiples

of a smooth elliptic curve. This implies that there is an open subset U ⊂ S whose

complement is zero-dimensional, such that R1f∗Q|U is a local system (which above the

multiple fibres can be checked via topological base change). Moreover, this local system

has finite monodromy, because the identity component Aut0(F ) of Aut(F ) acts trivially

on H1(F,Q).

It follows that there is a finite étale cover Ũ → U such that the base change X×S Ũ is

an elliptic threefold over Ũ with trivial monodromy. Note that X ×S Ũ is a finite étale

cover of f−1(U). Since f is equi-dimensional, π1(f−1(U)) = π1(X), and so this finite

étale cover extends to a finite étale cover τ : X̃ → X, such that the map f̃ : X̃ → S̃,

induced via Stein factorization of f ◦ τ : X̃ → S, is an elliptic threefold with trivial

monodromy. This finishes the proof of the proposition. �

Remark 5.9. The case where X is a product of a curve with a bi-elliptic surfaces shows

that the étale covering performed in Proposition 5.8 is really necessary.

5.3. Classification of minimal elliptic threefolds with trivial monodromy. Propo-

sition 5.8 reduces the proof of Theorem 4.1 for κ(X) = 2 to the case of minimal elliptic

threefolds X → S with trivial monodromy. Even though X is smooth in that situation,

it is not much harder to classify more generally such threefolds with terminal singular-

ities. This is the content of the following theorem. To state the result, recall that a
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finite morphism f : X ′ → X between normal varieties is called quasi-étale if it is étale

in codimension one, see e.g. [GKP16]; if X is smooth, then this implies that f is étale.

In particular, f is ramified at most at the singular points of X.

Theorem 5.10. Let f : X → S be an elliptic threefold with trivial monodromy, where

X is terminal, Q-factorial and KX is nef. Then there is a finite quasi-étale covering

τ : X ′′ → X with X ′′ ' S ′′ × E, where E is an elliptic curve and S ′′ is a smooth

projective surface with a generically finite map to S.

In the proof of the above theorem, we will use the following local result.

Lemma 5.11. Let f : X → ∆ be a proper morphism of complex manifolds over the

disc ∆, which is a submersion over the punctured disc ∆∗ := ∆ \ {0}. Assume that the

special fibre X0 of f is irreducible and of multiplicity m. Assume that there is a morphism

g : X → F to a compact complex manifold F which restricts to a finite morphism on a

general fibre of f . Let S := g−1(x) be a general fibre of g. Then the normalization X ′ of

the base change X ×∆ S is smooth, the family X ′ → S has reduced fibres and the natural

map X ′ → X is étale. If furthermore the reduced fibre Xred
0 is smooth, then X ′ → S is

smooth.

Proof. Since f is a submersion over the punctured disc, it suffices to prove the lemma

after shrinking ∆, if necessary. By Sard’s theorem, S is smooth. Moreover, the natural

map S → ∆ is submersive away from the origin of ∆. Let S ′ be a connected component

of S. Since S ′ is connected, up to shrinking ∆, S ′ meets the central fibre X0 in a

single point and so S ′ → ∆ is a cyclic cover and we denote its degree by k. Since X0

has multiplicity m, m divides k. Conversely, the morphism Xred
0 → F induced by g is

generically smooth and so the preimage of x ∈ F in Xred
0 is given by disjoint reduced

points. Since the intersection of S ′ with X0 is a single point, we find that this intersection

has multiplicity at most m. Hence, k = m and S ′ → ∆ is a cyclic cover of degree by

m. It then follows from a well-known local computation, see e.g. [BHPV, Proposition

III.9.1], that the normalization X ′ of the base change X ×∆ S is smooth, the family

X ′ → S has reduced fibres and the natural map X ′ → X is étale. Moreover, the central

fibre of X ′ → S is an étale cover of Xred
0 . Hence, X ′ → S is smooth if Xred

0 is smooth.

This concludes the lemma. �

Proof of Theorem 5.10. By Theorem 5.4, there is a birational morphism S ′ → S and a

standard elliptic fibration f ′ : X ′ → S ′ that is birational to f over S and such that KX′

is nef over S. By Lemma 5.5, there is a smooth open subset U ′ ⊂ S ′ whose complement

is zero-dimensional and such that X ′U ′ := f ′−1(U ′) is smooth and the birational map
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X ′U ′ 99K X induces an isomorphism

π1(X ′U ′) ' π1(Xsm). (3)

Since X ′ has only terminal singularities, there is a well-defined Albanese map a′ : X ′ →
Alb(X ′), obtained by observing that the Albanese map of any desingularization of X ′

factors through X ′. By Lemma 5.2, the general fibre of f ′ : X ′ → S ′ is not contracted by

a′. Hence, the general fibre of f ′ is via a′ mapped to a translate of a fixed elliptic curve

E ⊂ Alb(X ′). Since X ′ is projective, we can dualize this inclusion to get a surjection

Alb(X ′) // //E. Composing this with a′, we get a surjection

g : X ′ //E,

which restricts to finite étale covers on general fibres of f ′. Taking the Stein factorization,

we may assume that g has connected fibres. (Note that the target of the Stein factoriza-

tion will receive a surjection from the general fibres of f ′, which are elliptic curves, and

so it cannot be a curve of genus ≥ 2.)

Since X ′ is terminal, it has isolated singularities. A general fibre S̃ = g−1(e) of g

is thus smooth by Bertini’s theorem and we consider the normalization X̃ of the base

change X ′ ×S′ S̃. We then get a commutative diagram

X̃ //

f̃
��

X ′

f ′

��

S̃ // S ′.

Let Ũ ⊂ S̃ be the preimage of U ′ ⊂ S ′. We consider the base change X̃Ũ = f̃−1(Ũ) ⊂ X̃.

Since f has trivial monodromy by assumptions, the same holds for f ′. Since additionally

KX′ is nef over S ′, the base change X ′Z to a general hyperplane section Z ⊂ S ′ is a

smooth minimal elliptic surface with trivial monodromy. This implies that the singular

fibres are multiples of smooth elliptic curves: they are (multiples of) one of the fibres in

Kodaira’s table [BHPV, p. 201] and additionally have second Betti number at least 2,

because of the triviality of the monodromy and topological proper base change. Hence,

away from finitely many points in S ′, all singular fibres of f ′ are multiples of smooth

elliptic curves.

