Version 1.1

32. Classical Lie Groups (32.1) Real Lie Groups.

Notiztitel

Lie group	dim.	Lie algebra
Lie group 1° GL(u, R)	n ²	$gl(n, \mathbb{R}) \cong \mathbb{R}^{n \times n}$
λ° SL $(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} : det A = 1\}$	n ² -1	$sl(u, \mathbb{R}) = \{a : tra = 0\}$
$3^{\circ} O(n) = O(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n} : A^{T}A = \mathbb{I}_{n}\}$	<u>n</u> 2(n-1)	$\sigma(u) = \{a : a^T + a = \sigma\}$
4° SO(u) = SO(u, R) = O(u, R) \cap SL(u, R)	u	o (u)
5° $\operatorname{Sp}(u, \mathbb{R}) = \{ A \in \mathbb{R}^{2u \times 2u}, A^T \mathcal{F} A = \mathcal{F} \}$	2n+4	$s\varphi(u, \mathbb{R}) = \{a \in \mathbb{R}^{2u \times 2u}:$
where $\mathcal{F} = \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix}$		a ^T J+Ja = 0}
$6^{\circ} O(3,1;\mathbb{R}) = \{A \in \mathbb{R}^{4\times 4} : A^{T}_{\mathcal{H}}A = \mathcal{H}\}$	6	$o\left(3,1;\mathbb{R}\right) = \left\{a^{T} + \frac{1}{2}a = 0\right\}$
where $M = \begin{pmatrix} 1_n & 0 \\ 0 & -1 \end{pmatrix}$		
$7^{\circ} O(\ell_{k}; \mathbb{R}) = \left\{ A \in \mathbb{R}^{u \times u} : A^{T} \Phi A = \Phi \right\}$	$\frac{n}{2}(n-1)$	$o\left(\ell,k;\mathbb{R}\right) = \left\{a^{T} \Phi + \Phi a = 0\right\}$
where $\Phi = \begin{pmatrix} \Psi_e & O \\ O & \Psi_k \end{pmatrix}$		
8° Spin (n) universal cover of SO(n)	n (u-1)	$\sigma(u_1\mathbb{R})$
with two sheets		
$\begin{array}{c} ?^{\circ} \mathcal{U}(m) = \left\{ A \in \mathbb{C}^{m \times m} : \overline{A}^{T} A = 1_{m} \right\} \end{array}$	m ²	$m(m) = \left\{ a \in \mathbb{C}^{m \times m} : \overline{a} + a = 0 \right\}$
$10^{\circ} SU(m) = \{A \in U(m) : alet A = 1\}$	$m^{2}-1$	$\mathfrak{SW}(m) = \left\{ a \in \mathfrak{W}(m) : +ra=0 \right\}$
$\mathcal{U}^{\circ}\mathcal{U}(k,\mathbb{H}) = \left\{ A \in \mathbb{H}^{k \times k} ; \overline{A}^{T}A = \mathbb{1}_{k} \right\}$		
$H \cong \mathbb{R}^4 x = x_0 + ix_1 + jx_2 + kx_3$		
$\overline{\mathbf{x}} = \mathbf{x}_{\sigma} - i\mathbf{x}_{1} - j\mathbf{x}_{2} - k\mathbf{x}_{3}$		

Comments:

Ad 1°: $GL(u, \mathbb{R}) \subset \mathbb{R}^{n \times n}$ open submanifold of $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$. In particular, $GL(u, \mathbb{R})$ is a real analytic manifold. $(A, \mathbb{R}) \longmapsto A \circ \mathbb{R}^{-1}$

is real analytic, since the components of $A \circ B^{-1}$ are rational functions in the components of A and B. Hence, GL(u, IR) is a real analytic Lie group. For G = GL(u, IR) as an open subset of $R^{u\times u}$ the tangent space $T_e G$ has a natural identification with $R^{u\times u}$. And this identification induces a Lie algebra homomorphism $g = Lie GL(u, R) \longrightarrow R^{u\times u} = End(R^u)$ with the commutator of matrix multiplacation as the

Lie bracket of $\mathbb{R}^{n \times n}$. Hence, one writes Lie $GL(n, \mathbb{R}) = \mathbb{R}^{n \times n} = gl(n, \mathbb{R})$

Ad 2° det : $GL(u, \mathbb{R}) \rightarrow \mathbb{R}$ is smooth as a polynomial, and even analytic. Because of greet det $A \neq D$ for all $A \in SL(u, \mathbb{R}) = det^{-1}(+1)$, $SL(u, \mathbb{R})$ is a submanifold, (This follows by applying 27.12 since $SL(u, \mathbb{R})$ is closed.) Using the fact that $SL(u, \mathbb{R})$ is a subgroup as well, we conclude that

that
$$SL(u, R)$$
 is a lie group.
Let us deduce $sU(u, R) = \{X \in R^{u^2} : tr X = o \}$ is detail:
For a curve $A: \exists \rightarrow SL(u, R)$ with $A(o) = id_u = I_u$ we may
assume $\|A(t) - I_u\| < 1$ for $t \in \exists$ by choosing \exists to
be a small open interval containing O . Hence,
there exists a curve $B: \exists \rightarrow R^{u\times u}$ with $A(t) = exp B(t)$.
Because of $olebA = olet exp B = exp tr B$ (and the
contriumity of B) we have $trB(t) = O$. As a contequence,
 $tr B(t) = O$, prince $O = \frac{d}{dt} (tr B) = tr B(t)$. In particular,
 $fr B(t) = O$, prince $O = \frac{d}{dt} (tr B) = tr B(t)$. In particular,
 $fr B(t) = O$, prince $O = \frac{d}{dt} (tr B) = tr B(t)$. In particular,
 $fr B(t) = O$, prince $O = \frac{d}{dt} (tr B) = tr B(t)$. In particular,
 $fr B(t) = O$, the first $A(t) = B(t) \exp B(t) = B(t) A(t)$ and
 $A(o) = B(o) A(o) = B(o)$. Thus $A(o) \in \{X: tr X = O\} = sl(u, R)$.
Conversely, let $X \in R^{u^2}$ satisfy $tr X = O$. $A(t) := exp tX$
 $= \sum_{u=0}^{\infty} \frac{d}{u!} t^{u} X^{u}$ is a well-defined remoth curve with
 $olet A(t) = exp tr X = 1$, *i.e.* $A(t) \in SL(u, R)$.

