
Chapter 11
Mathematical Aspects of the Verlinde Formula

The Verlinde formula describes the dimensions of spaces of conformal blocks
(cf. Sect. 9.3) of certain rational conformal field theories (cf. [Ver88]). With respect
to a suitable mathematical interpretation, the Verlinde formula gives the dimensions
of spaces of generalized theta functions (cf. Sect. 11.1). These dimensions and their
polynomial behavior (cf. Theorem 11.6) are of special interest in mathematics. Prior
to the appearance of the Verlinde formula, these dimensions were known for very
specific cases only, e.g., for the classical theta functions (cf. Theorem 11.5).

The Verlinde formula has been presented by E. Verlinde in [Ver88] as a result of
physics. Such a result is, of course, not a mathematical result, it will be considered
as a conjecture in mathematics. However, the physical insights leading to the state-
ment of the formula and its justification can be of great help in proving it. Several
mathematicians have worked on the problem of proving the Verlinde formula, start-
ing with [TUY89] and coming to a certain end with [Fal94]. These proofs are all
quite difficult to understand. For a recent review on general theta functions we refer
to the article [Fal08*] of Faltings.

In this last chapter of the present notes we want to explain the Verlinde formula in
the context of stable holomorphic bundles on a Riemann surface, that is as a result in
function theory or in algebraic geometry. Furthermore, we will sketch a strategy for
a proof of the Verlinde formula which uses a kind of fusion for compact Riemann
surfaces with marked points. This strategy is inspired by the physical concept of
the fusion of fields in conformal field theory as explained in the preceding chapter.
We do not explain the interesting transformation from conformal field theory to
algebraic geometry. Instead we refer to [TUY89], [Uen95], [BF01*], [Tyu03*].

11.1 The Moduli Space of Representations and Theta Functions

In the following, S is always an oriented and connected compact surface of genus
g = g(S) ∈N0 without boundary. The moduli space of representations for the group
G is

M G := Hom(π1(S),G)
/

G .
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The equivalence relation indicated by “
/

G” is the conjugation

g∼ g′ ⇐⇒ ∃h ∈ G : g = hgh−1.

Theorem 11.1. M G has a number of quite different interpretations. In the case of
G = SU(r) these interpretations can be formulated in form of the following one-to-
one correspondences (denoted by “ ∼=”):

1. M SU(r) = Hom(π1(S),SU(r))
/

SU(r) .

Topological interpretation: the set M SU(r) is a topological invariant, which
carries an amount of information which interpolates between the fundamental
group π1(S) and its abelian part

H1(S) = π1(S)
/
[π1(S),π1(S)] ,

the first homology group of S.

2. M SU(r) ∼= set of equivalence classes of flat SU(r)-bundles.

Geometric interpretation: there are two related (and eventually equivalent)
interpretations of “flat” SU(r)-bundles; “flat” in the sense of a flat vector bundle
with constant transition functions and “flat” in the sense of a vector bundle with
a flat connection (corresponding to SU(r) in both cases). Two such bundles are
called equivalent if they are isomorphic as flat bundles.

3. M SU(r) ∼= Ȟ1(S,SU(r))∼= H1(π1(S),SU(r)).

Cohomological interpretation: Ȟ1(S,SU(r)) denotes the first Čech cohomol-
ogy set with values in SU(r) (this is not a group in the non-abelian case) and
H1(π1(S),SU(r)) denotes the group cohomology of π1(S) with values in SU(r).

4. M SU(r) ∼= A0
/
G .

Interpretation as a phase space: A is the space of differentiable connections
on the trivial bundle S×SU(r)→ S, A0 ⊂A is the subspace of flat connections
and G is the corresponding gauge group of bundle automorphisms, that is

G ∼= C ∞(S,SU(r)).

A0
/
G appears as the phase space of a three-dimensional Chern–Simons the-

ory with an internal symmetry group SU(r) with respect to a suitable gauge
(cf. [Wit89]).

5. M SU(r) ∼= moduli space of semi-stable holomorphic vector bundles E on S of
rank r with detE = OS.

Complex analytical interpretation: here, one has to introduce a complex struc-
ture J on the surface S such that S equipped with J is a Riemann surface SJ. The
vector bundles in the above moduli space are holomorphic with respect to this
complex structure and the sheaf OS is the structure sheaf on SJ. To emphasize
the dependence on the complex structure J on S, we denote this moduli space by

M
SU(r)
J .
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To prove the above bijections “∼=” in the cases 2., 3., and 4. is an elementary
exercise for understanding the respective concepts. Case 5. is a classical theorem of
Narasimhan and Seshadri [NS65] and is much more involved.

In each of these cases, “∼=” is just a bijection of sets. However, the different
interpretations yield a number of different structures on M SU(r). In 1., for instance,
M SU(r) obtains the structure of a subvariety of SU(r)2g

/
SU(r) (because of the fact

that π1(S) is a group of 2g generators and one relation, cf. (11.4) below), in 4. the
set M SU(r) obtains the structure of a symplectic manifold and in 5., according to
[NS65], the structure of a Kähler manifold outside the singular points of M SU(r).

Among others, there are three important generalizations of Theorem 11.1:

• to other Lie groups G instead of SU(r),
• to higher-dimensional compact manifolds M instead of S and, in particular, to

Kähler manifolds in connection with 5.
• to S \ {P1, . . . ,Pm} instead of S with points P1, . . . ,Pm ∈ S (cf. Sect. 11.3) and a

suitable fixing of the vector bundle structure near the points P1, . . . ,Pm ∈ S.