Let C ′ ⊂ U ′ be a general hyperplane section and let C̃ ⊂ Ũ be its preimage in Ũ .

Applying Lemma 5.11 to the base change of X̃Ũ and X ′U ′ to C̃ and C ′, respectively, we

find the following: up to removing finitely many points from U ′ and Ũ , we may assume

that X̃Ũ → Ũ is a smooth elliptic fibre bundle and X̃Ũ → X ′U ′ is étale. Since this bundle

has a section by construction, the existence of a fine moduli space for elliptic curves with

level structure shows that X̃Ũ ' Ũ × E for an elliptic curve E.
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By [GKP16, Theorem 3.8], any finite étale cover of Xsm extends to a finite quasi-étale

cover of X. Since π1(X ′U ′) ' π1(Xsm), the finite étale cover X̃Ũ → X ′U ′ is thus birational

to a finite quasi-étale covering

X ′′ → X

of X. Since X̃Ũ ' Ũ × E, we conclude that X ′′ is birational to S ′′ × E, where S ′′ is

a minimal surface and E is an elliptic curve. Since KX is nef, so is KX′′ . Moreover,

X ′′ is terminal by [KM08, Proposition 5.20], because it is a finite quasi-étale cover of a

terminal threefold.

By [KM08, Theorem 6.25], there is a Q-factorialization σ : X̃ ′′ → X ′′, i.e. a proper

birational morphism which is an isomorphism in codimension one such that X̃ ′′ is Q-

factorial, terminal and KX̃′′ is nef. Hence, X̃ ′′ and S ′′×E are birational minimal models

and so they are connected by a sequence of flops (see [Kol89]). Since S ′′ × E does not

admit any non-trivial flop, X̃ ′′ ' S ′′ × E. On the other hand, the product S ′′ × E does

not admit a small contraction to a terminal threefold (because any rational curve on it

maps to a point on the second factor and so it sweeps out a divisor on S ′′ ×E). Hence,

X ′′ ' X̃ ′′ and so X ′′ ' S ′′ × E, as we want. This concludes the proof. �

5.4. Proof of Theorem 4.1 for κ(X) = 2. Since X is a smooth projective threefold

with KX nef, the Iitaka fibration f : X → S is a morphism by the abundance conjecture

for threefolds, see [Ka92]. This endows X with the structure of an elliptic threefold.

By Proposition 5.8, there exists a finite étale covering X ′ → X, such that f induces an

elliptic fibration f ′ : X ′ → S ′ without monodromy. Hence, by Theorem 5.10, there is a

finite étale cover X ′′ → X ′, such that X ′′ ' S ′′ × E for some smooth projective surface

S ′′ and an elliptic curve E. This concludes Theorem 4.1 if κ(X) = 2.

6. Proof of Theorem 4.1 for κ(X) = 1

In this section we aim to prove Theorem 4.1 in the case where X is a minimal smooth

projective threefold with κ(X) = 1. By the abundance conjecture (which is known in

dimension three, see [Ka92]), the Iitaka fibration of KX yields a morphism f : X → C

to a smooth projective curve C. We may thus consider the diagram

X

f

��

a
// Alb(X)

C,

where a denotes the Albanese morphism.

After collecting some preliminary results in Section 6.1, we treat in Sections 6.2, 6.3

and 6.4 below the cases where the Albanese image a(F ) ⊂ Alb(X) of a general fibre F

of f has dimension two, one and zero, respectively.
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6.1. Preliminaries. We begin with the following simple observation, cf. [Gra94, Theo-

rem 1.5].

Lemma 6.1. Let X be a smooth projective threefold with Iitaka fibration f : X → C to

a smooth projective curve C. Then, c1c2(X) = 0 if and only if the smooth fibres of f are

bi-elliptic or abelian surfaces.

Proof. Some multiple mKX is linearly equivalent to the pullback of an ample divisor on

C. Hence, mKX is numerically equivalent to a positive multiple of a general fibre F of

f . Hence, c1c2(X) = 0 if and only if c2(X) restricts to zero on F , which is to say that

c2(F ) = 0 because F has trivial normal bundle. Since F is a minimal surface of Kodaira

dimension zero, c2(F ) = 0 implies that F is either bi-elliptic or an abelian surface, see

e.g. [BHPV, Chapter VI.1]. This concludes the lemma. �

Next, we recall the following definition, see [CaPe00, Definition 1.9].

Definition 6.2. Let X be a smooth projective threefold with a surjective morphism f :

X → C to a smooth curve C. A holomorphic two-form ξ on X is vertical (with respect

to f) if the annihilator of ξ on the tangent space TX,x of X at a general point x ∈ X is

tangential to the fibre of f at x. Equivalently, ξ is vertical if and only if it has trivial

image via the natural map Ω2
X → Ω2

X/C.

With this terminology, Campana and Peternell proved the following:

Theorem 6.3 ([CaPe00, Theorem 4.2]). Let X be a minimal smooth projective threefold

with κ(X) = 1. Let f : X → C be the Iitaka fibration. Assume that there is a holo-

morphic two-form η on X which is not vertical with respect to f . Then there is a finite

morphism C ′ → C such that the normalization X ′ of the base change X×C C ′ splits into

a product X ′ ' F × C ′. In particular, f is quasi-smooth, i.e. all singular fibres of f are

multiple fibres.

The multiplicities of the singular fibres define an effective divisor D on C and this

divisor defines an orbifold structure on C, see e.g. [FM94, Section 2.1.3]. We say that such

an orbifold is good, if there is an orbifold étale covering with trivial orbifold structure.

