MATHEMATISCHES INSTITUT UNIVERSITÄT MÜNCHEN

SS 2009

Prof. Dr. M. Schottenloher

C. Paleani

M. Schwingenheuer

A. Stadelmaier

Präsenzübungen zur Funktionentheorie - Blatt 6

2.6. - 5.6.2009

- 1. Aufgabe: Man bestimme $\int_{\beta} \frac{1}{\zeta} d\zeta$ für den Weg $\beta(t) := re^{it}$, $t \in [a,b]$.
- 2. Aufgabe: Sei α_z für $z=re^{i\psi}\in\mathbb{C}^{**}$, r>0, $\psi\in]-\pi,\pi[$, die Kurve von 1 nach z, die von 1 nach r auf der x-Achse verläuft und die dann mit dem Kreisbogen $re^{it\psi}$, $t\in [0,1]$, übereinstimmt, der r und z verbindet.
 - (a) Man bestimme direkt (das soll hier heißen: unter direkter Verwendung der Definition das Wegintegrals)

$$F(z) := \int_{\alpha_z} \frac{1}{\zeta} d\zeta.$$

- (b) Man bestätige, dass der Hauptzweig Log_0 des Logarithmus mit F auf \mathbb{C}^{**} übereinstimmt.
- (c) Man zeige $F(z) = \int_{\gamma_z} \frac{1}{\zeta} d\zeta$ auch für jeden anderen (stückweise stetig differenzierbaren) Weg γ_z , der in \mathbb{C}^{**} den Punkt 1 mit z verbindet.
- 3. Auf dem Rand der Kreisscheibe $D(z_0, r)$ verläuft die Kurve $\gamma_m := z_0 + re^{2\pi i mt}$, $t \in [0, 1]$, wobei $m \in \mathbb{Z}$. Man zeige für jeden Punkt $z \in D(z_0, r)$:

$$\frac{1}{2\pi i} \int_{\gamma_{-}} \frac{1}{\zeta - z} d\zeta = m.$$

Das ist mehr als der in der Vorlesung (§ 9) gezeigte Fall mit $z=z_0$ und $z_0=0$ (siehe auch die Verallgemeinerung in der Aufgabe 1), und folgt direkt aus der Integralformel, kann aber auch aus der Holomorphie von $z\to \frac{1}{2\pi i}\int_{\gamma_m}\frac{1}{\zeta-z}d\zeta$ gefolgert werden.