To begin with, we do not discuss these more general aspects, but rather concen-
trate on M SU(r). The above-mentioned structures induce the following properties
on M SU(r):

• M SU(r) has a natural symplectic structure, which is induced by the following
2-form ω on the affine space

A ∼= A 1(S,su(r))

of connections:
ω(α,β ) = c

∫

S

tr(α ∧β ) (11.1)

for α,β ∈A 1(S,su(r)) with a suitable constant c ∈ R\{0}.
Here,

tr : su(r)→ R

is the trace of the complex r× r-matrices with respect to the natural representa-
tion. In what sense this defines a symplectic structure on A and on A0/G will
be explained in more detail in the following.

In fact, for a connection A ∈ A the tangent space TAA of the affine space
A can be identified with the vector space A 1(S,su(r)) of su(r)-valued differ-
entiable 1-forms. Hence, a 2-form on A is given by a family (ωA)A∈A of bi-
linear mappings ωA on A 1(S,su(r))×A 1(S,su(r)) depending differentiably on
A ∈A . Now, the map

ω : A 1(S,su(r))×A 1(S,su(r))→ C

defined by (11.1) is independent of A ∈A with respect to the natural trivializa-
tion of the cotangent bundle

T ∗A = A ×A 1(S,su(r))∗.
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Consequently, ω with (11.1) is a closed 2-form. It is nondegenerate since
ω(α,β ) = 0 for all α implies β = 0. Hence, it is a symplectic form on A defining
the symplectic structure. Moreover, it can be shown that the pushforward of ω|A0

with respect to the projection A0 → A0/G gives a symplectic form ωM on the
regular part of A0/G . Indeed, A0/G is obtained by a general Marsden–Weinstein
reduction of (A ,ω) with respect to the action of the gauge group G where the
curvature map turns out to be a moment map.

This symplectic form ωM is also induced by Chern–Simons theory
(cf. [Wit89]). A0/G with this symplectic structure is the phase space of the clas-
sical fields.

• Moreover, on M SU(r) there exists a natural line bundle L (the determinant bun-
dle) – which is uniquely determined up to isomorphism – together with a con-
nection ∇ on L whose curvature is 2πiω . With a fixed complex structure J on
S, for instance, the line bundle L has the following description:

Θ :=
{

[E] ∈M
SU(r)
J : dimC H0(S,E)≥ 1

}

is a Cartier divisor (the “theta divisor”) on M
SU(r)
J , for which the sheaf

L = LΘ = O(Θ) = sheaf of meromorphic functions f on M
SU(r)
J

with (f)+Θ≥ 0

is a locally free sheaf of rank 1. Hence, L is a complex line bundle, which
automatically is holomorphic with respect to the complex structure on the moduli
space induced by J. (H0(S,E) is the vector space of holomorphic sections on the
compact Riemann surface S = SJ with values in the holomorphic vector bundle
E and [E] denotes the equivalence class represented by E.)

Definition 11.2. The space of holomorphic sections in L k, that is

H0
(
M

SU(r)
J , L k

)
,

is the space of generalized theta functions of level k ∈ N.

Here, L k is the k-fold tensor product of L : L k = L ⊗ . . .⊗L (k-fold). Since

M
SU(r)
J is compact, H0(M SU(r)

J ,L k) is a finite-dimensional vector space over C.
In the context of geometric quantization, the space

H0
(
M

SU(r)
J , L

)

can be interpreted as the quantized state space for the phase space (M SU(r),ω),
prequantum bundle L and holomorphic polarization J. A similar result holds

for H0(M SU(r)
J ,L k). To explain this we include a short digression on geometric

quantization (cf. [Woo80] for a comprehensive introduction):
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Geometric Quantization. Geometric quantization of a classical mechanical system
proceeds as follows. The classical mechanical system is supposed to be represented
by a symplectic manifold (M,ω). For quantizing (M,ω) one needs two additional
geometric data, a prequantum bundle and a polarization. A prequantum bundle is a
complex line bundle L → M on M together with a connection ∇ whose curvature
is 2πiω . A polarization F on M is a linear subbundle F of (that is a distribution
on) the complexified tangent bundle T MC fulfilling some compatibility conditions.
An example is the bundle F spanned by all “y-directions” in M = R

2 with coor-
dinates (x,y) or on M = C

n the complex subspace of T MC spanned by the direc-
tions ∂

∂ z j
, j = 1, . . . ,n. This last example is the holomorphic polarization which has

a natural generalization to arbitrary complex manifolds M. Now the (uncorrected,
see (11.3)) state space of geometric quantization is

Z := {s ∈ Γ(M,L) : s is covariantly constant on F} .

Here, Γ(M,L) denotes the C ∞-sections on M of the line bundle L and the covari-
ance condition means that ∇X s = 0 for all local vector fields X : U → F ⊂ T MC

with values in F . In case of the holomorphic polarization the state space Z is simply
the space H0(M,L) of holomorphic sections in L.

Back to our moduli space M
SU(r)
J with symplectic form ωM , the holomorphic

line bundle L → M
SU(r)
J , and holomorphic polarization one gets the following:

for every k ∈ N, L k is a prequantum bundle of (M SU(r)
J ,kωM ). Consequently,

H0(M SU(r)
J ,L k) is the (uncorrected) state space of geometric quantization.