Proposition 6.4. Let X be a smooth projective threefold with a morphism f : X → C to

a smooth projective curve C. Assume that f is quasi-smooth with typical fibre an abelian

surface F , i.e. the smooth fibres of f are isomorphic to a fixed abelian surface F and

the singular fibres are multiples of an abelian surface isogeneous to F . If the orbifold

structure on C that is induced by the multiple fibres of f is good, then there is a finite

étale covering τ : X ′ → X such that X ′ ' F × C ′, where C ′ is a finite cover of C.
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Proof. If the given orbifold structure is good, then there is a branched cover C ′ → C,

branched exactly at the orbifold points of C with the prescribed multiplicities. The

base change X ×C C ′ is singular along the preimage of the singular fibres of f . Let X ′

be the normalization of X ×C C ′. Then a local analysis shows that X ′ is smooth, the

natural map τ : X ′ → X is étale and X ′ → C ′ is smooth. Since X ′ is projective, the

same argument as in the proof of [CaPe00, Theorem 4.2] shows that up to a further

étale base change X ′ ' F × C ′, as we want.1 We repeat the argument for convenience

of the reader. Consider the natural map f ′ : X ′ → C ′ and note that R1f ′∗Q is a

local system. Since Aut(F ) acts on H1(F,Q) via a finite quotient, R1f ′∗Q has finite

monodromy. Hence, after a suitable étale base change, we may assume that R1f ′∗Q is

trivial and so b1(X ′) = b1(C ′) + b1(F ). We thus get a short exact sequence

0→ F → Alb(X ′)→ Jac(C ′)→ 0. (4)

Since X ′ is projective, this sequence splits after a suitable étale cover of X ′ and so

X ′ ' F × C ′, as we want. This concludes the proposition. �

We finally recall the classification of all good orbifolds, see e.g. [CHK00, Corollary

2.29].

Theorem 6.5. Let C be a smooth projective curve with an effective divisor D ∈ Div(C).

The orbifold (C,D) is good unless C ' P1 and one of the following holds:

(1) D consists of one point with some multiplicity;

(2) D consists of two points with different multiplicities.

6.2. The general fibre of f is not contracted via the Albanese map. By Lemmas

2.5 and 6.1, a general fiber F of f is an abelian or a bi-elliptic surface. Since dim(a(F )) =

2 in the present case, F must be an abelian surface. In particular, a(F ) ⊂ Alb(X) is

the translate of a fixed abelian subvariety of Alb(X). This implies that the pullback

of a general holomorphic two-form from Alb(X) to X is not vertical with respect to f .

Hence, Theorem 6.3 applies and we see that f is quasi-smooth. The multiplicities of

the singular fibres define an effective divisor D on C and this divisor defines an orbifold

structure on C, see e.g. [FM94, Section 2.1.3]. We claim that this orbifold structure is

good, i.e. there is an orbifold étale covering C ′ → C which has trivial orbifold structure.

To this end, we may by Theorem 6.5 assume g(C) = 0. Then the Leray spectral sequence

yields H1(X,OX) ' H0(C,R1f∗OX). This implies b1(X) = 4, because a holomorphic

one-form (hence also an anti-holomorphic one-form) on X which vanishes on one smooth

fibre of f vanishes at any smooth fibre, since the image of these fibres in Alb(X) are

1Note that in loc. cit. it is claimed that this splitting holds even in the Kähler setting, but this seems

to be incorrect, because even after étale cover, the extension (4) does in the non-polarized setting in

general not split.



18 FENG HAO AND STEFAN SCHREIEDER

translates of the same abelian subvariety. Hence, a : X → Alb(X) induces an isogeny

on the general fibre of f . For a general point p ∈ Alb(X), the preimage C ′ := a−1(p)

is a smooth projective curve and the natural map C ′ → C is branched exactly at the

given points of the orbifold structure on C. Hence, the orbifold structure is good, as

we want. The proof of Theorem 4.1 in the case treated in Section 6.2 thus follows from

Proposition 6.4.

6.3. The general fibre of f is via the Albanese map contracted to a curve.

Recall that the smooth fibres of f are either bi-elliptic or abelian surfaces by Lemmas

2.5 and 6.1. In the present case, this implies that the fibres of f are mapped via the

Albanese morphism a : X → Alb(X) to translates of a fixed elliptic curve E in Alb(X).

Since X is projective, we can dualize the inclusion E ⊂ Alb(X) and get a surjection

Alb(X)→ E. This gives rise to a morphism

g : X //E,

which when restricted to the fibres of f coincides with a up to isogeny. Taking the

Stein factorization, we may assume that g has connected fibres. (Note that the target of

the Stein factorization receives a surjection from the fibres of f , which are bi-elliptic or

abelian surfaces, and so it cannot be a curve of genus ≥ 2.)

We proceed in several steps.

Step 1. Up to replacing X by a finite étale covering that is induced by a finite étale

cover of E, we may assume that there is a finite étale cover Ẽ → E such that for general

c ∈ C,

Xc ' Ẽ × Fc (5)

for an elliptic curve Fc which might depend on c ∈ C and such that g|Xc : Xc → E

corresponds to the natural composition Ẽ × Fc → Ẽ → E.

Proof. Consider the restriction g|Xc : Xc → E of g to a smooth fibre Xc = f−1(c) of

f . Even though g has connected fibres, this might a priori not have connected fibres,

but taking the Stein factorization, we see that there is a finite étale cover Ẽc → E, such

that g|Xc factors through a morphism g̃c : Xc → Ẽc with connected fibres. Since Xc is

bi-elliptic or abelian, there is a finite étale cover Ẽ ′c → Ẽc, such that the induced étale

cover X ′c → Xc splits into a product

X ′c = Ẽ ′c × Fc, (6)

where Fc is an elliptic curve which might depend on c ∈ C.

Note that Ẽ ′c → E is an étale cover and so it is determined by a finite index subgroup

of π1(E) = Z2. In particular, there is a finite étale cover Ẽ ′ → E which is isomorphic to
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Ẽ ′c → E for all general points c ∈ C. Similarly, there is a finite étale covering Ẽ → E

which is isomorphic to Ẽc → E for general c ∈ C.

Lemma 6.6. Up to replacing Ẽ ′ by a further finite étale cover, there is a finite étale

cover E ′ → E, such that Ẽ ×E E ′ → Ẽ is isomorphic to Ẽ ′ → Ẽ. That is, there is a

Cartesian diagram

Ẽ ′ //

��

E ′

��

Ẽ // E.

