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Comments On The Presentation. We shortly motivate the defi-

nition of a Hopf algebra along it’s historical development, namely the

typical dualizations appearing e.g. if considering the algebra of func-

tions on a space or a Lie group. This example will be used extensively,

especially when representation theory of Hopf algebras is studied later-

on. We then turn to the strict definitions and use this to introduce

the very helpful diagrammatical calculus (”Braiding Diagram”). The

main classical examples (Lie algebra envelopings, group rings and their

duals) are discussed. We introduce integrals and the adjoint action and

prove some of their’s elementary properties.

As first nontrivial example, we particulary study the easiest case of

a Taft algebra acting as ”infinitesimal translation” on the quantum

plane as a first glance on (noncommutative) module algebras and dis-

cuss. There we also discover the first example of truncation and discuss

some of it’s physical relevance. We then see how Hopf algebras gen-

erate group schemes via the convolution product, thereby especially

recovering the Matrix groups again from their Lie algebra envelopings.

This also provides the ground for discussing duals of Hopf algebras and

the antipode.

Representations are the main focus of our course, so we first concern

with it’s pysical relevance as particles, followed by an extensive dis-

cussion of the special ”expected” structures found in the representa-

tion theory of Hopf algebras, namely their tensoring and dualizing (see

Clebsch-Gordan). Some additional structure (”R-Matrix”) or the use

of ”Yetter-Drifel’d modules” turns this even into a braided category

where representations products may be switched, describing physically
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”topological spin”. Both constructions are connected via the ”Drin-

fel’d double” and directly produce knot invariants. We finally intro-

duce Quasi-Hopf algebras (physically a nontrivial ”F-Matrix”). Their

first appearing was in Drinfel’d’s works relating deformations of Lie

envelopings to the Knizhnik-Zamolodchikiv equations and Conformal

Quantum Field Theories in dimension 2. As much easier case to study

the behavior of these objects, we discuss our later-on main example:

Finite group-ring doubles deformed by a 3-cocycle (Dijkgraaf). They

may be used to produces examples of ”Anyon-Models” used in quan-

tum computing.

Finally we introduce the notion of ”Topological Quantum Field The-

ories” (TQFT), being a functor describing time-evolution of states

purely in terms of the space-manifold’s topology, thereby yielding pow-

erful invariants of the latter. We will construct such by using the rep-

resentation ring of the some twisted group double, already considered

previousely applied to an arbitrary triangulation of the manifold. This

will be demonstrated on examples! We directly prove the independence

of the used triangulation and the other properties rather combinatori-

cally (see [Wakui]), while we also elaborate the physical intuition, that

lead Witten and Dijkgraaf to construct it as a ”Chern-Simons-Theory”

with the prescribed finite gauge group [DW]. The latter also holds the

key to find a surprising Verlinde-like formula for this case, but we will

also show how it can be proven directly.

Exercises are frequently given - they’re intended to work hands-on

with the preceeding notions, but also try to point the reader to topics

of further interest or application. For this reason some of them might

take considereble effort or require additional knowledge (or reading) in

other topics touched.



6 SIMON LENTNER

1. Preliminaries

k is any field and we name restrictions, where they should arrive. There

is however no demage in considering always the case k = C. We first

review some concepts needed extensively later-on without proving de-

tails - these can be found in standard textbooks on linear algebra and

Lie algebra:

1.1. The Tensor Product. Take a bilinear map between vectorspaces,

i.e. linear in each argument on it’s own, such as the multiplication:

f(a, b) = ab, a, b ∈ V

One could try to write this with the cross-product of vectorspaces (=tu-

ples), also called ”direct sum”:

V ⊕ V = V × V → V

However this is not linear, because tuples are added component-wise:

ab+cd = f(a⊕b)+f(c⊕d) 6= f((a⊕b)+(c⊕d)) = f((a+c)⊕(b+d)) = (a+c)(b+d)

Rather, we would need a much larger vectorspace consisting of formal

linear combinations of formal products, that can not be added on both

sides at the same times, but just at one side if the others coincide

(”distributivity”, bilinearity). We precisise both:

Definition 1.1.1. A tensor product of k-vectorspaces is a functor (see

below), assigning to each pair of vector spaces (V,W ) (objects) a vector

space V ⊗k W (functoriality exactly means, that maps f, g give a map

f ⊗ g between the tensor products) and a bilinear map ι : V ×W →

V ⊗W , such that a universal property is fulfilled:

Every bilinear f : V × W → Z can be written as f = g ◦ ι with a

linear(!) map g : V ⊗k W → Z. (So ι should be the ”most general”
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bilinear map, such that instead of bilinear maps we may always speak

of linear maps from the tensor products)

Such an abstract definition via universal property always has one strik-

ing advantage, namely uniqueness: Two ”tensor products” ⊗k,1,⊗k,2
are always equivalent, because we may apply the universal property of

the former to the bilinear map ι2 to write it ι2 = g1 ◦ ι1 for some linear

g1 : V ⊗k,1 W → V ⊗k,2 W , but also the other way around ι2 = g2 ◦ ι1
hence g1, g2 are inverse linear maps between these two tensor products,

hence isomorphisms! (”no two different things can be most general, as

we can apply this also to each other”)

There also comes the disadvantage of ensuring existence:

Theorem 1.1.2. In a fairily general context (especially vectorspaces)

the following construction gives a tensor product: Take F (V ×W ) the

(very large!) free vectorspace with formal basis all tuples a ⊗ b ∈

V × W . To make the obviouse embedding ι : V × W → F (V ⊗ W )

bilinear, we greatly have to fix there additional relations (for all v, v′ ∈

V,w,w′ ∈ W,λ ∈ k):

(λv)⊗ w !
= λ(v ⊗ w) v ⊗ (λw)

!
= λ(v ⊗ w)

(v+ v′)⊗w !
= (v⊗w) + (v′⊗w) v⊗ (w+w′)

!
= (v⊗w) + (v⊗w′)

which amounts to devide out subvectorspaces generated by the respective

elements, that should get zero:

V ⊗W := F (V ×W )/〈(λv)⊗ w − λ(v ⊗ w), . . .〉k

For vector spaces V,W having a basis vi, wi we can calculate, that the

relations above can be used (”multiplying out”) to reduce every such

formal product (”elementary tensors”), e.g. (v1 + 2v2)⊗ (3w1 +w2), to

a linear combination of pairs of basis vectors, e.g.

3(v1 ⊗ w1) + 6(v2 ⊗ w1) + (v1 ⊗ w2) + 2(v2 ⊗ w2)
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Especially V ⊗k W is exactly the vectorspace with basis vi ⊗ wj and

has dimension dimV dimW . Note that if k is just a commutative ring

like Z (basis’ not necessarily exist any more), the abstract definition of

the tensor product can do fairely complicated things: Take in this case

the ”vector spaces” V = Z2 and W = Z3, then the relations above for

λ = 2, 3 ”contradict” (which means they generate all of T (V ×W ), as

easily calculated) and thus V ⊗Z W = {0}!

Exercise 1.1.3. Z-modules are simply abelian groups (you see why?).

They provide good examples of torsion, i.e. λ.v = 0 (examples above?),

which of course requires λ noninvertible. One may even drop the neces-

sity for commutativity of the modules +, as done extensively in group

theory. The following totally clearifies this tensor product:

• For cyclic groups of prime power (p 6= q) we have:

Zpn ⊗Z Zpm ∼= Zpmin(n,m) Zpn ⊗Z Zqm = {0}

• There’s distributivity with respect to the ”direct sum” ⊕ := ×:

(G1 ×G2)⊗Z H ∼= (G1 ×H)⊗Z (G2 ×H)

H ⊗Z (G1 ×G2) ∼= (H ×G1)⊗Z (H ×G2)

• Let G′ the subgroup of G generated by all commutators ghg−1h−1:

G⊗Z H/H
′ ∼= G⊗Z H ∼= G/G′ ⊗Z H

• Use this on examples: find Z9 ⊗Z Z6, generally show

Zn ⊗Z Zm ∼= Z(n,m)

determine Sn ⊗Z Z2 and G⊗Z H for any simple nonabelian G!

Exercise 1.1.4. Anticipating a later approach: Let X be a smooth

manifold and A the k-algebra of smooth functions λ : X → k. The

smooth vectorfields on X form a module TM over A (how?). Gener-

ally this trick assigns to every vectorbundle over M (here the tangent
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bundle) a module (the space of sections) over A. Is there any tor-

sion? Show: We cannot have a A-basis of TS2n for even dimensional

spheres, because of the topological ”hedgehog-theorem”. Find an ex-

plicit basis for TS1, the torus T (S1×S1) and TS3. Is there any for TS5

(maybe not too easy)?

Find further (e.g. by geometric intuition) a second module/vector bun-

dle B over S2 s.t. you can prove as modules TS2 ⊕ B ∼= A3. In

K-Theory all such modules (free resp. with a basis resp. ∼= An) are

considered ”trivial” and hence TS2 and B become inverses! This is

by the way a great functor and has been successfully generalized from

bundles (Topological-) to arbitrary modules (Algebraic-).

1.2. Lie Groups and -Algebras. A (symmetry-) operation of a group

G (or algebra) on a set/space X is a map

G×X → X, (g, p) 7→: g.p

such that g.(h.p) = (gh).p and 1G.p = p. The following observations are

greatly generalized by Hopf algebras acting on ”module algebras” as we

will see in section 3: G also acts on the space of functions λ : X → k via

pull-back g.λ = (p 7→ λ(g−1.p)). The inverse here is later of most signif-

icance (antipode!) and may be interpreted geometrically as ”translate

functions by translating back the argument”, but it is primarily neces-

sary to flip back the order, that gets reversed by ”contravariance”:

g.(h.λ) = (p 7→ λ(h−1.p) 7→ λ(h−1.(g−1.p)) = λ((h−1.g−1).p) = λ((gh)−1.p)) = (gh).λ

We defined pointwise linear-combinations of functions and get linearity:

g.(aλ+ bθ) = (p 7→ aλ(g.p) + bθ(g.p)) = a(g.λ) + b(g.θ)

Definition 1.2.1. A representation of G on a vectorspace V is an

action on the set V , such that g. V → V is linear. Hence we can

reformulate all axioms to a group homomorphism G→ GL(V ).
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The pointwise multiplication even implies it respects the algebra struc-

ture by acting as automorphisms:

g.(λθ) = (p 7→ λ(g.p)θ(g.p)) = (g.λ)(g.θ)

g.1X→k = g.(p 7→ 1k) = (p 7→ 1k) = 1X→k

Many symmetry groups in physics and geometry have infinitely many

elements (e.g. all rotations), which seems to greatly complicate working

with them, as we don’t have generators (like 1 ∈ Z) because we can get

continousely close to the identity. To Sophus Lie (1842-1899) belongs

the credit to understand, that this problem virtually vanishes, when

we demand additional structure:

Definition 1.2.2. A Lie group G is a group, that is also a smooth

manifold (i.e. has a topology, which locally looks like Cn or Rn and

their ”glueing” is infinitely often differentiable) like a smooth surface,

such that multiplication and inversion are smooth (continuous and in-

finitely often differentiable) functions.

Typical examples are matrix groups like the orthogonal group O(n)

(rotations), unitary group U(n) or special lineary group SL(n).

To see why this helps, take as an example for k = R the planar rotations

O(2), i.e. the set of all 2× 2-matrices A with AAT = 1 (i.e. preserving

the standard euklidean metric 〈v, w〉 = 〈Av,Aw〉). It falls topologically

in two connected components - without or with reflection resp. detA =

±1. To omitt the ± we even just take the part with detA = +1, which

we call SO(2). These matrices look like:

A =

cosθ −sinθ
sinθ cosθ


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Notice, that this is a group homomorphism A(t) : R→ SO(2) because

A(0) = 1G and A(p)A(q) = A(p + q) by both intuition and trigono-

metric addition theorem. Such is called a 1-parameter group in G

and corresponds to the An of a generator in a discrete group (note

A(t)n = A(nt)).

A similarly fruitful role as these generators can now be played by the in-

finitesimal generators, i.e. the derivatives of the 1-parameter groups

X = Ȧ(t)|t=0. They are the ”tangent vectors” on the manifold (in the

identity A(0) = 1G) and by the group homomorphism property one can

use the exponential series to get back to all of A(t):

Ȧ(t) = lim
h→0

A(t+ h)− A(t)

h
= A(t) lim

h→0

A(h)− A(0)

h
= A(t)X

⇒ A(t) = etX =
∞∑
n=0

Xntn

n!

Check this in our example, where the only infinitesimal generator is

X =

0 −1

1 0


Exercise 1.2.3. Calculate the 1-parameter-group with the exponential

function by direct knowledge of Xn and verify you recover the matrices

for finite rotations. Then try the same using diagonalization X =

UDU−1 - this is generally a good way!

We may directly get equations for the infinitesimal generators by dif-

ferentiating and plugging t = 0 the defining equations of the Lie group,

e.g. above:

AAT
!