In order to have a proper quantum theory constructed by geometric quantization
it is necessary to develop the theory in such a way that the state space Z obtains an
inner product. By an appropriate choice of the prequantum bundle and the polariza-
tion one has to try to represent those observables one is interested in as self-adjoint
operators on the completion of Z (see [Woo80]). We are not interested in these mat-
ters and only want to point out that the space of generalized theta functions has an
interpretation as the state space of a geometric quantization scheme: The space

H0
(
M

SU(r)
J ,L k

)

is the (uncorrected) quantized state space of the phase space
(
M

SU(r)
J ,kω

)
,

for the prequantum bundle L k and for the holomorphic polarization on M
SU(r)
J .

Before continuing the investigation of the spaces of generalized theta functions
we want to mention an interesting connection of geometric quantization with repre-
sentation theory of compact Lie groups which we will use later for the description of
parabolic bundles. In fact, to a large extent, the ideas of geometric quantization de-
veloped by Kirillov, Kostant, and Souriau have their origin in representation theory.
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Let G be a compact, semi-simple Lie group with Lie algebra g and fix an invariant
nondegenerate bilinear form <,> on g by which we identify g and the dual g∗ of g.
For simplicity we assume G to be a matrix group. Then G acts on g by the adjoint
action

Adg : g→ g, X → gXg−1,

g ∈ G, and on g∗ by the coadjoint action

Ad∗g : g∗ → g∗,ξ → ξ ◦Adg,

g ∈ G. The orbits O = Gξ = {Ad∗g(ξ ) : g ∈ G} of the coadjoint action are called
coadjoint orbits. They carry a natural symplectic structure given as follows. For
A ∈ g let XA : O → TO be the Jacobi field, XA(ξ ) = d

dt (Ad∗etAξ ) |
t=0

. Then by

ωξ (XA,XB) := ξ ([A,B])

for ξ ∈ O, A,B ∈ g, we define a 2-form which is nondegenerate and closed, hence
a symplectic form.

The coadjoint orbits have another description using the isotropy group Gξ = {g∈
G : Ad∗gξ = ξ}, namely

O ∼= G/Gξ ∼= GC/B,

where GC is the complexification of G and B ⊂ GC is a suitable Borel subgroup.
In this manner O ∼= GC/B is endowed with a complex structure induced from the
complex homogeneous (flag) manifold GC/B. ω turns out to be a Kähler form with
respect to this complex structure, such that (O,ω) is eventually a Kähler manifold.
Assume now that we find a holomorphic prequantum bundle on O . Then G acts in
a natural way on the state space H0(O,L ). Based on the Borel–Weil–Bott theorem
we have the following result.

Theorem 11.3 (Kirillov [Kir76]). Geometric quantization of each coadjoint orbit of
maximal dimension endowed with a prequantum bundle yields an irreducible uni-
tary representation of G. Every irreducible unitary representation of G appears ex-
actly once amongst these (if one takes account of equivalence classes of prequantum
bundles L → O only).

To come back to our moduli spaces and spaces of holomorphic sections in line
bundles we note that a close connection of the spaces of generalized theta functions

with conformal field theory is established by the fact that H0(M SU(r)
J ,L k) is iso-

morphic to the space of conformal blocks of a suitable conformal field theory with
gauge symmetry (cf. Sect. 9.3). This is proven in [KNR94] for the more general
case of a compact simple Lie group G.

At the end of this section we want to discuss the example G = U(1) which does
not completely fit into the scheme of the groups SU(r) or groups with a simple com-
plexification. However, it has the advantage of being relatively elementary, and it ex-

plains why the elements of H0(M SU(1)
J ,L k) are called generalized theta functions:
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Example 11.4. (e.g. in [Bot91*]) Let G be the abelian group U(1) and let J be a

complex structure on the surface S. Then M
U(1)
J is isomorphic (as a set) to

1. the moduli space of holomorphic line bundles on the Riemann surface S = SJ of
degree 0.

2. the set of equivalence classes of holomorphic vector bundle structures on the
trivial C∞ vector bundle SJ ×C→ SJ .

3. Hom(π1(S),U(1))∼= Ȟ1(S,U(1))∼= H1(SJ ,O)
/

H1(S,Z) ,
which is a complex g-dimensional torus where O is the sheaf of germs of holo-
morphic functions in SJ .

4. C
g
/
Γ ∼= Jacobi variety of SJ .

Let L → M
U(1)
J be the theta bundle, given by the theta divisor on the Jacobi

variety. Then

• H0(M U(1)
J ,L )∼= C is the space of classical theta functions and

• H0(M U(1)
J ,L k) is the space of classical theta functions of level k.

Theorem 11.5. dimC H0(M U(1)
J ,L k)= kg (independently of the complex structure).

The Verlinde formula is a generalization of this dimension formula to other Lie
groups G instead of U(1). Here we will only treat the case of the Lie groups G =
SU(r).

11.2 The Verlinde Formula

Theorem 11.6 (Verlinde Formula). Let

zSU(r)
k (g) := dimC H0

(
M

SU(r)
J ,L k

)
.

Then

zSU(2)
k (g) =

(
k +2

2

)g−1 k+1

∑
j=1

(
sin2 jπ

k +2

)1−g

and (11.2)

zSU(r)
k (g) =

(
r

k + r

)g

∑
S⊂{1,...,k+r}

|S|=r

∏
s∈S,t /∈S

1≤t≤k+r

∣
∣
∣
∣2sinπ

s− t
r + k

∣
∣
∣
∣

g−1

for r ≥ 2.