Proof. Consider the sequence of fundamental groups π1(Ẽ ′) → π1(Ẽ) → π1(E). Identi-

fying all three groups with Z2, this sequence is of the form

Z2 A // Z2 B // Z2,

where A,B ∈ GL2(Q) are invertible matrices with integer entries. Since E ′ is determined

by a finite index subgroup of π1(E), the lemma is then equivalent to finding an invertible

matrix C ∈ GL2(Q) with integer coefficients, such that

BA = CB;

the étale cover E ′ → E is then induced by the subgroup of π1(E) ' Z2 given by the

image of C : Z2 → Z2. The above condition is equivalent to asking that C = BAB−1

has integer entries. But this can easily be ensured by multiplying A by a sufficiently

divisible integer, which corresponds to replacing Ẽ ′ by a further finite étale cover. This

proves the lemma. �

Let us now consider the finite étale cover X ′ := X ×E E ′ of X together with the

natural maps g′ : X ′ → E ′ and f ′ : X ′ → C. The fibre of f ′ above a general point c ∈ C
is given by the fibre product

Xc ×E E ′ = (Xc ×Ẽc
Ẽc)×E E ′ ' Xc ×Ẽc

(Ẽ ×E E ′) ' Xc ×Ẽc
Ẽ ′c,

which coincides with X ′c from above and so it splits as in (6) into a product Ẽ ′ × Fc of

elliptic curves. Hence, up to replacing X by X ′, we may assume that for general c ∈ C,

Xc ' Ẽ × Fc for a finite étale cover Ẽ → E and for an elliptic curve Fc which might

depend on c ∈ C. That is, (5) holds, which concludes step 1. �

Note that Ẽ → E is an isomorphism if and only if f × g : X → C × E has connected

fibres. We show next that, up to a suitable base change, we may assume that this holds

true.
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Step 2. In the above notation, up to replacing X by a finite étale cover, given

by the normalization of X ×C C ′ for some finite map C ′ → C, we may assume that

f × g : X → C × E has connected fibres, i.e. Ẽ → E in step 1 is an isomorphism.

Proof. To prove the claim, let X h // S //C×E be the Stein factorization of f × g. We

claim that S is smooth and the natural map S → C is a minimal elliptic surface all of

whose singular fibres are multiples of an elliptic curve.

To see this, note that S is normal. By (5), the general fibre Sc of S → C is isomorphic

to

Sc ' Ẽ.

That is, S → C is a normal elliptic surface whose general fibres are isomorphic to Ẽ.

Since X → C has connected fibres, the fibres of the natural map S → C are connected

and their reductions are finite covers of E. Since the arithmetic genus is constant in flat

families, all fibres of S → C must be irreducible. Let S̃ → S be a minimal resolution.

Since S → C has connected fibres, the induced map S̃ → C has connected fibres as well.

Since S̃ → S is the minimal resolution and no fibre of S → C has a rational component,

it follows that S̃ → C is relatively minimal elliptic surface. Since the reductions of the

fibres of S → C are finite (étale) covers of E, we find that all singular fibres of S̃ → C

are multiple fibres (by Kodaira’s table of singular fibres of relatively minimal elliptic

fibrations, see e.g. [BHPV]). But this implies that S̃ → S is an isomorphism, as we

want.

Since S → C is a minimal elliptic surface whose general fibres are isomorphic to Ẽ

and whose singular fibres are multiples of an elliptic curve, there is a finite étale cover

S ′ → S, given by the normalization of S ×C C ′ for some finite morphism C ′ → C, such

that

S ′ ' C ′ × Ẽ. (7)

The cover S ′ → S induces via X → S a finite étale cover X ′ → X. Then we get the

following commutative diagram

X ′

��

h′
// S ′ ' C ′ × Ẽ //

��

C ′ × E

��

X
h

// S // C × E,

where the composition of the lower horizontal arrow is f × g and C ′× Ẽ → C ′×E is the

product of idC′ and the étale cover Ẽ → E. Since h has connected fibres by construction,

h′ has also connected fibres and so the Stein factorization of the natural map X ′ → E

is given by the composition of h′ with the second projection C ′ × Ẽ → Ẽ. Hence, up to
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replacing X by X ′, Ẽ → E must be an isomorphism, as we want. This concludes step

2. �

By steps 1 and 2, we may from now on assume that for general c ∈ C

Xc ' E × Fc, (8)

where Fc is an elliptic curve that might depend on c and the restriction of g : X → E to

Xc corresponds via the isomorphism in (8) to the first projection E × Fc → E.

Step 3. X is birational to E × S for a minimal surface S.

Proof. By (8), we have for general c ∈ C a splitting Xc ' E × Fc for an elliptic curve

Fc which might depend on c. To prove the claim in step 3, we need to show that

such a splitting holds not only for a general point c ∈ C but also for the generic point

η = SpecC(C) of C. That is, we need to show that the generic fibre Xη of X → C splits

into a product of EC(C) = E ×C C(C) with an elliptic curve over C(C).

It is well-known that the splitting in (8) implies that Xη splits over the algebraic

closure C(C) into a product of EC(C) with an elliptic curve over C(C). The latter must

be defined over C(C ′) for some finite cover C ′ → C. That is, there is a Zariski open

non-empty subset U ⊂ C and a finite Galois cover U ′ → U such that X ×C U ′ splits

into E × T , where T is an elliptic surface over U ′. The base change X ×C U ′ fits into a

diagram

E × T ' X ×C U ′

��

// E × U ′ //

��

U ′

��

X ×C U // E × U // U.

Here the outer square is Cartesian. The square on the right is Cartesian as well and

so it follows that the square on the left must be Cartesian as well. By assumptions,

U ′ → U is Galois and we denote its Galois group by G. Then, G acts faithfully on U ′

with U ′/G = U . By base change, G also acts on E × U ′ and X ×C U ′ with quotients

E × U and X ×C U , respectively. Moreover, the upper horizontal arrows in the above

diagram are G-equivariant. In particular, the map E×T → E×U ′ is G-equivariant and

G acts trivially on the first factor of E × U ′. This implies that G acts trivially on the

first factor of E × T and so

X ×C U ' (E × T )/G = E × (T/G),

where T/G denotes the quotient of T by the induced action of G. This concludes step

3. �

By step 3, there is a minimal surface S such that X is birational to E × S. Since X

has positive Kodaira dimension, the same holds for S and so KS is nef. Hence, X and
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E × S are birational minimal models, and so they are connected by a sequence of flops,

see [Kol89]. Since E × S does not admit any non-trivial flop, X ' E × S, as we want.