= 1⇒ ȦAT + AȦT
!

= 0⇒ X +XT = 0

So we get for all SO(n) exactly the skew-symmetric matrices.
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These infinitesimal generators need not anymore be inside G and also

do not form a group. However one can show, that linear combination

and commutators are again infinitesimal generators:

A(t)aB(t)b ⇒ aX+bY A(t)B(t)A(t)−1B(t)−1 ⇒ XY−Y X =: [X, Y ]

Definition 1.2.4. A Lie algebra ` is a vector space with a bilinear

map [, ] : `× `→ ` (Lie-Bracket) such that:

[x, y] = −[y, x] [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

Most of the study of Lie Groups can be performed already on this

level. The only thing lost is the ”global” picture, e.g. SO(2) and O(2)

have the same Lie algebra so(2) = o(2), and so do SO(2) and the

translations group (R,+). But locally they’re in correspondence, for

example:

• Smooth group homomorphisms between Lie groups induce vie

their differential/Jacobi-matrix Lie algebra homomorphisms

(linear maps compatible with the Lie brackets) between the cor-

responding Lie algebras (=functoriality).

• If a Lie group acts via automorphisms on a space of functions

λ : X → k, the Lie algebra acts on the same space as derivations

”along the flow” obeying the Leibniz rule:

X.λ = lim
h→0

A(h)− A(0)

h
λ = lim

h→0

A(h).λ− A(0).λ

h
=

d

dt
λ(A−1(t))|t=0

In Quantum Mechancs the latter is of most importance and the

reason why operators usually are presented as differential operators

acting on functions (we suppress conventional factors like i~) :

Exercise 1.2.5. Calculate for the translation group (R,+) operating by

addition on R1 that the Lie-Algebra is 1-dimensional RX and the action

above on the space of functions R→ R is X = d
dx

. Check also (testing

on a basis λ = xn) that exponentiation again gives (A(t)λ)(x) = λ(x+
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t). Since the former is the momentum operator (up to factors), we get

that momentum is the infinitesimal generator of translation.

As a more complicated example with non-commutativity, take so(3)

where we have a basis of three again skew-symmetric matrices

X =


0 0 0

0 0 −1

0 1 0

 Y =


0 0 1

0 0 0

−1 0 0

 Z =


0 −1 0

1 0 0

0 0 0


This is as Lie algebra isomorphic to the vector-cross-product:

` = R3, [~x, ~y] := ~x× ~y

Exercise 1.2.6. Show this! Find and interprete the three 1-parameter-

groups by diagonalization. Show that the action on the space of func-

tions R3 → R can be calculated to be the well known angular-momentum

operators: 
X

Y

Z

 =


x·

y·

z·

× ~∇

Since we now recovered important observables/operators of quantum

mechanics as infinitesimal generators of symmetries, we’re ready to

state Emmy Noether’s Theorem, assigning to every symmetry of

the problem a quantity, that is conserved:

Lie Group Symmetry Inf. Generators Conserved Quantity

Translation (R3,+) Homogenity q̂i = ∂
∂xi

Momentum

Rotation SO(3) Isotropy L̂i = ~̂x× ~̂q Angular Momentum

Time-Transl. (R,+) Skeleronomy Ĥ Energy
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Exercise 1.2.7. Which famous equation expresses the fact, that the

observable of energy, the Hamilton operator Ĥ generates the time trans-

lation? What is the consequence for finite time-translations of states

with fixed energy (Ĥ-eigenvectors) and especially for the ”phase”?

Exercise 1.2.8. For the Lie group SL2(C) of matrices with deter-

minant 1, show that the the Lie algebra consist precisely of all met-

rices with trX = 0, by the above trick for arbitrary matrix entries

a(t), b(t), c(t), d(t). Use a basis of diagonalizable and nilpotent ma-

trices (Jordan-Decomposition) and determine the 1-Parameter-Groups

(the latter yield polynomial exponential series’ !)

The latter behaviour is very typical for semisimple Lie Algebras, where

we find a so-called Cartan-Algebra of commuting elements, hence si-

multaniously diagonalizable. All other elements are described accoring

to their collection of eigenvalues (root) and the relations between differ-

ent roots (Cartan-Matrix, Dynkin-Diagram) finally lead to a complete

classification!

We finally mention a great functor to transform a Lie algebra to stan-

dard algebra - which is going to be the way we will work with them!

Theorem 1.2.9. For every Lie algebra ` there is a universal en-

veloping algebra U(`) producing ` as real commutators: Namely take

all formal sums and products of elements T (`) (tensor algebra) and de-

vide out the relations:

xy − yx !
= [x, y] ∈ `

which means, to devide out the respective generated ideal:

U(`) := T (`)/(xy − yx− [x, y])
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Really there’s not much to prove here, but somehow tricky is the fact,

that this ideal does not cover all of T (`) (by ”contradictionary” re-

lations). Rather we get for any ”sorting” on ` a linear Poincare-

Birkhoff-Witt-Basis of sorted monomials in `, to which we can re-

duce every expression by the commutator relation - independently of

the specific order we proceeded in exactly by the Lie Algebra axioms.

2. Introducing Hopf Algebras

We understand always ⊗ = ⊗k for a fixed field. Note that ”tensor” is

so far only meant as an operation on vectorspaces. Physically more rel-

evant are usually tensors with (as additional structure) representations

(e.g. of the Lorentz- or some gauge-group), with the respective new

action of it on the product derived from the two former. This generally

requires Hopf-algebras, as discussed in the second section!

2.1. History: From Geometry To Algebra. To understand the

idea that lead Heinz Hopf (1894-1971), being a topologist, to first con-

sider Hopf algebras, we first want to see the nowadays usual approach

to link geometry to algebra. At that time, first examples were discov-

ered of a concept, that turnded out to be behind many invariants and

became the founding of algebaic topology:

Definition 2.1.1. A functor φ (between the ”categories” of sets and

k-vectorspaces) has to assign:

• to every set X (”space”) a vectorspace φ(X) (e.g. ”states”)

• to every map f : X → Y between spaces (e.g. ”deforming”

or ”glueing”) a k-linear map φ(f) : φ(X) → φ(Y ) (”operator,

state-transition”) between the respective vectorspaces.

• such that to the composition ◦ (one-after-another-application)

of two maps g, h the respective linear map is assigned:

φ(h ◦ g)
!

= φ(h) ◦ φ(g)
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• such that the identity idX : X → X goes to the respective iden-

tity:

phi(idX)
!

= idφ(X) : φ(X)→ φ(X)

To be specific, we call such a functor covariant, while a contravari-

ant functor ψ reverses the direction of the arrow, namely yields:

ψ(f) : ψ(Y )→ ψ(X), φ(h ◦ g)
!

= φ(g) ◦ φ(h)

Of course this concept gets more interesting with additional structure:

For one, we could involve finer geometrical data, eg. consider topolog-

ical spaces with continuous maps, manifolds with differentiable func-

tions or complex surfaces with holomorphic maps (local power series’).

An important observation is now, that whenever X ∼= Y are isomorphic

(just as sets, or even as topological spaces, etc.), the functor images

also have to be φ(X) ∼= φ(Y ). Thus they produce invariants, that

can be used to distinguish ”different” spaces with respect to different

categories defining ”equal”, and this is usually a very delicate task!

On the other hand, we may obtain more information by assigning more

complex structures, like groups with group homomorphisms, e.g. the

fundamental group πn(X) (”n-dimensional loops modulo small de-

formations”, covariant), the homology groupsHn(X) (covariant) and

cohomology groups Hn(X) (contravariant) or algebras with algebra

maps. Later, also powerful examples of functors were considered, that

assign eg. to every group a group (like group cohomology) or to every

algebra a group (like the multiplicative group of invertible elements).
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Remark 2.1.2. Both do not even have to be sets with additional data

and compatible maps, but can be rather arbitrary categories (see defini-

tion ??). Our later-on target, a Topological Quantum Field The-

ory will be a functor from the ”cobordism category” to vectorspaces

(see lemma ??).

There, objects are 2-dimensional manifolds (”space to a specific time”)

and arrows (morphisms) f between X, Y are 3-dimensional manifolds

between them (with border X ∪ Y ). They represent ”spacetime forms”

between these two times and the vector space map φ(f) between the

states φ(X), φ(Y ) at each time the quantum machanical time evolution,

just due to some spacetime topology!

Consider the following examples, that will repeatedly appear through-

out this course:

• We may assign to every X the algebra φ(X) := kX of ”‘scalar

fields”’, i.e. functions from X to k, where addition and scalar-

multipliciation is defined pointwise. It is contravariant, because

for some f : X → Y we can define φ(f) := f ∗ : kX → kY as

sending every kY 3 λ : Y → C to f ∗(λ) = λ ◦ f : X → k

(pull-back). Our two axioms for a functor are easily fulfilled:

(f ◦ g)∗ = (λ
(f◦g)∗7→ λ ◦ (f ◦ g)) = (λ

f∗7→ λ ◦ f g∗7→ (λ ◦ f) ◦ g) = g∗ ◦ f ∗

id∗X = (λ 7→ λ ◦ id) = (λ 7→ λ) = idkX

• Conversely we assign to every X the vector space k[X] with

formal basis p∗ for all points p ∈ X, this is a a covariant functor

to vector spaces. Namely, for every map f : X → Y we define

f∗ by accordingly sending the basis of k[X] to the respective

one of k[Y ] and this uniquely extends to a well defined linear

map. The functor axioms follow here right-away (always by

linear extension).
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Note that the first case is even a functor to algebras kX by pointwise

multiplication, as the f ∗ are multiplicative! Let us take some time

to understand a bit more, where the the multiplication came from:

”‘Pointwise”’ means, that we have the natural ”diagonal-map” ∆ :

X → X × X doubling every point. The multiplication can than be

recovered from the functor:

(kX ⊗ kX →) kX×X
∆∗→ kX

Trying the same for k[X], since this functor is covariant we obtain a

rather opposite map:

k[X]
∆∗→ k[X ×X] (→ k[X]⊗ k[X])

We call this ”dual” concept coalgebra and we will formally introduce

this in the next section. Note that this gives (contravariant) cohomol-

ogy it’s ”cup-product” makig it a ring H∗(X), which it much easier to

be dealt with then the covariant homology.

To obtain on the other hand also a multiplication on k[X] (and a

comultiplication on kX), we would need to be able to multiply points

by some µ : X×X → X (note however that kX×X → kX⊗kX requires

X to be finite!). Both algebra- and coalgebra structure on each space

turn out to be compatible in some way we call Bialgebra.

Remark 2.1.3. Having even an inverse map S : X → X to the mul-

tiplication (making X a group) induces again via the functoriality the

antipode map S∗k[X]→ k[X] connecting product and coproduct:

µ∗(id⊗ S∗)∆∗(p) = µ∗(id⊗ S∗)(p∗ ⊗ p∗) = µ∗(p⊗ S(p)∗) = 1∗

This finally is a Hopf algebra.

Exercise 2.1.4. Show that the same works for kX :

∆∗(id⊗ S∗)µ∗(λ) = λ(1)1∗
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(here ∆∗ is the product and µ∗ the coproduct)

A good example where this is fruitful are Lie groups (again: groups

being also manifolds in a compatible way, like all matrix groups S1 =

U(1) or SO(3)). And this is also the end of our birth story: 1939

Hopf was able to determine their ”cohomology rings” exactly by clas-

sifying their additional (much more restrictive!) possible Hopf algebra

structures. We will study the rich interplay between Hopf algebras and

algebras (”...of functions”) they act on, like the Lie Group acting on a

space, in the section ”Representation Theory”.

2.2. Definition, Diagrams And First Examples. To show the full

analogy, we formulate the notion of an algebra in a strictly categorically

manner:

Definition 2.2.1. An algebra is a vectorspace A with two linear maps

µ : A⊗ A→ A η : k → A

for multiplication and unit (η sends a scalar to the respective scalar

multiple of 1A), having for all a, b, c ∈ A, r ∈ k the well known proper-

ties:

• Associativity: µ(µ(a⊗ b)⊗ c) = µ(a⊗ µ(b⊗ c))

• Unitality: µ(η(r)⊗ a) = µ(a⊗ η(r)) = ra

where the last expression ra means scalar multiplication on the k-vector

space A.

A very good way to actually visualize (not only) Hopf algebra calcu-

lations are braiding diagrams (the ”braiding” is added later). Being

a generalized version of commutative diagrams, these diagrams sym-

bolize maps, composed of other map, that are usually in some way

”basic” (µ,η, etc.) that can however have branching points. Each line

corresponds to a tensor factor (the ”first” at the top), whereas k-lines
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are not written down at all (for example because k⊗A ∼= A via scalar

multiplication). Throughout this course, we write ”left-right”, so the

diagram starts on the left with the ”incoming” variables of the respec-

tive term, then step-by-step performs the respective operations and

finally arrives at the right side with the result. As examples:

• The unit η yields some element in A and needs no ”input”-line:

A

• The product µ : A⊗ A→ A merges two A-copies:

A

A

A

• Unitality (left-sided) demanded in A reads as:

(r1A)a = µ(η(r)⊗ a)
!