The theorem (cf. [Ver88], [TUY89], [Fal94], [Sze95], [Bea96], [Bea95], [BT93],
[MS89], [NR93], [Ram94], [Sor95]) has a generalization to compact Lie groups for
which the complexification is a simple Lie group GC of one of the types A,B,C,D,
or G ([BT93], [Fal94]).
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Among other aspects the Verlinde formula is remarkable because

• the expression on the right of the equation actually defines a natural number,
• it is polynomial in k, and
• the dimension does not depend on the complex structure J.

Even the transformation of the second formula into the first for r = 2 requires
some calculation. Concerning the independence of J: physical insights related to
rational conformal field theory imply that the space of conformal blocks does not
depend on the complex structure J on S. This makes the independence of the di-
mension formula of the structure J plausible. However, a mathematical proof is still
necessary.

From a physical point of view, the Verlinde formula is a consequence of the
fusion rules for the operator product expansion of the primary fields (cf. Sect. 9.3).
We will discuss the fusion mathematically in the next section. Using the fusion rules
formulated in that section, the Verlinde formula will be reduced to a combinatorical
problem, which is treated in Sect. 11.4.

There is a shift k → k + r in the Verlinde formula which also occurs in other for-
mulas on quantum theory and representation theory. This shift has to do with the
quantization of the systems in question and it is often related to a central charge
or an anomaly (cf. [BT93]). In the following we will express the shift within ge-
ometric quantization or rather metaplectic quantization. This is based on the fact

that H0(M SU(r)
J ,L k) can be obtained as the state space of geometric quantization.

Indeed, the shift has an explanation as to arise from an incomplete quantization pro-
cedure. Instead of the ordinary geometric quantization one should rather take the
metaplectic correction.

Metaplectic Quantization. In many known cases of geometric quantization, the
actual calculations give rise to results which do not agree with the usual quan-
tum mechanical models. For instance, the dimensions of eigenspaces turn out to
be wrong or shifted. This holds, in particular, for the Kepler problem (hydrogen
atom) and the harmonic oscillator. Because of this defect of the geometric quantiza-
tion occurring already in elementary examples one should consider the metaplectic
correction which in fact yields the right answer in many elementary classical sys-
tems, in particular, in the two examples mentioned above. To explain the procedure
of metaplectic correction we restrict to the case of a Kähler manifold (M,ω) with
Kähler form ω as a symplectic manifold. In this situation a metaplectic structure
on M is given by a spin structure on M which in turn is given by a square root
K

1
2 of the canonical bundle K on M. (K is the holomorphic line bundle detT ∗M

of holomorphic n-forms, when n is the complex dimension of M.) The metaplec-
tic correction means – in the situation of the holomorphic polarization – taking the
spaces

Zm = H0
(

M,L⊗K
1
2

)
(11.3)

as the state spaces replacing Z = H0(M,L).
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In the context of our space of generalized theta functions the metaplectic correc-
tion is

Zm = H0
(
M

SU(r)
J ,L k⊗K

1
2

)
,

where K is the canonical bundle of M
SU(r)
J .

Now, the canonical bundle of M
SU(r)
J turns out to be isomorphic to the dual of

L 2r, hence a natural metaplectic structure in this case is K
1
2 = L −r (:= dual of

L r). As a result of the metaplectic correction the shift disappears:

Zm = H0
(
M

SU(r)
J ,L k⊗L −r

)
= H0
(
M

SU(r)
J ,L k−r

)
.

The dimension of the corrected state space Zm is

dm,SU(r)
k (g) = dimH0

(
M

SU(r)
J ,L k⊗L −r

)

and we see
dm,SU(r)

k (g) = dSU(r)
k−r (g).

This explanation of the shift is not so accidental as it looks at first sight. A similar
shift appears for a general compact simple Lie group G. To explain the shift in this
more general context one has to observe first that r is the dual Coxeter number of
SU(r) and that the shift for general G is k → k + h∨ where h∨ is the dual Coxeter
number of G (see [Fuc92], [Kac90] for the dual Coxeter number which is the Dynkin
index of the adjoint representation of G). Now, the metaplectic correction again
explains the shift because the canonical bundle on the corresponding moduli space
M G

J is isomorphic to L −2h.
Another reason to introduce the metaplectic correction appears in the general-

ization to higher-dimensional Kähler manifolds X instead of SJ . In order to obtain
a general result on the deformation independence of the complex structure gener-
alizing the above independence result it seems that only the metaplectic correction
gives an answer at all. This has been shown in [Sche92], [ScSc95].

A different but related explanation of the shift by the dual Coxeter number of a
nature closer to mathematics uses the Riemann–Roch formula for the evaluation of
the dG

k (g) where h appears in the Todd genus of M G
J because of L −2h = K .

11.3 Fusion Rules for Surfaces with Marked Points

In this section G is a simple compact Lie group which we assume to be SU(2) quite
often for simplification.

As above, let SJ =: Σ be a surface S of genus g with a complex structure J. We
fix a level k ∈ N.
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Let P = (P1, . . . ,Pm)∈ Sm be (pairwise different) points of the surface, which will
be called the marked points. We choose a labeling R = (R1, . . . ,Rm) of the marked
points, that is, we associate to each point Pj an (equivalence class of an) irreducible
representation R j of the group G as a label.

From Theorem 11.3 of Kirillov we know that these representations R j correspond
uniquely to quantizable coadjoint orbits O j of maximal dimension in g∗. Using the
invariant bilinear form on g the O js correspond to adjoint orbits in g and these, in
turn, correspond to conjugacy classes Cj ⊂ G by exponentiation. The analogue of
the moduli space M G will be defined as

M G(P,R) :=
{
ρ ∈ Hom(π1(S\P),G) : ρ(c j) ∈Cj

}
/G.

