
Chapter 5
The Virasoro Algebra

In this chapter we describe how the Witt algebra and the Virasoro algebra as its es-
sentially unique nontrivial central extension appear in the investigation of conformal
symmetries. This result has been proven by Gelfand and Fuks in [GF68]. The last
section discusses the question of whether there exists a Lie group whose Lie algebra
is the Virasoro algebra.

5.1 Witt Algebra and Infinitesimal Conformal
Transformations of the Minkowski Plane

The quantization of classical systems with symmetries yields representations of
the classical symmetry group in U(P) (with P = P(H), the projective space of a
Hilbert space H, cf. Chap. 3), that is the so-called projective representations. As
we have explained in Corollary 2.15, the conformal group of R

1,1 is isomorphic to
Diff+(S)×Diff+(S) (here and in the following S := S

1 is the unit circle). Hence,
given a classical theory with this conformal group as symmetry group, one studies
the group Diff+(S) and its Lie algebra first. After quantization one is interested in
the unitary representations of the central extensions of Diff+(S) or Lie (Diff+(S))
in order to get representations in the Hilbert space as we have explained in the pre-
ceding two sections.

The group Diff+(S) is in a canonical way an infinite dimensional Lie group
modeled on the real vector space of smooth vector fields Vect(S). (We will discuss
Vect(S) in more detail below.) Diff+(S) is equipped with the topology of uniform
convergence of the smooth mappings ϕ : S→ S and all their derivatives. This topol-
ogy is metrizable. Similarly, Vect (S) carries the topology of uniform convergence
of the smooth vector fields X : S→ TS and all their derivatives. With this topology,
Vect(S) is a Fréchet space. In fact, Vect(S) is isomorphic to C∞(S,R), as we will
see shortly. The proof that Diff+(S) in this way actually becomes a differentiable
manifold modeled on Vect(S) and that the group operation and the inversion are
differentiable is elementary and can be carried out for arbitrary oriented, compact
(finite-dimensional) manifolds M instead of S (cf. [Mil84]).
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Since Diff+(S) is a manifold modeled on the vector space Vect(S), the tan-
gent space Tϕ(Diff+(S)) at a point ϕ ∈ Diff+(S) is isomorphic to the vector space
Vect(S). Hence, Vect(S) is also the underlying vector space of the Lie algebra
Lie(Diff+(S)). A careful investigation of the two Lie brackets on Vect(S) – one
from Vect(S), the other from Lie(Diff+(S)) – shows that each Lie bracket is exactly
the negative of the other (cf. [Mil84]). However, this subtle fact is not important for
the representation theory of Lie(Diff+(S)). Consequently, it is usually ignored. So
we set

Lie(Diff+(S)) := Vect(S).

The vector space Vect(S) is – like the space Vect(M) of smooth vector fields
on a smooth compact manifold M – an infinite dimensional Lie algebra over R

with a natural Lie bracket: a smooth vector field X on M can be considered to be a
derivation X : C∞(M)→C∞(M), that is a R-linear map with

X( f g) = X( f )g+ f X(g) for f ,g ∈C∞(M).

The Lie bracket of two vector fields X and Y is the commutator

[X ,Y ] := X ◦Y −Y ◦X ,

which turns out to be a derivation again. Hence, [X ,Y ] defines a smooth vector field
on M. For M = S the space C∞(S) can be described as the vector space C∞

2π(R) of
2π-periodic functions R→R. A general vector field X ∈Vect(S) in this setting has
the form X = f d

dθ , where f ∈C∞
2π(R) and where the points z of S are represented as

z = eiθ , θ being a variable in R. For X = f d
dθ and Y = g d

dθ it is easy to see that

[X ,Y ] = ( f g′ − f ′g)
d

dθ
with g′ =

d
dθ

g and f ′ =
d

dθ
f . (5.1)

The representation of f by a convergent Fourier series

f (θ) = a0 +
∞

∑
n=1

(an cos(nθ)+bn sin(nθ))

leads to a natural (topological) generating system for Vect(S):

d
dθ

, cos(nθ)
d

dθ
, sin(nθ)

d
dθ

.