= ra

A

A = A A

• Associativity demanded in A reads as:

(ab)c = µ(µ(a⊗ b)⊗ c) !
= µ(a⊗ µ(b⊗ c)) = a(bc)

A A

= A A

A A

A A

As already discussed in the previouse section, we frequently encounter

also dual versions which ”switched arrrows”, e.g. by passing from co-

to contravariant functors or dualizing (which is actually a contravariant
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functor from vectorspaces to vectorspaces). Since we defined an algebra

only using ”arrows”, this is not so hard:

Definition 2.2.2. A coalgebra is a vectorspace C with two linear

maps:

∆ : C → C ⊗ C ε : C → k

called comultiplication and counit, subject to two axioms:

• Coassociativity: (∆⊗ idC)(∆(a))
!

= (idC ⊗∆)(∆(a))

• Counitality: (ε⊗ idC)(∆(a))
!

= a
!

= (idC ⊗ ε)(∆(a))

where the equality implicitly uses the identification k⊗C ∼= C⊗k ∼= C.

It’s obviouse, how we will diagramatically denote ∆ and ε.

We now introduce a well known short-notation for ∆:

Definition 2.2.3. The Sweedler notation: The coproduct of some

h ∈ C can be written in the general form for an element in C ⊗ C,

namely:

∆(h) =
∑
i

h
(1)
i ⊗ h

(2)
i ∈ C ⊗ C

Since almost all calculations for Hopf algebras stay inside the category

of k-vectorspaces, i.e. maps are usually k-linear, it makes sense to

shorten the expression above to:

∆(h) =: h(1) ⊗ h(2) ∈ C ⊗ C

Care has to be taken with the linearity! For example h(1) can not be

considered anything on his own, one rather always has to process h(1)

and h(2) together in a bilinear manner (=linear on C ⊗ C).

As examples, we formulate the defining properties of a coalgebra in

Sweedler’s notation:

• The coassociativity reads as h(1)⊗(h(2))(1)⊗(h(2))(2) = (h(1))(1)⊗

(h(1))(2) ⊗ h(2), which leads to the additional short notation

of h(1) ⊗ h(2) ⊗ h(3) for both expressions. This can be seen as
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similar to the notation abc for both (ab)c and a(bc) and can be

considered the reason for the enormous success of this notation

- it makes coassociativity part of itself!

• The counitality becomes ε(h(1))h(2) = h(1)ε(h(2)) = h.

Of course if both structures are present on the same vector space, we

need some compatibility:

Definition 2.2.4. A bialgebra B is an algebra, that is also a coal-

gebra, such that the maps ∆, ε are algebra-homomorphisms, i.e. multi-

plicative and unit-preserving:

∆(ab) = (a(1) ⊗ a(2))(b(1) ⊗ b(2)) = a(1)b(1) ⊗ a(2)b(2)

ε(ab) = ε(a)ε(b)

∆(1) = 1B⊗B = 1⊗ 1, ε(1) = 1k

Note that the formulas above can also be read the other way: A coal-

gebra, that is also an algebra, where unit and product are coalgebra

homomorphisms.

(diagram...) We now give first examples of bialgebras:

• Of course k is a bialgebra with ∆(1) = 1 and ε(1) = 1 - the

trivial bialgebra.

• As we noted in our functor examples, the diagonal map yields

a coalgebra for any k[X]. Namely take for every basis vector

p ∈ X the assignments:

∆(p) = p⊗ p ε(p) = 1

”linearly extended” to all linear extensions, e.g. for some p, q ∈

X we have ∆(p+3q) = p⊗p+3(q⊗q). We calculate right-away,

that coassociativity and counitality is fulfilled:

(id⊗∆)∆(p) = (id⊗∆)(p⊗p) = p⊗p⊗p = (∆⊗id)(p⊗p) = (∆⊗id)∆(p)

(ε⊗ id)∆(p) = (ε⊗ id)(p⊗ p) = ε(p)p = p
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To get an additional algebra structure, we saw that we needed

X = G to have a multiplication, hence be a (semi-)group. We

take as unit η(t) = t1G (so 1k[G] = 1G) and as µ the multipli-

cation on the basis G, again extended linearly (i.e. by ”multi-

plying out”). Let’s check this becomes a bialgebra: Since gh

is again in G, ∆ and ε are multiplicative as requested:

∆(gh) = gh⊗ gh = (g ⊗ g)(h⊗ h)

ε(gh) = 1 = ε(g)ε(h)

Since 1 ∈ G, ∆ and ε also preserve 1:

∆(1) = 1⊗ 1, ε(1) = 1

For this reason we call elements h 6= 0 of an arbitrary coalgebra

grouplike, if they suffice ∆(h) = h ⊗ h (which automatically

implies ε(h) = 1 by counitality).

• Let on the other hand kX again be the algebra of functions

from X to k, by multiplying functions pointwise and having

1kX the function being constant 1k. We use as a special basis

the ”characteristic functions” ep (1k on p ∈ X and 0 everywhere

else):

epeq = δp,qep

1kX =
∑
p∈X

ep

Though clear, we may check associativity and unitality:

ep(eqer) = epeqδq,r = epδp,q,r = epeqδq, r = ep(eqer)

ep1kX =
∑
q∈X

epeq =
∑
q∈X

epδp,q = ep

For a coalgebra structure we saw we needed again a multipli-

cation (contravariance!), hence X = G to be a (semi)group. For
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X = G finite we get the coproduct as all possibe decomposi-

tions, and the coinit as plugging 1G into respective function:

∆(eg) =
∑
hh′=g

eh ⊗ eh′ ε(eg) = δg,1

Coassociativity and counitality directly follow from the groups

associativity and unitality:

(id⊗∆)∆(eg) = (id⊗∆)
∑
hh′=g

eh ⊗ eh′ =
∑

h(h′h′′)=g

eh ⊗ eh′ ⊗ eh′′

(∆⊗ id)∆(eg) = (∆⊗ id)
∑
hh′′=g

eh ⊗ eh′′ =
∑

(hh′)h′′=g

eh ⊗ eh′ ⊗ eh′′

(ε⊗ id)∆(eg) = (ε⊗ id)
∑
hh′=g

eh ⊗ eh′ =
∑
hh′=g

δh,1eh′ = eg

We check that also this becomes a bialgebra, first multiplica-

tivity of ∆, ε:

ε(eg)ε(eu) = δg,1δu, 1 = δg, 1 = ε(δg, ueg) = ε(egeu)

∆(eg)∆(eu) = (
∑
hh′=g

eh⊗eh′)(
∑
vv′=u

ev⊗ev′) =
∑
hh′=g

∑
vv′=u

(ehev)⊗(eh′ev′) =

now there are two delta-funtions demanding h = v and h′ = v′,

hence has to be g = u:

= δg, u
∑
hh′=g

eh ⊗ eh′ = ∆(δg,ueg) = ∆(egeu)

and then that they respect the unit:

ε(1kG) = ε(
∑
g∈G

eg) =
∑
g∈G

δg, 1 = 1

∆(1kG) = ∆(
∑
g∈G

eg) =
∑
g∈G

∑
hh′=g

eh ⊗ eh′ =
∑
h,h′

eh ⊗ eh′ = 1kG ⊗ 1kG

• For ` a Lie algebra, the universal enveloping algebra U(`) be-

comes a bialgebra, if endowed with ∆, ε given by ∆(1) = 1⊗ 1

and ε(1) = 1 (so both preserve the unit) and for v ∈ ` ⊂ U(`)

the following way:

∆(v) = 1⊗ v + v ⊗ 1 ε(v) = 0
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To achieve ∆, ε being multiplicative we simply extend it that

way to the formal products U(`) consists of. Can we do that?

We have to check that they factoriye over the relation we dev-

ided out:

ε(xy − yx) := ε(x)ε(y)− ε(y)ε(x) = 0 = ε([x, y]), [x, y] ∈ `

∆(xy − yx) := ∆(x)∆(y)−∆(y)∆(x)

= (1⊗ x+ x⊗ 1)(1⊗ y + y ⊗ 1)− (1⊗ y + y ⊗ 1)(1⊗ x+ x⊗ 1)

= (1⊗ xy + x⊗ y + y ⊗ x+ xy ⊗ 1)− (1⊗ yx+ x⊗ y + y ⊗ x+ yx⊗ 1)

= [x, y]⊗ 1 + 1⊗ [x, y] = ∆([x, y]), [x, y] ∈ `

By this extension, it suffices to check coalgebra axioms only on

`, first coassociativity:

(∆⊗ id)(∆(v)) = (∆⊗ id)(1⊗ v + v ⊗ 1) =

= (1⊗ 1)⊗ v + (1⊗ v + v ⊗ 1)⊗ 1 =

= 1⊗ 1⊗ v + 1⊗ v ⊗ 1 + v ⊗ 1⊗ 1 =

= 1⊗ (1⊗ v + v ⊗ 1) + v ⊗ (1⊗ 1) =

= (id⊗∆)(1⊗ v + v ⊗ 1) = (id⊗∆)(∆(v))

and then counitality:

(ε⊗ id)(∆(v)) = ε(1)v + ε(v)1 = v = 1ε(v) + vε(1) = (id⊗ ε)(∆(v))

We call elements v of an arbitrary coalgebra primitive, if they

suffice ∆(h) = 1⊗h+h⊗1 (which automatically implies ε(h) = 0

by counitality).

Definition 2.2.5. A bialgebra H is called Hopf algebra, if there

exists a linear map S - the antipode - with the the defining property:

∀h∈HS(h(1))h(2) = h(1)S(h(2)) = ε(h)
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(correctly η(ε(h)), but we will further on view k embedded into H by

the unit η)

We will shown later by interpreting it in terms of the convolution

product, that S is an anti-algebra-homomorphism and anti-coalgebra-

homomorphism:

S(ab) = S(b)S(a)

S(a(1))⊗ S(a(2)) = S(a)(2) ⊗ S(a)(1)

The application of the antipode is denoted by writing an S next to the

respective line - thus the (left-sided) antipode condition becomes:

S(h(1))h(2) = µH(S(h(1))⊗ h(2))
!

= ηH(εH(h)) = εH(h)

A A = A A

S

The examples for bialgebras given above are Hopf algebras with the

respective antipodes

S(1) = 1 S(g) = g−1 S(eg) = eg−1 S(v) = −v

Here we need the first time for G to be a group with inverse:

S(g(1))g(2) = S(g)g = g−1g = 1 = ε(g)

S(e(1)
g )e(2)

g =
∑
hh′=g

eh−1eh′ =
∑
hh′=g

δh−1,h′eh−1 = δg,1
∑
hh′=g

eh−1 = ε(eg)1kG

S(x(1))x(2) = S(1)x+ S(x)1 = x− x = 0 = ε(x)

Exercise 2.2.6. It turns out to be of not so much help to consider

such a giant object as k[SL2(C)]; more severe, we saw that kG even

requires G finite! That’s why we consider rather U(sl2) instead of the

former (see next section’s ”group schemes”). We also get a new ”dual”,
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namely the algebra of functions on the Lie group:

Define first O(M2(C)) as an algebra to consist of the polynomials in

commuting variables A,B,C,D. Derive a coalgebra structure formally

from matrix multiplication:

∆ :

A B

C D

 7→
A B

C D

⊗
A B

C D

 ε :

A B

C D

 7→
1 0

0 1


∆(A) = A⊗ A+B ⊗ C, . . . ε(A) = 1, . . .

Show this is a bialgebra, but no Hopf algebra! Consider now the quotient

O(SL2(C)) = O(M2(C))/(det− 1) det = AD −BC

and show first it is still a bialgebra, as all necessary maps factorize (e.g.

since det is grouplike!) - then find by intuition an antipode S to show

it’s even a Hopf algebra!

2.3. First Properties And More Examples. We want to start with

easy calculations regarding concepts one may be used from Lie algebras

or groups: For elements h, v ∈ H we define an action adh : H → H

called (left) Adjoint Action of h or ”conjugation with h” via:

adh : v 7→ h(1)vS(h(2))

• For a grouplike g we have group-conjugacy:

adg(v) = gvg−1

• For a primitive element x we get a commutator:

adx(v) = xv − vx = [x, v]

Observe that this always becomes an action

adg(adh(v)) = adg(h
(1)vS(h(2))) = g(1)h(1)vS(h(2))S(g(2)) =

= g(1)h(1)vS(g(2)h(2)) = adgh(v)
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so H as vectorspace becomes an representation of the acting algebra

H itself. Furthermore ad fullfilles the typical ”adjoint”-property:

adh(1)(v)h(2) = h(1)vS(h(2))h(3) = hv

so it can be used like a commutator to switch an element. We can also

verify depending on the acting coalgebra a certain general product rule

for the algebra H:

adh(vw) = h(1)vwS(h(2)) = h(1)vε(h(2))wS(h(3)) =

= h(1)vh(2)S(h(3))wS(h(4)) = adh(1)(v)adh(2)(w)

• Grouplikes g act as automorphisms:

adg(vw) = adg(v)adg(w) adg(1) = 1

• Primitive elements x act as derivations:

adx(vw) = adx(v)w + vadx(w) adx(1) = 0

This structure, a Hopf algebra acting on an algebra as representation

with product rule reminds on groups/Lie algebra acting on the algebra

of functions. It is fundamental and will be considered more closely in

section 3!