Here, c j denotes the representative in π1(S \ P) of a small positively oriented
circle around Pj.

Note that the fundamental group π1(S \P) of S \P is isomorphic to the group
generated by

a1, . . . ,ag,b1, . . . ,bg,c1, . . . ,cm

with the relation
g

∏
j=1

a jb ja
−1
j b−1

j

m

∏
i=1

ci = 1. (11.4)

In the case of G = SU(2) the R j correspond to conjugacy classes Cj generated by

(
e2πiθ j 0

0 e−2πiθ j

)
=: g j. (11.5)

Let us suppose the θ j to be rational numbers. This condition is no restriction of
generality (see [MS80]). Hence, we obtain natural numbers Nj with g j

Nj = 1 which
describe the conjugacy classes Cj. We now define the orbifold fundamental group
πorb

1 (S) = π1(S,P,R) as the group generated by

a1, . . . ,ag,b1, . . . ,bg,c1, . . . ,cm

with the relations

g

∏
j=1

a jb ja
−1
j b−1

j

m

∏
i=1

ci = 1 and cNi
i = 1 (11.6)

for i = 1, . . . ,m, where Nj depends on θ j. Then M SU(2)(P,R) can be written as

Hom(πorb
1 (S),SU(2))/SU(2).

Theorem 11.1 has the following generalization to the case of surfaces with
marked points.

Theorem 11.7. Let S be marked by P with labeling R. The following three moduli
spaces are in one-to-one correspondence:
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1. M SU(2)(P,R) = Hom(πorb
1 (S),SU(2))/SU(2).

2. The set of gauge equivalence classes (that is gauge orbits) of singular SU(2)-
connections, flat on S \P with holonomy around Pj fixed by the conjugacy class
Cj induced by R j, j = 1, . . . ,m.

3. The moduli space M
SU(2)
J (P,R) of semi-stable parabolic vector bundles of rank

2 with paradegree 0 and paradeterminant OS for (P,R).

We have to explain the theorem. To begin with, the moduli space of singular
connections in 2. can again be considered as a phase space of a classical system.
The classical phase space A0

/
G (cf. 4. in Theorem 11.1) is now replaced with the

quotient
M := AO

/
G .

Here, AO is the space of singular unitary connections A on the trivial vector
bundle of rank 2 over the surface S subject to the following conditions: over S \
P the curvature of A vanishes and at the marked points Pi the curvature is (up to
conjugation) locally given by

m(A) =∑Tiδ (Pi− x)

(with the Dirac δ -functional δ (Pi−x) in Pi) where Ti ∈ su(2) belongs to the adjoint
orbit determined by O j. Hence, AO can be understood as the inverse image m−1(O)
of a product O of suitable coadjoint orbits of the dual (LieG )∗ of the Lie algebra of
the gauge group G . Regarding m as a moment map, M = AO

/
G turns out to be a

generalized Marsden–Weinstein reduction.
A related interpretation of M in this context is as follows: the differentiable

SU(2)-connections A on the trivial rank 2 vector bundle over S \P define a paral-
lel transport along each closed curve γ in S \P. Hence, each A determines a group
element W (A,γ) in SU(2) up to conjugacy. If A is flat in S \P one obtains a ho-
momorphism W (A) : π1(S \P)→ SU(2) up to conjugacy (see (11.4) for π1(S \P))
since for a flat connection the parallel transport from one point to another is locally
independent of the curve connecting the points. Now, the labels R j at the marked
points Pj fix the conjugacy classes Cj assigned by W (A) to the simple circles (rep-
resented by c j in the description (11.4) of the fundamental group π1(S \P)) around
the marked points: W (A)(c j) has to be contained in Cj. Hence, the elements of M

define conjugacy classes of representations in M SU(2)(P,R) yielding a bijection.
This explains the first bijection of the theorem. The second bijection has been

shown by Mehta and Seshadri [MS80] as a generalization of the theorem of
Narasimhan and Seshadri [NS65] (cf. Theorem 11.1). To understand it, we need
the following concepts:

Definition 11.8. A parabolic structure on a holomorphic vector bundle E of rank r
over a marked Riemann surface Σ = SJ with points P1, . . . ,Pm ∈ Σ is given by the
following data:
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• a flag of proper subspaces in every fiber Ei of E over Pi:

Ei = F(0)
i ⊃ ·· · ⊃ F(ri)

i ⊃ {0}

with k(s)
i := dimF(s)

i

/
F(s+1)

i as multiplicities, and

• a sequence of weights α(s)
i corresponding to every flag with

0≤ α(0)
i ≤ . . .≤ α(ri)

i ≤ 1.

The paradegree of such a parabolic bundle E is

paradeg E := deg(E)+∑
i

di with di :=∑
s
α(s)

i k(s)
i .

A parabolic bundle E is semi-stable if for all parabolic subbundles F of E
one has:

(rg(F))−1paradeg F ≤ (rg(E))−1paradeg E.

E is stable if “≤” can be replaced with “<”.
The paradeterminant for this parabolic structure (resp. for these weights at the

marked points) is the usual determinant detE =
∧rE tensored with the holomor-

phic line bundle given by OΣ(−∑dixi) for the divisor −∑diPi if di is an integer.
Otherwise the paradeterminant is undefined.