Of special interest is the complexification

VectC(S) := Vect(S)⊗C

of Vect(S). To begin with, we discuss only the restricted Lie algebra W⊂VectC(S)
of polynomial vector fields on S. Define
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Ln := z1−n d
dz

=−iz−n d
dθ

=−ie−inθ d
dθ

∈ VectC(S),

for n ∈ Z. Ln : C∞(S,C)→C∞(S,C), f �→ z1−n f ′. The linear hull of the Ln over C

is called the Witt algebra:
W := C{Ln : n ∈ Z}.

It has to be shown, of course, that W with the Lie bracket in VectC(S) actually
becomes a Lie algebra over C. For that, we determine the Lie bracket of the Ln,
Lm, which can also be deduced from the above formula (5.1). For n,m ∈ Z and
f ∈C∞(S,C),

LnLm f = z1−n d
dz

(
z1−m d

dz
f

)

= (1−m)z1−n−m d
dz

f − z1−nz1−m d2

dz2 f .

This yields

[Ln,Lm] f = LnLm f −LmLn f

= ((1−m)− (1−n))z1−n−m d
dz

f

= (n−m)Ln+m f .

In a theory with conformal symmetry, the Witt algebra W is a part of the com-
plexified Lie algebra VectC(S)×VectC(S) belonging to the classical conformal
symmetry. Hence, as we explained in the preceding chapter, the central extensions
of W by C become important for the quantization process.

5.2 Witt Algebra and Infinitesimal Conformal
Transformations of the Euclidean Plane

Before we focus on the central extensions of the Witt algebra in Theorem 5.1, an-
other approach to the Witt algebra shall be described. This approach is connected
with the discussion in Sect. 2.4 about the conformal group for the Euclidean plane.
In fact, in the development of conformal field theory in the context of statistical
mechanics mostly the Euclidean signature is used. This point of view is taken, for
example, in the fundamental papers on conformal field theory in two dimensions
(cf., e.g., [BPZ84], [Gin89], [GO89]).

The conformal transformations in domains U ⊂C∼= R
2,0 are the holomorphic or

antiholomorphic functions with nowhere-vanishing derivative (cf. Theorem 1.11).
We will treat only the holomorphic case for the beginning. If one ignores the ques-
tion of how these holomorphic transformations can form a group (cf. Sect. 2.4) and
investigates infinitesimal holomorphic transformations, these can be written as
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z �→ z+ ∑
n∈Z

anzn,

with convergent Laurent series ∑n∈Z anzn. In the sense of the general relation be-
tween Diff+(M) and Vect(M), the vector fields representing these infinitesimal
transformations can be written as

∑anzn+1 d
dz

in the fictional relation between the “conformal group” (see, however, Sect. 5.4) and
the vector fields. The Lie algebra of all these vector fields has the sequence (Ln)n∈Z,
Ln = z1−n d

dz , as a (topological) basis with the Lie bracket derived above:

[Ln,Lm] = (n−m)Ln+m.

Hence, for the Euclidean case there are also good reasons to introduce the Witt
algebra W = C{Ln : n ∈ Z} with this Lie bracket as the conformal symmetry al-
gebra. The Witt algebra is a dense subalgebra of the Lie algebra of holomorphic
vector fields on C \ {0}. The same is true for an annulus {z ∈ C : r < |z| < R},
0 ≤ r < R ≤ ∞. However, only the vector fields Ln with n ≤ 1 can be continued
holomorphically to a neighborhood of 0 in C, the other Ln s are strictly singular at 0.
As a consequence, contrary to what we have just stated the vector fields Ln, n > 1,
cannot be considered to be infinitesimal conformal transformations on a suitable
neighborhood of 0. Instead, these meromorphic vector fields correspond to proper
deformations of the standard conformal structure on R

2,0 ∼= C.
Without having to speak of a specific “conformal group” one can require – as

it is usually done in conformal field theory à la [BPZ84] – that the primary field
operators of a conformal field theory transform infinitesimally according to the Ln

(a condition which will be explained in detail in Sect. 9.3). This symmetry condi-
tion yields an infinite number of constraints. This viewpoint explains the claim of
“infinite dimensionality” in the citations of Sect. 2.4.

Let us point out that there is no complex Lie group H with Lie H = VectC(S) as
is explained in Sect. 5.4.