Exercise 2.3.1. Show that adh is also compatible with the coalgebra

structure at least for the argument h:

adh(1) ◦ adh(2) = adh

Definition 2.3.2. A left (right) Integral Λ ∈ H fulfills for all h ∈ H

hΛ = ε(h)Λ

A left (right) Dual Integral λ : H → k fulfills for all h ∈ H:

h(1)λ(h(2)) = 1Hλ(h)

Linear combinations of (dual) integrals are always again (dual) inte-

grals.
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Let’s again check our examples:

• For a groupring k[G] we easily find the integral to be

Λ =
∑
h∈G

h⇐ gΛ =
∑
h∈G

gh =
∑

h′ ∈ Gh′ = Λ = ε(h)Λ

λ(g) = δg,1G ⇐ g(1)λ(g(2)) = gλ(g) = gδg,1G = 1Gδg,1G = 1k[G]λ(g)

• For the functions on a finite group kG we get exactly the dual

(as we’ll see soon, they just are dual)

Λ = e1 ⇐ ege1 = δg,1e1 = ε(eg)e1

λ(eg) = 1⇐ e(1)
g λ(e(2)

g ) =
∑
hh′=g

ehλ(eh′) =
∑
h∈G

eh = 1kG

• For a Lie algebra enveloping U(`) an integral Λ woud have to

fulfill for every x ∈ `:

xΛ = ε(x)Λ = 0

But this is impossible for Λ 6= 0, precisely by using a Poincare-

Birkhoff-Witt-Basis. Much easier is the case for λ - by induction

we get also λ = 0:

1λ(1)
!

= 1λ(1)⇒ nothing

1λ(x) + xλ(1) = 1λ(x) + x
!

= 1λ(x)⇒ λ(1) = 0

1λ(x2) + xλ(x) + x2λ(1) = 1λ(x2) + xλ(x)
!

= 1λ(x2)⇒ λ(x) = 0

. . .

This will change, in our next, deformed examples, which can

”break off” at some point xn = 0.

Exercise 2.3.3. Find integral and dual integral in the two finit dimen-

sional quotients below!



30 SIMON LENTNER

A famouse theorem (Larson-Sweedler) asserts that for finite dimen-

sional Hopf algebras the spaces of each left/right (dual) integrals is

each exactly 1-dimensional. This is proven via the representation the-

oretic interpretation of the integral in section 3. Their following usage

as ”algebraically adequate” scalar product resp. dual basis reflects e.g.

the one on group characters in this case.

Theorem 2.3.4. For a left integral and right dual integral, we have

expressions λ(xy) and Λ(1)⊗S(Λ(2)) sharing properties of scalar product

and respective dual basis compatible with the algebra- and coalgebra

structures.

• λ(xy) is a (clearly associative) scalar-product, which is if H is

finite dimensional moreover non-degenerate. Hence in this case

H is always a ”Frobenius algebra”

• The coalgebra structure acts in some sense ”orthogonal”

λ(x(1)y(1))x(2)y(2) = λ(xy)

• We have a remarkable ”associativity” property (...diagram)

hΛ(1) ⊗ S(Λ(2)) = Λ(1) ⊗ S(Λ(2))h

• If we chose a scalar multiple such that λ(Λ) = 1 (remark: this

is always possible) then we see the ”dual basis property” (...di-

agram):

λ(hΛ(1))S(Λ(2)) = h

Proof. • This follows from Larson-Sweedler cited above.

• The bialgebra axiom x(1)y(1)⊗x(2)y(2) = (xy)(1)⊗(xy)(2) reduces

this to the defining condition for right dual integrals.

• The trick is, to force a situation, where we can write a multi-

plication of h with entire Λ (again by the bialgebra axiom) and
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then apply it’s property to kill this term:

hΛ(1) ⊗ S(Λ(2)) = h(1)Λ(1) ⊗ S(Λ(2))ε(h(2))

= h(1)Λ(1) ⊗ S(Λ(2))S(h(2))h(3)

= h(1)Λ(1) ⊗ S(h(2)Λ(2))h(3)

= (h(1)Λ)(1) ⊗ S((h(1)Λ)(2))h(2)

= ε(h(1))Λ(1) ⊗ S(Λ(2))h(2)

= Λ(1) ⊗ S(Λ(2))h

• Here the trick is to transport h out of λ by the property of Λ

shown above and then pull Λ(2) in by the property of λ:

λ(hΛ(1))S(Λ(2)) = λ(Λ(1))S(Λ(2))h

= λ(Λ)h = h

�

We now want to discuss further examples to illustrate some more gen-

eral cases:

A noncommutative version of our approach to e.g. a plane k2 ith it’s

algebra of functions A = k[x, y] is the quantum plane for some q ∈ k∗:

kq[x, y] := T ({x, y})/(xy − qyx)

As the translation group (k2,+) acts on the plane and via (partial)

derivations on A we get an action of a Hopf algebra

H := T ({g, g−1, ∂x})/(∂xg − qg∂x, gg−1 − 1)

with g grouplike and x skew-prmitive ∆(x) = g ⊗ x+ x⊗ 1.
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Exercise 2.3.5. Show that this defines a bialgebra with the usual ε

(using again a factorizing argument) - with what S becomes this a Hopf

algebra?

Now H can act on the quantum plane, again with a product rule

adapted to this more complicated coproduct (”module algebra”). First,

let g act as automorphism (trivial in commutative case q = 1):

g.x = qx g.y = q−1y

Then we can aim to define an action for ∂x to fulfill the product rule

(h(1).v)(h(2).w) = h.(vw) and with initial conditions:

∂x(1) = 0 ∂x(x) = 1 ∂x(y) = 0

(e.g. ∂x.(x · x) = (g.x)(∂x.x) + (∂x.x)(1.x) = (q+ 1)x). This is possible

again by defining it via the above rule on the (free) tensor algebra and

show again it factorizing through the relation:

∂x(xy−qyx) := (g.x)(∂x.y)+(∂x.x)(1.y)−q(g.y)(∂x.x)−q(∂x.y)(1.x) = 0

Exercise 2.3.6. Add an a analogous ∂y = g−1⊗ ∂y + ∂y ⊗ 1 (noncom-

muting!) and find relations that combine both to a Hopf algebra and

the respective actions to the full translations of the quantum plane!

Curious things happen, if qN = 1 is a root of unity: We get finite

dimensional quotients, so-called so-called truncations, in this specific

case Taft algebras with

(∂Ny =) ∂Nx = 0 gN = 1

Note that this is impossible in the commutative case: Namely, in ∆(∂n)

always terms ∂k with k < n occurr so we cannot send it’s argument to

0 without doing so for all other powers as well - one could also say, that

∂n can never act trivial, as the (Leibniz-) product rule implies then ∂
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to also act trivial. This changes in the noncommutative case, because

exactly at multiple powers of N all powers nondivisible by N cancel :

∆(∂Nx ) = gN ⊗ ∂Nx + ∂Nx ⊗ 1 7→ 0

(∆(gN − 1) = gN ⊗ gN − 1⊗ 1 7→ 0)

Hence the coproduct factors and we get a Hopf algebra on the quotient!

Exercise 2.3.7. The following gives a full description of all ∆(∂nx )

(very similar for for ∂y) and especially the above assertion. The tech-

nique applies also to moe complicated cases (like Uq(sl2) below). Note

however, that this usually require slightly different definitions of the

concepts below, although with similar properties!

• Define q-numbers nq := 1 + q+ q2 + . . .+ qn−1 and show some

”quantum additivity” (n− k)q + qn−kkq = nq

• Define q-factorials nq! = nq(n − 1)q . . . 11 and q-binomials

nq !

kq !(n−k)q
, where one may have to cancel terms before plugging in

some specific q for well-definiedness!

Proof a ”quantum recursion formula” (Pascal triangle!):(
n+ 1

k + 1

)
q

= qn−k
(
n

k

)
q

+

(
n

k + 1

)
q

• Show by induction a quantum binomial formula:

∆∂n := (g ⊗ ∂ + ∂ ⊗ 1)n =
∑

0≤k≤n

(
n

k

)
q

(gk∂n−k ⊗ ∂k)

• For qN = 1 (and N minimal!) show Nq = 0 and that hence all

intermediate terms in ∆(∂N) cancel. Be careful, why the first

and last term stay (as the medium term in ∆(∂N/2)).

Qualitatively further important cases: For certain classes of Lie

algebras ` we consider Uq(`) which is a deformation of U(`) - partic-

urlarly the Serre Relations - by a complex parameter. They are called
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Drinfel’d-Jimbo-Algebras and as formal power series in q they were re-

lated to Conformal Quantum Field Theory (Knishnik-Zamolodchikov-

Equation of `, see section 4) in three papers of Drinfel’d 1989 and

1990. Prominent is the easiest case ` = sl(2), already discovered by

Kulish and Reshetikhin in 1981, producing the ”Jones Polynomial”

knot invariant (end section 3). It was also actually the first source for

a Topological Quantum Field Theory, but somewhat more tedious in

the amount of calculation.

As an algebra Uq(sl2) is basically a product of U(sl2) (see above) and

k[Z] = k[{(Kn)n∈Z}], which deforms it (especially by not commuting

with it, so the group acts on sl2), whereas the ”diagonalizable” [E,F ] =

H ∈ sl2 is identified with K−K−1

q−q−1

• KE = q2EK KF = q−2FK

(contrary to the usual in a tensor product)

• [H,E] = (q−1K + qK−1)E [H,F ] = −(qK + q−1K−1)F

As a coalgebra K is grouplike and E,F again skew-primitive:

∆(E) = 1⊗ E + E ⊗K ∆(F ) = K−1 ⊗ F + F ⊗ 1

We do not verify any of this, but note, that it becomes a Hopf algebra

S(E) = −EK−1 S(F ) = −KF

A lot of calculations show finally, that Uq(sl2) acts on the quantum

plane (i.e. algebra of functions) quite the way one would expect.

Note that again if qN = 1 we get finite dimensional quotients, i.e.

EN = FN = 0 and KN = 1. This is even possible for all Drinfel’d-

Jimbo algebras, though maybe for higher exponent - they are called

Frobenius-Luztig-Kernels and were studied extensively.
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Note that the question of algebraic possibility of truncation by apropri-

ate deformation is also of great importance in modern quantum field

theory, although the connection is not entirely clear yet. For one,

the so-called Verlinde algebra truncates U(`) at different powers (af-

ter ”manually” redefining multiplication) to describe Conformal Quan-

tum Field Theories. On the other hand, string theory aims to build

Fock spaces (polynomial rings of creation operators, like all quantum

mechanics) which start off at identity (=vacuum) with more possible

factors (=degrees of freedom or ”dimension”), than they shall ”asymp-

totically” in higer powers (=energies) - so also a part of the original `

gets truncated along the way. This is called ”compactification”.

In Hopf algebra theory, nowadays one tries to let the the deformation

and truncation of U(`) be rather performed in a more systematic way,

but also by a glued-on groupring k[G]: It acts on ` and turn it into

a so-called Yetter-Drinfel’d module - then one obtains a universal en-

veloping, the Nichols algebra in this category, e.g. on may devide

out the Lie-Bracket as anticommutators xy+yx− [x, y]. Schneider and

Andruskiewitsch even proved, that most ”pointed” finite dimensional

Hopf algebras with the contained group of grouplikes abelian are of

this form and gave a general description of them. Also for nonabelian

G there are finite example, though much rarer - their classification is

an open problem.

Exercise 2.3.8. To become familiar with the latter, see e.g. [?]: Take

the ”braided vectorspace” of H above

δ(∂x) = g ⊗ ∂ g.∂x = q

(possibly also with ∂y) and determine the Nichols algebra for qN = 1

(beginning with N = 2?). Make clear for yourself, how one forms the
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Radford biproduct (”bosonization”) with the (truncated) groupring

and verify this is exactly the truncated H. Try the same for Uq(sl2)!