The second bijection in Theorem 11.7 has the following significance: one collects
those equivalence classes of parabolic vector bundles over Σ = SJ , whose weights

α(s)
i are rational and for which all d j := ∑

s
α(s)

j k(s)
j are integers. Then the α(s)

j fix

suitable conjugacy classes in SU(r) and hence a labeling through irreducible rep-
resentations R j. Conversely, given the labels R j attached to the points, only those
parabolic bundles are considered where the weights fit the labels. Now the space

M
SU(r)
J (P,R)

consists of the equivalence classes of such parabolic vector bundles, which, in ad-
dition, are semi-stable with paradegree 0 and trivial paradeterminant. For instance,

for r = 2 the representation ρ belonging to [E] ∈M
SU(2)
J (P,R) is given on the c j by

ρ(c j) =

⎧
⎪⎨

⎪⎩

exp 2πi diag
(
α(0)

j ,α(0)
j

)
for k(0)

j = 2

exp 2πi diag
(
α(0)

j ,α(1)
j

)
for k(0)

j = 1 = k(1)
j .

The moduli space M
SU(2)
J (P,R) is according to [MS80] in a one-to-one corre-

spondence to
Hom(πorb

1 (S),SU(2))
/

SU(2) .
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Furthermore,

M
SU(2)
J (P,R)

has the structure (depending on J) of a projective variety over C. In this variety,
the stable parabolic vector bundles correspond to the regular points. An analogous
theorem holds for parabolic vector bundles of rank r (cf. [MS80]).

In the case of P = /0 the moduli space

M
SU(2)
J,g (P,R) := M

SU(2)
J (P,R)

coincides with the previously introduced moduli space M
SU(2)
J (cf. Sect. 11.1). Re-

call that M
SU(2)
J has a natural line bundle L which is used to introduce the gen-

eralized theta functions or conformal blocks. This has a generalization to the case

P �= /0: M
SU(2)
J,g (P,R) possesses a natural line bundle L – the determinant bundle or

the theta bundle – together with a connection whose curvature is 2πiωM . Here, ωM

is the Kähler form on the regular locus of M
SU(2)
J,g (P,R). Now, the finite-dimensional

space of holomorphic sections

H0
(
M

SU(2)
J,g (P,R),L k

)

is the space of generalized theta functions of level k with respect to (P,R).
For our special case of the group G = SU(2) let us denote by the number n ∈ N

the (up to isomorphism) uniquely determined irreducible representation n : SU(2)→
GL(Vn) with dimCVn = n+1. With respect to the level k ∈ N only those labels R =
(n1, . . . ,nm) are considered in the following which satisfy n j ≤ k for j = 1, . . . ,m.

Theorem 11.9. (Fusion Rules)
0. zk(g;n1, . . . ,nm) := dimC H0(M SU(2)

J,g (P,R),L k) does not depend on J and on the
position of the points P1, . . . ,Pm ∈ S. Here, R = (n1, . . . ,nm). Let Mg,m be the moduli
space of marked Riemann surfaces of genus g with m points and let M g,m be the
Deligne–Mumford compactification of Mg,m. Then, the bundle π : Zg,k(R)→Mg,m

with fiber

π−1(J,P) = H0
(
M

SU(2)
J,g (P,R),L k

)

has a continuation Zg,k(R) → M g,m to Mg,m as a locally free sheaf of rank
zk(g;n1, . . . ,nm).

1. zk(g;n1, . . . ,nm) = ∑k
n=0 zk (g−1;n1, . . . ,nm,n,n).

2. For 1≤ s≤ m one has

zk(g′+g′′;n1, . . . ,nm)

=
k

∑
n=0

zk(g′;n1, . . . ,ns,n)zk(g′′;n,ns+1, . . . ,nm).
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Fig. 11.1 Fusion rule 1

The formulation of the fusion rules for SU(2) in Theorem 11.9 is special since
every representation ρ of the group SU(2) is equivalent to its conjugate represen-
tation ρ∗ (Figs. 11.1 and 11.2). For more general Lie groups G instead of SU(2),
one of the two representations (n,n) in the fusion rules has to be replaced with its
conjugate.

A proof of the fusion rules 1 and 2 in approximately this form can be found in
[NR93] together with [Ram94].

Even in the case of P = /0 it is quite difficult to show that the dimensions of

H0 (M SU(r)
J ,L k ) do not depend on the complex structure J. This can be deduced

from a stronger property which states that the spaces

H0
(
M

SU(r)
J ,L k

)

as well as
H0
(
M

SU(r)
J,g (P,R),L k

)

are essentially independent of the complex structure. This is in agreement with phys-
ical requirements since these spaces are considered to be the result of a quantization
which only depends on the topology of S or S \ P. For this reason the resulting
quantum field theory is called a topological quantum field theory (cf. [Wit89]). In
particular, the state spaces – more precisely their projectivations – should not depend
on any metric or complex structure.
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Fig. 11.2 Fusion rule 2 is defined by the successive application of 2′ and 2′′