This concludes Theorem 4.1 in the case treated in Section 6.3.

6.4. The general fibre of f is via the Albanese map contracted to a point.

Since in the present case, the general fibre of f : X → C is contracted via a to a

point, every fibre must be contracted to a point and so the Albanese map factors as

f : X → C → Jac(C) ' Alb(X) . Since X carries a holomorphic one-form ω such that

(H∗(X,C),∧ω) is exact, b1(X) 6= 0 and so g(C) ≥ 1. Moreover, ω is a pullback of a one-

form from C and so exactness of ∧ω shows that g(C) = 1. Hence, C ' Jac(C) ' Alb(X).

By Lemmas 2.5 and 6.1, the general fibre of f is either an abelian surface or a bi-elliptic

surface.

Case 1. h2,0(X) 6= 0.

In this case, X carries a nontrivial holomorphic two-form ξ. Since h1,0(X) = 1,

exactness of (H∗(X,C),∧ω) shows that ξ ∧ω 6= 0. Since ω is the pullback of a one-form

on C ' Alb(X), the condition ξ ∧ ω 6= 0 then implies that ξ is not vertical. Hence, by

Theorem 6.3, f : X → C is quasi-smooth with typical fibre F , a bi-elliptic or an abelian

surface. Since ξ is not vertical with respect to f , it restricts to a nonzero form on the

general fibre of f and so F must be an abelian surface. The multiple fibres of f give rise

to an orbifold structure on C which is good because g(C) ≥ 1, see Theorem 6.5. Hence,

Proposition 6.4 shows that X splits into a product after a finite étale cover, as we want.

This proves Theorem 4.1 in the case treated in Section 6.4 if h2,0(X) 6= 0.

Case 2. h2,0(X) = 0 and the general fibre of f is an abelian surface.

In this case, consider the sheaf f∗ωX . By Kollár’s theorem [Kol86, Theorem I.2.1], this

is locally free of rank one, i.e. a line bundle on C. Since h3,1(X) = h2,0(X) vanishes, the

Leray spectral sequence shows that

H1(C, f∗ωX) = 0.

Moreover, H0(C, f∗ωX) = 0, as otherwise we get h3,0(X) 6= 0, which is impossible because

h2,0(X) = 0 and ∧ω is exact on cohomology. It follows that the line bundle f∗ωX
has no cohomology and so Riemann–Roch implies that it has degree zero. That is,

f∗ωX ∈ Pic0(C).

Since h3,0(X) = 0, the cohomology support locus

{L ∈ Pic0(C) | H0(X,ωX ⊗ f ∗L) 6= 0}

is a union of proper subtori of Pic0(C), translated by torsion points [Si93]. Since Pic0(C)

is an elliptic curve, the above set is in fact a union of torsion line bundles. This set



HOLOMORPHIC ONE-FORMS WITHOUT ZEROS ON THREEFOLDS 23

contains L := (f∗ωX)−1 ∈ Pic0(C), because

H0(X,ωX ⊗ f ∗L) = H0(C, f∗ωX ⊗ L) = H0(C,OC) 6= 0.

Hence, f∗ωX ∈ Pic0(C) is a torsion line bundle. But then up to passing from X to a

suitable étale covering (induced by a étale covering of C), we may (by flat base change)

assume that f∗ωX is trivial. This implies h3,0(X) 6= 0 and so h2,0(X) 6= 0 by exactness

of (H∗(X,C),∧ω). Hence, we may conclude via Case 1.

Case 3. h2,0(X) = 0 and the general fibre of f is a bi-elliptic surface.

In this case, R1f∗ωX = R1f∗ωX/C is locally free of rank one. Since h2,0(X) = h3,1(X) =

0, H0(C,R1f∗ωX) = 0 by the Leray spectral sequence (which degenerates by Kollár’s

theorem or because C is a curve). Similarly, b1(X) = b1(C) implies H0(C,R1f∗OX) = 0.

By relative Serre duality,

R1f∗OX ' (R1f∗ωX/C)∗ ' (R1f∗ωX)∗,

where we used ωC = OC in the last step. Hence, by Serre duality on C,

0 = H0(C,R1f∗OX) = H1(C,R1f∗ωX).

That is, R1f∗ωX is a line bundle on C without cohomology and so it must be in Pic0(C).

Since h3,1(X) = 0, the cohomology support locus

{L ∈ Pic0(C) | H1(X,ωX ⊗ f ∗L) 6= 0}

is a union of torsion line bundles (see [Si93]), where we use that C is an elliptic curve. As

before, the Leray spectral sequence Ep,q
2 = Hp(C,Rqf∗ωX) ⇒ Hp+q(X,C) degenerates

at E2. Hence,

{L ∈ Pic0(C) | H0(C,R1f∗ωX ⊗ L) 6= 0}
is also a union of torsion line bundles. Since R1f∗ωX is a line bundle of degree zero

on C, we deduce that it must be torsion. Hence, after a suitable étale base change

C ′ → C, we may (by flat base change) assume that R1f∗ωX ' OC . This implies

h2,0(X) = h1,3(X) 6= 0, and so we are done by Case 1, treated above.

Cases 1, 2 and 3 above finish the proof of Theorem 4.1 in the case treated in Section

6.4. Together with the results in Sections 6.2 and 6.3, this finishes the proof of Theorem

4.1 in the case of Kodaira dimension one.

7. Proof of Theorem 4.1

Let X be a smooth projective minimal threefold which satisfies (C) as in Theorem

4.1. By Corollary 3.3 X cannot be of general type, and so we are left with the cases

κ(X) = 0, 1, 2.