Ad
$$3^{\circ} - 7^{\circ}$$
 similarly, with different β defining boilinear
maps $\mathbb{R}^{n^2} \times \mathbb{R}^n \longrightarrow A^T \beta \beta$ ($\beta = 1_n, \beta = 7, \beta = 7, \beta = \overline{2}$)

(32.2) Complex Lie Groups: 1°-7° as in (32.1) but with O instead of R. They carry a matusal complex-analytic

32-4 structure as a complex manifold.

(32.3) <u>Compactners</u>: $O(u, \mathbb{R})$, $SO(u, \mathbb{R})$, U(u), U(u), $U(k, \mathbb{H})$ are compact Lie groups since they are bounded closed subsets of $W^{u^2 \times u^2}$. The groups $GL(u, \mathbb{R})$, $SL(u, \mathbb{R})$ (u+1), $SL(u, \mathbb{C})$, $O(3, 1; \mathbb{R})$, $O(u, \mathbb{C}) \cong O(u, \mathbb{R}) \times \mathbb{R}^n$ are not compact. Spinn is compact.

$$(\underline{S2.4}) \quad \underline{Connectedues:} \quad \underline{SO(u_1R), U(u_1), SU(u_1), Spin(u_1), GL(u_1, C), SL(u_2, C),} \\ U(k_1H), SL(u_1R) \quad are connected. \quad \underline{SU(u_1), U(k_2H)} \quad and Spin(u) \\ are simply connected. \quad \underline{GL(u_1R)} \quad has 2 \text{ connected components}, \\ \underline{GL^{+}(u_1R)} = \left\{A \in \mathbb{R}^{n_1^2} \text{ det} A > 0\right\} \quad and \quad \underline{GL(u_1R)} = \left\{A \in \mathbb{R}^{n_1^2} \text{ det} A < 0\right\}. \quad The \\ \underline{Lorente group has the following 4 connected components} \\ L_{+}^{+} := \left\{A : \text{ elet } A = 1 \ k \ A_{+}^{4} \ge 1\right\} (the proper Lorents proup; A = (A_{k}^{i})) \\ L_{-}^{\uparrow} := \left\{A : \text{ olet } A = -1 \ k \ A_{+}^{4} \ge -1\right\} \\ L_{+}^{I} := \left\{A : \text{ olet } A = -1 \ k \ A_{+}^{4} \le -1\right\} \end{cases}$$

Some useful examples and itomorphitus:
(32.5)
$$U(1) \cong SU(1) \cong SO(2,\mathbb{R}) \cong S^1$$
, where S^1 is the Lie group

with mole ly my manifold
$$\{e^{i\varphi} | \varphi \in \mathbb{R}\} \subset \mathbb{C} = \mathbb{R}^2$$

and $e^{i\varphi} e^{i\varphi} := e^{i(\varphi + \varphi)}$.

32-5

$$\frac{(32.6)}{(2)} \quad \mathcal{U}(2) = \left\{ \begin{pmatrix} z & -\overline{w}e^{i\varphi} \\ w & \overline{z}e^{i\varphi} \end{pmatrix} : (z,w) \in \mathbb{C}^{2}, \varphi \in \mathbb{R} \ k \neq \overline{z} + w\overline{w} = 1 \right\} \cong \mathbb{S}^{3} \times \mathbb{S}^{4},$$
where $_{h} \cong {}^{h}$ elementes a manifold itomorphism.

$$(32.7) \quad SU(2) = \left\{ \begin{pmatrix} z & -\overline{w} \\ w & \overline{z} \end{pmatrix} : z\overline{z} + w\overline{w} = l \right\} \cong \mathbb{S}^3 \text{ as unlphs.}$$
$$SU(2) \cong U(l, \mathbb{H}) \text{ as Lie groups.}$$
$$(32.8) \quad Spin(3) \cong SU(2) \text{ as Lie groups.}$$

$$\frac{(32.8)}{\text{Spin}(3)} \cong SU(2) \text{ as Lie groups.}$$

$$\frac{(32.8)}{\text{Spin}(4)} \cong SU(2) \times SU(2) \text{ as Lie group.}$$

 $\frac{(32.10)}{S^{3} \times \mathbb{R}^{3}} \text{ as a manifold. And } SL(2,\mathbb{C}) \text{ is connected and itomorphic to} S^{3} \times \mathbb{R}^{3} \text{ as a manifold. And } SL(2,\mathbb{C}) \text{ is the minversal cover of } L_{+}^{\dagger}, \text{ the proper Lorents group.}$

$$(32.M) \text{ Fixther Lie group itomorphisms};$$

$$Sp(1, \mathbb{C}) \cong SL(2, \mathbb{C})$$

$$Sp(1, \mathbb{R}) \cong SL(2, \mathbb{R})$$

$$Spn(5) \cong U(2, \mathbb{H})$$

$$Spn(6) \cong SU(4)$$