2.4. The Convolution Product And Further Properties. We

now want to describe a different characterization/application for the

notions given above. It shows a second motiation to consider Hopf al-

gebra, especially from the point of Lie algebras:

A group scheme F can be defined as a functor, that assigns (in our case)

to each commutative k-algebra A a group F (A). We further want a

group multiplication and inversion on all F (A)’s simultaniousely in a

functorial ”coherent way” - they have to be ”morphisms between the

functors” µ : F × F → F and ι : F → F in the following sense:

Definition 2.4.1. A natural transformation α between two functors

F,G from and to the same categories is a collection of morphisms in the

latter category α(X) : F (X)→ G(X) such that these different choices

respect the ordinary functorial morphisms, i.e. for f : X → Y we have

α(Y ) ◦ F (f) = G(f) ◦ α(X) F (X)→ G(Y )

Especially all F (A) become groups with µ(A), ι(A) and the F (f) group

morphisms, so F turns out a functor to the category of groups! A well

known class of examples are matrix groups, such as SO2(A), viewed

as formal groups depending on the arbitrary chosen base algebra A,

where it is evident, that every algebra map f : A→ B induces a group

map, say SO2(A)→ SO2(B).

Exercise 2.4.2. Find (yourself or in literature) examples for natural

transformations and proof the axioms for the functors and the trans-

formation. Do this especially for the example above with matrix mul-

tiplication and -inversion! Find also ”typical examples” where a usual
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construction is not natural (e.g because one has to make unnatural

choices).

There is a quite usual automatic way of obtaining functors (the ”rep-

resentable” ones) from the category of algebras into the category of

sets: Choose any commutative algebra H and define F as the map

F (A) = Alg(H,A) to the set of algebra homomorphisms. This clearly

is a functor, since every homomorphism f : A → B yields a map

Alg(H,A) → Alg(H,B) via φ 7→ f ◦ φ (f ◦ φ is of course again an

algebra map).

Now suppose H has the structure of a bialgebra: We can introduce

a product on F (A), the so called ∗-product or convolution, namely

for φ1, φ2 ∈ Alg(H,A) and h ∈ H:

φ1 ∗ φ2 := (h 7→ φ1(h(1))φ2(h(2)))

This product is clearly associative by coassociativity of H and associa-

tivity of A. It also has a unit, namely εH (actually ηA ◦ εH), because

of the counitality of H:

ε ∗ φ = (h 7→ ε(h(1))φ(h(2))) = (h 7→ φ(ε(h(1))h(1))) = (h 7→ φ(h)) = φ

and equally the other way around.

Lemma 2.4.3. Using the compatibility between algebra and coalgebra

H (∆ and ε are algebra homomorphisms), we check that they really lie

in F(B): 1F (A) = εH is directly an algebra homomorphism by compati-

bility and we claim that φ1 ∗ φ2 is again an algebra homomorphisms, if

the φi are.

Proof.

(φ1 ∗ φ2)(ab) = φ1((ab)(1))φ2((ab)(2)) = φ1(a(1)b(1))φ2(a(2)b(2)) =

= φ1(a(1))φ1(b(1))φ2(a(2))φ2(b(2)) = (φ1 ∗ φ2)(a)(φ1 ∗ φ2)(b)
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Exercise 2.4.4. This notion is not restricted to groups. For H a coal-

gebra and A an algebra we get an algebra structure on HomV ec(H,A).

Especially for A = k we call this the dual algebra H∗ to H. Show

that in finite dimensions dually if H is an algebra we get a coalgebra

structure (what has been done to cope with the infinite case?). Find an

antipode for H∗, if H is a Hopf algebra. Show that kG is dual to k[G]!

So choosing H to be a bialgebra, we get a ”unital semigroup-scheme”.

When is this a group scheme? SupposeH finally to be a Hopf algebra.

This yields an inverse map on F (A), namely:

φ 7→ φ−1 := φ ◦ S

This is again an algebra map (i.e. in F (A)), for S is an anti-algebra

map and both notions then coincide here, since A is commutative. As

in the steps above, the proof of the relevant properties exactly uses the

defining properties of S:

(φ∗φ−1)(h) = φ(h(1))φ(S(h(2))) = φ(h(1)S(h(2))) = φ(ε(h)) = ε(h)φ(1) = ε(h)

Thus φ∗φ−1 = ε = 1F (A). The other hand version is proved analogously.

Exercise 2.4.5. The other way around also holds: Every group scheme

that’s representable as a ”formal set” by some algebra, it can be given

the structure of a Hopf algebra. You’ll need Yoneda’s lemma!

We will now discuss what formal group (examples of) the Hopf algebras

given above yield:

• The trivial Hopf algebra k represents the trivial group A 7→ {e}

• The group algebra k[Z] has a unique algebra map φa : k[Z]→ A

for every invertible element a ∈ A (the image of the generator

1 ∈ Z). From the definition of the ∗-product one can calculate
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easily, that φa ∗ φb = φab and thus the induced functor maps

every A to it’s multiplicative group A∗

• The universal enveloping algebra of the one-dimensional Lie

algebra U(k1) = k[X] represents in a similar way the formal

group mapping A to it’s additive group A+, since for every

a ∈ A we have a unique algebra map φa : U(R) → A and

φa ∗ φb = φa+b.

• Similar calculations show that the the matrix (Lie-) group SL2(A)

is represented by the exercise Hopf algebra O(SL2): Algebra

morphisms to A are exactly assignements of values to the for-

mal variables A,B,C,D, such that det := AD − BD !
= 1 and

the way we constructed the coalgebra structure makes the con-

volution product of two such functions (assignments) exactlx

the matri product. This works in much more general contexts!

Exercise 2.4.6. Show using the matrices for sl2 worked out previ-

ousely, that in the last case O(SL2)∗ ⊃ F (k) contains the Hopf al-

gebra U(sl2). This is an example of a Takeuchi duality - what does

this mean (also in the case k[X])? Although U(k1), U(sl2) do not con-

tain grouplikes 6= 1, the infinite linear combinations in F (k) obvi-

uosely are! Write a general power series in H∗ and show that the

grouplike-condition (or equivalently the algebra-morphisms-condition)

exactly produces the exponential series for the group F (k) the algebra

morphisms to k as exponentia Show that the exponentiated group ele-

ments lay
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3. Representation Theory

There’s reason enough for both disciplines to study algebras (groups/Lie-

algebras) in the context of their representations. Mathematics has early

discovered, that the structure of the representations is often somehow

easier to control than the objects themselves. It’s classical in group

theory to e.g. prove solvability of groups of order pq by the length

of conjugacy classes, derived directly from the representations’ char-

acters (Burnside). Groups like the Monster have been conjectured

with specific (representation-) character-tables years before their ex-

plicit construction. In more recent times, the structure of semisimple

Hopf algebras, too, has shown advances by studying combinatorics in

the smallest representations.

On the other hand, physics almost never deals with vector spaces the-

selves, but there has always been strong ”relativity” with respect to

some symmetry groups (even much before Einstein), that pushed de-

velopment further into the development of e.g. coordinate-independent

differential geometry. This even coined terms like tensors, implying

they were far more than formal products of vector spaces, but rather

posessed additionally a specific ”transformation behaviour” i.e. a rep-

resentation of the your favourite symmetry group (see monoidal cat-

egory). This goes so far, that the existence of (later-on found, but

also not-found) particles have been claimed purely by representation-

theoretic reasoning (e.g. ”bottom quark”). Also, the nowadays quite

successful Standard Model consists to a big portion of representation

theory (see section 2).
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3.1. The Lift-Problem And Spin-Statistics. We will start this

topic, by giving an example, how deep physical properties, namely the

duality Fermion/Bosson, are connected to representation-theretic

properties.

3.1.1. Minkowski Raum.

Classical mechanics Theory of relativity

space + time spacetime

3 dimensions + 1 dimension 4 dimensions

Minkowski spacetime (flat spacetime). Minkowski space or Minkowski

spacetime is the mathematical setting in which Einstein’s theory of spe-

cial relativity is most conveniently formulated. In this setting the three

ordinary dimensions of space are combined with a single dimension of

time to form a four-dimensional manifold for representing a spacetime.

Minkowski space is often denoted R1,3.
x0

x1

x2

x3

 x0: time c ∗ t and x1, x2, x3: space

Minkowski metric. 〈x; y〉 = x0y0 − x1y1 − x2y2 − x3y3 = ηµνxµyν

ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


This tensor is frequently called the ”Minkowski tensor”

x2 can be positive, negative and null without x = 0 For x 6= 0

• x2 > 0 timelike

• x2 = 0 lightlike (null)

• x2 < 0 spacelike

Lorentz group. The Lorentz group is a subgroup of the Poincar? group,

the group of all isometries (O (3, 1) = {Λ ⊂ M (4,R) : 〈Λx; Λy〉M =
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Figure 1. Lorentzgroup

〈x; y〉M∀x, y ∈ R4}) of Minkowski spacetime. The (homogeneous)

Lorentz transformations are precisely the isometries which leave the

origin fixed: ΛtηΛ = ν

Closure: (Λ1Λ2)t η (Λ1Λ2) = Λt
1 (Λt

2ηΛ2) Λ1 = Λt
1ηΛ1 = η

Identity element: 1Λ = Λ1

Inverse element: η−1ΛtηΛ = η−1η = 1⇒ Λ−1 = η−1Λtη

det (ΛtηΛ) = det (Λt) det (η) det (Λ) = det (η)

⇒ det (Λ)2 = 1

det (Λ) = ±1

Lorentz group O(1, 3) is both a group and a smooth manifold (Lie

group). As a manifold, it has four connected components. This means

that it consists of four topologically separated pieces.

space inversion: P : (ct, x) 7→ (ct,−x)

time reversal: T : (ct, x) 7→ (−ct, x)

space inversion and time reversal: TP : (ct, x) 7→ (−ct,−x)



HOPF ALGEBRAS, FUSION RINGS AND TOPOLOGICAL INVARIANTS 43

Figure 2. Connected components

3.1.2. Bargmann’s theorem. Definition: Let G be a connected and sim-

ply connected, finite-dimensional Lie group with H2 (LieG,R) = 0.

Then every projective representation T : G 7→ U(P ) has a lift as a

unitary representation S : G 7→ U(H), i.e. for every continuous ho-

momorphism T : G 7→ U(IP ) there is a continuous homomorphism

S : G 7→ U(H) with T = γ̂ ◦ S

E

T̂
��

G

T
��

σ
oo

Szzvvv
vv

vv
vv

v

U (H)
γ̂

// U (P)

Examples: - circle group

• T = {z ∈ C : |z| = 1}.

exp : R→ T

θ 7→ eiθ = cos θ + i sin θ ⇒ T ∼= U (1,C)

• SO (2,R) : eiθ/2 ↔

 cos θ/2 − sin θ/2

sin θ/2 cos θ/2


θ = 2π ⇒

 −1 0

0 −1

 ⇒ Representation of fermions. ⇒

Can only be lifted as an Z2 = U(1,R = {−1; 1} Extension
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• exp θθ ∈ R⇒ no periodicity

⇒ Can only be liftet as an Z Extension ⇒ R

R→ T (Kern Z

⇒ simply connected⇒ Can be lifted (Bargmann)

Now we are looking for a map q: SO (3, 1)+ q→ SL (2,C) (I) and a

projective representation V(II).

(I) Any hermitian 2x2 matrix can be represented as a linear combina-

tion of the three Pauli matrices and the identity matrix.

σ0 =

 1 0

0 1

 ;σ1 =

 0 1

1 0

 ;σ2 =

 0 −i

i 0

 ;σ3 =

 1 0

0 −1



Vector in the Minkowski Space: ~x =


x0

x1

x2

x3


This vector (in the Minkowski space) corresponds to a hermitian, but

not traceless matrix X consisting of its components and the four spec-

ified matrices.

x→ X :=
∑
σµxµ =

 x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

(*)

detX = x2
0 − x3

3 − (x1 + ix2) (x1 − ix2) = x2
0 − x2

1 − x2
2 − x3

3 = ~x2

⇒ The space of vectors x (with Minkowski metric) and the set of her-

mitian 2x2 matrices with inner product are isometric.

Now we look at a Lorentz transformation Λ ∈ SO(3, 1)+ : x 7→ x′ = Λx

We also assign x to a hermitian matrix as in (*)

There is also a representation of SL (2,C) on the hermitian matrices:

X 7→ X ′ = AXX̄ t 1.) Is X’ hermitian?(
AXX̄ t

)t
= ĀttX tAt = ĀX tAt = ĀX̄At = AXĀt

2.) Norm invariant?

det
(
AXĀt

)
= detA detX det

(
Āt
)

= detX
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SO(3, 1)+ ⊂ O(3, 1)

SL(2,C)

q̃
ggOOOOOOOOOOO

q

OO

q̃ is continuously connected. Ker (q) = Z2 = ±

 1 0

0 1


⇒ Boson (vector representation)

(II) SL (2,C) : C = V → V

SL(2,C)

T̂
��

q̃
// SO(3, 1)+

Sxx

Gl(2,C
γ̂

// PGl(2,C)

S does not exist ⇒ Fermion (Spinor Representation)

3.2. Representations in Modern Physics. The preceeding exam-

ple shows the physical significance of ”transformation behaviour”. No

quantity ∈ V in some vectorspace dependent on the manifold (space-

time) should be communicated between scientists in different interial-

systems, without adding a description of how the quantity behaves

G×V → V if the manifold undergoes a symmetry operation G×X →

X - otherwise any measurement would be worthless, if the physicist

rotates to his coffee, goes home or even just takes a nap! An example

are vector-fields, that are independent of translations, but rotate ac-

cordingly if spacetime does.