If κ(X) = 2, then Theorem 4.1 is proven in Section 5.4.

If κ(X) = 1, then the result is proven in Sections 6.2, 6.3 and 6.4 above.
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If κ(X) = 0, mKX is trivial for some m > 0 by the abundance conjecture for complex

projective threefolds, see [Ka92]. It then follows from the Beauville–Bogomolov decom-

position theorem (see [Bea83]) and the fact that b1(X) > 0 that some finite étale cover

τ : X ′ → X splits into a product A× S with a positive-dimensional abelian factor A, as

required.

This concludes the proof of Theorem 4.1.

8. 1-forms on Mori fiber spaces

In this Section we prove Theorems 1.3 and 1.4 in the case of negative Kodaira dimen-

sion. The main results are Theorems 8.3 and 8.4 below.

8.1. Preliminaries. Recall the following well-known lemma.

Lemma 8.1. Let f : X → E be a surjective morphism from a compact complex manifold

X to an elliptic curve E. Then the topological Euler characteristic of X is given by

e(X) =
∑
s∈E

(e(Xs)− e(Xg)),

where Xg denotes a fixed smooth fibre of f .

Lemma 8.2. Let f : X → S be a surjective morphism from a smooth complex projective

threefold X to a smooth projective surface S with f ∗ : H1(S,C) ' H1(X,C). Suppose

that for ω ∈ H0(S,Ω1
S), (H∗(X,C),∧f ∗ω) is exact. Then (H∗(S,C),∧ω) is exact.

Proof. Assume first that there is a divisorial contraction S → S with S smooth. Then

the composition g : X → S contracts a divisor D to a point, contradicting Lemma 2.3,

applied to the Albanese morphism a : X → Alb(X), because a factors through S by

assumptions. Hence, a contraction as above does not exist and so S is minimal. Next,

we consider the following diagram

C // H1(X,C)
∧f∗ω

// H2(X,C)
∧f∗ω

// H3(X,C)
∧f∗ω

// H4(X,C)

C // H1(S,C)

' f∗

OO

∧ω
// H2(S,C)

?�

f∗

OO

∧ω
// H3(S,C)

?�

f∗

OO

∧ω
// H4(S,C) = C.

?�

f∗

OO

By diagram chasing, we have that (H∗(S,C),∧ω) is exact at H i(S,C) for i = 0, 1, 2. Also,

(H∗(S,C),∧ω) is exact at H4(S,C). Assume (H∗(S,C),∧ω) is not exact at H3(S,C).

Then c2(S) < 0 and so S is a ruled surfaces over a curve of genus > 1, see [BHPV,

Theorem VI.1.1]. The latter contradicts the fact that the Albanese image of X (and

hence that of S) is fibered by tori by item (2) in Theorem 2.2. �
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8.2. Conic bundles over surfaces.

Theorem 8.3. Let X be a smooth projective threefold which admits the structure of

a Mori fibre space f : X → S over a projective surface S. Let ω ∈ H0(X,Ω1
X) be a

holomorphic one-form on X such that for any étale cover τ : X ′ → X, (H∗(X ′,C),∧τ ∗ω)

is exact. Then the following holds:

(1) S is a smooth projective surface which satisfies (A) ⇔ (B) ⇔ (C);

(2) there is a smooth map π : X → A to a positive-dimensional abelian variety A;

(3) f is either smooth, or A is an elliptic curve and the degeneration locus of f is

a disjoint union of smooth elliptic curves which are étale over A (via the map

S → A induced by π);

(4) ω has no zero on X.

Proof. By [Mor82, Theorem 3.5], f is a conic bundle of relative Picard rank one, S is

smooth and the discriminant locus ∆f of f : X → S is a curve with at worst ordinary

double points.

Since f ∗ induces an isomorphism on H1, Alb(X) ' Alb(S) and so we get a commuta-

tive diagram

X

α
  

f
// S

β

��

A,

where A = Alb(X) = Alb(S) and α, β are the respective Albanese morphisms. Hence

there is a one-form γ ∈ H0(A,Ω1
A) with ω = α∗γ = f ∗β∗γ.

Let τ : S ′ → S be a finite étale cover, and let X ′ := X ×S S ′ be the induced étale

cover of X. Then X ′ → S ′ is a conic bundle and so b1(X ′) = b1(S ′). Hence, Lemma

8.2 implies that (H∗(S ′,C),∧τ ∗β∗γ) is exact. This proves item (1). In particular, S

admits a smooth morphism to an elliptic curve or abelian surface by [Sch19, Corollary

3.2], which proves item (2) in the case where f is smooth. For the remainder of the proof

of items (2) and (3), we may thus assume that ∆f 6= ∅.
By (1) and [Sch19, Corollary 3.1], S is one of the following:

(a) a minimal ruled surface over an elliptic curve;

(b) an abelian surface;

(c) a minimal elliptic surface h : S → C such that one of the following holds:

(i) h is smooth, C is an elliptic curve and β∗γ ∈ h∗H0(C,Ω1
C);

(ii) h is quasi-smooth, i.e. all singular fibres are multiple fibres, and the restriction

of β∗γ to a general fibre of h is non-zero.
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By [PaSh99, lemma 7.1.10],

e(X) = 2(e(S)− pa(∆f ) + 1),

where pa denotes the arithmetic genus of ∆f . Since e(X) = 0 and e(S) = 0 by exactness

of (H∗(X,C),∧α∗γ) and (H∗(S,C),∧β∗γ), we deduce

pa(∆f ) = 1.

Since ∆f is a nodal curve, this implies that each connected component of ∆f is either

a smooth elliptic curve with some attached trees of rational curves, or a rational curve

with a single node with some attached trees of rational curves. Note that ∆f cannot

contain a smooth P1 which is attached to the remaining components at only one point

p, as the monodromy of the lines above P1 \ {p} ' A1 would need to be trivial and so

f could not have relative Picard rank one, contradicting our assumptions. Moreover,

since none of the surfaces in (a)–(cii) contains a rational curve with at least one node,

we conclude that ∆f must be a disjoint union of smooth elliptic curves. By assumptions,

∆f 6= ∅ and so we pick an irreducible component D ⊂ ∆f , which is automatically a

smooth connected component of ∆f . Hence, each fibre of f above a point d ∈ D is given

by two distinct lines which meet in a point, see e.g. [PaSh99, Proposition 7.1.8(i)].