The antiholomorphic transformations/vector fields yield a copy W of W with
basis Ln, so that

[Ln,Lm] = (n−m)Ln+m and [Ln,Lm] = 0.

For the Minkowski plane one has a copy of the Witt algebra as well, which in
this case originates from the second factor Diff+(S) in the characterization

Conf(R1,1)∼= Diff+(S)×Diff+(S).

In both cases there is a natural isomorphism t : W → W of the Witt algebra,
defined by t(Ln) := −L−n on the basis. t is a linear isomorphism and respects the
Lie bracket:
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[t(Ln), t(Lm)] = [L−n,L−m] =−(n−m)L−(n+m) = (n−m)t(Ln+m).

Hence, t is a Lie algebra isomorphism. Since t2 = idW , t is an involution. These
facts explain that in many texts on conformal field theory the basis

L∼n =−zn+1 d
dz

= t

(
z1−n d

dz

)

instead of Ln = z1−n d
dz is used. Incidentally, the involution t induced on W by the

biholomorphic coordinate change z �→ w = 1
z of the punctured plane C\{0}: dz =

−w−2dw implies

z1−n d
dz

= wn−1(−w2)
d

dw
=−wn+1 d

dw
.

5.3 The Virasoro Algebra as a Central Extension
of the Witt Algebra

After these two approaches to the Witt algebra W we now come to the Virasoro
algebra, which is a proper central extension of W. For existence and uniqueness
we need

Theorem 5.1. [GF68] H2(W,C)∼= C.

Proof. In the following we show: the linear map ω : W×W→ C given by

ω(Ln,Lm) := δn+m
n

12
(n2−1),δk :=

{
1 for k = 0

0 for k �= 0

defines a nontrivial central extension of W by C and up to equivalence this is the
only nontrivial extension of W by C. In order to do this we prove

1. ω ∈ Z2(W,C).

2. ω /∈ B2(W,C).

3. Θ ∈ Z2(W,C)⇒∃λ ∈ C : Θ∼ λω.

Remark: The choice of the factor 1
12 in the definition of ω is in accordance with the

zeta function regularization using the Riemann zeta function, cf. [GSW87, p. 96].

1. Evidently, ω is bilinear and alternating. In order to show ω ∈ Z2(W,C), that is
2◦ of Remark 4.3, we have to check that

ω(Lk, [Lm,Ln])+ω(Lm, [Ln,Lk])+ω(Ln, [Lk,Lm]) = 0
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for k,m,n ∈ Z. This can be calculated easily:

12(ω(Lk, [Lm,Ln])+ω(Lm, [Ln,Lk])

+ω(Ln, [Lk,Lm]))

= δk+m+n((m−n)k(k2−1)+(n− k)m(m2−1)

+(k−m)n(n2−1))

= −(m−n)(m+n)((m+n)2−1)

+(2n+m)m(m2−1)

−(2m+n)n(n2−1)

= 0.

2. Assume that there exists μ ∈ HomC(W,C) with ω(X ,Y ) = μ([X ,Y ]) for all
X ,Y ∈W. Then for every n ∈ N we have

ω(Ln,L−n) = μ̃(Ln,L−n)

⇒ n
12 (n2−1) = μ([Ln,L−n])

⇒ n
12 (n2−1) = 2nμ(L0)

⇒ μ(L0) = 1
24 (n2−1).

The last equation cannot hold for every n ∈ N. So the assumption was wrong,
which implies ω /∈ B2(W,C).

3. Let Θ ∈ Z2(W,C). Then for k,m,n ∈ Z we have

0 = Θ(Lk, [Lm,Ln])+Θ(Lm, [Ln,Lk])+Θ(Ln, [Lk,Lm])

= (m−n)Θ(Lk,Lm+n)+(n− k)Θ(Lm,Ln+k)

+(k−m)Θ(Ln,Lk+m).

For k = 0 we get

(m−n)Θ(L0,Lm+n)+nΘ(Lm,Ln)−mΘ(Ln,Lm) = 0.

Hence

Θ(Ln,Lm) =
m−n
m+n

Θ(L0,Lm+n) for m,n ∈ Z; m �=−n.