The formal Hopf-algebra way of of treating this in the next section is,

that one considers functions λ ∈ Homset(X, V ) ∼= kX ⊗ V on points

(as arguments) X with coefficients (as values) in V . A symme-

try operation G 3 g. generally changes both on both argument and

result and we will see that a conceptually good way is to use ∆ to

”copy” and S(g) in the argument of the ”dual” kX , just like we would
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g ∈ G copy to g ⊗ g and act on functions λ ∈ kX via λ(g−1−).

• A scalar field (like Temperature) λ : X → C changes in the

argument point in ∈ X we evaluate at, but the resulting

quantity ∈ C remains untouched

(g.λ)(p) = (λ(g−1.p))

This means that the function takes values in the trivial module

Cε, i.e. with action g.1C = ε(g)1C = 1C. Hence counitality

applies:

(g.λ)(p) = g(1).λ(S(g(2)).p) = ε(g(1))λ(S(g(2)).p) = λ(S(g).p) = λ(g−1.p)

• A vector field (like speed) on an n-dimensional manifold X

takes values in the (tangential-) vectorspace V = Rn = 〈(dxi)i〉C,

and any action of a symmetry group (p 7→ g.p) = f : X → X

yields a Jacobi matrix (∂ifj)i,j :. If for example X = R4 a

flat Minkowski space, then the Lorentz group above acts on X

and the same way on V4 = R3,1 (notice that a metric is usually

defined on the tangential space!)

• Also, electric and magnetic fields are vector fields. However,

it turns out, that they do not change according to the above

rule, e.g. because they are differentials of a proper vector field

(Potential). Anyways, one is able to combine both to an an-

tisymmetric 4 × 4-matrix F , that transforms according to the

representation V4 ⊗ V4, i.e.

g.(vi ⊗ vj) = (g(1).vi)⊗ (g(2).vj) = (g.vi)⊗ (g.vj)

This is called a 2-tensor.

• Generally, the term n-tensor doesn’t so much point to the num-

ber of components, but rather to the transformation according

to V4 ⊗ V4 ⊗ V4 . . ..
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Remark 3.2.1. One aspect we totally omitted so far is the question of

the geometrical arrangement of the different value spaces Vp at differ-

ent points: Above, we just considered a fixed V , but in ”nature” e.g.

V = TpX the tangent space in p ∈ X there’s no easy way to identify

directions at different points in a smooth way. If we had e.g. a nowhere

vanishing smooth vector field in X, we might use it to fix a choice of

direction dx in every point - vice versa such an identification yields

for each dxi a vector field (the choices in each point) of dxi that are

orthogonal in every point. This is not possible e.g. for a sphere - every

smooth vectorfield has some zeros (Hedgehog-Theorem)!

Generally, one has to consider vectorbundles, where over every point

is an isomorphic vectorspace - algebraically this corresponds to kX-

modules (see exercise 1.1.4). The trivial case is as above if it has a

basis and hence is X × V , resp. the functions are kX ⊗ V . For a

general nontrivial vectorbundle like the tangent bundle TS2 of

the sphere, viewed as a modue there is no basis and the functions do

not decompose as a tensor product - however this does not compromise

our construction!

Now while we agreed how to label the quantity with an associated

representation to connect our different views, we all different viewers

might at least agree on some distinctions. Note e.g. the light cone is

invariant under all transformations! Thus although time, space and

velocity are relative, it’s undisputable which points have a timelike

distance (inside the cone), a spacelike (outside the cone) or a lightlike

(on the cone). Accordingly, the representations on V might posess

subspaces W ⊂ V that are stable under the action of G - or as above

even decompose into such V = W ⊕W ′. Then everybody would agree

on a particle being in a state W or W ′ or could write any state as linear

combinaton of such. E.g. the tensors decompose into symmetric and
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antisymmetric tensors, untouched by any Lorenz transformation. So

it makes sense to consider minimal, irreducible representations V ,

that do not possess such a nontrivial subrepresentation W :

V ⊃ W 6= {0}, V g.W = W

In quantum mechanics these even become the particles associ-

ated to the simultanious action of all the additional internal symme-

try groups, the gauge symmetries G acting on additional internal

states V inherent to every point (again a vectorbundle). The different

particle classes hence are the minimal consens of all different points of

view.

Remark 3.2.2. Considering vectorbundles (last remark) (Vp)p∈X over

such gauge-groups G (V usually the Lie-Algebra of G acted on by con-

jugation) treats the corresponding gauge field in fairly good correspon-

dence to the geometrical description of gravitation: Different identifica-

tions of (at least ”nearby”) value spaces Vp ∼= Vq (parallel transport),

formally covariant derivations (locally d+ A for a 1-form A) stand

for a field configuation with potential A : X → V . The curva-

ture of the field F = dA + [A,A] expresses the path-depedency of

the parallel transport and represents the force field. It immediately im-

plies formulas of motion - where the second term only appears for

nonabelian gauge fields (=Yang Mills theory).

Every gauge-group G implies a specific particle spectrum via it’s irre-

ducible representations. The fields in the remark expecially represent

the field quanta as the Lie algebra of G itself (the adjoint represen-

tation). The common choices of G admit a nondegenerate, invariant

scalar product on the Lie algebra, a dual basis vi, wi, and from the

invariance follows, that the Casimir element C =
∑

i viwi commutes

with all elements. Now Schur’s lemma goes like this: Had C dif-

ferent eigenvalues on V , then the eigenspaces Wi would be invariant
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subrepresentations (for C is central). Since we chose V irreducible,

there can only be a unique eigenvalue and C has to act as this scalar,

called the charge of V under G. For example, the rotation alge-

bra so(3) (see preliminary) had the three angular momentum oper-

ators X, Y, Z and in this case the total angular momentum operator is

C = ~L ·~L = X2 +Y 2 +Z2. Irreducible representations V corresponding

to particle classes with spin s exactly mean that C acts on V by mul-

tiplication with s(s + 1). In this case, the fairily deep spin-statistic-

theorem connects this internal quantity to the lifting-behaviour of

the geometrical Lorentz symmetry in the last section: ”Lifting-exists”

equals integral spin s, characterizing bosons in contrast to fermions

that require the ”new” SL2(C). The following are physically relevant

gauge groups:

Gauge Field Gauge Group Charge Representations: Basis

Electromagnetics U(1) Electrical Charge k trivial,adjoint: photon

Weak Force SU(2) Isospin k trivial ”isospinless”

C2 usual: electron,neutrino

su(2) adjoint: W±, Z

Strong Force SU(3) Color k trivial: ”colorless”

C3 usual: quarks

su(3) adjoint: gluons

The unifying of fields essentially consists (modulo huge omitted is-

sues!) in the construction of larger gauge groups including all group

above and finding thus ”simultanious” irreducible reprentations of all

of the above, that form the theorie particle spectra - then on each of

them the respective C give us spin, etc. and (with luck) even mass.

For example, the weak representation V2 then appears 3 times (elec-

tron,muon, tau) and the quark representation V3 2 times, which led
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directly to the theoretical prediction of the 6th bottom quark, that

was later found.

To find the explicit constellation the different groups embedded we need

to ”feed” the model information such as ”leptons are blind to color”

that translates e.g. to commutativity of respective operations on the

representation. There is a largly satisfying model for the above three

forces with group G = SU(5), the Standard Model, that correctly

produces all known particles with the correct charges!

3.3. Representation Categories. Let H be an algebra, then we have

a category ModH = Rep(H):

• Objects are k-vector spaces V with an action ρ of H on V , i.e.

an algebra map:

ρ : H → End(V ) h.v = ρ(h)v

called a H-representations or equivalently -module, a gen-

eralized ”vector space” directly over the entire ring H with the

action defining a ”scalar” multiplication with H.

• Morphisms are k-linear maps f : V → W , that respect (physics:

”entertwine”) the different H-actions:

∀h∈H,v∈V f(h.v) = h.f(v)

Note that this means nothing more than H-Linearity!

Note that the notion above connects to the previousely considered rep-

resentations of groups G or Lie-algebras ` - they directly correspond to

representations of the algebras k[G] resp. U(`).

We already mentioned the physical significance of minimal, ”irreducible”

representations as particles:
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Definition 3.3.1. Given a module/representation V over H, then a

subspace W ⊂ V is called submodule/-representation, iff it is sta-

ble under the action:

∀h∈H h.W ⊂ W

This means exactly that the H-action can be restricted to W which thus

becomes an own H-module (W could be called H-linear subspace). If

the only submodules of V are V itself and {0}, we call V irreducible.

We start with an example, that is (as quite commonly) already defined

via a specific representation. Take the symmetries of a square, there

are 8 and they are generated by a 90◦ rotation a and a reflection b, e.g.

around the x-axis:

D4 = 〈a, b〉/(a4 = b2 = 1 ab = ba−1)

The last relation means that reflection reverses the direction of the

rotation! This group resp. groupring obviousely has the 2-dimensional

representation V2:

a
ρ7→

0 −1

1 0

 b
ρ7→

−1 0

0 1


Exercise 3.3.2. Confirm the intuition, that this defines a represen-

tation (first from the free group and then via factorization condition).

Then clearify for which base fields k this representation is irreducible -

e.g. first k = C,Zp, but generally just depending on the characteristic

of k (i.e. 1k + 1k + . . . 1k︸ ︷︷ ︸
char(k)

= 0).

A second good source for irreducible representations are the 1-dimensionals

(there are no subspaces W other than {0}, V at all!). Because in

this case End(V ) = k is commutative (just scalar multplication resp.

1× 1-matrice), all commutators [x, y] = xy− yx (and thus the ideal

H ′ := H[H,H]H generated by them) have to act trivial (as 0):

ρ([x, y]) = ρ(xy − yx) = ρ(x)ρ(y)− ρ(y)ρ(x) = 0
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For group this can equivalently be expressed as group commutators

and the normal subgroup G′ generated by them (commutator sub-

group) acting trivial (as 1):

ρ(ghg−1h−1) = ρ(g)ρ(h)ρ(g)−1ρ(h)−1 = 1

Hence we have shown:

Lemma 3.3.3. The 1-dimensional representations of G, k[G] = H are

exactly the 1-dimensional representations of the abelian group G/G′,

resp. k[G/G′] = H/H ′. We remark that if k has characteristic zero

and is algebraically closed (like C), all irreducible representations of

finite abelian groups (-rings) are 1-dimensional and they’re in 1:1 cor-

respondence with the group itself (”Duality of Abelian Groups”).

Problem 3.3.4. Show k[G/G′] ∼= k[G]/k[G]′. Find counterexamples

for abelian groups with higher dimensional irreducible representations

due to a lack of roots of unity (e.g. Q,Zp). What happens in case

k = Z2 with H = k[Z2]: The 2-dimensional representation V = H itself

(via left-multiplication) has only one irreducible submodule W ⊂ V (see

below).

In our example G = D4 the only nontrivial commutator is aba−1b−1 =

a2 and

D4/D
′
4 = 〈a, b〉/(a2 = b2 = 1 ab = ba) ∼= Z2 × Z2

In accordance with the previous lemma, for k = C this abelian group

has exactly 4 1-dimensional (thus irreducible) representations via the

4 homomorphisms Z2 × Z2 → C∗:

a
ρ7→ ±1 b

ρ7→ ±1

These become also representations V±± of the group D4 (a2 ρ7→ 1),

which this is a quotient of, and in this specific case (dimension 1) they
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have to remains irreducible over D4. Hence over k = C the group(-

ring) D4, k[D4] has 5 irreducible representations and we remark that

because 12 + 12 + 12 + 12 + 22 = 8 = |D4| these are already all!

What about other representations? A typical way of construction rep-

resentations is via permutation representations. Note that D4 can

be seen to permute the 4 vertices of the square e1, e2, e3, e4 which we

may use as basis for a 4-dimensional representation P :

a 7→ (1234) 7→


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 a 7→ (12)(34) 7→


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


Certainly this is not irreducible. As always for permutation represen-

tations, there’s submodules

W = (
4∑
i=1

ei)k W ′ = {
4∑
i=1

aiei|
4∑
i=1

ai = 0}

and they are complementary, i.e. together span the entire module

V = W ⊕W ′, with standard metric in this case even orthogonal. Here,

the sum of two vector spaces is again a representation, as by linearity

we must have the following action on tuples: h.(w,w′) := (h.w, h.w′).