That the above state spaces do not depend on the complex structure has been
proven in [APW91] and [Hit90] in the case of P = /0. Hitchin’s methods carry over
to the case of P �= /0 using some results of non-abelian Hodge theory [Sche92],
[ScSc95]. The strategy of the proof is to consider the bundle Zg,k(R)→Mg,m over
the moduli space Mg,m of Riemann surfaces of genus g and m marked points with

fiber H0 (M SU(r)
g,J (P,R),L k ) over (J,P) ∈ Mg,m. On this bundle Zg,k(R) one con-

structs a natural projectively flat connection. Incidentally, the existence of such a
natural projectively flat connection is again motivated by considerations from con-
formal field theory. Then the fibers of the bundle can be identified in a natural way
by parallel transport with respect to this connection up to a constant, that is they
are projectively identified. It is remarkable that in the course of the construction in
the general case of P �= /0 it seems to be necessary to use the metaplectic correction
instead of the uncorrected geometric quantization (see p. 221 and [ScSc95]).
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The case P �= /0 is significant for Witten’s program, to describe the Jones poly-
nomials of knot theory in the context of quantum field theory. In this picture, the
Zk,g(R) are quantum mechanical state spaces, which can be found by path integra-
tion [Wit89] or by geometric quantization [Sche92], [ScSc95]. To obtain the knot
invariants, one needs, in addition to these state spaces, the corresponding state vec-
tors (“propagators”) describing the time development. On the mathematical level
this means that one has to assign to a compact three-dimensional manifold M with
boundary containing labeled knots a state vector in the state space given by the
boundary of M which is a surface with marked points. For instance, one has to assign
to such a manifold M with knots K = (K1, . . . ,Ks), labeled by SU(r)-representations
and with boundary ∂M = Sg∪S′g′ , a vector Zk(M,K) in

Zk,g(R)∗ ⊗Zk,g′(R
′)∼= Hom(Zk,g(R),Zk,g′(R

′)).

The points in Sg, S′g′ and the labels R, R′ are induced by the knots K1, . . . ,Ks,
which may run from boundary to boundary. Only the state spaces together with the
state vectors yield a topological quantum field theory. A rigorous construction of
these state vectors – which are given by path integration in [Wit89] – is still not
known. In the meantime, instead of Witten’s original program, other constructions
of topological quantum field theories – in some cases by using quantum groups –
have been proposed (cf., e.g., [Tur94]) and yield interesting invariants of knots and
three manifolds. Related developments are presented in [BK01*].

11.4 Combinatorics on Fusion Rings: Verlinde Algebra

Using the fusion rules of Sect. 11.3, the proof of the Verlinde formula can be reduced
to the determination of

zk(0;n),zk(0;n,m),zk(0;n,m, l)

for n,m, l ∈ {0, . . . ,k}. This combinatorical reduction has an algebraification, which
also has a meaning for more general groups than SU(r) (cf. [Bea96], [Bea95],
[Sze95]).

Definition 11.10 (Fusion Algebra). Let F be a finite-dimensional complex vector
space with an element 1 ∈ F . For every g ∈ Z,g≥ 0 and v1, . . . ,vm ∈ F let

Z(g)v1,...,vm ∈ C

be given. (F,1,Z) is a fusion ring if the following fusion rules hold:

(F1) Z(g)1,...,1 = 1.
(F2) Z(g)v1,...,vm = Z(g)1,v1,...,vm does not depend on the order of the v1, . . . ,vm.
(F3) v→ Z(0)v1,...,v j ,v,v j+1,...,vm is C-linear.
(F4) (v,w)→ Z(0)v,w is not degenerated.
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We use the notation
∫

v := Z(0)v, 〈v,w〉 := Z(0)v,w and η(v,w,u) := Z(0)v,w,u.

Let (b j),(b j) be a pair of bases with δ i
j = 〈b j,bi〉. Then, additionally, the follow-

ing rules hold

(F5) Z(g)v1,...,vm = ∑Z(g−1)b j ,b j ,v1,...,vm
, g≥ 1 (Fusion 1).

(F6) Z(g+g′)v1,...,vm,v′1,...,v′m = ∑Z(g)v1,...,vm,b j Z(g′)b j ,v′1,...,v′m
, (Fusion 2).

One easily proves

Lemma 11.11. The product v ·w := ∑η(v,w,b j)b j for v,w ∈ F induces on F the
structure of a commutative and associative complex algebra with 1.

Lemma 11.12. The bilinear form 〈,〉 satisfies the trace condition 〈v ·w,x〉 = 〈v,w ·
x〉. Therefore, F is a Frobenius algebra.

Proof. 〈v ·w,x〉 = ∑η(v,w,bi)〈bi,x〉 by definition and linearity. Thus 〈v ·w,x〉 =
η(v,w,x), since x = bi〈bi,x〉. In the same way, we obtain 〈v,w · x〉 = 〈w · x,v〉 =
η(w,x,v) = η(v,w,x) by (F2). �

Both results need the axioms for g = 0 only. With similar arguments one can
prove the following version of the Verlinde formula using the fusion rules for gen-
eral g.

Lemma 11.13. With α := ∑b jb j = ∑η(bi,bi,bk)bk ∈ F the abstract Verlinde for-
mula holds:

Z(g)v1,...,vm =
∫
αgv1 · . . . · vm.

Proof. By induction on m we show

Z(g)v1,...,vm = Z(g)v1·...·vm .

The case m = 1 is trivial. For m≥ 2 we have

Z(g)v1,...,vm = ∑Z(0)v1,v2,b j Z(g)b j ,v3,...,vm
by(F6)

= ∑η(v1,v2,b j)Z(g)b j ,v3,...,vm

= Z(g)∑η(v1,v2,b j)b j ,v3,...,vm
by(F3)

= Z(g)v1·v2,v3,...,vm by the definition of the product

= Z(g)v1·v2·v3·...·vm by the induction hypothesis.

This implies

Z(g)v =∑Z(g−1)b j ,b j ,v = Z(g−1)∑b jb jv = Z(g−1)αv
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and
Z(g)v = Z(g−1)αv = Z(g−2)α2v = Z(0)αgv.