We define a homomorphism μ ∈ HomC(W,C) by

μ(Ln) : =
1
n
Θ(L0,Ln) for n ∈ Z\{0},

μ(L0) : = −1
2
Θ(L1,L−1),

and let Θ′ :=Θ+ μ̃ . Then Θ′(Ln,Lm) = 0 for m,n ∈ Z,m �=−n, since
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Θ′(Ln,Lm) = Θ(Ln,Lm)+μ([Ln,Lm])

=
m−n
m+n

Θ(L0,Ln+m)+μ((n−m)Ln+m)

=
m−n
m+n

Θ(L0,Ln+m)+
n−m
m+n

Θ(L0,Ln+m)

= 0.

So there is a map h : Z→ C with

Θ′(Ln,Lm) = δn+mh(n) for n,m ∈ Z.

Since Θ′ is alternating, it follows:

h(0) = 0 and h(−k) =−h(k) for all k ∈ Z.

By definition of μ we have

h(1) = Θ′(L1,L−1)
= Θ(L1,L−1)+μ([L1,L−1])
= Θ(L1,L−1)+μ(2L0)
= Θ(L1,L−1)−Θ(L1,L−1)
= 0.

It remains to be shown that there is a λ ∈ C with Θ′ = λω , that is

h(n) =
λ
12

n(n2−1) for n ∈ N. (5.2)

Since Θ′ ∈ Z2(W,C), we have for k,m,n ∈ N,

0 = Θ′(Lk, [Lm,Ln])+Θ′(Lm, [Ln,Lk])

+Θ′(Ln, [Lk,Lm])

= (m−n)Θ′(Lk,Lm+n)+(n− k)Θ′(Lm,Ln+k)

+(k−m)Θ′(Ln,Lk+m).

For k +m+n = 0 we get

0 = (m−n)h(k)+(n− k)h(m)+(k−m)h(n)
= −(m−n)h(m+n)+(2n+m)h(m)
−(2m+n)h(n).

The substitution n = 1 yields the equation

−(m−1)h(m+1)+(2+m)h(m)− (2m+1)h(1) = 0,



82 5 The Virasoro Algebra

for m ∈ N. Combined with h(1) = 0 this implies the recursion formula

h(m+1) =
m+2
m−1

h(m) for m ∈ N\{1}.

Consequently, the map h is completely determined by h(2) ∈ C. We now show
by induction n ∈ N that for λ := 2h(2) the relation (5.2) holds. The cases n = 1
and n = 2 are obvious. So let m ∈ N, n > 1, and h(m) = λ

12 m(m2−1). Then

h(m+1) =
m+2
m−1

h(m)

=
m+2
m−1

λ
12

m(m2−1)

=
λ
12

m(m+1)(m+2)

=
λ
12

(m+1)((m+1)2−1). �

Definition 5.2. The Virasoro algebra Vir is the central extension of the Witt algebra
W by C defined by ω , that is

Vir = W⊕CZ as a complex vector space,

[Ln,Lm] = (n−m)Ln+m +δn+m
n
12

(n2−1)Z,

[Ln,Z] = 0 for n,m ∈ Z.

5.4 Does There Exist a Complex Virasoro Group?

In Sect. 2.3 we have shown that the conformal group Conf(R2,0) of the Euclidean
plane is not infinite dimensional. Instead, it is isomorphic to the familiar finite-
dimensional group Mb of Möbius transformations which in turn is isomorphic to
the Lorentz group SO(3,1). Here, the conformal group is defined to be the group of
global conformal transformations defined on open dense subsets M ⊂ R

2,0.
It is, however, a fact and an essential feature that in conformal field theory the

infinite dimensional Lie algebra Vir is used as the fundamental set of (infinitesimal)
symmetries. Even if it is impossible to interpret these symmetries as generators of
conformal transformations on open subsets of the euclidean plane (cf. Sect. 2.3) it
is in principle not excluded that there exists an infinite dimensional complex Lie
group G such that the Virasoro algebra Vir is essentially the Lie algebra of G . Such
a Lie group would be called a Virasoro group. Such a group would play the role
of an abstract infinite dimensional conformal group related to the Euclidean plane
embodying all conformal symmetries.
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We are thus led to discuss the following questions:

1. Question: Does there exist a complex Lie group G with the Virasoro algebra Vir
as its Lie algebra?
Closely related to this question are the following two questions.