Note that W ∼= V++ by (
∑4

i=1 ei)
f7→ 1k, as all of D4 acts trivial on both

sides (thus f is H-linear). This way of removing this trivial represen-

tation W is a great method of constructing (sometimes irreducible)

representations W ′ e.g. from Sn, An (W ′ irreducible except A3
∼= Z3)

permuting the obviouse way. In our case D4 the submodule W ′ is

still not irreducible, as the following ”symmetric” vector still spans a

1-dimensional submodule:

W ′′ = (e1 − e2 + e3 − e4)k ⊂ W ′



54 SIMON LENTNER

Note that both a, b 7→ (1234), (12)(34) act via−1, henceW ′′ ∼= V−− and

again we find a complementary (and again even orthogonal) submodule

W ′′′ = 〈v1 := e1 − e2 − e3 + e4, v2 := e1 + e2 − e3 − e4〉k

as a sends v1, v2 7→ v2,−v1 and b sends v1, v2 7→ −v1, v2. This makes

also clear, that this is the same action as on the irreducible 2-dimensional

module V2, hence W ′′′ ∼= V2. Finally, we have now completely decom-

posed the 4-dimensional P as direct sum of irreducible modules of

dimensions 1, 1, 2:

P ∼= V++︸︷︷︸
W

⊕W ′ ∼= V++︸︷︷︸
W

⊕ V−−︸︷︷︸
W ′′

⊕ V2︸︷︷︸
W ′′

Remark 3.3.5. It is by no means clear, that it is always possible to

find complementary submodules (see below for a counterexample). We

mention two typical conditions assuring this: For one, especially in

physics (but also in the example above), one usually considers orthog-

onal/unitary representations V , where the vector space bears addi-

tionally a nondegenerate metric respected by the action of H. Then for

any sumbmodule V ⊃ W the orthogonal W⊥ is again a submodule and

obviousely W ⊕W⊥ = V .

Alternatively, one may demand that the algebra H may be assumed

semisimple, i.e. have a trivial Jacobson radical for which one of

many equivalent characterizations is:

{h ∈ H|∀λ∈k∗λ1 + x invertible} =: J(H)
!

= {0}

In this case, assumed k algebraically closed, all H-modules V with sub-

modules W admit a decomposition V = W ⊕ W ′ with a second sub-

module W ′ ⊂ V . There are criteria for this: e.g. a groupring k[G]

is semisimple, iff the order |G| is prime to the characteristic of the

basefield char(k), especially if characteristic is zero, as for C. This

Maschke Theorem has a generalization to Hopf algebras, namely if
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the integral ε(Λ) 6= 0, where especially for a groupring ε(Λ) = ε(
∑

g∈G g) =

|G| (see ”Integrals” above).

If H is semisimple, every module V may be written as a sum of the

irreducible modules Vi (with an ∈ N):

V = V1 ⊕ V1 ⊕ . . .︸ ︷︷ ︸
n1

⊕V2 ⊕ V2 ⊕ . . .︸ ︷︷ ︸
n2

⊕ . . . =: n1V1 + n2V2 + . . .

We conclude the section by giving a counterexample of a non-irreducible

module V over a non-semisimple algebra H with a submodule W with-

out complement: Take H = k[X]/(X2 = 0), in which case the Jacobson

radical is J(H) = xk, because every λ1 + x has an inverse 1
λ2

(λ − x).

Take V = H as a module via left-multiplication, then W = xk = J(H)

is a submodule, because 1.J(H) = J(H) and x.J(H) = xJ(H) = 0 -

this is generally true as J(H) is an ideal of H. Now there is no (1-

dimensional) complement W ′ = ak, because every other linear combi-

nation λ+x /∈ W is invertible, hence the submodule W ′ had to contain

1 and thus all of H. A similar conclusion always holds! Note that

something resembling this is the usual counterexample for char(k)| |G|

(see exercise above).

3.4. Hopf Algebras And Monoidal Categories. Adding repre-

sentations physically corresponds to considering superpositions of unan-

imousley distinguishable particles (”one-or-the-other”). A usual ques-

tions of physics also is the consideration of clusters of simultaniously

existing particles, corresponding to (tensor-) Products of representa-

tions. For an arbitrary algebra H (contrary to grouprings) it is not

clear how to even form these products as representations, and the

result generally doesn’t remain irreducible, but may be decomposed

again into such. This decomposition of a couple (e.g. of two fixed

spin-representations) into ensembles with again fixed spin is physically
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known as Clebsch-Gordan-Formulas.

An astonishing feature of bialgebras (especially k[G], U(`)) is, that

their modules V,W again can be tensored: ∆ tells us, how to act on

each factor of V ⊗k W :

h.(v ⊗ w) := (h(1).v)⊗ (h(2).w)

This is an action, exactly because ∆ is an algebra morphism:

1H .(v ⊗ w) = (1
(1)
H .v)⊗ (1

(2)
H .w) = (1H .v)⊗ (1H .w) = v ⊗ w

g.(h.(v⊗w)) = (g(1)h(1).v)⊗(g(2)h(2).w) = ((gh)(1).v)⊗((gh)(2).w) = gh.(v⊗w)

The trivial associativity constraint remains valid inside the category

(i.e. H-linear) by coassociativity of ∆:

(V ⊗W )⊗ Z ∼= V ⊗ (W ⊗ Z)

(v ⊗ w)⊗ z 7→ v ⊗ (w ⊗ z)

Note that in this case the other way around is wrong:

H may fail to be coassociative in a controlled manner by a so-called

F-matrix, such that still a different, more complicated associativity-

constraint (-isomorphim) exists. Such an H is called quasi-Hopf-

algebra (see later).

Also, there is a unit object I = kε, which means that H acts via

h.1k = ε(h)1k. This is an action, exactly because ε is an algebra

morphism:

1H .1k = ε(1H)1k = 1k g.(h.1k) = ε(g)ε(h)1k = ε(gh).1k = (gh).1k

The defining unit constraints remain valid in inside the category (i.e.

H-linear) exactly because H is counital:

I ⊗ V = kε ⊗ V ∼= V ⊗ kε ∼= V ⊗ I
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λ1k ⊗ v 7→ λv 7→ v ⊗ λ1k

Definition 3.4.1. A category C with a bifunctor ⊗ : C × C → C

is called monoidal or tensor category, if there is an associativity

constraint morphism (V ⊗W ) ⊗ Z ∼= V ⊗ (W ⊗ Z), such that for 4

brackets the resulting map does not depend on the order of regrouping

(hexagonal identity...diagram!), which is especially true if the map

is trivial. Furthermore there has to be a unit object I with unit con-

straints I⊗V ∼= V ∼= V ⊗I for every object V . Rep(H) = ModH ,⊕,⊗

in this case gets a (semi-) Representation Ring.

For trivial associativity constraint, ModH ,⊗k being monoidal is equiv-

alent to H being a bialgeba.

Also the antipode (finally concluding a Hopf algebra structure) has a

nice interpretation in this context - let us try to define a representation

on a dual vector space V ∗ = Homk(V, k) 3 λ of some module V ,

analogously to the pullback-action g−1. on functions on X above with

the order-reversing S:

g.λ := (v 7→ λ(S(g).v))

This is an action exactly because S is an anti-algebra map:

g.(h.λ) = g.(v 7→ λ(S(h).v)) = (v 7→ λ(S(h).(S(g).v))) = (v 7→ λ(S(gh).v)) = (gh).v

The defining property of S exactly guarantees that the canonical eval-

uation map is again inside the category (H-linear):

V ∗ ⊗ V → I = kε

λ⊗ v 7→ λ(v)

Definition 3.4.2 (Characters). Let V, ρ be a finite dimensional repre-

sentation of some (Hopf-)algebra H: We define the character of this
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representation linear map:

χ : H
ρ→ End(V )

trace→ k

χ(h) := tr(ρ(h)) =

dim(V )∑
i=1

ρ(h)i,i

Theorem 3.4.3. This ”fingerprint” is a great tool to identify and cal-

culate representations via the following properties.

• For dim(V ) = 1 we have χV = ρ, especially χI = χkε = ε

• χV⊕W = χV + χW (pointwise!)

• χV⊗W = χV ∗ χW (convolution prduct!)

• χV ∗ = χ ◦ S

• χV (gh) = χV (hg)

• χV (1H) = dim(V )

• χV = χW ⇒ V ∼= W

Proof. All but the last are easy consequences from linear algebra, where

we especially use that the trace doesn’t depend on the choice of the

basis:

• For dim(V ) = 1 a ”matrix” λ1k we have tr(λ1k) = λ1kρ

• For a basis vi, wj of V,W, V ⊕W , the fact that V,W are sta-

ble under H-action implies that ρV⊕W is a dim(V ), dim(W )-

blockmatrix:

ρV⊕W (h) =

ρV (h) 0

0 ρW (h)


The trace of this matrix is clearly just the sum:

χV⊕W (h) = tr(ρV⊕W (h) = tr(ρV (g)) + tr(ρW (g)) = χV (h) + χW (h)

• For a basis vi, wj, vi ⊗ wj of V,W, V ⊗ W and matrices A,B

from V,W to V,W we have

tr(A⊗B) =

dim(V ),dim(W )∑
i,j=1

Ai,iBj,j = (

dim(V )∑
i=1

Ai,i)(

dim(W )∑
j=1

Bj,j) = tr(A)tr(B)
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χV⊗W (h) = tr(ρV (h(1))⊗ρW (h(2))) = tr(ρV (h(1)))tr(ρW (h(2))) = χV (h(1))χW (h(2))

• For dual basis’ vi, v
∗
i of V, V ∗ the definition of the action shows:

ρV ∗(h)v∗i = (vj 7→ v∗i (ρV (S(h))vj)) = (ρV (S(h))Tvi)
∗

χV ∗(h) = tr(ρV (S(h))T ) = tr(ρV (S(h))) = (χ ◦ S)(h)

• This follows from the respective property of tr in linear algebra:

tr(AB) =

dim(V )∑
i=1

(AB)i,i =

dim(V )∑
i,j=1

Ai,jBj,i =

dim(V )∑
i,j=1

Bj,iAi,j =

dim(V )∑
j=1

(BA)j,j = tr(BA)

• ρ(1) is the dim(V )×dim(V )-unit matrix, hence of trace dim(V ).

• This is not so easy....

�

We conclude the section again by the example k[D4]: Consider

V+− ⊗ V−+
∼= V−−

λ1k+− ⊗ ν1k−+ 7→ λν1k−−

a.(1k+− ⊗ 1k−+) = 1k+− ⊗ (−1k−+) 7→ −1k−− = a.1k−−

b.(1k+− ⊗ 1k−+) = (−1k+−)⊗ 1k−+ 7→ −1k−− = b.1k−−

Generally: If we tensor 1-dimensional representations, the defining ho-

momorphisms ρ : H → k just (convolution)-multiply, as do their char-

acters χV = ρ ∈ Alg(H, k) (see above). Especially they are now multi-

plicative! Moreover the dual (1-dimensional) representation is just the

∗-inverse:

(χV ∗∗χV )(h) = (χV ◦S)(h(1))χV (h(2)) = ρV (S(h(1))h(2)) = ρV (1H)︸ ︷︷ ︸
dim(V )=1

ε(h) = ε(h) = χI(h)

and the trivial representation χI = χkε(= χk++) = ε the unit. Thus

the 1-dimensional representations for a group via ⊗, exactly the group

scheme FH(k) = Alg(H, k) defined above. In our example ({V±±},⊗) ∼=

Z2 × Z2.
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Remark 3.4.4. If duality of abelian groups holds (see above), the 1:1

correspondence between the group A and the 1-dimensional represen-

tations Hom(A, k∗) = Alg(k[A], k) (=all!) is even a group isomor-

phisms. Thus we recover in the general nonabelian case G exactly the

group G/G′ as group of 1-dimensional representations.

As more complicated case we shall later also discuss the 4-dimensional

representation V2⊗V2. If it were not irreducible, we would like to write

it as sum of such. This can be done solemnly from the knowledge of the

characters and their uniqueness! The rule χ(gh) = χ(hg) tells us, that

we just need to know χ on conjugacy classes χ(gh) := χ(h−1gh) =

χ(g), which there are 5 of in D4:

{1} {a, b−1ab = a3} {b, a−1ba = a2b} {ab, b−1abb = a3b} {a2}

We denote the character as vector with the images of the respective

conjugacy classes

χI = χ++ =



χ++(1)

χ++(a)

χ++(b)

χ++(ab)

χ++(a2)


=



1

1

1

1

1


χ−+ =



1

−1

1

−1

1


χ+− =



1

1

−1

−1

1


χ−− =



1

−1

−1

1

1



The 5th, 2-dimensional representation V2 has the following matrices

and traces for representants of the conjugacy classes:

1
ρ7→ 12×2 a

ρ7→

0 −1

1 0

 b
ρ7→

−1 0

0 1





HOPF ALGEBRAS, FUSION RINGS AND TOPOLOGICAL INVARIANTS 61

ab
ρ7→

 0 1

−1 0

 a2 ρ7→

−1 0

0 −1

 ⇒ χV2 =



2

0

0

0

−2


We now want to use this knowledge and the calculus and uniqueness of

characters to decompose representations into these and identify them.

