Notiztitel

24.10.2010

he the following let W be an open subset of a manifold M and $\varphi: \mathcal{U} \to V$ a clust with $\mathcal{U} \subset W$, $\varphi = (q^1, ..., q^n)$ ($u = \dim \mathcal{M}$).

(7.1) Definition: A vector field X on W is a section in TM over W, i.e a smooth map

 $X: W \longrightarrow TM$ with $T \circ X = id_W$.

TH $X \cap V$ In local coordinates: $X(a) = \hat{X}^{\hat{y}}(a) \frac{\partial}{\partial q_{\hat{y}}}(a)$, $X \cap V$ $X \cap V$ X

Notation: 10(W) is the E(W) - module of vector fields on $W: f \in E(U)$, $X \in ID(W)$ $\Rightarrow fX \in ID(W) \text{ with } fX(a) := f(a)X(a), a \in W.$

(7.2) Fact: 10(U) il a free $\Sigma(U)$ module of renk M.

Basis: $3g^{4}, \dots 3g^{n}$.

 $\frac{(7.3) \text{ Definition}}{\text{Lxf}(a)} := \frac{d}{dt} (f \circ x)(t)|_{t=0}$

with $X(a) = [y]_a$, $a \in W$. Ly is the Lie derivative of the direction of X.

Fact: Lxf ∈ E(W). And Lx(fg) = (Lxf)g+fLxg (desiration)

he local coordinates set $\frac{\partial f}{\partial \phi} := L \frac{\partial}{\partial \phi} f$. This means $\frac{\partial f}{\partial \phi}(a) = \frac{\partial}{\partial t} f \cdot \bar{\phi}^{1}(\phi a + te)|_{t=0} = \frac{\partial (f \circ \bar{\phi}^{1})}{\partial \phi}(\phi a), a \in \mathcal{U}.$

 $\frac{\mathcal{T}_{aet}}{\mathcal{T}_{aet}}$: $\mathcal{L}_{x}f = \mathcal{X}_{a}(a) \frac{\partial f}{\partial f}(a)$ for $\mathcal{X} = \mathcal{X}_{aet}$.

(7.4) Allemative Definitions: A vector field X on W is equivalently

1° A map $X: W \rightarrow TM$ with $\tau \circ X = id_W$ such that $L_X f \in E(W)$ for all $f \in E(W)$,

2° A collection of $X_1'... X'' \in \mathcal{E}(\mathcal{U})$ for each chart $\varphi: \mathcal{U} \to V$ such that $\overline{X} := \frac{\partial \overline{q} \cdot j}{\partial q^k} X^k$ for coordinate changes.

3° An R-linear map $L_X: E(W) \rightarrow E(W)$ with $L_X(fg) = (L_X f)g + f L_X g$ for all $f,g \in E(W)$.

Remests on notations: Lyf is often denoted by Xf.

(7.5) Proposition: Any derivation $D: \mathcal{E}(W) \to \mathcal{E}(W)$ [i.e. $D: \mathcal{E}(W) \to \mathcal{E}(W)$ [i.e. $D: \mathcal{E}(W) \to \mathcal{E}(W)$] in of the form $D = L_X$ with a mitable $X \in \mathcal{W}(W)$.

Proof (sketch): Locally we have $X|_{\mathcal{U}} := D(qi) \frac{\partial}{\partial qi}$

(7.6) Definition - Proposition: According to 7.5 for every pair $X,Y \in \mathcal{W}(W)$ of vector fields there exists uniquely $2 \in \mathcal{W}(W)$ with $L_2 = L_2 \cdot L_Y - L_Y \cdot L_X$. This Z is the Lie bracket $[X,Y] \in \mathcal{W}(W)$. We can show:

1° []: $\mathcal{W}(W) \times \mathcal{W}(W) \rightarrow \mathcal{W}(W)$ is \mathbb{R} -lines & antityon. 2° [X,[Y,Z]]+[Y,[Z,X]]+[2,[X,Y]] = 0 (Jacobi-identity)

In local coordinates: $[X,Y] = (X^k \frac{\partial Y^j}{\partial q^k} - Y^k \frac{\partial X^j}{\partial q^k}) \frac{\partial}{\partial q^j}$

WIW) with [,] is a (u infruite duiseusional) Lie algebra over R. For a diffeomorphism $\gamma: M \to N$ of manifolds a vector field $X \in \mathcal{W}(M)$ induces a vector field $\gamma_* X \in \mathcal{W}(M)$ by

4* X(b) := Ty (X(4-161), beN.

4.X is called the purhforwed of X by 4.

(7.7) Fact: For $g \in E(N)$ and $X \in ID(M)$:

 $L_{4} \times g(6) = X(g \circ \psi)(\bar{\psi}(6))$

(7.8) Corollary: $q_*([X,Y]) = [q_*X, q_*Y]$.