By [Sch19, Corollary 3.2], some étale cover S ′ → S is either a simple abelian surface,

or it splits into the product of an elliptic curve with another curve. This implies that

there is a finite étale cover τ : S ′ → S whose restriction to D induces an étale cover

that trivializes the monodromy of the two lines above points of D in the conic bundle

f : X → S. Let X ′ → X be the finite étale cover induced by S ′. Then, f ′ : X ′ → S ′

has relative Picard rank at least two, because the monodromy of the two lines above

D′ := τ−1(D) is trivial. In particular, X ′ admits a divisorial contraction where exactly

one of the two families of lines above D′ is contracted, and we exhibit X ′ as the blow-up

X ′ ' BlD′Y of a conic bundle Y → S ′ which is smooth above D′ ⊂ S ′. By Proposition

3.1, the pullback τ ∗β∗γ restricts nontrivially on D′. This implies that β∗γ restricts

nontrivially on D. Hence, there is a surjective morphism p : A // //E to an elliptic curve

E, so that the composition p ◦ β : S → E restricts on D to an isogeny D → E.

Since S splits into a product after some étale cover by [Sch19, Corollar 3.2(e)], one

checks that p◦β : S → E must be a smooth morphism. Since the remaining components

of ∆f are all smooth elliptic curves that are disjoint from D, we conclude that in fact

any component of ∆f is étale over E via the morphism p ◦ β. This concludes item (3).

Moreover, it shows that the composition p ◦β ◦ f : X → E is smooth, which proves item

(2).

It remains to prove item (4). We have seen that the one-form ω = f ∗β∗γ comes from

a form β∗γ that has no zeros on S by [Sch19, Corollary 3.1]. Hence, ω has no zeros on X
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in the case where f is smooth. If f is not smooth, we have seen above that β∗γ restricts

nontrivially on each component of the ramification locus ∆f , and this implies that ω has

no zeros along f−1(D), and hence no zeros on X. This proves item (4), which finishes

the proof of Theorem 8.3. �

8.3. Del Pezzo fibrations.

Theorem 8.4. Let X be a smooth complex projective threefold which admits a holomor-

phic one-form ω such that for any étale cover τ : X ′ → X, (H∗(X ′,C),∧τ ∗ω) is exact.

Suppose that X admits the structure of a Mori fibre space f : X → C over a curve C.

Then C is an elliptic curve and f is smooth. In particular, ω has no zeros on X.

Proof. By [Mor82, Theorem 3.5.2], C is a smooth projective curve and any fibre of f is

an irreducible reduced del Pezzo surface which is Gorenstein, as its canonical bundle is

given by the restriction of the canonical bundle of X. Moreover, since ω has its zeros

exactly at the singular points of the fibres of f , and since it cannot have isolated zeros

by item (1) in Theorem 2.2, the singular fibres of f are reduced and non-normal.

Note that f ∗ induces an isomorphism H1(C) ' H1(X). Since (H∗(X,C),∧ω) is exact,

we deduce that C is an elliptic curve, see e.g. item (2) in Theorem 2.2. It remains to

prove that f is smooth.

Since ρ(X/C) = 1 and h2,0(X) = 0, b2(X) = b2(C) + 1 = 2. Since b1(X) = b1(C) = 2

and (H∗(X,C),∧ω) is exact, we then conclude

b1(X) = b5(X) = 2, b2(X) = b4(X) = 2, and b3(X) = 2.

We consider the Leray spectral sequence

Ep,q
2 = Hp(C,Rqf∗C) =⇒ Hp+q(X,C).

Since C is a smooth projective curve, this spectral sequence degenerates at E2, see e.g.

[PeSt08, Theorem 4.24]. Since the general fibre of f is a smooth del Pezzo surface, R1f∗C
is a skyscraper sheaf, which implies E1,1

2 = 0. We also have E2,0
2 = H2(C,C) ' C. Since

b2(X) = 2 and E2 = E∞, we conclude

H0(C,R2f∗C) = E0,2
2 = E0,2

∞ ' C. (9)

In particular, H0(C,R2f∗C) is generated by the section of R2f∗C induced by an ample

class on X.

By topological proper base change, we have for any c ∈ C and any i ∈ N:

(Rif∗C)c ' H i(Xc,C).

We claim that this implies that b2(Xc) is bounded from above by the second Betti number

of a smooth fibre of f . Indeed, if not, then there is a neighbourhood U of c ∈ C and a
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section s ∈ R2f∗C(U) which is nonzero at the stalk at c but zero at all other stalks. But

then after taking the extension by zero, s can be extended to a nontrivial global section

of R2f∗C which is zero away from the point c, contradicting (9).

Let t ∈ C be a general point, so that the fibre Xt is smooth. For any c ∈ C, we have

seen above that b2(Xc) ≤ b2(Xt). Moreover, since Xc is irreducible, b0(Xc) = b4(Xc) = 1

and so the topological Euler characteristics satisfy

e(Xc) ≤ e(Xt)

for all c ∈ C. Since C is an elliptic curve and X has trivial topological Euler characteristic

(cf. Lemma 2.5), we deduce from Lemma 8.1 that

e(Xc) = e(Xt)

for all c ∈ C. In particular,

b2(Xc) = b2(Xt)

for all c ∈ C and so the stalks of R2f∗C have the same dimension at all points of C. This

implies that R2f∗C is a local system, because we have seen above that any local section

of R2f∗C vanishes if it vanishes generically.

We claim that in order to prove that f : X → C is smooth, we may replace X

by any finite étale cover, induced by a finite étale cover C ′ → C. To prove this, let

τ : X ′ → X by a finite étale cover, induced by a finite étale cover C ′ → C, and assume

that f ′ : X ′ → C ′ is smooth. Then the natural map X ′ → C is smooth as well and since

X ′ → X is étale, f is smooth, as claimed.