Hence for v = v1 · . . . · vm the claimed statement follows. �

For the derivation of the Verlinde formula (Theorem 11.6) from the fusion rules
using Lemma 11.13 we refer to [Sze95], where general simple Lie groups instead
of SU(2) are treated.

To indicate the role of the above formula as an abstract Verlinde formula let us
represent F as the algebra of functions on the spectrum Σ= Spec F , that is the finite
set of algebra homomorphisms h : F →C satisfying, in particular, h(1) = 1. With the
aid of the Gelfand map v �→ v̂, v̂(h) = h(v), we identify F and the function algebra
Map(Σ). The structure map Z(0) : F → C induces on F = Map(Σ) a complex mea-
sure μ which is given by a map μ : Σ→C. We have Z(0)v =

∫
vdμ =∑h∈Σ v(h)μ(h)

and conclude 1 = Z(0)1 =
∫

dμ = ∑μ(h) and μ(h) �= 0 for all h ∈ Σ.
In order to determine the element α ∈ F from Lemma 11.13 one uses the char-

acteristic functions eh of the points h ∈ Σ as a basis: eh(k) = δh,k. The dual basis eh

is given by eh = μ(h)−1eh because of

〈eh,e
h〉= Z(0)eh,eh =

∫
ehehdμ = μ(h).

Therefore, α = ∑μ(h)−1eh and αg = ∑μ(h)−geh. Inserting this term into the
abstract Verlinde formula in 11.13 gives

∫
αgdμ =∑μ(h)−gμ(h) =∑μ(h)1−g.

Hence, for Z(g) = Z(g)1 we obtain the following formula which is much closer
in its appearance to the Verlinde formula (11.2).

Lemma 11.14.
Z(g) = ∑

h∈Σ
(μ(h))g−1.

The fusion rules have their origin in the operator product expansion (cf. p. 168).
In the case of the conformal field theory associated to a simple Lie group G (like
SU(2) as considered above) the fusion rules are also related to basic properties of
the group and its representations. In fact, the fusion rules have a manifestation in
the tensor product of representations of G and the fusion algebras considered above
turn out to be isomorphic to certain quotients of the representation ring R(G). These
quotients are called Verlinde algebras (cf. [Wit93*]).

We describe the Verlinde algebra Vk(G) explicitly in the case of the group G =
SU(2). The representation ring R(G), that is the ring of (isomorphism classes of)
finite-dimensional representations of G with the tensor product as multiplication, is
in the case of G = SU(G) generated by the standard two-dimensional representation
V1. All other irreducible representations are known to be isomorphic to some Vm

where Vm is the symmetric product:
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Vm := V�m
1 = V1� . . .�V1.

Vm is the (m+1)-dimensional irreducible representation of SU(2), unique up to
isomorphism, in particular, V0 is the trivial one-dimensional representation. Let bn

denote the isomorphism class of Vn in R(SU(2)) (denoted by n in the last section).
We regard R(SU(2)) as a vector space over C and observe that (b j) is a basis of
R(SU(2)). In particular, R(G) is an algebra over C.

The multiplication “×” on R(G) induced by the tensor product is given by the
Clebsch–Gordan formula

Vm⊗Vn
∼= Vm+n⊕Vm+n−2⊕ . . .⊕V|m−n|.

Hence, on R(G) we have

bm+p×bm =
m

∑
j=0

b2m+p−2 j.

The truncated multiplication of level k ∈ N is

bm+p ·bm = bm+p×bm, if 2m+ p≤ k,

and

bm+p ·bm =
m

∑
j≥2m+p−k

b2m+p−2 j = b2k−2m−p + . . .+bp,

if 2m+ p > k and m+ p≤ k. The definition implies that no terms bn with n > k can
appear in the summation on the right-hand side. The resulting algebra, the Verlinde
algebra Vk(SU(2)) of level k, is the quotient R(G)/(bk+1) with respect to the ideal
(bk+1) generated by bk+1 ∈ R(G). It is a Frobenius algebra and a fusion algebra in
the sense of Definition 11.10. It describes the fusion in the level k case for SU(2).

The Verlinde algebra has a direct description with respect to the basis b0, . . . ,bk

in the form

bi ·b j =
k

∑
m=0

Nm
i j bm

with coefficients Nm
i j ∈ {0,1}.

Now, the homomorphisms of Vk(SU(2)) can be determined using the fact that all
complex homomorphisms on R(SU(2)) have the form

hz(bn) =
sin(n+1)z

sinz
,

where z ∈ C is a complex number. Such a homomorphism hz vanishes on (bk+1) if
sin(k + 2)z = 0. We conclude that the homomorphisms of Vk(SU(2)) are precisely
the k +1 maps hp : Vk(SU(2))→ C satisfying

hp(b j) =
sin( j +1)zp

sinzp
,zp =

pπ
k +2

, p = 1, . . . ,k +1.
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Using

Z(0)b j =
∫

b j =
k+1

∑
n=1

b j(hn)μ(hn),

an elementary calculation yields

μ(hn) =
2

k +2
sin2 nπ

k +2
,n = 1, . . . ,k +1,

from which the Verlinde formula (11.2) follows by Lemma 11.14.
Recently, a completely different description of the Verlinde algebra using equiv-

ariant twisted K-theory has been developed by Freed, Hopkins, and Teleman
[FHT03*] (see also [Mic05*], [HJJS08*]).
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