2. Question: Does there exist a complex Lie group H with the Witt algebra W as
its Lie algebra?

3. Question: Does there exist a real Lie group F such that the Lie algebra of F
is the central extension VirR of the real version WR of the Witt algebra given by
the same cocycle ω as in Theorem 5.1?

The questions have to be formulated in a more precise manner, but the answer to
the first question in its most natural setting is no, as we report in the following.

The questions are not clearly stated in the infinite dimensional setting because an-
swering them requires to specify a topology on Vir since there is no natural topology
on an infinite dimensional complex vector space in contrast to the finite-dimensional
case. Since Vir can be equipped with many different topologies compatible with its
structure of a complex Lie algebra we obtain a series of questions depending on
the topologies considered. The topology to be chosen should be at least a locally
convex topology since there exists a reasonable theory of Lie groups and Lie alge-
bras (cf. [Mil84]) with models in locally convex spaces. However, only for Banach
Lie groups one has an exponential mapping which is a local embedding and thus
gives coordinates. In fact, the nonexistence of a Virasoro group is closely related to
deficiencies of the exponential mapping.

If one considers locally convex topologies on Vir, it is quite natural to require
that the corresponding Lie group has its models in the completion V̂ir of Vir. Con-
sequently, the questions 1–3 have to be refined by asking for Lie groups such that
their Lie algebras are isomorphic as topological Lie algebras to the completions

V̂ir,Ŵ resp. V̂irR.
What is the right topology on Vir and on the other two related Lie algebras?

Regarding the definition of Vir as the central extension of the Witt algebra W and
taking into account the origin of W as a Lie algebra of complex vector fields on S it
is natural to start with the topology on W which is induced from Vect(S)C where on
Vect(S) the natural Fréchet topology on compact convergence of the vector fields
and all its derivatives is considered. The completion Ŵ of W is Vect(S)C, and the
second question reduces to the existence of a complexification of the real Lie group
Diff+(S). By a result of Lempert [Lem97*],

Theorem 5.3. Diff+(S) has no complexification. In particular, there even does not
exist a real Lie group H with Lie H = Ŵ = Vect(S)C.

Of course, the notion of a complexification has to be made precise, in particu-
lar, since in the literature different concepts are used. A (universal) complexification
of a real Lie group G is a complex Lie group GC together with a homomorphism
j : G → GC such that any homomorphism ψ : G → H into a complex Lie group
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H factors uniquely through j, that is there exists a unique complex analytic mor-
phism ψ̂ : GC → H with ψ = ψ̂ ◦ j. Finite-dimensional Lie groups always have a
complexification although the homomorphism need not be injective.

Note that Theorem 5.3 would follow from the conjecture that every homomor-
phism ψ into a complex Lie group H is necessarily trivial. This conjecture is stated
in [PS86*] (3.2.3) using the fact that Diff+(S) is simple according to [Her71]. But
in [PS86*] it is implicitly used that H has a reasonable exponential mapping which
is not true in general.

Therefore, the proof of Theorem 5.3 in [Lem97*] is based on completely differ-
ent methods and the result holds for arbitrary compact and connected manifolds M
of finite dimension ≥ 1 instead of S.

With the same arguments as in [Lem97*] it can be shown that there is no Virasoro
group with respect to the natural topology on Vir induced by the embedding Vir→
Vect(S)C⊕C as vector spaces over C (cf. [Nit06*]):

Theorem 5.4. There does not exist a complex Lie group G with Lie G = V̂ir.

In other words, there does not exist an abstract Virasoro group. On the other
hand, the third question can be answered in the affirmative. There is a real Lie group
F whose Lie algebra is the (real) nontrivial central extension of Vect(S). F is a
nontrivial central extension of Diff+(S) by S

1.
To construct the extension group F we can use the restricted unitary group

Ures(H+) introduced in Definition 3.16. With a suitable choice of H+ ⊂H = L2(S)
(the space of functions f ∈ L2(S) without negative Fourier coefficients) one obtains
a natural embedding of Diff+(S) into Ures(H+) (cf. [PS86*]) and differentiating this
sequence yields a nontrivial central extension

0−→ R−→ Vect(S)∼ −→ Vect(S)−→ 0

of Vect(S)∼= ŴR.
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