Since R2f∗C is generically a polarized variation of Hodge structure of type (1, 1), its

monodromy representation is finite. This implies that up to replacing X by a finite étale

covering, we may assume that R2f∗C is trivial. Applying Proposition 3.1 to this base

change repeatedly, we may assume that we again arrive at the situation of a Mori fibre

space over C and so ρ(X/C) = 1. Since R2f∗C is trivial, ρ(X/C) = 1 implies that it

has rank one and so the general fibre of f must be P2 (because it is a smooth del Pezzo

surface with b2 = 1). It is not hard to prove directly that this implies that f cannot have

any non-normal fibres; alternatively, this claim also follows from [Fuj90, Theorem 3.1].

Since we have seen above that all singular fibres of f are non-normal, this proves that f

is smooth. This finishes the proof of Theorem 8.4. �

9. Summary of the argument

Proof of Theorems 1.1 and 1.3. Since 1.3 ⇒ 1.1, it suffices to prove Theorem 1.3. Since

(D)⇒ (A)⇒ (B)⇒ (B’) is clear and (B’)⇒ (C) is proven in the appendix (see Theorem

A.1), it suffices to prove (C) ⇒ (D) for smooth projective threefolds. For this, let X be
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a smooth projective threefold and assume that (C) holds for the holomorphic one-form

ω on X.

By Corollary 3.2, the minimal model program for X yields a smooth projective three-

fold Xmin and a proper birational morphism σ : X → Xmin which is a sequence of blow-

ups along elliptic curves which are not contracted by the natural map to Alb(Xmin).

This proves item (D1).

To prove items (D2), (D3) and (D4), we may replace X by Xmin and assume that X

is either minimal or a Mori fibre space. The assertions then follow from Theorem 4.1,

Corollary 4.2, and Theorems 8.3 and 8.4.

This concludes the proof of Theorems 1.1 and 1.3. �

Proof of Theorem 1.4. By Proposition 3.1, it suffices to prove Theorem 1.4 for a smooth

projective threefold X which is either minimal or a Mori fibre space. In the latter case,

Theorem 1.4 follows from Theorems 8.3 and 8.4; in the former case, Theorem 1.4 follows

from item (3) in Corollary 4.2. This concludes the proof of Theorem 1.4. �

Proof of Corollary 1.6. Let f : X → A be a smooth morphism from a smooth projective

threefold X with κ(X) ≥ 0 to an abelian variety A. If A is zero-dimensional, the claim is

trivial and so we may assume that dimA > 0. Hence, X carries a holomorphic one-form

without zeros and so the equivalent conditions (A)⇔ (B)⇔ (B’)⇔ (C)⇔ (D) hold by

Theorem 1.3.

If X is not minimal, then by Proposition 3.1, X is the blow-up BlCY of a smooth

projective threefold Y along an elliptic curve C ⊂ Y . Since f : X → A factors through

Y , this implies that A must be an elliptic curve and C must be étale over A (f is non-

flat if dimA = 3, and it has singular fibres if dimA = 2 or if dimA = 1 and C is not

étale over A). Hence, up to replacing X by Y , we may inductively assume that X is

minimal. We claim that under this assumption, f is an analytic fibre bundle. To prove

this, we may replace X by any finite étale cover. Hence, by (D3), we may assume that

X = A′ × S ′ is a product of an abelian variety A′ of positive dimension and a smooth

projective variety S ′. Then for any s ∈ S ′, A′×{s} maps to a translate of a fixed abelian

subvariety A′′ ⊂ A. Let B := A/A′′. If dimB = 0, then we are done. Otherwise, for any

a ∈ A′, consider the natural composition

S ′ = {a} × S ′ ↪→ A′ × S ′ = X f // A // //A/A′′ = B,

which is smooth, because f is smooth. Since dimB > 0, [Sch19, Corollary 3.2] implies

that up to a further étale covering, S ′ splits of a positive-dimensional abelian variety

as a direct factor. Arguing as before therefore concludes the proof of the corollary by

induction on the dimension. �
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Appendix A.

The purpose of this appendix is to show that the arguments in [Sch19] easily generalizes

to prove the following, which is inspired by questions of Kieran Kedlaya and Burt Totaro.

Theorem A.1. Let X be a compact connected Kähler manifold. Then (B’) ⇒ (C).

Proof. Let X be a compact connected Kähler manifold. In order to show that (C) holds,

it thus suffices by the argument in [Sch19, Section 2.3] to show that there is a local system

L with stalk C on X whose first Chern class is trivial and such that H i(X,L) = 0 for all

i. Since the space of such local systems is given by Hom(π1(X),C∗), it depends only on

the homotopy type of X. Moreover, the corresponding cohomology groups do not change

when we replace X by a homotopy equivalent CW complex, see e.g. [Wh78, VI.2.6*].

Hence, to prove (B’) ⇒ (C), it suffices to show that any CW complex Y which admits a

finite Q-homology fibration f : Y → S1 carries a local system with stalk C, trivial first

Chern class and no cohomology. Following a suggestion of Botong Wang (see [Sch19,

Remark 2.3]), we claim that the local system L = f ∗Lλ on Y has this property, where

Lλ is a generic local system on S1 with monodromy given by a general element λ ∈ C.

To show this claim, consider the Leray spectral sequence with E2-term

Ep,q
2 = Hp(S1, Rqf∗f

∗Lλ) = Hp(S1, Lλ ⊗Rqf∗C) =⇒ Hp+q(Y, L).

By our assumptions, the sheaf Rqf∗C is a local system on S1 with stalk a finite dimen-

sional C-vector space V q. Since λ ∈ C is general, λ−1 is different from all eigenvalues of

the natural monodromy operator on V q. Hence, Lλ⊗Rqf∗C is a local system on S1 which

corresponds to a finite-dimensional C-vector space together with a monodromy operator

whose eigenvalues are all different from one. In particular, H0(S1, Lλ ⊗ Rqf∗C) = 0.

Since the Euler characteristic of any local system of finite rank on S1 is zero, we also get

H1(S1, Lλ⊗Rqf∗C) = 0. Hence, Ep,q
2 = 0 for all p, q and so Hk(X,L) = 0 for all k. This

concludes the proof. �
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