Once more one may now recover rules like V−+⊗V+− = V−− from mul-

tiplying the characters χ−+⊗χ+− = χ−−. Consider the Permutation

Representation P introduced above and note that the trace of such

a permutation matrix is just the number of fixed points (1 in the

diagonal), hence:

χP =



fixP (e)

fixP ((1234))

fixP ((12)(34))

fixP ((13))

fixP ((13)(24))


=



4

0

0

2

0


=



1

1

1

1

1


+



1

−1

−1

1

1


+



2

0

0

0

−2


⇒ P ∼= V++⊕V−−⊕V2

Secondly we want to tensor the irreducible representation V2 with itself

and decompose the product:

χV2⊗V2 =



2

0

0

0

−2





2

0

0

0

−2


=



4

0

0

0

4


=



1

1

1

1

1


+



1

−1

1

−1

1


+



1

1

−1

−1

1


+



1

−1

−1

1

1


So we know the rule to combine e.g. two ”V2-particles” - they’re phys-

ically these are called fusion rules and describe the ring structure of

Rep(k[D4]):

V2 ⊗ V2
∼= V++ ⊕ V+− ⊕ V−+ ⊕ V−−
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Exercise 3.4.5. Find an explicit H-linear map for the isomorphism

above using techniques as for P in the last section. Find the remain-

ing fusion rules V±±⊗V2 and explicit isomorphism (they’re nontrivial!).

Do a similar analysis for S3 and S4 (beautiful description of conjugacy

classes!). You get each an irreducible representation of dimension 2, 3

from the permutation representation and the former also for the latter

by the quotient map S4 → S3.

Remark 3.4.6. In characteristic zero one can even show that the ir-

reducible characters are a basis on the space of functions on the conju-

gacy classes - even orthonormal with respect to a natural scalar product

(”Frobenius”, see integrals above!). There are hence exactly as many

as conjugacy classes.

3.5. Preliminaries: Cohomology. The concept (and names) in

(Co)Homology come from geometrical/topological considerations, namely

take a space/surface/...X decomposed into n-cells A homeomorphic to

Rn. The boundry map ∂A can again be decomposed into (n-1)-cell.

Let Cn be the abelian groups of n− chains, formal sums of n-cells,

then we get a chain complex:

C0
∂0← C1

∂1← C2
∂2← C3 . . .

where this terms means/demands that ∂n◦∂n+1 = 0. If we call elements

in Im(∂n+1) n-boundries and elements in Ker(∂n) cycles (with no

boundry), the relation exactly means ”boundries are cycles”:

Im(∂n+1) ⊂ Ker(∂n)

We can conversly ask, if also all n-cycles occurr as boundries of (n+1)-

chains:

Im(∂n+1) = Ker(∂n)
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The deviation can be measured by the Homology Group.

Hn(C∗) := Ker(∂n)/Im(∂n+1)

This specific choice of the chain-complex names it CW-Cohomology

and it doesn’t depend on the specific decomposition.

Example 3.5.1. Take a circle, decomposed into two points p, q and

two arcs a, b:

C0 =< p, q >∼= Z2 ∂0← C1 =< a, b >∼= Z2 ∂1← {0}

The boundry map is ∂0(a) = p− q and ∂0(b) = q − p. The 0-boundries

hence are Im(∂0) = (p − q)Z, hence H0 = Z, which generally ex-

presses the number of connected components (here 1). The 1-cycles are

Ker(∂0) = (a + b)Z and since there are no 1-boundries Im(∂1) = {0}

we have H1 = Z which expresses, that there’s up to boundries one

cycle (hole!), namely the circle itself. Had the circle be a filled disk in-

stead, then it had be the boundry of this 2-cell and there were no holes

H1 = {0}.

Problem 3.5.2. Verify the independence of the number of arcs the

circle is decomposed into. Calculate the homology of a ”eight”, a sphere

and a torus!

Dually, also often the arrows occurr the other way around: Take for a

space X as cochains Cn the space of differential n-forms. In dimension

3 this means C0 functions X → R, C1 vector fields f1dx+ f2dy+ f3dz,

C2 ”area fields” f12dx∧dy+f23dy∧dz+f31dz∧dx (physically identified

as pseudo-vectorfields via normalvectors) and C3 ”volume-forms”

fdx∧ dy ∧ dz (pseudo-scalars). These can be differentiated with the

total differential

d0 = d : f 7→ ∂f∂xdx+ ∂f∂zdz + ∂f∂zdz
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extended to higher forms via d(fdx ∧ . . .) := (df) ∧ dx ∧ . . .. One can

calculate that this forms a Cochain Complex C∗, i.e. maps

C0 d0→ C1 d1→ C2 d2→ C3 . . .

with dn+1◦dn = 0. Agai this condition implies Im(dn) ⊂ Ker(dn+1) (all

coboundries are cocycles)and we define the Cohomology Group:

Hn(C∗) := Ker(dn+1)/Im(dn)

Exercise 3.5.3. Show that in the right basis we have

d0 = grad d1 = rot d2 = div

Verify the condition d ◦ d = 0 once from their well-known properties,

and once directly from differential calculus.

Now e.g. H1 measures in how many essentially different ways a vector

field ~A being a ”cycle” rot ~A = 0 is ”conservative” resp. has a global

integral gradf = ~A - which it does locally! Hence it also measures

the ”holes” in X and one can show that this deRham-Cohomology

matches the above CW-Homology, apart from dualization (”universal

coefficient theorem”), although the chain complexes were much larger!

Very significant for us later on will be Group Cohomology: For any

G and a G-module M take as cochain complex

φ ∈ Cn(G,M) := HomSet(G
n,M)

dn(φ) = (g1, . . . gn+1 7→ g1.φ(g2, . . . , gn+1)+
n∑
i=1

(−1)iφ(g1, . . . gigi+1, . . .)+(−1)n+1φ(g1, . . . gn))

One may verify, that indeed dn+1 ◦ dn = 0 and that, if the action on M

is trivial and written multiplicatively, the first terms are:

d0(m) := (g 7→ m) d1(φ) := (g, h 7→ φ(h)φ(g)

φ(gh)φ(1)
d2(σ) := (a, b, c 7→ σ(a, b)σ(ab, c)

σ(a, bc)σ(b, c)
)
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Exercise 3.5.4. Show the last two claims and prove, that

H1(G,M) = HomGroup(G,M)

(multiplicative=”cycle” and up to constant scalars=”boundries”)

Especially 2-cocycles σ can be used to twist algebraic structures and

ideally, if σ1 and σ2 are equivalent in H2 (i.e. up to boundry) they

generate essentially the same twist, so cohomology classifies exactly

deformations (=”cycles”) up to equivalence (=”boundires”), e.g.:

Definition 3.5.5. For [σ] ∈ H2(G, k∗) a class of 2-cocycle (up to 2-

boundries) we have the twisted groupring

kσ[G] : g · h = ghσ(gh)

This is well-definied, as a different 2-cycle in the same H2-class σIm(d1)

leads not to the same, but still an isomorphic groupring.

Proof. The product is associative because σ is a 2-cocycle:

σ(a, b)σ(ab, c) = σ(a, bc)σ(b, c)

suppose now we modify σ by the boundry of some 1-chain φ.

σ̄ := σ · (dφ) = (g, h 7→ σ(g, h)
φ(g)φ(h)

φ(gh)
)

Now we have an isomorphy of algebras:

kσ̄[G] ∼= kσ[G]

f : g 7→ φ(g)g

because the multiplication changes exactly accordingly:

f(g·σ̄h) = f(ghσ̄(g, h)) = φ(gh)ghσ̄(g, h) = ghφ(g)φ(h)σ(g, h) = f(g)·σf(h)

�
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3.6. Algebras inside these categories. In every monoidal category

(C,⊗, I) we have the notion of an algebra, namely an object V with

morphisms inside the category (e.g. H-linear!) with associativity and

unitality:

µ : V ⊗ V → V ηI → V

Definition 3.6.1. Especially in ModH we call this a module algebra:

H-linearity of the maps µV , ηV exactly mean the product rules we

already frequently encountered:

h.(vw)
!

= µV (h.(v⊗w)) = (h(1).v)(h(2).w) h.1V
!

= ηV (1kε) = εH(h)1V

Note that analogously one defines module coalgebras

Remark 3.6.2. Note that the tensor product of two module algebras

V,W generally cannot be given an H-linear product:

(V ⊗W )⊗ (V ⊗W )
id⊗τ⊗id→ (V ⊗ V )⊗ (W ⊗W )

µV ⊗µW→ V ⊗W

because the trivial commutativity constraint or (quasi-)symmetry

V ⊗W τ→ W ⊗ V

v ⊗ w → w ⊗ v

is only H-linear iff H is cocommutative, and in other cases there is

no a-priori-guarantee for a different choice that is. Especially there

is no way of expressing the bialgebra axiom of ∆ : H → H ⊗ H be-

ing a map of (module-)algebras. We will soon see two possibilities to

get this additional structure of a braided cetegory, for one by the

additional structure (Yetter-Drinfel’d) or by H’s non-cocommutativity

being controlled by a so-called R-matrix.

The condition above unifies the following well-known concepts for our

first examples:
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• For a grouplike element h (possibly some group element g ∈

k[G]) the conditions above reads:

h.(mn) = (h.m)(h.n), h.1 = 1

So h acts as an automorphism on the algebra M .

• For a primitive element h (possibly some Lie algebra element

v ∈ U(`)) we get:

h.(mn) = (1.m)(h.n) + (h.m)(1.n) = m(h.n) + (h.m)n, v.1 = 0

Thus h acts as a derivation or infinitesimal automorphism

on M

Let us now consider some examples, where the first couple have already

be considered as ”product rules”:

• A group G acting on a space X turns the space of functions

kX into a k[G]-module algebra (pointwise!). If G is a Lie group

and ` the Lie algebra, we calculated that the infinitesimal action

(=derivation!) turns kX into a U(`)-module algebra.

• The quantum plane kq[X, Y ] becomes a module algebra over

the 2-dimensional translations by kq[X, Y ] and Uq(sl2).

• A field extension E/k becomes a module algebra over the Galois

group k[Gal(E/k)]. There are inseperable Galois extensions,

e.g. of the field of rational functions in positive charateristic:

Zp(t) ⊂ Zp( p
√
t)

where the defining polynomial Xp − t is irreducible, but has

only one solution p
√
t due to

Xp − p
√
t
p

= (X − p
√
t)p mod p

because all binomial coefficients in between are divisible by p.

Here, classical Galois group theory fails, as it is blind to this

extension (i.e. it is not ”Galois”; the invariants are all of E,
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larger than the base bild k). One can additionally consider E as

a module algebra over k[X]/(Xp) with X primitive, where the

truncation is this time possible by positive characteristics (com-

pare kq[X]/(Xp)) and this produces in general a Hopf-Galois

theory that can handle inseperability.

• H becomes an H-module algebra via the adjoint action h.g :=

h(1)gS(h(1)) as already calculated above.

• H becomes anH∗-module algebra via the dual to the coproduct:

λ.h := λ(S(h(1))h(2)

Is is an action by coassociativty and counitality:

λ.(ν.h) = ν(S(h(1))λ(S(h(2))h(3) = ν(S(h(1))(2))λ(S(h(1))(1))h(2)

= (λ ∗ ν)(S(h(1)))h(2) = (λ ∗ ν).h

1H∗ .h = ε.h = ε(h(1))h(2) = h

and is a module algebra exactly by the bialgebra axioms:

λ.(hg) = λ(S((hg)(1)))(hg)(2) = λ(S(g(1))S(h(1)))h(2)g(2) = λ(1)(S(g(1))

λ(2)(S(h(1)))h(2)g(2) = (λ(1).h)(λ(2).g)

λ.1H = λ(1
(1)
H )1

(2)
H = λ(1H)1H = εH∗(λ)1H

• In contrast, H with left-multiplication becomes n
¯
o H-module

algebra. However (without explicitly defining these notions,

which is straight-forward) it at least forms an H-module coal-

gebra, as doesH with left-comultiplication form anH-comodule

algebra. The latter we ”artificially” turned by dualization into

the H∗-module algebra above.

Exercise 3.6.3. Consider the twisted grouprings kσ[G] and show they

fail to become Hopf-algebras, but still remain H∗ = kG-module algebras
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as above by explicitely writing down the action of the eg. These H∗-

module-algebras (conceptually more clearly H-comodule algebas) are

calle Galois Objects.

3.7. Yetter Drinfel’d Modules and -Hopf Algebras.

3.8. Braided Hopf-Algebras And -Categories.

3.9. Producing Knot Invariants.

4. Fusion Rings

4.1. Quasi-Hopf Algebras And The F-Matrix.

4.2. Dijkgraafs Examples Over Twisted Groups.

4.3. Producing Anyon Models For Quantum Computing.

5. Topological Quantum Field Theories

5.1. Definiton And Physical Context.

5.2. The Examples Of Dijkgraaf And Witten.

5.3. A Verlinde-type Formula From The WZW-Model.
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